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Abstract: Induction motors are the horsepower in the industrial environment, and among them,
3-phase induction motors (3PIMs) stand out for their robustness and standard 3-phase power supply.
In the literature, there are many approaches to diagnose faults for the nonlinear 3PIM model, and the
vast majority focus on a single motor fault, although others address more faults but at the cost of
greater computational complexity. In this sense, one of the methods with less computational load and
early detection is the parity equation approach, which is based on analyzing the discrepancy between
the input and output signals of a real process and a linear mathematical model to generate a residual
signal, which contains important information about the fault and is obtained through a suitable
selection of a weighting matrix W to isolate the faults as much as possible. The problem in this case
study is that the 3PIM model is a nonlinear system. In this work, the fault detection method based on
the parity equations approach applied in the 3PIM is explored using a simplified and proposed model
of the 3PIM working in the D-Q synchronous reference frame, which is matched with the direct
current motor model to guarantee both the existence of the parity space and to ensure a large set of
detectable faults in the 3PIM parameters. Simulation and experimental results validate the proposed
scheme and confirm a very simple set of residual equations to guarantee both early detection and a
large set of detectable faults in: Stator and rotor resistances, stator and rotor inductances, as well as
current, voltage, and speed sensors. Additionally, development of human machine interface (HMI) is
implemented to validate the proposed scheme.

Keywords: 3-phase induction motor; D-Q synchronous reference frame; fault diagnosis; model
parameters; parity equations

1. Introduction

The induction motor (IM) is used in a wide variety of critical industrial applications
where the principle of operation is based on reliable rotational motion, its reliability and
service life can be increased through preventive/predictive maintenance schedules and
with the help of a proper fault diagnosis system.

IMs are commonly subjected to external and extreme operating conditions, such
as over temperature, unbalanced supply voltages, variable loads, and mechanical vibra-
tions. All this causes changes in the IM parameter values and consequently causes a
fault condition.

In a report on the reliability of IM in industrial processes [1], it was revealed that the
rate of failure in the IM is approximately: 46% for stator, 26% for rotor (electrical failure),
11% for rolling bearings, and 17% for other components. In this sense, there is a growing
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interest in diagnosing faults for the IM [1,2], which can be used for maintenance schedules
or for tolerant control.

According to stator faults, particularly stator winding faults and inter-turn short-circuit
faults, many extensive and exclusive works have been found on a single fault with different
approaches, such as the analysis by: Harmonic sequence current components analysis [3],
operative condition monitoring [4], discriminant analysis using the D-Q synchronous
frame [5,6], observer-based estimation [7], spectral analysis using vibration sensors [8],
artificial intelligence using neuronal network [9,10], etc.

Regarding rotor faults, particularly by broken bar, many advanced studies with differ-
ent methodologies have been extensively studied as the analysis by: Fault signature [11],
motor current signature analysis [12], zero sequence current spectrum analysis [13], starting
current analysis using optimized Stockwell transform [14], artificial intelligence analysis
using neuronal networks [15,16], etc.

Related to mechanical faults in the IM rolling bearing, massive approaches have been
harnessed to diagnose rolling bearing failure, some techniques used are based on thermal
analysis [17], vibration analysis [18], measurement and analysis of external magnetic
field [19], sound-acoustic emission analysis [2], artificial intelligence analysis using various
estimation methods [16].

All the above research focused on the electrical and mechanical subsystems of the IM,
such as failure in the stator winding, broken rotor bars, and degraded bearings, but the
main issues of these types of techniques are: Large response delay time, high computational
burden, large data storage, long detection and location time of the fault. Although for
incipient faults the early detection delay time is not strongly necessary [20].

In order to diagnose early IM failure, model-based approaches are employed as the
winding function approach [6], the parity equations approach [21], among others. The
problem in [6] is that the model is simplified to the stator side of IM, and the drawback
in [21] is that the direct current (DC) motor linear model is used, although a large number
of electrical, mechanical, and magnetic parameters are obtained.

The main issue of model-based methods is the uncertainty of the model parameters
and high sensitivity to noise, so this approach is commonly oriented to linear systems [21].
On the other hand, a nonlinear parity relation has been used to diagnose motor faults,
particularly for faults in the resistances and inductances of the stator and rotor, which are
indicative of faults such as overheating and short circuits in the winding [22]. However,
the authors discretize and linearize the IM model equations, so the analytical approach is
limited because the algebraic manipulation of its mathematical relationships is very long
and complex. Therefore, the residual set is oriented to a reduced number of specific failures,
and both the computational burden and the stored data are increased. Something similar
happens when an artificial intelligence-based approach is used for IM fault detection, as
in [16]. An advantage of the approach based on parity equations is the minimal mathemati-
cal complexity because the residual generation is analytical, and using fixed or adaptive
thresholds, it is possible to detect multiple failures in the model parameters without using
a data storage bank [23].

