
����������
�������

Citation: Balicki, J. Many-Objective

Quantum-Inspired Particle Swarm

Optimization Algorithm for

Placement of Virtual Machines in

Smart Computing Cloud. Entropy

2022, 24, 58. https://doi.org/

10.3390/e24010058

Academic Editors: Durdu Guney and

David Petrosyan

Received: 19 November 2021

Accepted: 23 December 2021

Published: 28 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Many-Objective Quantum-Inspired Particle Swarm
Optimization Algorithm for Placement of Virtual Machines in
Smart Computing Cloud
Jerzy Balicki

Faculty of Mathematics and Computer Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
jerzy.balicki@pw.edu.pl

Abstract: Particle swarm optimization algorithm (PSO) is an effective metaheuristic that can de-
termine Pareto-optimal solutions. We propose an extended PSO by introducing quantum gates in
order to ensure the diversity of particle populations that are looking for efficient alternatives. The
quality of solutions was verified in the issue of assignment of resources in the computing cloud to
improve the live migration of virtual machines. We consider the multi-criteria optimization problem
of deep learning-based models embedded into virtual machines. Computing clouds with deep
learning agents can support several areas of education, smart city or economy. Because deep learning
agents require lots of computer resources, seven criteria are studied such as electric power of hosts,
reliability of cloud, CPU workload of the bottleneck host, communication capacity of the critical
node, a free RAM capacity of the most loaded memory, a free disc memory capacity of the most busy
storage, and overall computer costs. Quantum gates modify an accepted position for the current
location of a particle. To verify the above concept, various simulations have been carried out on the
laboratory cloud based on the OpenStack platform. Numerical experiments have confirmed that
multi-objective quantum-inspired particle swarm optimization algorithm provides better solutions
than the other metaheuristics.

Keywords: particle swarm optimization; quantum gates; virtual machines; computing cloud; many-
objective optimization

1. Introduction

An approach based on many-objective decision-making can be developed for smart
computer infrastructures in some crucial domains such as education, health care, public
transport and urban planning. If the number of criteria is greater than 3, we consider the
many-criteria optimization problem as a special case of multi-criteria optimization problem.
However, more importantly, as the number of criteria increases, there is an explosion in the
number of Pareto-optimal solutions. We show an example where the number of effective
evaluations is five for two criteria and then two hundred for four criteria. So, how much
will it be for the seven criteria and more? In this paper, we explain this phenomenon of a
sudden explosion of the number of Pareto-optimal solutions. Consequently, much more
memory should be allocated to the Pareto solution archive and a much larger population
size should be assumed in evolutionary algorithms, particle swarm optimization (PSO) or
ant colony optimization (ACO).

Because several criteria characterize complex systems such as computing clouds, the
placement of virtual machines in smart computing clouds is formulated as the many-
optimization problem. In the model of the multi-task training, the selected deep learning
models (DLs) can be retrained at the central hosts cyclically, and then their copies migrate
as virtual machines (VMs) to an edge of the computing cloud. Besides this, a host failure
forces the virtual machines to be moved immediately from that computer to the most ap-
propriate servers. This smart computing cloud should be supported by using teleportation

Entropy 2022, 24, 58. https://doi.org/10.3390/e24010058 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24010058
https://doi.org/10.3390/e24010058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6368-6279
https://doi.org/10.3390/e24010058
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24010058?type=check_update&version=2

Entropy 2022, 24, 58 2 of 23

of virtual machines via the Internet of Things (IoT) to optimize several criteria such as
energy consumption, the workload of the bottleneck computer, cost of hardware, reliability
of the cloud and others. Some criteria can be constrained because of the dramatic increase
in wireless devices that influence several additional bounds [1].

Recent advances in cloud computing, deep learning and Big Data have introduced
data-driven solutions into platforms based on OpenStack, which enables the construction
of private computing clouds with their own intelligent services, for example, for education
at universities or for the smart city. On the long side, commercial public clouds such
as Microsoft Azure and Amazon Elastic Compute Cloud immediately deliver advanced
services based on artificial intelligence and quantum computing. In both cases, efficient
placement of VMs and management of computer resources is one of the particularly impor-
tant issues [2]. An adequate resource assignment is a crucial challenge for optimization of
teleportation of virtual machines by a cloud hypervisor that allocates computer resources
to virtual machines with requirements due to central processing units (CPUs), graphical
processing units (GPUs), random-access memory (RAM) and disk storage. Live migration
is very effective because it involves transferring VMs without shutting down client systems
for clouds and without doing a lot of administrative work [3].

Teleportation of a virtual machine can change the workload of the bottleneck computer
or the workload of the bottleneck transmission node. Besides this, the energy consumption
by the set of cloud hosts depends on the virtual machine assignment. Some VMs can
be moved to less energy-consuming hosts, and the others can be allocated to database
servers to accelerate operations on their data. Therefore, a problem of cloud resource
assignment should be formulated as a multi-objective optimization issue with selected
criteria. We present the new many-objective problem of virtual machine placement with
seven criteria such as: electric power of hosts, reliability of cloud, CPU workload of the
bottleneck host, communication capacity of the critical node, a free RAM capacity of the
most loaded memory, a free disc memory capacity of the most busy storage, and overall
computer costs. This is a significant extension of the current formulation of this issue with
four criteria [4].

