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Abstract: On 28 February–2 March 2023, the 2023 States General of Artificial Intelligence (AI) event
was held in Italy under the sponsorship of several multinational companies. The purpose of this
event was mainly to create a venue for allowing international protagonists of AI to discuss and
confront on the recent trends in AI. The aim of this paper is to report on the state of the art of the
literature on the most recent control engineering and artificial intelligence methods for managing and
controlling energy networks with improved efficiency and effectiveness. More in detail, to the best
of the authors’ knowledge, the scope of the literature review considered in this paper is specifically
limited to recent trends in EV charging, cyber-physical security, and predictive maintenance. These
application scenarios were identified in the above-mentioned event as responsible for triggering most
of the business needs currently expressed by energy companies. A critical discussion of the most
relevant methodological approaches and experimental setups is provided, together with an overview
of the future research directions.

Keywords: EV charging; load altering attacks; predictive maintenance

1. Introduction

The aim of this paper is to provide an overview of the recent literature on control
engineering and artificial intelligence methods that improve the efficiency and effectiveness
of managing and controlling energy networks. More in detail, to the best of the authors’
knowledge, the scope of the literature review considered in this paper is specifically limited
to recent trends in:

• EV charging,
• cyber-physical security, and
• predictive maintenance,

as these were identified as the contexts which most of the business needs of energy compa-
nies currently revolve around.

Indeed, on 28 February–2 March 2023, the 2023 States General of Artificial Intelligence
(AI) [1] event was held in Italy under the sponsorship of several multinational companies
with the aim of creating a venue for allowing international protagonists of AI to discuss
and confront the recent trends in AI. With respect to the management and control of energy
networks, the participation of Terna, Enel Group, Snam and eVISO in this event was
particularly relevant.

In order to work effectively and efficiently, the overall power system must be able to
ensure the balance between power production and consumption at all times, while dealing
with unexpected events in terms of supply and demand. This implies the necessity to
rely on flexible resources that prove capable of modulating production as a result of the
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actual power needs. Applied control and AI offer the best methodological framework today
for tackling the emerging business need for innovative solutions that meet flexibility and
adequacy requirements, especially as renewable energy sources are being progressively
exploited in replacement of traditional thermoelectric power stations. The technology of
energy storage systems deserves particular mention as, in such a context, it allows for the
storage of the surplus energy produced and return it to the system when needed. When
combined with renewable energy plants, this can provide a source of energy that is not
only clean, but also flexible and reliable.

1.1. Motivation

There exist several review papers focusing on control-driven and AI-driven energy
management. Among them, some of the most recent and cited are listed in Table 1.

Table 1. Recent review papers focusing on control-driven and AI-driven energy management.

Review Paper Title Challenges Discussed Reference

Artificial intelligence techniques for
photovoltaic applications: a review

Enabling fault tolerance in photovoltaic systems—namely,
forecasting and modeling of meteorological data, sizing of

photovoltaic systems and modeling, simulation and control of
photovoltaic systems—via AI, exploiting their capability in terms of

symbolic reasoning, flexibility and explanation

[2]

A review of extremely fast charging stations
for electric vehicles

Current technology gaps in EV fast charging stations, ranging from
infrastructure through power electronics to extremely fast charging [3]

Application of machine learning for wind
energy from design to energy-water nexus:

a survey

Using AI and in particular neural networks for wind energy
technology, namely wind speed prediction, design optimization,

fault detection, optimal control and maintenance planning
[4]

A comprehensive survey on the role of
artificial intelligence in solar

energy processes

Using AI—artificial neural networks, fuzzy logic, hybrid systems,
wavelets and genetic algorithms—for the simulation and estimation

of renewable energy performance management, in order to
improve photovoltaic power generation

[5]

Artificial intelligence implications on energy
sustainability in Internet of Things: a survey

Integrating machine learning and swarm intelligence for the design
of innovative protocols aimed at predicting and forecasting

demand and at optimizing energy use based on the availability of a
massive number of Internet of Things devices

[6]

A review of denial of service attacks and
mitigation in the smart grid using

reinforcement learning

Exploiting reinforcement learning for detecting and mitigating
denial of service attacks in smart grids, providing a detailed

analysis of the strengths and limitations of current approaches as
well as of prospects for future research

[7]

Yet, to the best of the authors’ knowledge, this is the first survey paper that provides a
comprehensive state-of-the-art review of the most recent methodologies and techniques ad-
dressing the business needs that the largest energy companies in Italy are currently facing.

Such business needs are: cost-effective charging of electric vehicles in service areas,
enabled by applied control; cyber-physical system security, especially in terms protection
against load-altering attacks; AI-driven predictive maintenance and anomaly detection
in energy management, especially as regards aerial reconnaissance of electric poles in the
power grid, robust anomaly detection in photovoltaic production plants and horizontal axis
wind turbines, and learning the behavioural profiles of consumers for estimating power
demand in distribution networks.

We claim to offer a new perspective on the topic, namely by (i) highlighting the rele-
vance of using ESS and applied control to compensate for power peak loads in EV charging
stations as well as for load-altering attacks in smart grids and power transmission networks,
and by (ii) stimulating the attention of the research community on a few application scenar-
ios of predictive maintenance where applied AI is playing a decisive role (see Section 4 for
more details in this respect).
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1.2. Paper Structure

The paper is organized as follows, in order to critically explore the relevant energy
network scenarios where applied control and AI are expected to yield significant benefits.

Section 2 reviews the recent literature targeting the problem of cost-effective charging
of electric vehicles in service areas, even in the presence of renewable energy sources and
energy storage units.

Section 3 reviews the recent literature targeting the problem of cyber-physical system
security, with specific reference to defense schemes against load-altering attacks in power
transmission networks.

Section 4 is devoted in general to reviewing the recent literature on predictive main-
tenance and anomaly detection in energy management. Namely, Section 4.1 focuses on
the problem of aerial reconnaissance of electric poles in power grids for maintenance and
surveillance purposes. Section 4.2 focuses on robust anomaly detection in photovoltaic pro-
duction plants. Section 4.3 focuses on anomaly detection in horizontal axis wind turbines.
Section 4.4 focuses on the data-driven estimation of current and ampacity on high-voltage
overhead lines. Section 4.5 focuses on AI for learning the behavioural profiles of power
consumers as relevant insight for estimating power demand in distribution networks.

Section 5 proposes a brief discussion of the reviewed literature, highlighting the
limitations of existing methods and future directions. Concluding remarks end the paper.

