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Abstract: The vibration signals for offshore wind-turbine high-speed bearings are often contaminated
with noises due to complex environmental and structural loads, which increase the difficulty of
fault detection and diagnosis. In view of this problem, we propose a fault-diagnosis strategy with
good noise immunity in this paper by integrating the two-dimensional convolutional neural network
(2DCNN) with random forest (RF), which is supposed to utilize both CNN’s automatic feature-
extraction capability and the robust discrimination performance of RF classifiers. More specifically,
the raw 1D time-domain bearing-vibration signals are transformed into 2D grayscale images at first,
which are then fed to the 2DCNN-RF model for fault diagnosis. At the same time, three procedures,
including exponential linear unit (ELU), batch normalization (BN), and dropout, are introduced in the
model to improve feature-extraction performance and the noise immune capability. In addition, when
the 2DCNN feature extractor is trained, the obtained feature vectors are passed to the RF classifier to
improve the classification accuracy and generalization ability of the model. The experimental results
show that the diagnostic accuracy of the 2DCNN-RF model could achieve 99.548% on the CWRU
high-speed bearing dataset, which outperforms the standard CNN and other standard machine-
learning and deep-learning algorithms. Furthermore, when the vibration signals are polluted with
noises, the 2DCNN-RF model, without retraining the model or any denoising process, still achieves
satisfying performance with higher accuracy than the other methods.

Keywords: offshore wind turbine; high-speed bearing; fault diagnosis; CNN; RF; noise immunity

1. Introduction

Wind energy has seen significant development in the past decade and is currently the
most promising renewable energy resource. Notably, offshore wind turbines have better
wind resources and wide operating space for large turbines than onshore ones. However,
due to the harsh offshore environment, the failure rate of offshore wind turbines is much
higher than that of onshore ones [1], which is an essential factor for the high cost of offshore
wind energy. It has been observed there is a high failure rate of bearings in wind-turbine
drivetrains as well as pitch-and-yaw systems, as shown in Figure 1. These bearings are
continuously affected by alternating impact forces and loads from complex wind and wave
environments, in which mechanical faults may occur. Therefore, advanced fault detection is
required for evaluating the operating conditions of the bearings, so that maintenance can be
implemented timely before catastrophic faults happen, and the operation and maintenance
costs for offshore wind energy can be reduced [2].

There has already been a large amount of research work conducted for bearing-fault
diagnosis based on vibration-signal analysis [3]. The traditional bearing-fault diagnosis
process using vibration signals can be divided into two procedures, i.e., feature extraction
and pattern recognition, and these two steps significantly affect the diagnosis results. When
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mechanical faults occur in the bearing, its vibration signal varies accordingly, leading to the
energy change in each frequency band. Therefore, time–frequency-domain analysis meth-
ods have been used to extract time–frequency features, including fast Fourier transform
(FFT), short-time Fourier Transform (STFT), wavelet transform (WT), variational mode
decomposition (VMD), Wigner–Ville distribution (WVD), empirical mode decomposition
(EMD), and ensemble empirical mode decomposition (EEMD) [4]. After feature extraction,
pattern recognition is often used to diagnose and classify faults, such as support-vector
machines (SVM), backpropagation neural networks (BPNN), Bayesian classifiers, and
nearest-neighbor classifiers [5]. Many integrated bearing-fault diagnosis strategies have
been proposed based on these algorithms [6,7]. Chen X et al. proposed an approach based
on VMD-SVM for identifying bearing-fault types [8]. Long J et al. used the STFT method to
analyze the wind-turbine bearing-vibration signals, and experimental results suggested
that STFT had a high recognition rate and managed to extract fault characteristics [9].
Wang et al. used the improved tunable Q-factor wavelet transform (TQWT) with ensemble
EEMD to extract the fault features of bearings [10]. Samanta B. et al. [11] used SVM for
gear-fault classification, which showed better training time and classification accuracy than
artificial neural networks. In [12], BPNN was used to locally learn meaningful and dissimi-
lar features from signals of different scales, thus improving fault-diagnosis accuracy. Cheng
et al. proposed a FFBRB (fuzzy fault-tree analysis and belief-rule base) model based on the
Bayesian network, fuzzy fault-tree-analysis mechanism, and projection covariance-matrix-
adaptation evolutionary strategies [13]. However, these aforementioned schemes based
on manual feature extraction have the shortcomings of noise rejection. More specifically,
vibration signals from rolling bearings are usually nonstationary and nonlinear. They are
easily affected by complex operating conditions and background noises, increasing the
difficulty of fault diagnosis with traditional methods based on manual feature extraction.
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With the development of machine-learning techniques, many researchers have pro-
posed to analyze the collected vibration data using learning-based approaches. For instance,
a bearing-fault diagnosis approach based on long short-term memory (LSTM) was devel-
oped for wind-turbine fault prediction, and good efficiency, accuracy, and generalization
ability were demonstrated [14]. Liang et al. proposed a method based on the kernel extreme
learning machine (KELM) and whale optimization algorithm (WOA), and experimental
results showed high classification accuracy and efficiency [15]. As a classical algorithm in
ensemble learning, random forest (RF) is often used with other feature-extraction methods
for classifications [16]. Rong et al. proposed a fault-diagnosis method for large-scale wind
turbines, which combined CEMD and RF for multidomain fault diagnosis [17]. Fuzzy logic
(FL) could also be used for fault diagnosis by partitioning the feature space into fuzzy
sets, and a novel fuzzy-neural data-fusion engine was proposed for online monitoring
and diagnosis [18]. Still, the performance of these fault diagnostic methods significantly
relies upon the quality of artificial feature extraction. In addition, the vibration signals
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of the high-speed bearing of the offshore wind turbines are greatly affected by the noise
interference caused by external disturbances, resulting in the difficulty of feature extraction.