Metaheuristics such as genetic algorithms, differential evolution, harmony search,
bee colony optimization, particle swarm optimization and ant colony algorithms can be
used for solving multi-criteria optimization problems to find the representation of Pareto-
optimal solutions [5]. Based on many numerical experiments, we propose Many-objective
Quantum-inspired Particle Swarm Optimization Algorithm (MQPSO) with additional
improvements based on quantum gates. Not only do high-quality solutions justify this
approach, but also that decision-making in computing clouds requires quantum-inspired
intelligent software to handle some dynamic situations. Furthermore, PSOs have been
applied to support several key tasks in computer clouds.

A goal of this paper is to study MQPSO for optimization of VMs placement regarding
selected seven criteria subject to the computer resource constraints. One of the main
contributions is the formulation of the many-objective optimization problem with seven
crucial criteria for the management of virtual machines, and the MQPSO algorithm that can
be used to determine the Pareto-optimal solutions for the other many-objective optimization
problems, too.

To order many important issues, the rest of this paper is organized, as follows. Re-
lated work is described in Section 2. Then, a teleportation model of virtual machines is
characterized in Section 3. Next, Section 4 presents many-objective optimization problem
formulation, and then Section 5 describes MQPSO with quantum gates for finding Pareto-
optimal solutions. Finally, some numerical experiments are presented in Section 6 just
before Section 7 with conclusions.

2. Related Work

We consider studies on the placement of virtual machines in the computing cloud, and
then we analyze quantum-inspired PSOs [6]. An overview of virtual machine placement

Entropy 2022, 24, 58 3 of 23

schemes in cloud computing is presented in [7]. An energy-efficient algorithm for live
migration of virtual machines may reduce wastage of power by initiating a sleep mode of
idle hosts [8]. To avoid overloaded servers, the cloud workload optimizer analyzes load
on physical machines and determines an optimal placement due to energy consumption
by an ant colony optimization algorithm. A local migration agent based on an optimal
solution selects appropriate physical servers for VMs. Finally, the migration orchestrator
moves the VMs to the hosts, and an energy manager initiates a sleep mode for idle hosts
to save energy. In addition, efficient managing of resources is recommended for green (or
energy-aware) cloud with parallel machine learning [9].

It is a very small (almost zero) downtime in the order of milliseconds within live
migration of virtual machines [1]. This live migration is carried out without disrupting
any active network connections, even when the VM is moved to the target host because
an original VM is running. There are other benefits associated with migrating VMs. For
instance, the placement of VMs can be a solution for the minimization of the processor usage
of hosts or for the minimization of their Input/Output usage subject to keeping virtual
machines zero downtime [10]. To increase the throughput of the system, VMs are supposed
to be distributed to each server in proportion to their computing Input/Output capacity.
Migrations of virtual machines can be conducted by the management of services of software
platforms such as Red Hat Cluster Suite to create load balancing cluster services [10].

We recommend OpenStack as the suited cloud software for supporting the live mi-
gration of VMs. For instance, it was demonstrated by using high network interfaces
with transmission capacity10 Gb/s [11]. Our experimental cloud WUT-GUT confirms the
adequate possibilities of OpenStack due to the teleportation of VMs.

An influence of both the virtual machine size for transmission and bandwidth of the
network on required teleportation time is very crucial [9]. We can save energy by well-
organized management of these resources for cloud data centers. Besides this, an adequate
placing VM in datacenters may diminish the number of VM migrations that is another
optimization criterion [12]. If the smart VMs are going to migrate, some of them may be
unable to obtain the destination hosts due to the limited resources. To avoid the above
situations, Wang et al. formulated another NP-hard optimization problem, which both
maximizes the revenue of successfully placing the VMs and minimizes the total number
of migrations subject to the resource constraint of hosts. Regarding complexity proof, the
above problem is equivalent to finding the shortest path problem [9].

Deep reinforcement learning was developed for multi-objective placement of virtual
machines in cloud datacenters [13]. Because high packing factors could lead to performance
and security issues, for example, virtual machines can compete for hardware resources or
collude to leak data, it was introduced a multi-objective approach to find optimal placement
strategies considering different goals, such as the impact of hardware outages, the power
required by the datacenter, and the performance perceived by users. Placement strategies
are found by using a deep reinforcement learning framework to select the best placement
heuristic. A proposed algorithm outperforms bin packing heuristics [13].

Task scheduling and allocation of cloud resources impact the performance of applica-
tions [14]. Customer satisfaction, resource utilization and better performance are crucial for
service providers. A multi-cloud environment may significantly reduce the cost, makespan,
delay, waiting time and response time to avoid customer dissatisfaction and to improve
the quality of services. A multi-swarm optimization model can be used for multi-cloud
scheduling to improve the quality of services [14].

Green strategies for networking and computing inside data centers, such as server
consolidation or energy-aware routing, should not negatively impact the quality and
service level agreements expected from network operators [15]. Therefore, robust strategies
can place virtual network functions to save energy savings and to increase the protection
level against resource demand uncertainty. The proposed model explicitly provides for
robustness to unknown or imprecisely formulated resource demand variations, powers
down unused routers, switch ports and servers and calculates the energy optimal virtual

Entropy 2022, 24, 58 4 of 23

network functions placement and network embedding also considering latency constraints
on the service chains [15]. A fast robust optimization-based heuristic for the deployment of
green virtual network functions was studied in [16].