2. Cost-Effective Charging of Electric Vehicles in Service Areas

In order to help electric vehicles (EVs) reach ubiquity, EV charging companies and
governments should ensure that the availability of fast charging infrastructure does not
turn out to be a bottleneck for growth, especially as the most recent projections suggest
that EVs will amount to 75% of new car sales by 2030. In response to that, the Bipartisan
Infrastructure Law signed by US President Joe Biden on 15 November 2021 provides
$7.5 billion to develop the country’s EV charging infrastructure, with the specific goal
of installing, nationwide, 500,000 publicly accessible charging stations compatible with
all vehicles and technologies by 2030. It is therefore time for EV charging companies to
focus on:

• investing in production capacity and a skilled workforce;
• using data and analytics for network planning purposes;
• reducing “range anxiety” of EV drivers.

Investing in production capacity and skilled workforce will enable EV charging com-
panies to scale, thus laying the foundations for successful rollouts of charging stations in
the coming years. Indeed, significant investments will be required to develop a pervasive
recharging infrastructure, which is safely and efficiently integrated into the electrical energy
system. In particular, intelligent power management in service areas for EV charging
with minimum time shall be key to the above-mentioned scaling effort. Sophisticated
data-driven planning will be required to identify the best sites for an effective in-demand
charging network. Eventually, such a successful infrastructure will boost the confidence of
EV drivers which is currently still undermined by range anxiety.

More in detail, with specific reference to the scope of production capacity, there
is an emerging need for control strategies aimed at efficiently operating a service area
equipped with fast charging stations for plug-in electric vehicles (PEVs), with renewable
energy sources, and with an electric energy storage system (ESS). The control requirements
expressed by operators of such service areas revolve around the need for avoiding peaks in
the power flow at the point of connection (POC) with the distribution grid, while providing
EV charging in minimum time, as well as mitigating congestion and preserving stability,
also assuming the presence of uncertainty in the charging power demand and generation.
In this respect, in [8,9], a service area for PEVs is defined as the electromobility equivalent
of a traditional petrol station, implying the presence of several charging stations offering
fast charging to the arriving PEVs. An example of a service area for PEVs is provided in
Figure 1.
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Figure 1. Reference scenario for Section 2, consisting in a service area in which a fast-charging station
(FCS), a photovoltaic panel (PV) and an ESS are included. The FCS allows for the charging of the
PEVs at different power levels. The power coming from the PV is stored in the ESS. The ESS releases
power during the charging sessions. The grid structure is reduced to the POC and modeled as an
infinite bus.

The requirement for fast charging to achieve acceptable recharge times for drivers
implies the necessity for high power levels. However, having only a few fast-charging
sessions simultaneously can lead to a significant increase in power flows between the point
of connection (POC) of the service area and the distribution grid, resulting in high operating
costs for the service area.

To address this issue, one approach is to introduce a stationary energy storage system
(ESS) that helps mitigate the strain on the grid by reducing the peak power demand from
plug-in electric vehicles (PEVs). Another effective solution is to incorporate renewable
power generators to provide clean energy for PEV charging, which also helps alleviate
power peaks at the POC. However, the effectiveness of the ESS in mitigating power peaks
depends on its state of charge and capacity. Additionally, it is crucial to consider and
manage the uncertainties associated with both PEV power demand, which depends on the
arrival times and charging requests of individual vehicles, and renewable power generation.

Various control methodologies have been proposed in the literature to tackle the
service area control problem. These include continuous-time control methods based on
variational calculus and Pontryagin’s minimum principle (PMP) [10–13], as well as discrete-
time approaches primarily based on model predictive control (MPC) [14–16].

In [17], Di Giorgio et al. propose a stochastic MPC algorithm for controlling a service
area equipped with an ESS and renewable energy generators. This algorithm utilizes the
ESS to balance ongoing charging sessions, ensuring that the ESS does not deplete completely
during operation. It also modulates the charging power provided to PEVs to track their
requested power as closely as possible, aiming to minimize charging time and reduce
operational costs as a result. While in [18] a continuous-time closed loop and closed-form
solution based on PMP theory is proposed for the controller, in [17], instead, the problem is
solved via MPC, extending the formulation with the modelisation of ESS power losses and
with control flexibility on the power set point of recharging sessions—namely, this can be
reduced at times of significant congestion.

Unlike Ref. [19], which presents a deterministic MPC-based solution with no flexibility
on the charging power, Ref. [17] allows for stochastic MPC and flexible charging sessions.
The authors assume that the expected value of the PEVs’ power demand is known to
the service area operator, which can be estimated from historical data. This assumption
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overcomes the limitations of deterministic MPC, which requires accurate knowledge of
demand profiles. Additionally, the strategy proposed in [17] exploits the MPC objective
function in order to be particularly effective at modulating the charging power offered to
the PEVs in periods of extreme congestion of the service area, and is, as of today, the first
study that simultaneously addresses (a) power flow regulation at the POC, (b) stabilization
of the ESS state of the charge and (c) uncertain power reference tracking.

Kucevic et al. [20] propose a coordinated control approach using linear optimization
for a group of ESSs located at different charging stations. This approach reduces the
charging peak power, even with a high number of PEVs. They also require knowledge of
the expected power demand of the PEVs, which can be derived from historical data.

In [21], Ding et al. show that an ESS can reduce the peak power at the POC with the
distribution grid when several electric buses are charging at the same time and propose a
control strategy aimed at optimal sizing and management of said ESS. By contrast with
the above-mentioned exact solving methods, Sun et al. propose in [22] a heuristic solution
to the problem of optimal power scheduling with minimum cost and pollution in fast
EV charging stations interconnected with wind, PV power and an ESS. Leonori et al.,
instead, excluded a priori MPC methods in [23], claiming they are significantly dependent
on prediction accuracy, and proposed an energy management system based on a fuzzy
logic controller to cope with the stochastic nature of public fast charging demand in a
grid-connected nanogrid.

In [24], Huang et al. pursue deterministic cost minimization for controlling the power
flows in a grid with charging stations, renewable plants and ESSs. In [25] Chen et al.
propose a rule-based control scheme to manage and control a service area characterized
by the presence of hydrogen production and storage facilities, with a specific focus on
maximizing the use of locally produced clean energy. In [26], the same problem is addressed
via linear optimization-based and deterministic MPC, with the specific aim at reducing the
operational emissions. In [27], the problem of optimal planning of the location, number
and dimension of ESS devices, renewable plants and charging stations is addressed with
the aim of minimizing the operating costs of the charging infrastructure.

From a different perspective, Jang et al. in [28] propose a grid-connected inverter for
photovoltaic-powered EV charging stations. In [29], Ye et al. propose to determine the
optimal charging schedule due to the uncertain arrival time and charging demands of
EVs according to a reinforcement-learning based scheme which is proven to outperform
the baseline MPC-based one. Instead, in [30], two control strategies resulting from the
combination of maximum sensitivity selection and a suitably designed genetic algorithm
are presented and reviewed with respect to the problem of fast EV charging in a smart grid.