Fortunately, deep learning, one of the essential subfields of machine learning, has
been developed rapidly in the past few years, which is shown to be able to automatically
extract and select features from data. Researchers have proposed to use deep-learning
methods to process bearing-fault signals in the last few years. Nguyen et al. proposed
a novel fault-diagnosis method using the deep neural network (DNN) [19], where the
bearing-vibration signals were transformed into multiple-domain images and fed into a
DNN with a multibranch structure, achieving good feature-extraction results. Jiang et al.
proposed a multiscale CNN, which could extract fault features directly from the measured
vibration signals of wind turbines [20]. In [21], a CNN-based gearbox-fault-diagnosis
algorithm was proposed, which utilized the features in the time–frequency domain as the
input of CNN to realize fault identification. Zhang et al. proposed a 1DCNN-PSO-SVM
model for fault diagnosis [22], and experimental results suggested that this method could
effectively extract the fault features of the wind-turbine gearbox. Zhang et al. proposed
an improved Mask R-CNN model to automatically perform the fault detection for the
wind-turbine bearings [23]. However, the above-mentioned classifiers are still influenced
by measurement noises. If a robust classifier that incorporates mechanisms to be less
influenced by noises could be combined with DNN, more robust fault-diagnosis results
could be obtained.

In this paper, we propose a two-dimensional convolutional neural network (2DCNN)
model for offshore wind-turbine high-speed bearing-fault diagnosis under noisy environ-
ments, which is supposed to utilize both CNN’s automatic feature-extraction capability
and the robust discrimination performance of RF classifiers. First, the raw 1D bearing-
vibration signals are converted into 2D grayscale images without information loss. Then, a
2DCNN-RF model is established to deal with these 2D images. In particular, three proce-
dures, including batch normalization (BN), exponential linear unit (ELU), and dropout, are
introduced in the model in order to improve the feature-extraction performance and noise
immune capability. In addition, when the 2DCNN feature extractor is trained, the obtained
feature vectors are sent to the RF classifier to improve the classification accuracy and gener-
alization ability of the model. In order to verify the effectiveness of the proposed method,
two groups of tests were conducted based on public high-speed bearing-vibration dataset,
and the results were comparatively evaluated with other existing fault-diagnosis methods.

The remainder of this paper is organized as follows. Section 2 introduces the related
theory of CNN and RF. Section 3 presents the proposed fault-diagnosis method based on
the 2DCNN-RF model. Experimental results and comparative analysis are presented in
Section 4. The conclusions are drawn in Section 5.