Because a service function chain specifies a sequence of virtual network functions
for user traffic to realize a network service, the problem of orchestration this chain is
very crucial [17]. It can be formulated the deadline-aware co-located and geo-distributed
orchestration with demand uncertainty as optimization issues with the consideration of
end-to-end delay in service chains by modeling queueing and processing delays. The
proposed algorithm improved the performance in terms of the ability to cope with demand
fluctuations, scalability and relative performance against other recent algorithms [17].

Another aspect of virtualization is the nonlinear optimization problem of mapping
virtual links to physical network paths under the condition that bandwidth demands
of virtual links are uncertain [18]. To realize virtual links with predictable performance,
mapping is required to guarantee a bound on the congestion probability of the physical
paths that embed the virtual links.

The second part of the work is about some new approaches to PSO algorithms. Al-
though quantum-inspired PSO algorithms have not been used to optimize the migration of
virtual machines in the computing cloud so far, it is worth discussing them due to the PSO al-
gorithm with quantum gates proposed in the article. The quantum-behavior particle swarm
optimization (QPSO) algorithm may control placement problems in software-defined net-
working to make computer networks agile and flexible [19]. To meet the requirements
of users and conquer the physical limitation of networks, it is necessary to design an
efficient controller placement mechanism, which is defined as an optimization problem
to determine the proper positions and number of its controllers. A particle is a vector for
placing controllers at each switch. Besides this, the algorithm is characterized by quantum
behavior with no quantum gates. QPSO algorithm demonstrates power fast convergence
rate but limits in global search ability. Simulation results show that QPSO achieves better
performance in several instances of multi-controller placement problems [19].

An enhanced quantum behaved particle swarm optimization (e-QPSO) algorithm
improves the exploration and the exploitation properties of the original QPSO for function
optimization. It is based on the adaptive balance among the personal best and the global
best positions using the parameter alpha. Besides this, it keeps the balance between
diversification and intensification using the parameter gamma. In addition, a percentage
of the worst-performing population is re-initialized to prevent the stack of the particle at
the local optima. The results of e-QPSO outperform twelve QPSO variants, two adaptive
variants of PSO, as well as nine well-known evolutionary algorithms due to 59 benchmark
instances [6].

A self-organizing quantum-inspired particle swarm optimization algorithm
(MMO_SO_QPSO) is another version of PSO for solving multimodal multi-objective opti-
mization problems (MMOPs) [20]. It should find all equivalent Pareto optimal solutions
and maintain a balance between the convergence and diversity of solutions in both decision
space and objective space. In the algorithm, a self-organizing map is used to find the best
neighbor leader of particles, and then a special zone searching method is adopted to update
the position of particles and locate equivalent Pareto optimal solutions in decision space.
Quantum behaviors of particles are not described as position vectors and velocity vectors,
but they are replaced by the wave function. To maintain diversity and convergence of
Pareto optimal solutions, a special archive mechanism based on the maximum-minimum
distance among solutions is developed. Some outstanding Pareto optimal solutions are
maintained in another archive. In addition, a performance indicator estimates the similarity
between obtained Pareto optimal solutions and true efficient alternatives. Experimental
results demonstrate the superior performance of MMO_SO_QPSO for solving MMOPs [20].

It is worth noting that the MMO_SO_QPSO algorithm is one of the most advanced
PSO algorithms inspired by quantum particle behavior. For this reason, it is the foundation

Entropy 2022, 24, 58 5 of 23

on which our algorithm MQPSO is based, which additionally takes into account quantum
gates and the many criteria selection procedure.

Besides this, there are several interesting works that have dealt with hybrid meta-
heuristics, which could provide an effective introduction to advanced metaheuristics in
general [21], in combination with exact approaches applied in network design [22] and
improved particle swarm optimization [23].

3. Live Migration of Intelligent Virtual Machines

We can identify the following system elements that are relevant for the modeling. Let
V be the number of virtual machines that are trained in the cloud on I physical machines.
Moreover, let virtual machines be denoted as α1, . . . , αv, . . . , αV. Each αv can work
at the host assigned to the safety node such as N1, . . . , Ni, . . . , NI in the cloud. Let
β1, . . . , βj, . . . , βJ be the possible types of physical machines providing a set of resources
to VMs. Exactly one physical machine βj can be assigned to each node Ni.

Virtual machine migration involves changing the host on the source node to the host
on the target node, which is a key decision in the optimization problem under consideration.
Destination nodes of the VMs after migrations can be modeled by Xα =

[
xα

vi
]

V×I , where [4]:

xα
vi =

{
1 if αv is assigned to the node Ni,

0 in the other case,
v = 1, V, i = 1, I (1)

To find adequate amounts of resources, we consider the assignment of hosts that are
the other important decisions supporting the placement of VMs. Capacities of resources in
the cloud can be adapted to the needs of virtual machines by designating an appropriate
matrix Xβ =

[
xβ

ij

]
I×J

, where:

xβ
ij =

{
1 if β j is assigned to the node Ni,

0 in the other case,
i = 1, I, j = 1, J (2)

Resources provided by physical machines are characterized by six vectors such as: the
vector of electric power consumption ε =

[
ε1, . . . , ε j, . . . , ε J

]
(watt), the vector of RAM mem-

ory capacities ram =
[
ram1, . . . , ramj, . . . , ramJ

]
(GB), the vector ν =

[
ν1, . . . , νj, . . . , νJ

]
of the numbers of the preferred computers and the vector of disk storage capacities
hdd =

[
hdd1, . . . , hddj, . . . , hddJ

]
(TB). In addition, the vector ξ =

[
ξ1, . . . , ξ j, . . . , ξ J

]
($)

characterizes costs of using the selected physical machines. Let the computer β j be failed
independently due to an exponential distribution with rate θj. The sixth vector is the vector
of the reliability rates θ =

[
θ1, . . . , θj, . . . , θJ

]
.