Operational conditional monitoring using mechanical and electrical signals is used
to diagnose faults in [16] and [24], but the faults detected are generalized to failure over
the stator, rotor, bearings, or misalignment, without identifying the damaged parameter
associated with the IM. In this sense, detecting online a large number of IM model parame-
ters using a single and easy-to-implement approach has not been widely addressed. On
the other hand, some authors use simple and easy-to-implement methods in the IM as the
average normalized current analysis [25] or the harmonic sequence analysis [3], but faults
are only detected on the stator side.

Independent component analysis is a computational tool that allows statistically ob-
taining independent components of the system from electrical or mechanical signals. The
approaches for this type of analysis are based on time-domain [26], frequency-domain [3],
and hybrid algorithms [27]. The aforementioned strategies offer certain advantages, but the
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hybrid approach brings together a better performance in exchange for a higher computa-
tional burden, although some authors simplify it by concentrating on the feature knowledge
of characteristic data on the stator side [28].

In the literature, there are some works that have considered various fault diagnostic
methods applied to the IM in order to detect a certain number of electrical faults with a
single approach. For example, in [10], a convolutional neural network is used and in [28],
an analysis based on the knowledge of characteristics is used to detect failure in the rotor
and bearings.

The problem remains that there are few efforts to detect parametric faults (faults in
the 3PIM model internal parameters) and additive faults (faults in the 3PIM voltage and
current sensors) using a single approach. The above is very important because all practical
3PIM faults are related to the electrical, magnetic, and mechanical parameters of the 3PIM
model. For example, the stator winding faults, inter-turns short circuit, and broken bars
in the rotor are a consequence of the variation or fault of the internal parameters of the
3PIM model, such as the resistances and inductances of the stator or rotor side, respectively,
among others. In this sense, the techniques for parameter estimation, as in [7,29,30], are
considered as a model-based fault detection approach. In [29], the case study focuses on a
brushless DC motor and allows the identification of a large set of electrical, magnetic and
mechanical parameters, however, the faults in the sensors and actuators are not obtained
and a linear model is considered. Similarly, in [30], a large set of parameters is obtained
through residual analysis but now using a nonlinear model, although the case studies are
an evaporator system and a 4-tank system, and the residual programming is carried out
for each parameter, which increases the computational effort. In [7], an observer-based
estimation for the 3PIM is performed, although only the stator winding fault is analyzed.
On the other hand, in [31], an online parameter identification method is presented using the
PMSM linearized model using the D-Q system equations and taking into account nonlinear
magnetic field. The drawback is that a fault detection system is not involved.

In [32,33], a fault detection scheme is carried out using the parity equations approach
and the linearized 3PIM model through the D-Q synchronous reference frame. Then a
large easy-to-implement residual set allows the detection of both electrical and mechanical
parameters using a single approach. The problem encountered is that the residual weighting
matrix W for residual generation is not very simplified, the implementation is not carried
out, and some practical considerations are not taken into account.

In this paper, an extended and complementary scheme to improve the 3PIM fault
detection system in [32,33] is proposed. The 3PIM model is more compressible and more
simplified to obtain a linear model using some ideal electrical considerations in steady-state
operation, such as the D-Q synchronous reference frame. Then, the diagnostic approach
based on parity equations focused on fault detection in motor parameters and current,
voltage, and speed sensors is performed using the linearized 3PIM model. This allows for
a large set of detection parameters and eases implementation.

The organization of this work is as follows: The background of the parity equation
method for fault detection and the analysis of the linearized 3-phase induction motor
model for diagnosis are presented and developed in Section 2, respectively. The proposed
fault detection for 3-phase induction motor using parity equation is described in Section 3.
The simulation and experimental development are presented in Section 4 to validate the
proposed method. Finally, in Section 5 the general conclusion of this work is expressed.

2. Motivation

As mentioned in the prior section, today, there are many well-known approaches to
diagnosing faults in dynamic systems [34]. Regarding fault diagnosis applied to induction
motors, a consensus opinion is high computational burden and high data storage capacity,
even more so if the process is modeled without linearization and operating at variable
speed. However, in many critical industrial applications with rotating machinery, it is only
necessary to maintain a constant speed, such as ventilation, conveyor belts, electric cranes,
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etc., where online fault diagnosis in IMs is very useful either to plan corrective maintenance
or to activate fault-tolerant mechanisms focused on the damaged parameter.