2. Related Theoretical Background

This section introduces the mathematical theories of CNN and RF which will be used
in establishing the proposed fault-diagnosis model.

2.1. Convolutional Neural Network

CNN was first proposed by LeCun for digital image processing, which was inspired
by the principle of cell perception in the brain’s visual cortex [24]. CNN is composed of the
convolution layer, activation layer, pooling layer, fully-connected layer, and output layer.
The typical convolutional network structure is illustrated in Figure 2.

Mathematically, the formulas of each layer can be represented as follows:

(1) Convolutional layer:

yl(j)
r = ∑ xl(j)

i · kl(i)
r + bl

r, xl(j)
i ∈ Ml(j), i = 1, 2, · · ·N2 (1)
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where Ml(j) refers to the jth convoluted region on the lth layer and xl(j)
i is its ith

element. yl(j)
r is the convolution output value of the rth channels on Ml(j). kl(i)

r and bl
r

represent the ith weight and the bias of the rth channels on the lth layer, respectively.
(2) Activation layer:

al(j)
r = f (yl(j)

r ) (2)

where f (·) represents the activation function, such as the Sigmoid function, Tanh
function, Heaviside activation function, and Rectified Linear Unit (ReLU) function.

(3) Pooling layer:

pl
r = downsample

(
w(s1, s2) ∩ al

r

)
(3)

where downsample(·) is the downsample rule, which represents different types of
pooling processes such as max pooling, average pooling, logarithmic pooling, and
weight pooling. w(s1, s2) denotes the pooling window sliding with a particular stride,
s1 s2 correspond to the pooling window’s dimension. al

r is the activation map of
the rth filter on the lth layer. ∩ represents the overlap between the pooling window
and al

r.
(4) Fully connected layer:

y f eature = f
(

k f · z + b f

)
(4)

where y f eature is the feature vector, k f denotes the weight matrix, b f is the bias vector,
and z refers to the input vector. f (·) is the activation function.

(5) Output layer:

{k, b}∗ = argmin{k,b}
1
m

m

∑
i=1

J(yt, Fx) (5)

where m is the number of the labeled datasets, J(·) represents the loss function, and Fx
is the estimated output of CNN. {k, b}∗ is the fine-tuned parameters’ weight vectors k
and bias b, which are obtained by minimizing the loss function J(·) [25].
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2.2. Random Forest

As one of the most popular ensemble-learning methods, random forest (RF) was first
proposed by Leo Breiman, and is a statistical method used for regression and classification
problems. The basic principle of RF is to construct a multitude of decision trees in the
training process and produce output by combining the estimation of each tree [26].

As shown in Figure 3, based on the original training set, bagging, also known as
bootstrap aggregating, is performed to generate a new training dataset for each decision
tree. Bagging has the advantage of reducing variance within a noisy dataset [12]. The
detailed RF-classification steps are listed as follows:
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(1) According to bootstrap, generate k training subsets through random sampling
with replacement.

(2) Randomly select M characteristic attributes from the characteristic attributes of one
bootstrap sample and build a decision tree according to the CART algorithm [27].

(3) Repeat Step (1) and Step (2) and establish k decision trees.
(4) Determine the final classification result by voting on the results of k decision trees.

Energies 2022, 15, x FOR PEER REVIEW 5 of 17 
 

 

where m is the number of the labeled datasets, ⋅( )J represents the loss function, and 
x

F  is 

the estimated output of CNN. { }∗
,k b  is the fine-tuned parameters’ weight vectors k  and 

bias b , which are obtained by minimizing the loss function ⋅( )J  [25].  

2.2. Random Forest 

As one of the most popular ensemble-learning methods, random forest (RF) was first 

proposed by Leo Breiman, and is a statistical method used for regression and classification 

problems. The basic principle of RF is to construct a multitude of decision trees in the 

training process and produce output by combining the estimation of each tree [26].  

As shown in Figure 3, based on the original training set, bagging, also known as boot-

strap aggregating, is performed to generate a new training dataset for each decision tree. 