Moreover, four characteristics are related to virtual machines. Let T =
[
tvj
]

V×J be
the matrix of cumulative times of VMs runs on different types of computers (s) and also
τ = [τvuik]V×V×I×I—the matrix of total communication time between agent pairs located
at different nodes (s). In addition, the memory requirements of VMs are described by the
vector r = [r1, . . . , rv, . . . , rV] of reserved RAM (GB) and the vector h = [h1, . . . , hv, . . . , hV]
of required disk storage (TB).

The binary matrix double x =
(
Xα, Xβ

)
considers decision variables that can minimize

four criteria and maximize three criteria characterizing computing cloud. We maximize
three criteria. Let κRAM

min be the free capacity of the RAM in the bottleneck computer due to
RAM (GB) and κdisc

min—the free capacity of the disc storage in the bottleneck computer due to
disk storage (TB) [4]. Let R denote the reliability of the cloud that should be maximized, too.
Moreover, we minimize E—electric power of the cloud (watt). Let Z̃max be communication
capacity of the bottleneck node (s). Moreover, Ξ—cost of hosts (money unit, i.e., $) is the
criterion for minimization. Let Ẑmax be the processing workload of the bottleneck CPU (s)
that is the fourth criterion for maximization.

Entropy 2022, 24, 58 6 of 23

Live migration of virtual machines may change the values of the above criteria. There-
fore, we should find the set of Pareto-optimal solutions. On the other hand, the decision-
maker can choose a compromise solution from this set.

Intelligent virtual machines contain some pre-trained domain models based mainly on
convolutional neural network (CNN) and long short term memory (LSTM) ANNs [24,25].
Several virtual machines can run on a host, but they can migrate from the source computer
to the destination regarding the Pareto-optimal solution obtained by the MQPSO. For
instance, an accuracy of 99% can be achieved within approximately one minute for training
the CNN on the virtual machine Linux Fedora Server (the CPU Intel Core i7, 27 GHz,
RAM 16 GB) due to the German Traffic Sign Detection Benchmark Dataset. The CNN
identifies the traffic signs represented by the matrix with 28 × 28 selected features. The
dataset is divided into 570 training signs and 330 test items [24]. In this case, live migration
of this virtual machine is unlikely to be recommended, unless there is a host failure [26].
Retraining is very fast, and then a trained model can be sent to nodes on the Internet of
Things [27].

However, a virtual machine needs additional resources in the following situation,
which is very common in intelligent clouds [28]. Much more time is required to learn the
Long Short Term Memory artificial neural network for video classification. The LSTM can
detect some dangerous situations from the web camera monitoring city areas using the
Cityscapes Dataset with 25,000 stereo videos about the street scenes from 50 cities [29].
After 70 h of the CPU elapsed time, LSTM based model achieved an average accuracy
of 54.7% that is rather unacceptable. The LSTM was implemented at the Matlab R2021b
environment. Therefore, the supervised learning process should be accelerated by using
GPUs, and the virtual machine with LSTM is supposed to be moved to the other server.

Live migration of the virtual machine to the more powerful workstation with the GPUs
can be carried out by using protocols HTTPS and WebSocket. Besides this, micro-services
exchange data with format JSON, which were verified in the experimental computing
cloud GUT-WUT (Gdańsk University of Technology—Warsaw University of Technology).
This cloud is based on the OpenStack software platform that maintains possibilities of VM
teleportation [4].

Another deep learning model that uses the virtual machine may be the Human Motion
DataBase (HMDB) with 6849 clips divided into 51 action categories, each containing a
minimum of 101 clips [30]. For instance, the trained LSTM can detect undesirable situations
in the city, such as smoking and drinking in the forbidden areas or pedestrians falling on
the floor. The quick and correct classifications allow counteracting many extreme situations
on city streets [31]. Teleportation of the virtual machine with the LSTM trained on the
HMDB can provide enough amount of cloud resources to train this virtual machine with
high accuracy.

4. Many-Objective Optimization Problem

There are the upper constraints that have to be respected to guarantee project require-
ments such as the maximum computer load Ẑsup or an upper limit of node transmission
Z̃sup. To save energy, let ξmax be limit of electric power for the cloud. A budget constraint
for the project can be denoted as εmax. Furthermore, there are minimal requirements for
three maximizing metrics. Rmin is the minimum reliability for the hosts used by virtual
machines. κdisc

in f represents the free capacity of the disc storage in the bottleneck computer

due to disk storage (TB). κRAM
in f is the free capacity of the RAM in the bottleneck computer

due to RAM (GB). We can establish constraints, as below:

E(x) ≤ εmax (3)

κRAM
min (x) ≥ κRAM

min (4)

κdisc
min(x) ≥ κdisc

min (5)

Entropy 2022, 24, 58 7 of 23

R(x) ≥ Rmin (6)

Ẑmax(x) ≤ Ẑsup (7)

Z̃max(x) ≤ Z̃sup (8)

Ξ(x) ≤ ξmax (9)

If we rebuild the cloud, some hosts can be removed from it, but the others can be left
to cooperate with the new servers. Therefore, from the current set of computers Cnow we
can determine the set of preferred computer types Bnow. Let Jnow be the set of indexes of
the preferred computer types for the current infrastructure. Moreover, we are going to
buy or rent the new hosts. Let Jnew be the set of indexes of the new computer types. Let
J = Jnow ∪ Jnew, where J = {1, . . . , j, . . . , J}. If we consider the new servers, we can buy 0,
1, 2 or more hosts of the same kind. However, we are supposed to respect the assumed
computers number νj of the jth type from Jnow.