Overall, in Section 2, the most common challenges related to charging electric vehicles
in service areas were identified: among different applied control approaches, MPC is
considered as the most promising technique for tackling the problem of cost-effective
charging in service areas, assuming the additional presence of an ESS for mitigating peak
power requests from the PEVs.

For the sake of clarity and readability, in Table 2 we recap the references in Section 2,
distinguishing between the challenge faced and the methodological approach chosen to
tackle each challenge.

Table 2. Literature review relative to cost-effective charging of electric vehicles in service areas.

Challenge Faced Methodological Approach Reference

Service area control problem Continuous-time calculus of variations (PMP) [10–13]

Service area control problem Discrete-time controller (MPC) [14–16]

Fast charging service area Optimal control of an ESS via PMP (continuous-time) [18]



Energies 2023, 16, 4678 6 of 23

Table 2. Cont.

Challenge Faced Methodological Approach Reference

Fast charging service area MPC, assuming perfect knowledge of the future charging demand [19]

Fast charging service area
Stochastic MPC with minimization of the power flow at the POC,

without assuming perfect knowledge of the future
charging demand

[17]

Urban distribution grids with a high
share of PEVs

Reducing charging peak power by controlling a certain number of
ESS via linear optimization [20]

Charging station for electric buses Optimal sizing and management of an ESS (ESS control) [21]

Fast EV charging stations with wind, PV
power and ESS

Sub-optimal heuristic power scheduling strategy to minimize costs
and pollution [22]

Public fast charging station in a
grid-connected nanogrid

Energy management system based on a fuzzy logic controller to
tackle the stochastic nature of fast charging demand [23]

Smart grid with charging stations,
renewable plants and ESSs Deterministic cost minimization for power flow control [24]

Service area control in the presence of
hydrogen production and

storage facilities

Rule-based control scheme with maximization of locally produced
clean energy [25]

Service area control in the presence of
hydrogen production and

storage facilities
Linear optimization-based deterministic MPC [26]

Smart grid with charging stations,
renewable plants and ESSs

Minimizing operating costs with optimal planning of location,
number and dimension of ESS devices, renewable plants and

charging stations
[27]

Photovoltaic-powered EV charging
station Grid-connected inverter [28]

Service area control problem Reinforcement-learning-based optimal charging schedule with
uncertain arrival time and charging demands of EVs [29]

Fast charging service area Control strategy based on the combination of maximum sensitivity
selection and a suitably designed genetic algorithm [30]

3. Cyber-Physical System Security

Power systems have been evolving towards tightly interconnected cyberphysical
systems where a modern ICT control system manages the dynamics and operational
constraints of the underlying physical network (see Figure 2 for an example). Indeed, the
unique interdependencies between physical plants and cyber infrastructures characterizing
the electric power industry make companies vulnerable to several exploitation threats,
such as billing fraud with wireless smart meters and the commandeering of some specific
devices to stop operating plants, up to physical destruction. This implies critical risks in
terms of security. Consequences may include power outages, destruction of equipment and
damage to single or groups of devices throughout the grid.

Data tampering can lead to severe consequences if proper fail-safe measures are
not in place to mitigate its impact. It is common for operators to rely solely on data
from monitoring systems to regulate power flow without manual validation or dedicated
protocols to ensure data integrity. This is primarily due to these systems not directly
contributing to utility value streams and being susceptible to cost-cutting measures or
outdated security standards. However, such practices create opportunities for malicious
exploitation, as highlighted in [31].
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Another critical aspect that cannot be overlooked is physical security. Inadequate
access controls and unsecured panels for network assets or plants provide attackers with
physical access to significant portions of the power system, compromising the integrity of
sensitive locations such as data centers and generation, transmission and distribution sites.

In [32], a proposed cyber-physical security framework and advanced tools aim to
address vulnerabilities and respond in a timely manner to threats. This architecture bridges
the gap between computer science and control-theoretic approaches, specifically addressing
the challenges posed by the Industrial Internet of Things. Reference [33] provides a review
of potential attack vectors and outlines cybersecurity requirements. They propose a layered
approach to evaluate cyber-physical risks.

This section focuses on load altering attacks, as defined in [34,35]. Load-altering
attacks (LAAs) target demand response and demand-side management programs, aiming
to control and manipulate specific unsecured controllable loads to cause grid damage,
circuit overflow or other adverse effects. In a smart grid, attackers can launch direct load
altering attacks by injecting false commands into aggregators responsible for load control.
By remotely manipulating loads, attackers can disrupt the system by causing deviations in
operating frequency. Reference [36] provides an overview of these cyber-intrusion plans,
demonstrating how attackers alter loads via the Internet and distributed software agents.
Defense mechanisms tested on the IEEE 24-bus test system prove effective in reducing the
cost of load protection while ensuring no overload occurs due to ongoing attacks.

In [37], dynamic LAAs are discussed, focusing on attacks that not only aim to change
the load amount but also control the trajectory of load changes over time. Dynamic LAAs
are feedback-based attacks that maliciously compromise and dynamically control flexible
loads used in demand-side management programs and other smart functions, with the
intention of destabilizing the power transmission network. Simulation scenarios based on
a six-bus test system demonstrate how dynamic LAA trajectories can render the overall
power system unstable.

A systematic review of dynamic LAAs is presented in [34] by Amini et al. They
classify these attacks based on open-loop versus closed-loop, single-point versus multi-
point, feedback type and attack controller. The study formulates and analyses a specific
closed-loop dynamic LAA that targets power system stability. A defense system is designed
to mitigate the effects of the attack by solving a non-convex pole-placement optimization
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problem. The defense scheme assumes uncertainty in the attack sensor location and is
evaluated through a simulation using the IEEE 39-bus test system.

While Amini et al.’s defense scheme aims to secure loads and limit attacker capabilities,
Ref. [38] proposes a different control law focused on managing active components of the
grid, specifically optimally placed energy storage systems (ESSs). Using Lyapunov argu-
ments, this approach protects power transmission networks against closed-loop dynamic
LAAs by controlling ESSs to compensate for destabilizing effects. Real-time detection or
attack reconstruction is not required, assuming complete knowledge of the attack char-
acteristics. Simulation results highlight the relevance of using ESSs to support primary
frequency regulation.

Furthermore, ESSs are meant to play a vital role in protecting power networks from
cyber-physical attacks and are becoming integral parts of modern power networks. Their
flexibility in absorbing or releasing power in a controlled manner enables the provision of
ancillary services, improving power quality and voltage stability while optimizing the use
of renewable energy sources. Reference [39] extends the previously proposed approach
to a robust control strategy that optimally places ESSs to protect the power transmission
network against various dynamic LAAs. In [40], an extensive description of the dynamics
of the control actions and their effects in different network scenarios is provided with the
support of numerical simulations.