Bagging has the advantage of reducing variance within a noisy dataset [12]. The detailed 

RF-classification steps are listed as follows: 

(1) According to bootstrap, generate k  training subsets through random sampling with 

replacement. 

(2) Randomly select � characteristic attributes from the characteristic attributes of one 

bootstrap sample and build a decision tree according to the CART algorithm [27]. 

(3) Repeat Step (1) and Step (2) and establish k  decision trees. 

(4) Determine the final classification result by voting on the results of k  decision trees. 

 

Figure 3. Schematic diagram of random forest classifier. 

3. 2DCNN-RF Fault-Diagnosis Method 

The proposed fault-diagnosis framework for the high-speed bearing of offshore wind 

turbines under noisy environments is based on the combination of CNN and RF. Figure 4 

illustrates the overall diagram of the proposed fault-diagnosis method, which includes 

the following three steps. For the first step, bearing datasets are preprocessed by convert-

ing the raw 1D time-domain vibration signals into 2D gray-level images. Secondly, the 

2DCNN model is trained based on the 2D grayscale-image training dataset, and then the 

obtained feature-extraction outputs will be used to train the RF classifier. In this step, a 

2DCNN-RF model is learned through repeated training. Then, the trained 2DCNN-RF 

Figure 3. Schematic diagram of random forest classifier.

3. 2DCNN-RF Fault-Diagnosis Method

The proposed fault-diagnosis framework for the high-speed bearing of offshore wind
turbines under noisy environments is based on the combination of CNN and RF. Figure 4
illustrates the overall diagram of the proposed fault-diagnosis method, which includes the
following three steps. For the first step, bearing datasets are preprocessed by converting
the raw 1D time-domain vibration signals into 2D gray-level images. Secondly, the 2DCNN
model is trained based on the 2D grayscale-image training dataset, and then the obtained
feature-extraction outputs will be used to train the RF classifier. In this step, a 2DCNN-RF
model is learned through repeated training. Then, the trained 2DCNN-RF model is tested,
utilizing the testing datasets to evaluate fault-diagnosis performance. Detailed steps of the
proposed 2DCNN-RF model are listed in Algorithm 1.

3.1. Vibration Signal-to-Image Transformation

CNN is constructed by imitating a biological visual-perception mechanism, so it is
more suitable for learning features from the 2D images. To achieve better diagnosis perfor-
mance, the raw 1D time-domain vibration signals are transformed into 2D grayscale images.
The benefits of this 1D-2D transformation is that it does not require noise suppression, and
no signal information is lost. The process of the vibration signal-to-image conversion is
shown in Figure 5.
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Algorithm 1 Steps of the implementation of the improved 2DCNN-RF model:

Input: Bearing-vibration-signal dataset
Output: The classification results and evaluation results of the 2DCNN-RF fault-diagnosis model.
Step 1: Dataset Preparation

Use the signal-to-image conversion method to convert the original 1D time-domain vibration
signal into 2D grayscale images, which are then divided into the training dataset and testing
dataset.
Step 2: Training the 2DCNN

2.1 Initialize the scaling parameters and bias parameters of the conventional lay-ers and the
fully connected layers randomly;

2.2 Input a batch of the training dataset to the four-layer convolution-pooling structures for
feature extraction and outputting feature maps;

2.3 Input these feature maps to the fully connected layer that outputs the feature vector;
2.4 Repeat (2.2)–(2.3) until the performance loss converges, and complete the training process;
2.5 Extract the feature vectors from the trained 2DCNN.

Step 3: Training the RF classifier
3.1 Input the extracted feature vectors to train the RF classifier;
3.2 Output the classification results of the RF classifier.