In consequence, the following constraint is introduced:

∑I
i=1 xβ

ij = νj, j ∈ Jnow (10)

The reliability R is defined, as below [4]:

R(x) = ∏V
v=1 ∏I

i=1 ∏J
j=1 e−θjtvjxα

vix
β
ij (11)

To calculate the workload of the bottleneck computer, we introduce two formulas. If
computer βj is located in the cloud node no. i, the decision variable xβ

ij is equal to 1. If
virtual machine no. v is included in this cluster, the decision variable is equal to 1, too. The
term tvjxα

vix
β
ij is the cumulative time of the vth virtual machine run on computer βj (s). Now,

we can calculate the workload of the bottleneck computer, as follows [4]:

Ẑmax(x) = max
i=1,I

{
∑J

j=1 ∑V
v=1 tvjxα

vix
β
ij

}
(12)

Similarly, we can determine transmission workload of the bottleneck node by the
following formula:

Z̃max(x) = max
i=1,I

∑V
v=1 ∑V

u = 1
u 6= v

∑I
i=1 ∑I

k = 1
i 6= k

τvuikxα
vix

β
uk

 (13)

If computer βj is located in the cloud node no. i, electric consumption per time unit in

this node is equal to ε jx
β
ij, and all nodes in this cloud require electric power, as below:

E(x) = ∑I
i=1 ∑J

j=1 ε jx
β
ij (14)

Also, we can calculate the total cost of computers, as follows:

Ξ(x) = ∑I
i=1 ∑J

j=1 ξ jx
β
ij (15)

Because the cluster of agents requires the RAM capacity ∑V
v=1 rvxα

vi in node no. i, the
minimal capacity of RAM memory for a bottleneck host can be calculated, as follows:

κRAM
min (x) = min

i=1,I

{
∑J

j=1 ramjx
β
ij −∑V

v=1 rvxα
vi

}
(16)

Entropy 2022, 24, 58 8 of 23

Likewise, we can identify the bottleneck computer regarding free disc storage in
the cloud:

κdisc
min(x) = min

i=1,I

{
∑J

j=1 hddjx
β
ij −∑V

v=1 hvxα
vi

}
(17)

Based on the model, we can formulate the many-criteria optimization problem, as follows.
Given:

numbers V, I, J, εmax, Rmin, κdisc
in f , κRAM

in f , Ẑsup, Z̃sup, ξmax,
vectors ε, ram, hdd, ξ, ν, θ, r, h
matrices T, τ

Find the representation of Pareto-optimal solutions XPareto for an ordered tuple:

(X, F, �≤) (18)

where:

(1) X—the set of admissible solutions x that satisfy requirements (3)–(10) and the formal
constraints, as below:

∑I
i=1 xα

vi = 1, v = 1, V, (19)

∑J
j=1 xβ

ij = 1, i = 1, I, (20)

(2) F—the vector of seven minimized partial criteria

F : X→ R7 (21)

F(x) = [Ẑmax(x), Z̃max(x), E(x), Ξ(x),−κRAM
min (x),−κdisc

min(x),−R(x)] (22)

R—a set of real numbers

(3) �≤—the domination relation in R7

�≤=
{
(a, b) ∈ Y× Y

∣∣an ≤ bn, n = 1, 7
}

, Y = F(X) (23)

The number of the admissible solutions x =
(
Xα, Xβ

)
is no greater than 2(V+J)I. If

the binary encoding of solutions is substituted by the integer encoding, the upper limit of
admissible solutions is V I I J. In the integer encoding, we introduce the modified decision
variables: Xα

v = i if xα
vi = 1, Xβ

i = j if xβ
ij = 1. In such a way, the formal constraints

are satisfied. Let n ≈ V ≈ I ≈ J. The upper limit of admissible solutions increases in a
non-polynomial way due to O(nn). We can prove the following Lemma.

Lemma 1. If number of nodes I ≥ 4 or I ≥ 2 and memory resources are limited, then the many-
criteria combinatorial optimization problem (18)–(23) is NP-hard.

Proof. We will prove that the problem (18)–(23) is polynomially reducible to any known
NP-hard problem. Let some assumptions be made to transform the formulated dilemma
(18)–(23) into the other NP-hard issue. If J = 1, then we consider the placement of V virtual
machines on I computers. Moreover, let resource constraints are released and one objective
function Ẑmax is considered, only. Then, this case of the problem (18)–(23) is equivalent
to a task assignment problem without memory limits [32]. If I ≥ 4, it was proved that
task assignment dilemma without constraints is NP-hard for minimization of the total
cost [32]. On the other hand, if I ≥ 2 and memory resources are limited, then minimization
of the total cost for task assignment is NP-hard, too [32]. Each hierarchical solution related
to minimization Ẑmax is Pareto-optimal solution [4]. Because the problem (18)–(23) with
one criterion is NP-hard, the extended issue with seven criteria is NP-hard, which ends
the proof. �

Note that the problem of finding a minimum feasible assignment in some cases is
equivalent to a knapsack problem, and hence is an NP-hard problem. Consider the I node
graph, in which every node is of degree 2 and the source and the sink both have degrees

Entropy 2022, 24, 58 9 of 23

(I-2). The weight wi of the node Ni corresponds to the weight of the ith item in the knapsack
problem. A feasible cut of the task assignment graph corresponds to a subset of items
whose weights do not exceed the knapsack constraint weight w. A minimum feasible cut
corresponds to a knapsack packing of maximum value [32].