In [41], Xun et al. present the perspective of a malicious entity conducting a direct LAA
by continuously manipulating aggregators to maximize the impact. The authors highlight
the difficulty of detecting such attacks, as attackers can inject false data to contaminate
feedback from aggregators to controllers. They propose a three-step optimization method
to determine the optimal sequence of successive LAAs based on the analysis of frequency
changes induced by the attacks.

Load-altering attacks can also affect power generation. The automatic generation
control mechanism in power generators is vulnerable to such attacks. Ref. [42] examines
a scenario where cyber attackers remotely alter the power consumption of multiple elec-
tric loads in power distribution systems, compromising the automatic generation control
mechanism. They propose an attack-thwarting system that adjusts the power consump-
tion of flexible loads in real-time in response to frequency disturbances caused by load
altering attacks.

In [43], false data injection attacks in a cyber-physical power system compromise
a subset of frequency control signals, with two possible configurations: location-fixed
or location-switching. The study determines optimal switching conditions and partial
feedback attack matrices for selecting the best attack locations. A case study using the IEEE
9-bus test system demonstrates the approach. Ref. [44] presents distressing attacks resulting
from coordinated malware-infected IoT units, which are employed to synchronously turn
high-wattage appliances on or off, affecting the grid’s primary control management. The
impact of the attack depending on the power plant type is extensively studied. Ref. [45]
provides additional recent approaches for designing optimal LAAs.

In general, in Section 3, the recent literature targeting the problem of cyber-physical
system security was reviewed. Specific focus was placed on defense schemes against LAAs
in power transmission networks.

The reference scenario for Section 3 was that of smart grids and power transmission
networks as depicted in Figure 2. Yet, for the sake of completeness, we report that in [46], a
review of the most relevant cyber-physical security challenges with respect to the reference
scenario of Section 2 (namely, electric vehicle charging) is also provided.

For the sake of clarity and readability, in Table 3 we recap the references in Section 3,
distinguishing between challenges faced and the methodological approach chosen to tackle
each challenge.
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Table 3. Literature review relative to cyber-physical system security, with specific reference to defense
schemes against load-altering attacks in power transmission networks.

Challenge Faced Methodological Approach Reference

Industrial automation and control
systems (IACSs).

Security framework and advanced tools to properly manage
vulnerabilities, and to react in a timely manner to the threats [32]

Cyber infrastructure security
Layered approach for evaluating risk based on the security of

both the physical power applications and the supporting
cyber infrastructure

[33]

Power transmission grid affected by
dynamic LAAs

Protection system is designed against D-LAAs by formulating and
solving a non-convex pole-placement optimization problem [34]

Designing cyber-physical attacks for
destabilizing a smart grid

Formulation of dynamic LAAs as a new class of
cyber-physical attacks [37]

Power transmission grid affected by
dynamic LAAs

Managing active components of the grid such as a group of
optimally placed ESSs to protect power transmission networks so
that any destabilizing effects of dynamic LAAs are compensated

without the need for resorting to any real-time detection or
reconstruction of the attack, under the assumption that the attack

characteristics be completely known a priori

[38]

Power transmission grid affected by
dynamic LAAs

Extension of the approach in [32] to a set of identified potential
dynamic LAAs [39]

Power transmission grid affected by
dynamic LAAs

Extensive description of the dynamics of the control actions and
their effects in different network scenarios provided with the

support of numerical simulations
[40]

Generic smart grid subject to
internet-based LAAs Cost-efficient load protection strategy [36]

Generic smart grid Optimal switching data injection strategy for a direct LAA is
presented to be used from the attacker’s perspective [41]

Power grid harmed by LAAs Attack-thwarting system for countering LAAs [42]

Power grid subject to coordinated
load-changing attacks

Models to enhance power plant responses to active attacks
targeting the energy infrastructure [44]

4. Predictive Maintenance and Anomaly Detection in Energy Management

One of the biggest emerging critical issues in the exploitation of renewable energy
sources is plant maintenance. Maintenance represents a crucial element as it is crucial
to ensure that assets are in perfect working order. In fact, failures and breakdowns can
generate downtime episodes with costly repairs, up to and including the replacement of
entire components, with the consequent effect of leaving thousands of homes powered
by fossil fuels for days or weeks. To reduce or prevent plant downtime episodes and cut
down related losses, it is crucial to apply smart maintenance strategies, thus anticipating
anomalous situations and managing them appropriately. AI has been successfully deployed
in renewable energy plants in recent years because of its remarkable ability to anticipate
such phenomena: this is exactly where predictive maintenance comes into play.

In the electricity sector, in order to compare the cost of generation from different
sources, the so-called levelized cost of energy (LCOE) is calculated according to an interna-
tionally recognized methodology. This synthetic indicator represents an economic estimate
of the average cost required to finance and maintain a power generation facility over its
lifetime, relative to the total amount of energy generated during the same time interval.
Specifically, it considers capital costs, fuel costs (if any), fixed and variable operation and
maintenance (O&M) costs, financing costs and an assumed utilization rate for each type
of plant.

Usually, the cost associated with maintenance is expressed as a percentage of the
LCOE. Referring to the report published by the International Renewable Energy Agency
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(IRENA) in 2019 [47], O&M costs can be as high as 30% of the LCOE, such as in on-shore
wind power plants.

The key to preventing potentially debilitating failure phenomena is their early detec-
tion, which was traditionally carried out by monitoring the wear level of components or
through scheduled maintenance.

More recent and advanced is predictive maintenance, which proposes a strategic
approach aimed at preventing failures before they can occur, minimizing downtime, opti-
mizing production capacity and thus generating productivity gains.

Compared with corrective or reactive maintenance, in which repairs occur when a
failure has occurred, or preventive or scheduled maintenance, in which interventions are
performed based on the use of a component, predictive maintenance focuses on verifying
the health of machinery in order to predict when a failure will occur and prevent it.
Ultimately, this makes it possible to resolve the problem before it leads to a downtime
episode or component failure.

More in detail, in recent years, especially with the spread of Internet of Things (IoT)
technologies in the context of Industry 4.0, AI has been playing a key role in predictive
maintenance. Indeed, it enables the optimization of maintenance strategy using predictive
models, trained by employing data streams collected from sensor networks placed in
renewable energy plants.

For example, as proposed in [48], a neural network can be trained to recognize the
proper operation of a plant and predict it in real time. If the model’s prediction does not
match actual sensor measurements, the AI model generates an alarm to signal an abnormal
condition that could lead to a failure and consequently to a plant shutdown event.