Step 4: Verifying the fault-diagnosis performance of the proposed method
Verify the performance of the proposed method with the test dataset, and present the

accuracy and efficiency results.
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Firstly, a signal segment L(i), i = 1, 2, · · · , n2 is selected from the continuous raw data.
Then, it is converted into a gray matrix image of dimension n× n size image. P(i, j) is the
pixel strength of the image, that is calculated by

P(i, j) = round
(

L((i− 1) · n + j)−min(L)
max(L)−min(L)

× 255
)

, i = 1, · · · , n, j = 1, · · · , n (6)

where round(·) represents the rounding function, which is used to set the image pixel
grayscale as an integer between 0 to 255.
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3.2. Design of the Proposed 2DCNN-RF Model

As illustrated in Figure 6, the structure of the proposed 2DCNN-RF model combines
the CNN feature extractor and the RF classifier. It contains four-layer convolution-pooling
structures, a fully connected layer, and an RF layer. After converting the vibration signals
into 2D grayscale images, four-layer convolution-pooling structures are used for feature
extraction. To alleviate the effect of gradient exploding and overfitting and to improve
the 2DCNN feature-extraction performance under a noisy environment, three procedures,
including batch normalization (BN), exponential linear unit (ELU), and dropout, are intro-
duced in the model. When the 2DCNN feature extractor is trained, the obtained feature
vectors will be passed to the RF as a new training dataset for learning and classification.
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To prevent the gradient vanishing/exploding during network training, the BN layer
can also prevent overfitting and improve training speed. The BN layer is calculated by

y = kb
x− µ√
δ2 + ε

+ bb (7)

where y is the output map of the BN layer, and x denotes the input with the average
value of µ = E[x] and standard deviation of δ2 = Var[x], and ε is a small positive number
for numerical stability. The scaling parameter kb and bias parameter bb are learnable
parameters in BN layers.

In addition, we also applied the exponential linear unit (ELU) to the ReLU function
in order to shorten the training time and improve accuracy in neural networks. More-
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over, as a nonsaturating activation function, ELU does not encounter the gradient vanish-
ing/exploding problem. The ELU function is defined as

y =

{
x, i f x > 0
α(ex − 1), i f x ≤ 0

(8)

where α represents a small positive value.
The structure of the 2DCNN is also optimized by dropout, which can significantly

reduce overfitting by randomly discarding a defined percentage of neurons. The dropout
layer can be used in each hidden layer in training CNN in each training batch. Following
the convolutional layer, the dropout layer can increase the robustness to noise input, and
the use of dropout after the fully connected layer can prevent from overfitting.

As shown in Figure 6, the feature-extraction outputs (128 values in our study) of
2DCNN are fed into the RF classifier for training. Once the RF classifier is well-trained, it
performs the recognition task and makes decisions and outputs the classification results on
high-speed bearing-fault diagnosis.

4. Experimental Results and Analysis

In order to evaluate the performance of the proposed fault-diagnosis approach, public
experimental data from the high-speed bearing-test rig were used, and the test results
were comparatively evaluated with other fault-diagnosis methods. Note that all the fault-
diagnosis tests were carried out on a PC with Ryzen 7 4.5 GHz 8-Core AMD CPU and
Nvidia RTX3060 GPU. The proposed 2DCNN-RF model was written in Python, and the
famous deep-learning framework TensorFlow was employed to implement the algorithm.

4.1. Experimental Dataset
4.1.1. Dataset Description

Since the actual bearing-fault signals for offshore wind turbines are usually commer-
cially private, the open dataset from the Bearing Data Center of Case Western Reserve
University (CWRU) was used in this work to verify the proposed fault-diagnosis approach,
which has similar rotational speeds to those of high-speed bearings for utility-scale wind
turbines. The CWRU bearing dataset has been widely used for wind-turbine high-speed
bearing-fault-diagnosis studies [28,29].

As shown in Figure 7, the test rig consists of a 2 hp motor, a torque transducer/encoder,
and a dynamometer. Different loads, ranging from 0 hp to 3 hp, were applied to the shaft
via a dynamometer and electronic control system. The rotation velocities of the motor
varied from 1797 rpm to 1730 rpm. In the following experiments, the shaft rotating speed
was 1772 r/min, which was similar to the high-speed bearing of an offshore wind turbine.
Faults ranging in diameter from 0.18 to 0.71 mm were seeded on both the drive-end and
fan-end bearings, using electrodischarge machining (EDM). Vibration data were collected
using accelerometers, which were placed close to these bearings.