Solving problem (18)–(23) by an enumerative algorithm is ineffective for the large
search space with VI IJ elements. Let us consider the instance of the problem (18)–(23) with
855 decision variables. In the experimental instance called Benchmark855 (https://www.
researchgate.net/publication/341480343_Benchmark_855, accessed: 19 November 2021),
an algorithm determines a set of Pareto-optimal solutions for 45 virtual machines, 15 com-
munication nodes and 12 types of servers. A search space contains 8.2 × 1038 elements
and 2 × 107 solutions are evaluated during 3 min by an enumerative algorithm imple-
mented in Java on Dell E5640 dual-processor machine under Linux CentOS. It confirms
that there are no practical chances to find any Pareto-solution by a systematic enumera-
tive way. Besides this, 2 × 107 independent probabilistic trials are less likely to ensure a
high-quality alternative.

There are exact solvers like the multi-criteria branch and bound method [33] or the
ε-constraint method [34], but they usually produce poor quality solutions for the limited
time of calculations. Metaheuristics find much better results than exact methods for many
instances of different NP-hard multi-criteria optimization problems [21].

5. Many-Objective Particle Swarm Optimization with Quantum Gates MQPSO

We simulated teleportation of virtual machines at the cloud GUT-WUT based on
OpenStack that uses hosts from two universities [4]. Algorithm 1 shows pseudocode
visualizing how the various steps of the general algorithm many-objective particle swarm
optimization with quantum gates (MQPSO) are adapted to the specific features of the VMs
placement problem (18)–(23). The algorithm is based on Hadamard gates and rotation
gates. Hadamard gate converts a qubit of a quantum register Q into a superposition of two
basis states |0〉 and |1〉, as follows [35]:

Algorithm 1 Multi-objective Quantum-inspired PSO

1: Set input data, A(t) := Ø; t := 0
2: Initialize quantum register Q(t) with M qubits by the set of Hadamard gates
3: while (not termination condition) do
4: create P(t) by observing the state of Q(t)
5: determine new positions and velocities of particles followed by create B(t)
6: find Fonseca-Fleming ranks for an extended archive C(t) = A(t)∪B(t)∪P(t)
7: calculate crowding distances, fitness and then sort particles in C(t)
8: form A(t) of Pareto-optimal solutions from the sorted set C(t)
9: a tournament selection of an angle rotation matrix Mθ based on rating R(Mθ)
10: mutate the selected matrix Mθ with the rate pm
11: modify Q(t) using the rotation gates
12: t := t + 1
13: end while

|0〉 =


|0〉+|1〉√

2
for the basis state |0〉

|0〉−|1〉√
2

for the basis state |1〉
(24)

The Hadamard gate is a single-qubit operation based on the 90◦ rotation around
the y-axis, and then a 180◦ rotation around the x-axis. If we use Dirac notation for the
description of the qubit state Qm = αm|0〉 ⊕ βm|1〉 , the qubit can be represented by the
matrix, as follows [6]:

Q =

[
|α1| . . . |αm| . . . |αM|
|β1| . . . |βm| . . . |βM|

]
(25)

https://www.researchgate.net/publication/341480343_Benchmark_855
https://www.researchgate.net/publication/341480343_Benchmark_855

Entropy 2022, 24, 58 10 of 23

The procedure of random selection of decision values is involved with a chromosome
matrix. If the decision variable xm is characterized by a pair of complex numbers (αm, βm),
it is equal to 0 with the probability |αm|2 and to 1 with |βm|2. Alternatively, the state of the
mth qubit can be represented as the point on the 3D Bloch sphere, as follows [35]:

|Qm〉 = cos
θm

2
|0〉+ eiφm sin

θm

2

∣∣1〉, m = 1, M , (26)

where 0 ≤ θm ≤ π and 0 ≤ φm ≤ 2π.
In the 3D Bloch sphere, the Hadamard gate can be implemented by several rotations

to achieve the desired point determined by a pair of angles (θm, φm), that is, equal superpo-
sition of the two basis states. Two angles θm and φm determines the localization of qubit on
the Bloch sphere. The North Pole represents the state |0〉, the South Pole represents the
state |1〉 and the points on the equator represent all possible states in which 0 and 1 are the
same. Thus, in this version of the quantum-inspired genetic algorithm, there are M Bloch
spheres with the quantum gene states.

Therefore, the Hadamard gate can be modeled, as the matrix operation, as below:

H =
1√
2

[
1 1
1 −1

]
(27)

The Hadamard gate can be implemented by the Pauli gates. The Pauli-X gate (PX) is a
single-qubit rotation through π radians around the x-axis. On the other hand, the Pauli-Y
gate (PY) is a single-qubit rotation through π radians around the y-axis. From (27), we get
the following:

H = PX·PY
1
2 = PY−

1
2 ·PX, (28)

where:

PX =

[
0 1
1 0

]
,

PY =

[
0 −i
i 0

]
,

i—the imaginary unit of a complex number.