The great advantage of AI over traditional maintenance techniques is its data-driven
nature. While traditional techniques use rules and control charts that are the result of
rigorous plant analysis by domain experts, AI techniques bypass these requirements and
feed off data from the field. Thus, armed with a data acquisition system, such as SCADA
systems, it is possible to train an AI model that can automate predictive maintenance. Thus,
the potential of AI, in particular deep learning, can be harnessed in the domain of energy
management similarly to what already happened in other contexts (e.g., [49,50]).

More specifically, according to the framework depicted in Figure 3, the data recorded
by the sensors are used to train the AI to recognize, with a certain predictive horizon,
abnormal situations that may be precursors of failure phenomena on the plant. The model
raises an alarm when the prediction deviates from the actual sensor measurements, allowing
management of the anomaly and anticipation of component failures.

Hence, the use of the aforementioned AI techniques by leading O&M companies
is producing the benefit of increased reliability and safety in plants. In particular, real-
time data processing using predictive analytics tools is making it possible to extend asset
lifecycles, reduce repair costs and properly manage abnormal situations.

Overall, as stated both in [49,50], AI makes it possible to:

• reduce unplanned downtime events by up to 12% and
• increase operating margins by 15%.

As significant as these numbers are, it is important to note that there is still considerable
room for improvement.

With specific reference to predictive maintenance and anomaly detection as intro-
duced above, the relevant use cases proposed during the 2023 States General of Artificial
Intelligence (AI) [1] are the following:

• aerial reconnaissance of electric poles in the power grid for maintenance and surveil-
lance purposes;

• robust anomaly detection in photovoltaic production plants
• anomaly detection in horizontal axis wind turbines;
• data-driven estimation of current and ampacity on overhead lines;
• AI for learning the behavioural profiles of power consumers as relevant insight for

estimating power demand in distribution networks.
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The following subsections discuss each use case and the related literature in detail.
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Figure 3. Reference scenario for Section 4, showing the data-driven framework behind predictive
maintenance and anomaly detection tools in energy management. First, the training dataset is
generated after collecting SCADA (supervisory control and data acquisition) data of healthy plants,
as well as cleaning invalid and missing values. Then, through suitable data-driven algorithms, models
are developed based on the training dataset for the relevant predictive maintenance or anomaly
detection task. Finally, online monitoring on the monitored plant is carried out, with the aim of
identifying impending failures based on the prediction errors of the selected model. This implies
that an alarm is triggered whenever an anomaly or a fault is detected; otherwise, the monitoring tool
stays silent.

4.1. Aerial Reconnaissance of Electric Poles in the Power Grid for Maintenance and
Surveillance Purposes

Ensuring the continuous reliability and performance of power transmission and dis-
tribution networks requires effective maintenance. However, maintaining these extensive
grids with numerous interconnected components spread across long distances presents a
complex challenge. Environmental conditions such as wind, rain, extreme weather events
and wear further contribute to the complexity. For example, the Italian energy grid spans
over 74,000 km, including high-voltage lines and transformer stations.

Mapping and surveying electric poles in the grid are time-consuming tasks. Automa-
tion is seen as a promising strategy to handle the thousands of poles involved. Visual
inspections are conducted through aerial flights [51,52] or remote sensing images [53] to
identify relevant issues. Accurately identifying individual poles from aerial images poses
challenges due to variations in angles and operating conditions. Reidentifying the same
object, such as poles, from different images requires algorithms that can automatically
accomplish this task [54]. Siamese networks, commonly used for object reidentification,
process different images using the same architecture. These networks are trained to en-
sure that embeddings of the same object are closer than those of different objects [55].
However, relying solely on raw visual images for reidentification is insufficient when the
object of interest occupies a small portion of the image and overlaps significantly with
the background.

In a recent study by Devoto et al. [56], a deep learning-based strategy for reidentifying
objects in aerial reconnaissance missions is proposed. This strategy is crucial for maintaining
and monitoring critical infrastructures. The authors utilize a domain-specific object detector
to extract assets associated with the detected objects and employ a Siamese neural network
for reidentification. The network uses both visual features and graphs to describe asset
relationships. The effectiveness of this approach is demonstrated in reidentifying electric
poles in the Italian energy grid. Inspired by graph deep learning [55,57] and object-centric
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models [58,59], the authors train a customized object detection model and construct a
graph based on the extracted assets. The Siamese neural network is trained on two distinct
embeddings—one in the original image domain and the other in the graph domain—
to identify poles based on both asset appearance and relationships. To construct the
embedding based on graphs, the authors utilize graph neural networks (GNNs), which are a
type of neural networks capable of maintaining permutation-equivariance to objects present
in the image [55]. GNNs can process a mix of features including object detection features,
position features that can be trained [60] and relational features without excessive repetition.
The proposed approach outperforms standard reidentification methods that rely solely on
visual features. The authors suggest that these hybrid approaches incorporating graphs
could become integral in the next generation of AI algorithms for predictive maintenance
and anomaly detection in power grids.

Subsequent efforts will revolve around expanding this framework to additional sce-
narios, assessing the interpretability of the pipeline, examining the object detection model’s
resilience and refining the methods used to construct the asset graph.

4.2. Robust Anomaly Detection in Photovoltaic Production Plants

Various applications have focused on predictive maintenance and anomaly detection
in the operations of photovoltaic plants [61–63]. Enel Green Power, in particular, aimed
to develop an AI application for the 3SUN Factory’s sun cell production line, with a
specific focus on predicting faults in the ventilation fans of the automatic wet bench (AWB)
machine. Data from the manufacturing execution system (MES) were collected and used in
the predictive analytics engine for fault prediction.

In this regard, Arena et al. in [64] conducted a study on anomaly detection in the
3SUN solar cell production plant in Catania, Italy. They explored a Monte Carlo-based
preprocessing technique as an alternative to commonly used methods. Monte Carlo simu-
lation is commonly used as a preprocessing technique to effectively manage uncertainty in
experimental manufacturing and energy management situations, particularly in predictive
maintenance [65–68] or predictive analytics uses [69]. The proposed method from [64]
offers advantages such as replacing outliers and preserving temporal locality in relation
to the training dataset. Following preprocessing, the authors trained an anomaly detec-
tion model using principal component analysis and defined appropriate key performance
indicators for each sensor in the production line. By monitoring these indicators and set-
ting predefined thresholds, anomalous conditions can be isolated, triggering alarms when
necessary. The approach was successfully tested under normal and anomalous scenarios,
demonstrating its ability to anticipate equipment faults and handle false alarms.