In this section, the well-known parity equations approach is shown with some practical
considerations, then the linearized 3-phase IM model using the D-Q reference frame
proposed in [32,33] and its similarity with the DC motor model is highlighted.

2.1. Parity Equation Method for Fault Detection

In general, a straightforward way to detect failures in a system is through residuals
based on either process or signal modeling. These residuals are signals that compare the
real-process and model behavior. Regarding the computational burden and from a practical
point of view in linear systems, the parity equations scheme is a simple method to generate
residuals, even than the observer-based approach [35].

A wide variety of approaches for fault diagnosis are available in the literature [4,36].
Most of these techniques are based on both continuous-time and discrete-time system
models. However, in this case study, the attention is focused only on parity equations
with state-space models for continuous-time, on this background, the parity equations
residual design can be constructed with transfer functions or in state-space formulation,
and the primary residuals that emanate from the output model or polynomial model
do not necessarily allow to isolate faults. Nevertheless, the state space approach allows
some freedom in the design of the weighting matrix W using two approaches for residual
generation, which are structured design and directional design [20], the structured residual
design means that the residuals must be decoupled from the faults to be detected, that
is, the structured residual vector is at least independent of one of the faults. On the other
hand, the directional residual design tries to reach a certain vector in the residual space for
each fault, such that the direction is fixed, but the length of the vector depends on the fault
size [34].

The linear parity equations, widely studied in the literature, as in [20,34], are commonly
developed from the continuous-time state-space model with multi-input multi-output and
are given by

.
x(t) = Ax(t) + Bu(t) + Vv(t) + Lfl(t) (1)

y(t) = Cx(t) + Nn(t) + Mfm(t) (2)

where, x(t), u(t), v(t), fl(t), n(t), and fm(t) are state, input, input-noise, input-fault, output-
disturbance, and output-fault vectors, respectively. A, B, V, L, N, and M are their corre-
sponding matrices. Moreover, C is output matrix.

Then taking into account only processes with negligible signals of noise-disturbance
and additive-faults, we have that the first and second derivate of y(t) are:

.
y(t) = CAx(t) + CBu(t) (3)

..
y(t) = CA2x(t) + CABu(t) + CB

.
u(t) (4)

In this way, each time the number of derivatives increases, a redundancy is generated
as long as q ≤ n where q is input number, and n is the order of system, which leads to a
system of equations as in [34]:

Y(t) = Tx(t) + QuU(t) (5)
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with

Y(t) =


y(t)
.
y(t)

...
y(q)(t)

 U(t) =


u(t)
.
u(t)

...
u(q)(t)

 T =


C

CA
CA2

...
CAq



Qu =


0

CB
CAB

0
0

CB

0
0
0

· · ·
. . .
· · ·

0
0
0

...
...

...
. . .

...

CAq−1B CAq−2B . . . CB 0



(6)

For a system of order n with q inputs and r outputs the following matrices have the
following orders:

• Y(t) is a vector (q + 1)r × 1
• U(t) is a vector (q + 1)p × 1
• T is a matrix (q + 1)r × n

Multiplying (5) by a vector WT in both sides:

WTY(t) = WTT x(t) + WTQuU(t) (7)

By selecting WT with dimension (1 × (q + 1)r) and with a condition such that:

WTT = 0 (8)

Then a residual vector r(t) equal to zero is obtained in a fault-free condition, such that

r(t) = WTY(t)− WTQuU(t) (9)

More residual terms are found added more different vectors WT , so creating a matrix
W and the residual vector, at last, becomes

r(t) = WY(t)− WQuU(t) (10)

where the dimension of W determines the number of residues in the parity equation.
Figure 1 shows the simple scheme of parity equations without noise-disturbance and
additive-fault signals.

Figure 1. Simple parity equation scheme in state-space model.

2.2. Linearized 3-Phase Induction Motor Model

The goal of this section is to find a 3-phase induction motor (3PIM) state spaces model
that can be used to diagnose faults using the parity equations approach described in the
previous section, the starting point to carry out is to consider the synchronous reference
frame theory and the steady-state behavior [37,38] to identify the 3PIM subsystems related
to the mechanical, electrical, and magnetic parts. The main idea is to analytically match the
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3PIM model with the DC motor model and find the definition of its parameters to define
the state space equation for fault diagnosis.