In this paper, vibration data with 12 kHz sampling frequency measured in the vertical
direction on the housing of the drive-end bearing (DE) were used in the following exper-
iments. Single-point damages on the ball, inner ring, and outer ring were introduced in
the experiment, so there are four states for the bearing, i.e., normal state, ball-failure state,
inner-ring-failure state, and outer-ring-failure state. The diameters of the faults created
on the inner race, outer race, and the balls are 0.007, 0.014, and 0.021 inch, respectively.
According to the fault states and fault diameters, the vibration data were classified into
10 types of working conditions. For each working condition, the data were divided into
1000 groups with 1024 sampling points in each group, and we used one-hot encoding
to label the dataset of 10 working conditions. The detailed information of the dataset
is presented in Table 1. The selection of the training dataset is random, and the ratio of
training data to test data is 7 to 3.
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Table 1. Detailed information of the CWRU dataset.

Label Health States Health-State Label Fault Diameter/mm Training/Testing Sample Dataset Label

1 Normal Normal 0 700/300 0000000001
2 Inner-ring failure IR007 0.18 700/300 0000000010
3 Inner-ring failure IR014 0.36 700/300 0000000100
4 Inner-ring failure IR021 0.54 700/300 0000001000
5 Outer-ring failure OR007 0.18 700/300 0000010000
6 Outer-ring failure OR014 0.36 700/300 0000100000
7 Outer-ring failure OR021 0.54 700/300 0001000000
8 Ball failure B007 0.18 700/300 0010000000
9 Ball failure B014 0.36 700/300 0100000000

10 Ball failure B021 0.54 700/300 1000000000

4.1.2. DCNN-RF Model Architecture

Based on the proposed 2DCNN-RF model design in Section 3, several critical parame-
ters need to be chosen, which are listed in Table 2.

Table 2. Model-parameter table.

Layer Variable and Dimensions

Convolution layer 1 FS = 3 × 3, OC = 32, S = 1, P = 2, OS = 32 × 32 × 32,
Pooling layer 1 PWS = 2 × 2, S = 2, OS = 16 × 16 × 32

Convolution layer 2 FS = 3 × 3, OC = 64, S = 1, P = 2, OS = 16 × 16 × 64
Pooling layer 2 PWS = 2 × 2, S = 2, OS = 8 × 8 × 64

Convolution layer 3 FS = 3 × 3, OC = 128, S = 1, P = 2, OS = 8 × 8 × 128
Pooling layer 3 PWS =2 × 2, S = 2, OS = 4 × 4 × 128

Convolution layer 4 FS = 3 × 3, NF = 256, S = 1, P = 2, OS = 4 × 4 × 256
Pooling layer 4 PWS =2 × 2, S = 2, OS = 2 × 2 × 256

Flatten OS = 1024 × 1
Full-connected layer OS = 128 × 1

RF layer OS = 10 × 1

FS = filter size, OC = out channels, S = stride, P = padding
OS = output size, PWS = pooling window size

The selection of these parameters is problem-dependent and obtained by trial and error.
A grayscale image with a size of 32 × 32 was fed into the 2DCNN-RF model, which was
processed by the four-layer convolution-pooling structures, and 256 feature maps of 2 × 2
were obtained. Then, these extracted feature maps were flattened to a 1024-dimensional
feature vector, which is used as the input of the fully connected layer. As mentioned above,
dropout is introduced in the training process, and the dropout value is set to be 0.5. The BN
layer is only employed after four convolutional layers, and their scaling parameters and
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bias parameters are initialized randomly. The RF classifier consisted of 100 decision trees in
this case, and its output size was set as 10, corresponding to 10 different working conditions.
In addition, the gradient-descent method was employed for training the deep-learning
network with a training rate of 0.0001, and the training was carried out for 50 epochs.

4.2. Results and Discussions

In order to verify the noise immunity of the proposed fault-diagnosis method, two
groups of experiments were conducted, including experiments on the original CRWU
dataset and evaluations with various levels of noise added. Introducing the latter case
is supposed to test the noise-resistive ability of the fault-diagnosis algorithms. Standard
CNN, LSTM, BP, and SVM algorithms were also used for comparison in the testing.