To evaluate the effectiveness of the predictive model, the authors of [64] calculated the
average downtime for the AWB stage and estimated the reduction in downtime resulting
from the adoption of the model. Considering that only a portion (amounting at most to
50%) of predicted machine downtime events can be completely avoided due to preventive
maintenance limitations, a significant reduction in AWB downtime was observed, leading
to an increase in annual photovoltaic panel production by approximately 1–2 MW.

Future work should involve testing the proposed methods on multiple pieces of
equipment to further validate their scalability.

4.3. Anomaly Detection in Horizontal Axis Wind Turbines

Wind power is a rapidly growing form of renewable energy and plays a significant
role in decarbonization efforts. However, wind turbines are vulnerable to various dynamic
loads, resulting in frequent failures and downtime periods.

In addition to capital expenditure (CAPEX) investments, operation and maintenance
(O&M) costs are substantial. The electric and control systems are the most common areas
of faults, followed by blades and hydraulic groups [70,71]. Failures typically occur in
generators and gearboxes, leading to high repair and replacement expenses and causing
significant production losses due to extended periods of downtime. To address these
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O&M challenges, remedial approaches focus on implementing condition monitoring (CM)
strategies capable of early fault detection and isolation.

CM typically involves acquiring high-frequency data, such as vibrational analysis,
which can be processed using various methods (refer to [72] for a recent review). The latest
generation of multi-megawatt (MW) wind turbines [73–75] integrates sensor networks
within supervisory control and data acquisition (SCADA) systems to monitor the power-
train status. This includes variables such as bearing temperature and lube oil sub-system,
with the standard practice of recording 10-min averaged values and other statistical pa-
rameters from the sensor time series. Operators face the challenge of identifying fault
signatures within the data streams and distinguishing them from other behavioral factors.
This task is demanding due to the heterogeneity of signals and the loss of high-frequency
temporal dependencies caused by the 10-min averaging process.

In [76], Miele et al. proposed an innovative unsupervised deep anomaly detection
framework to identify anomalies in horizontal axis wind turbines using SCADA data. Their
approach simultaneously considers the information content of individual sensor measure-
ments (graph node features) and the nonlinear correlations among all pairs of sensors
(graph edges). They introduced a graph convolutional autoencoder designed specifically
for multivariate time series, treating the sensor network as a dynamical functional graph.
This structure leverages the unsupervised learning capabilities of autoencoders by incor-
porating both individual sensor measurements and the nonlinear correlations between
signals. The framework was validated using data collected over 20 months from four wind
turbines, during which 12 failure events occurred.

The proposed neural architecture is trained to learn the normal behavior of the system
without relying on labeled data. Based on the model’s reconstruction errors, multiple
monitoring indicators are defined, including a global Mahalanobis indicator for the entire
sensor network and a local residual indicator for each monitored variable. These indi-
cators are evaluated considering both their magnitude and duration using a four-stage
threshold method.

Once the four-stage threshold is applied, a warning is triggered for the sensor with the
highest reconstruction error. The proposed method was validated using 10-min SCADA
data from four wind turbines within the same wind farm, each with a rated power of
2 MW.

The dataset consisted of 12 failures in critical components (generator, gearbox and
transformer) that were observed over a 20-month operation period. The model presented
in the study was compared to two other approaches that used long short-term memory
neural networks. The presented model exhibited superior performance, achieving 100%
precision and a 91% F1-score. It successfully detects hidden anomalies, even when the
turbine continues to deliver the requested power to the grid.

4.4. Data-Driven Estimation of Current and Ampacity on High-Voltage Overhead Lines

The Italian electricity grid has undergone a significant transformation due to the rapid
growth of renewable energy sources such as wind, photovoltaic and hydroelectric power
generation. This shift has influenced the development of the electricity production sector
in Italy and Europe over the past decade. Users now have a dual role as consumers and
producers, actively participating in energy exchange and functioning as integral nodes
within the network. To achieve national decarbonization goals, embracing digitalization
and innovative grid solutions is crucial. This involves integrating electrical infrastructures
with cutting-edge digital tools installed on pylons and leveraging Industrial Internet of
Things (IoT) technologies.

Dynamic thermal line rating (DTLR) systems are used to evaluate transmission line
capacities and can be classified into indirect and direct methods. Indirect methods gather
data related to weather conditions [77,78], while direct methods measure parameters
such as conductor sag, ground clearance, line tension and conductor temperature [79–86].
Real-time line monitoring devices for overhead transmission lines, including those in
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renewable energy installations, are discussed in [87–89]. Reference [90] proposes an optimal
algorithm aiming at managing real-time congestion in the overall electric transmission
system, considering quasi-dynamic thermal rates of transmission lines. Commercially
available DTLR systems are explored in [91,92], showcasing their application to a real-
world 220 kV connection. Furthermore, Ref. [93] presents a Terna-sponsored study that
proposes a dynamic thermo-mechanical model approach using weather data collected by
IoT sensors to estimate conductor temperature and power grid ampacity accurately.

DTLR systems and georeferencing of the electrical system represent significant ad-
vancements for high voltage networks, leading to intelligent cyber-physical systems. Con-
tinuous monitoring of crucial parameters such as conductor temperature and voltage
allows for greater flexibility in overhead power line ratings. The model presented in [93]
demonstrates high reliability in estimating line temperature and ampacity by focusing on
the thermal limit of conductor materials and their technical catalog ampacity values. The
authors also suggest incorporating machine learning algorithms to reduce computational
complexity and enable line temperature forecasting. Future work could enhance the pro-
posed model by including data on the conductor distance from the ground, thus achieving
even more precise evaluations of current ampacity.

4.5. AI for Learning the Behavioural Profiles of Power Consumers as Relevant Insight for
Estimating Power Demand in Distribution Networks

The need to safeguard the environment has spurred the energy transition towards
understanding consumers’ habits and accurately profiling them. These processes can lead
to significant reductions in consumption and optimizing resources, and aligning energy
production with actual demand [94].

To effectively manage renewable energy generation and distribution, grid operators
consider it crucial to profile end-users based on data from the Internet of Energy [95]. Energy
companies typically assign a load curve to consumers for energy distribution and billing
purposes, based on the energy consumption model relevant to the consumer’s economic
sector (e.g., agriculture, manufacturing, transportation) [96,97]. However, these energy
profiling approaches fail to consider changes in consumer habits and electricity usage.
Moreover, the initially assigned load curve may be incorrect due to different electricity
usage patterns compared to the typical consumer group [97]. Load profiles within the same
business category often exhibit diverse electricity consumption habits, making the use of
business sectors for consumer categorization inefficient [96]. To address this, various energy
profiling techniques have been proposed that consider a consumer’s energy consumption
over a period. These techniques enable the provision of personalized energy services based
on consumer profiles [98].