The 3PIM stator equations under the synchronous reference frame are

Vqs
e = (Rs + Lsρ)iqs

e + ωsLsids
e + Lmρiqr

e + ωsLmidr
e (11)

Vds
e = (Rs + Lsρ)ids

e − ωsLsiqs
e + Lmρidr

e − ωsLmiqr
e (12)

where Vqs
e, Vds

e, iqs
e, and ids

e are the voltages and currents of stator in the D-Q synchronous
reference frame, respectively. Rs and Ls are the symmetrical matrices of stator resistances
and inductor, respectively. iqr

e and idr
e are the rotor current in the D-Q synchronous

reference frame, respectively. Lm and ωs are the magnetizing inductance and stator angular
speed, respectively.

The key assumption is that the rotor flux link Ψr is constant, so its derivatives are zero.
The 3PIM steady-state analysis allows identifying the blocks of the transfer function, which
can be divided into electrical, mechanical, and magnetic parts.

Some rotor-side equations are considered as the relationships of the d-q-axis flux
linkages for recast the stator voltage equations as follows, where Lr is the rotor induc-
tance matrix. For convenience in syntax, the superscript of the currents and voltages d-q
are dropped.

iqr = − Lm

Lr
iqs (13)

idr =
Ψr

Lr
− Lm

Lr
ids (14)

Substitution of (13) and (14) into the stator-voltage (11) and (12) results in

Vqs = (Rs + σLsρ)iqs + σωsLsids + ωs
Lm

Lr
Ψr (15)

Vds = (Rs + σLsρ)ids − σωsLsids +
Lm

Lr
ρΨr (16)

where σ is the leakage coefficient, ρ is the derivative operator, Lr is rotor inductance
matrix, but according to the 3PIM steady-state behavior, the stator current flux-producing
component i f is constant, and that is the stator d-axis current ids in the synchronous
reference frame. Its derivatives are also zero

i f = ids (17)

pids = 0 (18)

Likewise, the stator current torque-production component iT is the stator q-axis current
iqs and the rotor flow linkage Ψr is defined as follows

iT = iqs (19)

Ψr = Lmi f (20)

Now, substituting (17)–(19) into (15)

Vqs = (Rs + Laρ)iT + ωsLai f + ωs
Lm

2

Lr
i f = (Rs + Laρ)iT + ωsLsi f (21)

with
La = σLs

Ls = La +
Lm

2

Lr
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The second stator Equation (16) is not required, the solution of either will yield iT ,
now, the stator frequency is represented as

ωs = ωr + ωs1 = ωr +
iT
i f

(
Rr

Lr

)
(22)

The electrical part equation of the motor is obtained by substituting for ωs from (22)
into (21) so

Vqs =

(
Rs +

RrLs

Lr
+ Laρ

)
iT + ωrLsi f (23)

From which the stator current torque-producing component is derived as

IT =
Vqs − ωrLsi f

Rs +
Rr Ls

Lr
+ Laρ

=
Ka

1 + sTa

(
Vqs − ωrLsi f

)
(24)

with
Ra = Rs +

Ls

Lr
Rr

Ka =
1

Ra

Ta =
La

Ra

From this block, the electromagnetic torque τe is written through voltage and speed
feedback into the torque current as follows

τe = K f iT (25)

with

K f =
3
2

P
2

Lm
2

Lr
i f

For the mechanical part, the dynamic loads can be represented, taking into account
both the electromagnetic torque and the load torque, which is considered friction in this
particular case.

J
d
dt
(ωr) + Bωm = τe − τL = K f iT − Blωm (26)

In terms of the rotor electrical speed ωr, it is derived by multiplying both sides by the
pair of poles.

J
d
dt
(ωr) + Bωr =

P
2

K f iT − Blωr (27)

Finally, using (24), (25), and (27), a block diagram of the 3PIM model is obtained,
which is matched with the DC motor model, as shown in Figure 2.