For the Pauli-Z gate (PZ) that is a single-qubit rotation through π radians around the
z-axis, we have, as below:

H = ZX·PY
1
2 = PY−

1
2 ·ZX, (29)

where ZX =

[
1 0
0 −1

]
.

The initial step of MQPSO (Algorithm 1, step 1) is to enter data such as V, I, J, εmax,
Rmin, κdisc

in f , κRAM
in f , Ẑsup, Z̃sup, ξmax, ε, ram, hdd, ξ, ν, θ, r, h, T, τ. Then, the initial value

of the main loop is set to 0 (t := 0).
The quantum register Q(t) consists of M qubits (Algorithm 1, step 2). The M Hadamard

gates are used, concurrently. We consider (V + I) blocks of qubits representing decision
variables Xα

v , v = 1, V, and Xβ
j , j = 1, J. If there are λ quantum bits for encoding decisions

Xα
V and µ quantum bits for encoding Xβ

j , there are M = λV + µI quantum bits for the
register Q. To minimize the size of the quantum register, we use the following formulas to
determine the number of qubits λ = dlog2(I + 1)e and µ = dlog2(J + 1)e. Each qubit has
an index within this register, starting at index 0 and counting up by 1 till M. Besides this, we
use λ qubits (instead of λV) for the determination placement of virtual machines because
of a key advantage of the quantum register. It can proceed with 2λ virtual machines
placements, concurrently. We can create digital decision variables by using a roulette
wheel due to the given probability distribution after the measurement of the quantum
register (Figure 1). Similarly, we reduce the number of qubits from µI to µ, allowing for the

Entropy 2022, 24, 58 11 of 23

allocation of appropriate hosts to VMs clusters. Therefore, the quantum register consists of
M = λ + µ, only.

Entropy 2022, 24, x FOR PEER REVIEW 11 of 23

because of a key advantage of the quantum register. It can proceed with 2ఒ virtual ma-
chines placements, concurrently. We can create digital decision variables by using a rou-
lette wheel due to the given probability distribution after the measurement of the quan-
tum register (Figure 1). Similarly, we reduce the number of qubits from 𝜇𝐼 to 𝜇, allowing
for the allocation of appropriate hosts to VMs clusters. Therefore, the quantum register
consists of M = 𝜆 + 𝜇, only.

Figure 1. Probability distribution of the virtual machine placement after quantum register measure-
ment.

An outcome of measuring is saved into a binary measurement register BMQ with the
same number of entries as the qubit register. Declared binary states of BMQ entries are 0
or 1. When a qubit of the register Q is measured the second time, the corresponding bit in
the binary register is overwritten by the new measurement bit, even when a measurement
is done on a basis different than the basis used for an earlier measurement. In this case,
the selection of x-basis, z-basis or z-basis does not allow the storage of the previously
measured bit in the register BMQ. The most recent qubit measurement introduces achange
to the associated binary bit of the measurement register. The quantum register Q can be
measured regarding the z-basis of each qubit. Figure 1 shows an example of a probability
distribution for placement of the vth virtual machine. This distribution is important to
generate digital positions of particles.

An initial population P(t) of L particles px(t) = (x(t), v(t)) is created by measuring the
state of the register Q at the iteration t (Algorithm 1, step 4). The current position at the
iteration t is encoded as 𝑥(𝑡) = ൣ𝑋ଵఈ(𝑡), … , 𝑋௩ఈ(𝑡), … , 𝑋௏ఈ(𝑡), 𝑋ଵఉ(𝑡), … , 𝑋௜ఉ(𝑡), … 𝑋ூఉ(𝑡)൧. Be-
sides, the velocity 0 ≤ 𝑣(𝑡) ≤ 𝑣௠௔௫ of this particle has V + I coordinates, too. Therefore,
the digital particle 𝑝𝑥(𝑡) has 2(V + I) coordinates. Placements of virtual machines are ran-
domly selected V times due to the roulette wheel constructed by the probability distribu-
tion provided by the quantum register Q (Figure 1). Also, the hosts with adequate re-
sources to clusters of virtual machines are randomly chosen I times by the roulette wheel
related to measuring another part of the quantum register Q. Besides this, the velocity
vector 𝑣 of this digital particle is created by generation V + I values for 0 ≤ 𝑣௠ (𝑡) ≤ 𝑣௠௔௫.
Based on the quantum register Q, L digital positions of particles can be created to establish
the initial population P(t = 0), where px(t) = (x(t), v(t)) and L is the size of a population.

The population P(t) enables the designation of an offspring population B(t) in accord-
ance with the rules of canonical PSO algorithms (Algorithm 1, step 5). The new position

0.000 0.020 0.040 0.060 0.080

0000b

0010b

0100b

0110b

1000b

1010b

1100b

1110b

0.065
0.057

0.053
0.068

0.062
0.059

0.063
0.071

0.069
0.063

0.060
0.065

0.062
0.063

0.055
0.066

Figure 1. Probability distribution of the virtual machine placement after quantum register measurement.

An outcome of measuring is saved into a binary measurement register BMQ with the
same number of entries as the qubit register. Declared binary states of BMQ entries are 0 or
1. When a qubit of the register Q is measured the second time, the corresponding bit in the
binary register is overwritten by the new measurement bit, even when a measurement is
done on a basis different than the basis used for an earlier measurement. In this case, the
selection of x-basis, z-basis or z-basis does not allow the storage of the previously measured
bit in the register BMQ. The most recent qubit measurement introduces achange to the
associated binary bit of the measurement register. The quantum register Q can be measured
regarding the z-basis of each qubit. Figure 1 shows an example of a probability distribution
for placement of the vth virtual machine. This distribution is important to generate digital
positions of particles.