4.2.1. Performance on the CRWU Dataset

In the first experiment, the training and testing datasets were randomly selected from
the CRWU datasets, as shown in Table 1. Before being fed into the 2DCNN-RF model, each
raw signal segment containing 1024 sample points was converted into a grayscale image
with a size of 32× 32 using the signal-to-image conversion method. Figure 8 shows the
resultant grayscale images for the four health states. Due to the limited space, only a set of
conversion results for the normal state and faulty states with the inner ring, outer ring, and
ball fault in 0.36 mm diameter are shown from Figure 8a–d.

After the signal-to-image transformation and the 2DCNN-RF model construction, the
training and testing procedures for fault diagnosis were implemented. We selected the four
most commonly used evaluation indicators, i.e., Accuracy, Precision, Recall and F1-Score,
to assess the fault-diagnosis performance of the proposed 2DCNN-RF model [30],

Accuracy = TP+FN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1− Score = 2TP
2TP+FP+FN

(9)

where TP is a true positive, FP is a false positive, TN is a true negative, and FN represents a
false negative. Accuracy is the measurement for correct classification. Precision is used for
estimating how many of the predicted samples are correctly detected. Recall evaluates how
many positive labels are correctly predicted based on the original samples. F1-score is used
to measure the overall performance.

The values of these three evaluation indicators for bearing-fault diagnosis under
different working conditions are shown in Table 3. The averages of Accuracy, Precision,
Recall and F1-Score values are 0.995, 0.995, 0.994, and 0.996, respectively, indicating that
the model has good feature-extraction and fault-classification capabilities.

Table 3. The values of evaluation indicators under different working conditions.

Health-State
Label Accuracy Precision Recall F1-Score

Normal 1.00 1.00 1.00 1.00
IR007 1.00 1.00 1.00 1.00
IR014 0.99 1.00 0.99 1.00
IR021 1.00 1.00 1.00 1.00
OR007 1.00 1.00 1.00 1.00
OR014 1.00 1.00 1.00 1.00
OR021 1.00 0.99 0.99 0.99
B007 0.99 0.99 0.99 0.99
B014 0.98 0.98 0.99 0.99
B021 0.99 0.99 0.98 0.99

Avg/total 0.995 0.995 0.994 0.996
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In addition, to comparatively evaluate the performance of the proposed 2DCNN-RF
model, selected standard machine-learning algorithms, including BPNN and SVM, and
standard deep-learning models, including CNN and LSTM, were also tested for comparison
study [31,32]. The main parameters of the above standard learning methods are described
as follows.

1. Standard CNN with raw data: two-layer convolution-pooling structures are used.
ReLU function is used as the activation function of the hidden layer.

2. LSTM with eight features: LSTM neural network contains two LSTM layers. The Tanh
function is seen as the activation function of the hidden layer.

3. BPNN with nine features: Two hidden layers have 15 and 20 nodes, respectively. The
Sigmoid function is used as the activation function of the hidden layer.

4. SVM with eight features: RBF kernel is used. The penalty coefficient is set as 2, and
the gamma value is set as 1.
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All the tests were conducted 10 times on the dataset listed in Table 1, and the fault
diagnosis results are listed in Figures 9 and 10, while the mean prediction accuracy is seen
as the general evaluation indicator for this comparison. It can be seen that the average
diagnostic accuracy of the proposed 2DCNN-RF model is 99.548%, which is better than
those of other models. Compared with the standard CNN, the 2DCNN-RF model improves
the diagnostic accuracy by 5%. Another deep-learning model, LSTM, has a diagnostic
accuracy of 92%, since its diagnosis performance depends heavily on manual feature
extraction. The accuracy of the BPNN and SVM are 76.88% and 80.773%, respectively,
which are significantly worse than those of the deep-learning-based approaches. It can
be seen that these machine-learning-based models cannot explore the inherent complex
relationships between the fault features and the vibration signals.
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4.2.2. Performance on the CRWU Dataset with Noise Pollution

As mentioned above, offshore wind turbines are operating under complex environmen-
tal and structural loads, which could cause higher measurement noises, such as high-speed
bearing-vibration signals. In order to further evaluate the noise immune ability of the
proposed fault-diagnosis method, another test was performed based on the original CRWU
with additional noises added. More specifically, Gaussian white noises were added to the
CRWU high-speed bearing-vibration dataset to introduce the measurement noises [33].
The strength of the measurement-noise intensity is usually measured by the signal-to-noise
ratio (SNR), which is defined by

SNR = 10lg
Psignal

Pnoise
(10)
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where Psignal and Pnoise denote the powers of the original signal and the additional Gaussian
noises, respectively.