Figure 2. Block diagram of the 3PIM model matched with the DC motor model.
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Then, in the same way, as in the DC motor model, the input/output variables for the
3PIM model are Vqs, Iqs and ωr, respectively, as follows

.
Iqs =

−Ra Iqs

La
−

Lsi f ωr

La
+

Vqs

La
(28)

.
ωr =

(K f Np)Iqs

J
− (Bl + B)ωr

J
(29)

3. Fault Detection for 3-Phase Induction Motor Using Parity Equation

Regarding the coupling of the mechanical, electrical, and magnetic parts of the 3PIM,
the transfer function considers a link that relates the current that produces the torque and
the induced magnetic force, this link is a 3PMI total current loop and is independent of the
mechanical system [38]. This model is like the DC motor model obtained in [39]. Although
the difference is that the input signal is Vqs instead of the armature voltage. In this way, the
3PIM model based on D-Q reference frame obtained in the previous section is given by

.
x(t) = Ax(t) + Bu(t) (30)

y(t) = Cx(t) (31)

x(t) =
[

Iqs
ωr

]
u(t) =

[
Vqs
0

]
.
x(t) =

[ .
Iqs.
ωr

]
y(t) =

[
Iqs
ωr

]
(32)

A =

 −Ra
La

− Lsi f
La

K f Np
J

−(Bl+B)
J

 B =

[ 1
La

0
0 0

]
C =

[
1 0
0 1

]
(33)

Substituting the previous matrices in (6), a pair of matrices T and Qu are obtained, then
the output function Y(t) in (5) is derived but without disturbances and without external
faults V(t) = N(t) = F(t) = 0, as follows.

Y(t) =



Iqs

ωr
Vqs
La

− ωrΨ
La

− Ra Iqs
La

K f Np Iqs
J − ωr(B+Bl)

J(
R2

a
La2 −

ΨK f
La

Np
J

)
Iqs +

(
RaΨ
La2 + Ψ

La

(B+Bl)
J

)
ωr −

(
Ra
La2

)
Vqs +

1
La

d
dt
(
Vqs
)

(
−K f NpRa

JLa
− (B+Bl)K f Np

J2

)
Iqs +

(
−ΨK f

La

Np
J + (B+Bl)

2

J2

)
ωr +

(K f Np
J La

)
Vqs


(34)

with
Ψ = Ls

i f = Lsids

Now, to establish a parity relation, it is necessary to look for a matrix of the null space
of the matrix T where WTT = 0. In a simplified way, for this case, W, it is found that:

W =


Ra

−(K f Np)
Ψ

(B + Bl)
La
0

k1
0

0
k1

k2
0

0
J

0
0

0
0

0
k2

(JLa)
0

0
(JLa)

 (35)

with
k1 = ΨK f Np + Ra(B + Bl)
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k2 = La(B + Bl) + JRa

The technique to find the matrix W is to put as many zeros as possible in the rows,
taking care that the rows are linearly independent. In this way, the multiplication of the
coefficients of the rows of W with the coefficients of the columns of T is facilitated so
that the result is zero, the weighting matrix W and the residual matrix r(t) were obtained
analytically with the help of the MATLAB symbolic evaluation Toolbox. The parity relation
given by (10) and substituting each of the values gives:

r(t) =


Ra Iqs + Ψωr + La

d
dt (Iqs)− Vqs

−K f Np Iqs + (B + Bl)ωr + J d
dt (ωr)

k1Iqs + Lak2 d
dt
(

Iqs
)
+ JLa

d2

dt2

(
Iqs
)
− (B + Bl)Vqs − J d

dt
(
Vqs
)

k1ωr + Lak2 d
dt (ωr) + JLa

d2

dt2 (ωr)− K f NpVqs

 (36)

with

d
dt (Iqs) = −

(
Ra
La

)
Iqs −

(
Ψ
La

)
ωr +

(
1
La

)
Vqs

d
dt (ωr) =

(K f Np
J

)
Iqs −

(
B+Bl

J

)
ωr

d2

dt2 (Iqs) =
(

Ra
2

La2 − ΨK f Np
JLa

)
Iqs +

(
RaΨ
La2 + (B+Bl)Ψ

JLa

)
ωr −

(
Ra
La2

)
Vqs +

(
1
La

)
d
dt
(
Vqs
)

d2

dt2 (ωr) =
(
−K f NpRa

JLa
− (B+Bl)K f Np

J2

)
Iqs +

(
−ΨK f Np

JLa
+ (B+Bl)

2

J2

)
ωr +

( K f Np
JLa

)
Vqs

A significant reduction can be easily obtained if we consider the behavior only in the
steady state. Therefore, the derivatives involving current Iqs and voltage Vqs in (36) are
neglected, so the set residual is:

r1(t) = Ra Iqs + Ψωr − Vqs

r2(t) = −(K f Np)Iqs + (B + Bl)ωr

r3(t) =
[
ΨK f Np + Ra(B + Bl)