With the rise of Industry 4.0, smart meters can measure energy consumption remotely
multiple times per day, generating detailed data on building energy consumption at
various levels. This facilitates a more accurate identification of consumer habits [99].
Machine learning algorithms play a crucial role in extracting useful information from
smart monitoring data, allowing a deeper understanding of consumer habits and dynamics.
Unsupervised learning techniques, particularly clustering methods, are particularly useful
for data mining and machine learning. Clustering involves grouping objects with similar
observed patterns into different clusters [100].

Energy profiling models mainly rely on partitional approaches such as K-means [96,98,101,102],
hierarchical approaches [97,103] and shape-based models such as K-shape [99]. These models
are often combined with deep learning techniques such as autoencoders and self-organizing
maps [100,101]. However, traditional clustering algorithms have limitations. They struggle
to capture temporal dynamics and sequential relationships within data [104,105]. Conven-
tional clustering techniques use distance functions to identify clusters of predefined shapes,
focusing only on local relationships among neighboring data samples and disregarding
long-distance global relationships [106].
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In [107], the authors propose a clustering approach that combines a specific algorithm
based on dynamic time warping (DTW) clustering with complex network analysis (CNA) to
identify typical behaviors and similarities in energy load profiles. This approach combines
the effectiveness of DTW in capturing similarities among time series [63] with the ability of
CNA to reveal correlations or similarities among individuals within a network [108–110].

According to [107], utilizing an algorithm that leverages a specific distance metric for
time series, such as DTW, enhances the accuracy of clustering different energy profiles. This
addresses most of the limitations of previous models in the literature that struggle to capture
temporal dynamics and sequential relationships within time series. The effectiveness of
the methodology was demonstrated using a real dataset of historical consumption data
from 100 commercial and industrial consumers over a one-year period. The authors
successfully identified the main characteristics of consumers by tracking their behavior
through identifying primary patterns of daily energy consumption and periods of higher
consumption throughout the year. Additionally, by incorporating CNA, consumers with
similar behaviors were grouped together regardless of their macro category. Combining
this profile identification methodology with forecasting techniques allows suppliers to
predict each consumer’s energy consumption and generate the required amount of energy
for each consumer.

For the sake of completeness, we point out that stochastic methods too can be applied
to forecast the load curve assigned to a consumer. Stochastic methods are useful for
capturing the inherent uncertainty and randomness in energy consumption patterns. They
can provide probabilistic forecasts that not only estimate the expected load, but also provide
information about the range of possible outcomes.

Even if they are less practiced than the methodologies mentioned above, we report
below a few examples of stochastic methods that can be used for load curve forecasting, as
discussed in [111,112]:

• ARIMA (autoregressive integrated moving average) models are widely used in time
series forecasting. They capture the dependencies and trends in historical load data
and use them to make future predictions, handling both deterministic and stochastic
components in the data, thus making them suitable for load curve forecasting.

• SARIMA (seasonal autoregressive integrated moving average) models extend the
capabilities of ARIMA models by incorporating seasonal patterns in the data. Load
curves often exhibit seasonal variations, such as daily or weekly patterns. SARIMA
models can effectively capture and forecast these seasonal fluctuations.

• Gaussian processes are flexible and non-parametric models that can capture patterns
in data. They are particularly suitable when the underlying relationships between
variables are nonlinear. They have been successfully applied to load curve forecasting
by modeling the load curve as a function of time and capturing the uncertainty through
the covariance structure.

• BSTS (Bayesian structure time series) models are Bayesian state-space models that can
capture both trend and seasonality in the data. These models decompose the load curve
into multiple components, such as level, trend, seasonality and noise, allowing for a
more comprehensive analysis. The Bayesian framework also enables the incorporation
of prior knowledge and updating of forecasts as new data becomes available.

• Finally, LSTM (long short-term memory) networks are a type of recurrent neural
network that can effectively model sequential data. They have shown promise in load
curve forecasting by capturing long-term dependencies and temporal patterns in the
data, due to their flexible architecture, allowing for modeling complex relationships
within the load curve data.

For the sake of clarity and readability, in Table 4 we recap the references cited in
Section 4, distinguishing between challenge faced and the methodological approach chosen
to tackle each challenge.
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Table 4. Literature review relative to predictive maintenance and anomaly detection in energy management.

Challenge Faced Methodological Approach Reference

Pole mapping on overhead power lines Mapping out all the poles of the networks with cyclically planned
aerial flights [51]

Pole mapping on the generic power grid Mapping out all the poles of the networks with cyclically planned
aerial flights [52]

Power line corridor surveys Algorithm for automatic reidentification of the same object from
different pictures [53]

Mission of aerial reconnaissance for the
reidentification of electric poles in the

Italian power grid

Deep learning-based strategy for reidentifying the same object in
different photos taken from separate positions and angles [56]

Predictive maintenance for photovoltaic
power plants Data-driven toolkit [62]

Predictive maintenance for photovoltaic
power plants

Data-driven approach based on sensor network analysis for unveiling
hidden precursors in failure modes [63]

Anomaly detection for the 3SUN solar
cell production plant in Catania, Italy Robust anomaly detection using Monte Carlo-based pre-processing [64]

Fault detection for wind turbines from
SCADA data

Clustering algorithms and principal component analysis combined
with anomaly detection to capture fault signatures [70]

Wind turbine reliability data review LCOE estimation using reliability data [71]

Fault indicator synthesis and wind
turbine monitoring using SCADA data

Combined mono- and multi-turbine method for fault
indicator synthesis [73]

Early fault detection in wind turbines Exploitation of CNNs for enhancing detection accuracy and robustness [75]

Anomaly detection in horizontal axis
wind turbines Unsupervised deep anomaly detection based on SCADA data [76]

Estimation of dynamic thermal capacity
of overhead transmission lines Direct methods for DTLR [80]

Real-time monitoring of overhead
transmission lines Prototype for real-time transmission line monitoring via direct methods [82]

Voltage and ampacity monitoring for
overhead lines

Real-time monitoring system based on conductor tension, ambient
temperature, solar radiation and current intensity [83]

Predictive maintenance in power
transmission networks Real-time monitoring [84]

Dynamic thermal rating on overhead
transmission lines Design, installation and field experience [85]

Dynamic thermal rating on overhead
transmission lines Temperature measurement via surface acoustic wave sensors [86]

Dynamic line rating on overhead lines Real-time monitoring [87]

Dynamic line rating on overhead lines
Line current variation model for representing the forecasting error of

intermittent renewable energy sources, with the aim of preventive
control

[89]

Real time congestion management in
power systems Quasi-dynamic thermal rating considering congestion clearing time [90]

Predictive maintenance on the case study
of the Sicilian power network in Italy Optimization of generation from renewable energy [92]

DTLR for current and ampacity
estimation on high-voltage

overhead lines

Dynamic thermo-mechanical model using weather data measured by
IoT sensors to properly estimate conductor’s temperature and

ampacities of power grids
[93]
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Table 4. Cont.