The larger the value of SNR, the smaller the noise contained in the vibration signals.
SNR is inversely proportional to the amount of noise in the vibration signals. For example,
we added Gaussian white noise with SNR = 0 dB to the vibration signal labeled IR014,
collected from the inner ring with a fault diameter of 0.36 mm. The raw vibration signal,
Gaussian white noise and noise-added signal are plotted in Figure 11a–c, while the grayscale
images before and after adding noise are shown in Figure 12a–b, respectively.
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Figure 11. Noiseadded vibration signal with SNR = 0 dB.
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Figure 12. The grayscale images before and after adding noise with SNR = 0 dB.

Different noise levels were tested by adding Gaussian white noises with SNR ranging
from −4 dB to 8 dB to the original datasets described in Table 1. Then, the noise−added
grayscale images and vibration signals were used as the input of 2DCNN−RF, standard
CNN, LSTM, BPNN and SVM, so that their noise-resistive fault-diagnosis performance
could be evaluated and compared. Figure 13 shows the fault-diagnosis accuracy of the
five fault-diagnosis models. In comparison with Figure 9, Figure 13 shows that the fault-
detection accuracy was reduced for all fault−diagnosis methods by introducing the addi-
tional measurement noises, which means a high noise level will pose a risk of fault-detection
failure. Moreover, it can be observed that the fault-diagnosis accuracy will decrease with
increasing noise intensity for all methods, and the noise impact on machine-learning meth-
ods is more significant than that of deep-learning methods. Still, the proposed 2DCNN−RF
has better accuracy than the other four models. Under noise condition SNR = −4dB, the
diagnostic accuracy of the 2DCNN−RF model still reaches 80.26%, which is 5% higher than
that of the standard CNN and LSTM models. The accuracy of machine learning methods,
namely BPNN and SVM, is only about 10%. These evaluation results demonstrate that the
proposed 2DCNN-RF fault-diagnosis strategy is more robust against noise pollution for
high-speed bearing-vibration signals.
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Figure 13. Performance comparison under different noise conditions.

5. Conclusions

Since the vibration signals of offshore wind-turbine high-speed bearings are often
polluted by noises due to complex environmental and structural loads, a novel fault-
diagnosis strategy based on the 2DCNN-RF model is proposed in this work to improve
the fault-diagnosis accuracy and noise immunity. The main contribution of this study
is the establishment of a 2DCNN-RF fault-diagnosis model by combining the 2DCNN
feature extractor with the RF classifier, which is shown to be able to both improve the
fault-diagnosis accuracy and noise-resistive capability. The proposed model was tested on
the dataset from CWRU test rig. The experimental results show that the diagnostic accuracy
of the 2DCNN-RF model could achieve 99.548% on the original CWRU dataset, which
outperforms the standard CNN and other mainstream machine-learning-based and deep-
learning-based methods. Furthermore, when the vibration signals are polluted with noises,
the 2DCNN-RF model, without retraining the model or any denoising process, still achieves
satisfying performance with higher accuracy than the other diagnostic methods. More
specifically, under noise condition SNR = −4dB, the diagnostic accuracy of the 2DCNN-RF
model still reaches 80.26%, which is 5% higher than that of the standard CNN and LSTM
models. The accuracy of machine-learning methods, namely BPNN and SVM, is only about
10%. Thus, it is anticipated that the proposed method is suited for the implementation in
high-speed bearing-fault diagnosis of offshore wind turbines under noisy environments.
Experimental tests on offshore wind turbines are to be conducted in order to further validate
the effectiveness of the proposed fault-diagnosis strategy in the future.
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