]
Iqs − (B + Bl)Vqs

r4(t) =
[
ΨK f Np + Ra(B + Bl)

]
ωr −

(
K f Np

)
Vqs

(37)

Now, it can be seen that the new residual equation set is very simplified without matrix
or derivative operators, so its implementation, using a very modest electronic development
platform, is feasible. Table 1 shows all parametric and additive faults detectable using (37)
with their different residual signatures. However, there are parameters that have the same
residual signature, so the probability of fault is divided, for example, the pair of parameters
(Rs, Rr), (B, Bl), and (Ls, Vqs) have the same signature, then the probability of detection is
reduced to 50%. In addition to this, the final detection matrix does not consider the phase
of the damaged parameter.

Table 1. Fault detection matrix using the D-Q Model.

Faults r1 r2 r3 r4

Parametric

Rs I 0 0 I

Rr I 0 0 I

Ls I 0 I I

Lr I I I I

B 0 I I I

Bl 0 I I I
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Table 1. Cont.

Faults r1 r2 r3 r4

Additive

Iqs I I I 0

Vqs I 0 I I

ωr I I 0 I
“I” represents positive or negative change.

4. Simulation and Experimental Development
4.1. Simulation Setup

An alternative, in addition to experimental tests, to validate the fault detection system
on the 3PIM working in the synchronous reference frame is to use a reliable simulation
software with a wide availability of models in power electronics, electric machine drives,
and dynamic systems, such as the power electronic circuit simulation (PSIM) software
package, developed by PowerSim company. Figure 3 shows the main simulation and
experimental scheme for fault diagnosis in the 3PIM using PSIM, and the detail of the
proposed fault detection scheme is shown in Figure 4.

Figure 3. Main simulation and experimental scheme for fault diagnosis in the 3PIM.

The instrumentation system is highlighted in the main simulation and experimental
scheme composed of: 3-phase source, current, voltage and speed sensors, mechanical
load, proposed fault detection sub-scheme, 3-phase induction motor under test, as well
as the residual measurement points (r1, r2, r3, and r4). Figure 4a shows the detail of the
sub-scheme of the main simulation where the measurement of Iqs and Vqs using Park’s
transformation, the theta synchronization circuit, the speed converter, and the residual
equations set are carried out. On the other hand, Figure 4b shows the general test configu-
ration of the fault detection system used to simulate the residual behavior with a healthy
environment (3-Phase IM Healthy) plus the under-fault environment (3-Phase IM Under
Fault). In this figure, it can be seen that the under-fault time is activated by a pair of
complementary switches S1 and S2, which are controlled by an impulse source with a
fault time 2 s ≥ t f ault ≤ 3.5 s. Therefore, the result of the residual under test (RUT) hides
the dynamic behavior of the healthy and under-fault residue because the 3PIM modules
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are operating from t = 0. In this way, only the turn-on transient of the fault-free module
could be appreciated, but the data acquisition starts when t > 0.5 s with a sampling time of
20 ms. Then, the smoothed and steady-state behavior during the fault-free and under-fault
conditions is considered.

Figure 4. Detail of proposed fault detection scheme: (a) Proposed fault detection scheme; (b) residual
under test with healthy and faulty 3PIM.

Figures 5 and 6 show the behavior of the RUT in healthy and under-fault condition
for seven different failure scenarios (Rs, Rr, Ls, Lr, Iqs, Vqs, ωr) with parametric values up
and down at 50% of their nominal value, respectively. Likewise, the residual variation
affected in each failure scenario is highlighted and is consistent with the simplified equation
behavior (37). Table 1 shows the simplified behavior of all residuals related to each under-
fault parameter, where the term “I” represents a positive or negative parametric change
that depends on the increasing or decreasing fault trend, as shown in Figures 4 and 5,
respectively. Likewise, in Table 1, an identical residual behavior or signature can be
observed for two different fault conditions, as in the case of Rs-Rr, B-Bl, and Ls-Vqs. This
reduces the probability of detection to 50% with respect to the affected parameter. However,
the proposed fault detection scheme could be complemented with another detection scheme
based on an electrical and/or mechanical model to distinguish the fault in a particular way.
Another problem found in this proposed scheme is that in the abc/d-q transformation the
possibility of detecting the affected phase or sensor is lost, and only generalized faults are
obtained. Although the identification of the damaged phase or sensor can be obtained by
interpreting the current and voltage phase unbalance, as mentioned in [40,41].