Challenge Faced Methodological Approach Reference

Characterization of the
medium-voltage loads Data-mining based methodology [95]

Learning the behavioural profiles of
power consumption in a smart grid

Data-driven method based on hourly measured electricity used data
from a large number of customers [96]

Learning the behavioural profiles of
power consumption in a smart grid Multi-layered clustering [97]

Detection of building energy
usage patterns K-shape clustering algorithms [98]

Profiling energy consumption
in buildings Adaptive self-organizing map for clustering [99]

Profiling residential electricity demand K-means clustering [100]

Learning the behavioural profiles of
power consumption in a smart grid TPL (typical load profile) data-driven generation [102]

Learning the behavioural profiles of
power consumption in a smart grid Feature selection in multi-sensor data for time series clustering [104]

Learning the behavioural profiles of
power consumption in a smart grid Community detection in complex networks for time series clustering [105]

Learning the behavioural profiles of
power consumers as relevant insight for

estimating power demand in
distribution networks

Profiling algorithm based on DTW combined with CNA [106]

Analysis of photovoltaic power plant
operations and failure modes Data-driven approach based on graph modeling techniques [63]

Load balancing in smart grids Wardrop control algorithm [110]

5. Discussion

The overall aim of the paper is to critically review the relevant energy network scenar-
ios where applied control and AI are expected to yield significant benefits.

In Section 2, we targeted the problem of cost-effective charging of electric vehicles in
service areas, even in the presence of renewable energy sources and energy storage units.

The high power levels required by fast charging are necessary for yielding acceptable
recharging times for the drivers. This means that just a few fast-charging sessions at the
same time may cause power flows at the POC of the service area with the distribution grid
to rise to several tens or hundreds of kilowatts, which implies high costs for operating the
service area. For this reason, the introduction of ESS technology would allow to mitigate
the effort for the grid since it would contribute to the peak power requests from PEVs,
reducing the power flow at the POC as a result. A similar effect in terms of power peak
mitigation at the POC is produced by resorting to renewable power generators as a further
source of clean energy for recharging PEVs. Moreover, another relevant control requirement
is to be able to cope with the uncertainty that is intrinsic, on the one hand, to the PEV
power demand—as this depends on the arrival times and charging requests of the single
vehicles—and, on the other hand, to renewable power generators.

In this respect, stochastic MPC, as proposed in [17], is currently the most promising
approach, allowing for the extension of the formulation with the modelisation of ESS power
losses and with control flexibility on the power set point of recharging sessions. At the
same time, in order not to negatively affect the drivers’ charging experience, the proposed
controller is constrained to track as much as possible the exact amount of power that the
PEVs request by pursuing the objective of minimum charging time. Future work is being
aimed at introducing further constraints and uncertainty variables in the formalization in
order for the experimental setup to reproduce the real-world scenario as much as possible.



Energies 2023, 16, 4678 18 of 23

In Section 3, we reviewed the recent literature targeting the problem of cyber-physical
system security, with specific reference to defense schemes against LAAs in power trans-
mission networks.

Among many efforts at devising defense schemes against such attacks, the authors
of [39,40] propose a robust control strategy that pursues optimal ESS placement in order to
protect the power transmission network against a whole set of identified potential dynamic
LAAs. As ESSs are becoming an integral part of modern power networks, the flexibility
offered by their ability to absorb or release power in a controlled way enables the provision
of ancillary services for improving power quality and voltage stability. Applied control is
therefore expected to help protect power transmission grids from cyber-physical attacks
aimed at tampering electrical loads, and, in this case too, future work will be aimed at
introducing and satisfying further boundary conditions in the problem formalization and
control-theoretic solution, so that the experimental setup eventually proves to be as realistic
as possible and reproduces the most frequently used network topologies.

Section 4 is devoted in general to reviewing the recent literature on predictive main-
tenance and anomaly detection in energy management. More in detail, we provided a
literature review of the following specific topics: aerial reconnaissance of electric poles
in the power grid for maintenance and surveillance purposes, robust anomaly detection
in photovoltaic production plants, anomaly detection in horizontal axis wind turbines,
data-driven estimation of current and ampacity on overhead lines and, last but not least, AI
for learning the behavioural profiles of power consumers as relevant insight for estimating
power demand in distribution networks.

AI-driven algorithms have indeed proven to be key for optimally selecting the location
for planning the installation of a power plant; additionally, AI-driven anomaly detection
has proven to be effective at predictive maintenance in power plants and at enabling
intelligent aerial reconnaissance of high-voltage overhead power lines, especially with the
help of computer vision software on drones and helicopters. Computer vision, in particular,
has turned out to be helpful for performing industrial safety tasks in power plants in order
to minimize the risk of injury for human operators. AI offers the possibility to estimate
in real-time the conditions of power lines, enabling predictive maintenance to effectively
contrast potentially disruptive atmospheric phenomena such as the layers of ice that, by
progressively accumulating, threaten to sink or break line connections. Future work in
this respect may be aimed at augmenting the proposed models with more available data
sources in order increase task accuracy and robustness, as well as at extending the proposed
framework to other use cases, also with the help of graph-theoretic techniques.

6. Conclusions

The paper provides an extensive literature review specifically limited to recent trends
in applied control and AI for EV charging, cyber-physical security and predictive main-
tenance, as these were identified during the 2023 States General of AI event [1] to be the
contexts which most of the business needs of energy companies currently revolve around.

Applied control is definitely expected to help cost-effective fast charging of EVs in
service areas, as well as to protect power transmission grids from cyber-physical attacks
aimed at tampering electrical loads. In this respect, future work will be aimed at intro-
ducing further constraints and uncertainty variables in the formalization in order for the
experimental setup to reproduce the real-world scenario as much as possible.

Relative to predictive maintenance and anomaly detection in energy networks, the
paper provides a literature review of the following specific topics: aerial reconnaissance of
electric poles in the power grid for maintenance and surveillance purposes, robust anomaly
detection in photovoltaic production plants, anomaly detection in horizontal axis wind
turbines, data-driven estimation of current and ampacity on overhead lines, and, last but
not least, AI for learning the behavioural profiles of power consumers as relevant insight
for estimating power demand in distribution networks.
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All in all, the possibility, with applied control and AI, to design and operate digital
twins of energy networks and power plants is expected to be a game changer in terms
of intelligent management of assets, at the generation, transmission, distribution and
consumption level.
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