4.2. Experimental Setup

To validate the approach proposed in Section 3 through experimental tests, it is
necessary to be able to change the motor parameters physically. This is very complicated
because that is only accessible by abrupt faults through destructive tests. Regarding the
stator side, a non-abrupt fault emulation in the inductance may be accessible in the stator
winding, but the stator resistance will be altered. On the other hand, an emulation of an
abrupt and increasing fault in stator resistance by adding series resistances to the stator
windings will not affect the stator inductance. The proposal in this experimental section is
to implement the proposed fault detection scheme in a human machine interface (HMI)
and emulate fault scenarios for current, voltage, and speed sensors, as well as build a stator
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resistance fault scenario by adding resistors in series to the winding of each phase of the
3PIM, which does not affect the stator inductance.

Figure 5. Residual behavior with up parametric variation to +50% of nominal value.

Figure 6. Residual behavior with down parametric variation to −50% of nominal value.
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Figure 7 shows a block diagram of the proposed scheme to diagnose faults in the
sensors and stator resistance. In general, the 3PIM is powered by a balanced 3-phase source,
and through an HMI, the fault diagnosis is carried out. In particular, the currents, voltages,
and speed measurements are carried out through a 3-phase measurement module, which
is enabled by three digital signals, the data are entered into a personal computer (PC)
through a data acquisition (DAQ) board and subsequently processed with the LabVIEW
software, and finally, on a PC screen, the results obtained are displayed. Taking into
account a practical point of view, one way to carry out the experimental tests and avoid
destructive tests is only to emulate noninvasive failures in the sensors and parameter of the
proposed scheme, as shown in Figure 7. In that way, to emulate sensor faults, the output
signal of current-Iqs, voltage-Vqs, and speed-ωr sensors are disabled through digital signals
Enable_F_Iqs, Enable_F_Vqs, and Enable_F_Wr, respectively. Regarding 3PIM parameter
faults, a simple noninvasive and nondestructive test is adding a set of resistors in series
with the stator winding to emulate fault in Rs (increasing fault) through the digital signal
Enable_F_Rs. Then, the full detection algorithm is executed. On the other hand, when
Rs increases, many 3PIM parameters are modified, prevailing the negative value for Iqs
and the positive value for Ra, consistent with the residuals r1 and r4 in (37) and displayed
in Figure 5. Now, a practical way to validate the proper behavior of the HMI for the
fault-free and under-fault conditions is using an oscilloscope with data storage capacity for
measurement the phase stator current and using a mathematical software as MATHCAD
for to process and graph the D-Q currents. An example of the proper performance of the
proposed scheme with respect to stator resistance failure is shown in Figure 8. In this figure,
it can be seen that phase currents (Isa, Isb) and the turn-on transient time (0–0.1 s) are omitted
for better visibility, and it is observed that the absolute increasing trend of the healthy and
faulty current-Iqs are consistent with (37). Figure 8b highlights a detail of this behavior and
shows signals with oscillatory behavior attributed to the oscilloscope sampling rate for
stator current data acquisition (range 0 to 0.5 s with 512 samples per second).

Figure 7. Block diagram of proposed experimental scheme for 3PIM fault detection.

Figure 9 shows the photograph of the experimental setup to diagnose failures in
3PIM, taking into account the block diagram of the proposed scheme in Figure 7. The 3PIM
parameters were previously characterized by electrical measurements, and the instrumental
equipment used is shown in Table 2.

Figure 10 shows the fault detection algorithm implemented in the graphical program-
ming environment of the LabVIEW software. In this figure, all the stages of development
can be seen, as follows: 1. Encoder pulse measurement to interpret angular velocity,
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2. DAQ wizard tool to calibrate the measurement sensors, 3. Phase “a” voltage-zero-
crossing detector to generate synchronous position of Theta, 4. Dedicated math tool for
Park transformation, 5. Algebraic equation editing tool to implement residual equations,
6. Electrical magnitude comparator tool to configure detection thresholds, 7. Logical evalu-
ation to implement the residual matrix, and 8. Logic deployment to interpret the outputs
on the HMI. A detail of the HMI screen in the fault-free condition is shown in Figure 11.
The input data in the interface are the nominal parameters of the 3PIM under test, and the
output data are the light-emitting diode (LED) type lamps corresponding to the affected
residues and the probability of failure. Figure 12 shows the HMI residual screen for the
under-fault cases in Iqs, Vqs, ωr , and Rs, respectively.

Figure 8. Measurement of current Iqs in fault-free and under-fault condition: (a) Iqs with healthy and
faulty Rs, (b) details of Iqs.

Figure 9. Photograph of experimental setup.
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Table 2. Instrumental equipment specifications.

Description Value

3-phase power supply Manufacturer Delorenzo (Rozzano, Milan, Italy), model DL1013M3

3-phase induction motor Manufacturer Delorenzo (Rozzano, Milan, Italy), model DL10115A1, 300 W,
star configuration and access to neutral terminal

3-phase measurement module Manufacturer K-oz Soluciones integrales (Merida, Yucatan Mexico), model
MOD.MEW-3P-180V15A-MIX

Encoder speed sensor Manufacturer Yumo Electric Co. (Yueqing city, China), model E6B2-CWZ3E,
resolution 1024 pulses/rev

DAQ board Manufacturer National Instruments (Austin, TX, USA), model PCI-SCB-100

PC Intel Pentium Manufacture Lanix (Hermosillo, Mexico), model Titan.

PC Screen Manufacturer Lanix (Hermosillo, Mexico), model 900W, screen 24 inch

Test resistors Manufacturer Delorenzo (Rozzano, Milan, Italy), model DL2643, 3-phase 1 Ω

Figure 10. Fault detection algorithm implemented in LabVIEW.
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Figure 11. Screen of HMI for the 3PIM fault detection in the fault-free case.

Figure 12. HMI for different residual conditions under fault.

5. Discussion

The definition and use of the terms Ra, Ka, Ta, K f allows matching Equations (28) and (29)
with the DC motor model proposed in [39]. The considerations taken into account in this
work limit the isolation of faults in steady-state operation because in (36), the derivative terms
of the input signals are neglected. The advantage is that the residual set obtained turns out to
be a very simplified algebraic term with respect to the expression obtained in [22], so a very
modest electronic development with LED lights as a qualitative diagnostic element can be
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carried out at a reduced cost. Another advantage, with respect to other diagnostic techniques
mentioned in the introduction section, is that the proposed scheme allows detecting a large
set of damaged parameters without the need to use different techniques for each parameter.

The qualitative results obtained in the simulation and experimental test during the
steady state operation of 3PIM show a consistent behavior, which validates the proposed
scheme by contrasting the theoretical part (Table 1) with the experimental part (Figure 12).
It is to be expected that in the experimental test, there are quantitative inconsistencies due
to the linearization and the practical considerations taken into account in the 3PIM model,
so the tuning of thresholds both in the simulation and in the experiment was carried out
heuristically. On the other hand, when the friction coefficients are no longer negligible in r3
and r4, according to (37), then the diagnostic matrix is no longer valid. In this sense, load
disturbances can cause false alarms during the transient part, and faults will be constant in
stable state when the load exceeds the tuned thresholds.

We have to say that the main disadvantage is that the detection system is based on
a mathematical transformation, Park’s transform, which considers an ideally balanced
3-phase system, which is practically impossible to obtain, so the current and voltage signals
in synchronous regimen must be compensated beforehand. Likewise, the current sensors,
voltage sensors, and parameter faults of each phase must be symmetrical. A possible
improvement in the future is to consider the operating temperature, which affects some
electrical parameters of the IM, so a robust design in parity equations could improve the
residual performance.
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Nomenclature

Vds
e stator d-axis voltage in synchronous reference frame (V)

Vqs
e stator q-axis voltage in synchronous reference frame (V)

idr
e rotor d-axis current in synchronous reference frame (A)

ids
e stator d-axis current in synchronous reference frame (A)

iqr
e rotor q-axis current in synchronous reference frame (A)

iqs
e stator q-axis current in synchronous reference frame (A)

Bl load friction coefficient
Lm magnetizing inductance (H)
Lr rotor inductance matrix (H)
Ls stator inductance matrix (H)
Np number of poles
Rr rotor resistance matrix (Ω)
Rs stator resistance matrix (Ω)
Vds stator d-axis voltage (V)
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Vqs stator q-axis voltage (V)
iT stator current torque-production component (A)
ids stator d-axis current (A)
if stator current flux-producing component (A)
iqr rotor q-axis current (A)
iqs stator d-axis current (A)
Ψr rotor flux linkage (Wb)
τL load torque (N)
τe electromagnetic torque (A)
ωm mechanical speed (radians/sec)
ωr rotor electrical speed (radians/sec)
ωs stator speed (radians/sec)
ωs1 slip speed (radians/sec)
B friction coefficient
J moment of inertia (Kg.m2)
P pair of poles
ρ derivative operator
σ leakage coefficient
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