An initial population P(t) of L particles px(t) = (x(t), v(t)) is created by measuring the
state of the register Q at the iteration t (Algorithm 1, step 4). The current position at the
iteration t is encoded as x(t) =

[
Xα

1 (t), . . . , Xα
v (t), . . . , Xα

V(t), Xβ
1 (t), . . . , Xβ

i (t), . . . Xβ
I (t)

]
.

Besides, the velocity 0 ≤ v(t) ≤ vmax of this particle has V + I coordinates, too. There-
fore, the digital particle px(t) has 2(V + I) coordinates. Placements of virtual machines
are randomly selected V times due to the roulette wheel constructed by the probability
distribution provided by the quantum register Q (Figure 1). Also, the hosts with adequate
resources to clusters of virtual machines are randomly chosen I times by the roulette wheel
related to measuring another part of the quantum register Q. Besides this, the velocity
vector v of this digital particle is created by generation V + I values for 0 ≤ vm(t) ≤ vmax.
Based on the quantum register Q, L digital positions of particles can be created to establish
the initial population P(t = 0), where px(t) = (x(t), v(t)) and L is the size of a population.

The population P(t) enables the designation of an offspring population B(t) in accor-
dance with the rules of canonical PSO algorithms (Algorithm 1, step 5). The new position
is calculated by adding three vectors to the current position x(t). The first vector is a
difference between the best position pbest of this particle from the past and the current
position. The vector is multiplied by a random number r1 from the interval [0; 1] and by
the given coefficient c1. The second vector is a difference between the best perfect position
gbest of the neighborhood and the current position. This vector is multiplied by a random

Entropy 2022, 24, 58 12 of 23

number r2 from the interval [0; 1] and by the given coefficient c2. The third vector is the
difference between the velocity and the current position. This vector is multiplied by a
random number r0 from the interval [0; 1] and by the given coefficient c0 (Figure 2).

Entropy 2022, 24, x FOR PEER REVIEW 12 of 23

is calculated by adding three vectors to the current position x(t). The first vector is a dif-
ference between the best position pbest of this particle from the past and the current posi-
tion. The vector is multiplied by a random number r1 from the interval [0; 1] and by the
given coefficient c1. The second vector is a difference between the best perfect position gbest
of the neighborhood and the current position. This vector is multiplied by a random num-
ber r2 from the interval [0; 1] and by the given coefficient c2. The third vector is the differ-
ence between the velocity and the current position. This vector is multiplied by a random
number r0 from the interval [0; 1] and by the given coefficient c0 (Figure 2).

Figure 2. Determination of the new position of a digital particle.

An extended archive C(t) is the sum of three sets of particles A(t)∪B(t)∪P(t) (Algo-
rithm 1, step 6). We compare particles from the extended archive C(t). Criteria values of
particles are calculated, followed by Fonseca–Fleming ranks [36]. A rank r(x) of solution x
is a number of dominant solutions from C(t).

The next step of the algorithm MQPSO is calculation crowding distances, fitness val-
ues, and then sorting particles in C(t) (Algorithm 1, step 7). Each particle is characterized
by crowding distance to determine its fitness and to distinguish solutions with the same
rank [37]. Sorted particles with the highest fitness values are qualified to an archive A(t)
of non-dominated solutions with their criteria values (Algorithm 1, step 8).

An important step of an algorithm is using three rotation gates to modify the quan-
tum register Q (Algorithm 1, steps 9–11). The 𝑅௫ gate is a single-qubit rotation through
the angle 𝜃௫ (radians) around the x-axis. Similarly, the 𝑅௬ gate is a rotation through the
angle 𝜃௬ around the y-axis. A rotation through 𝜃௭ around the z-axis is the 𝑅௭ gate. The
adequate matrix operations can be written, as follows [35]:

𝑅௫(𝜃௫) = ൦ cos 𝜃௫2 −𝑖 sin 𝜃௫2−𝑖 sin 𝜃௫2 cos 𝜃௫2 ൪ (30)

𝑅௬(𝜃௬) = ൦cos 𝜃௬2 − sin 𝜃௬2sin 𝜃௬2 cos 𝜃௬2 ൪ (31)

𝑅௭(𝜃௭) = ൥𝑒ି௜ఏ೥ଶ 00 𝑒௜ఏ೥ଶ ൩ (32)

Figure 3 shows the quantum gates for finding the correction of new particle position.
It determines the new assignment of the vth virtual machine to the host. There are Hada-
mard gates and three rotation gates that determine host number. An important role play
rotation angles 𝜃௫, 𝜃௬, 𝜃௭ for each qubit 𝑚 = 1, 𝑀തതതതതത. A matrix of angles 𝑀ఏ can be charac-
terized, as below:

Figure 2. Determination of the new position of a digital particle.

An extended archive C(t) is the sum of three sets of particles A(t)∪B(t)∪P(t)
(Algorithm 1, step 6). We compare particles from the extended archive C(t). Criteria
values of particles are calculated, followed by Fonseca–Fleming ranks [36]. A rank r(x) of
solution x is a number of dominant solutions from C(t).

The next step of the algorithm MQPSO is calculation crowding distances, fitness
values, and then sorting particles in C(t) (Algorithm 1, step 7). Each particle is characterized
by crowding distance to determine its fitness and to distinguish solutions with the same
rank [37]. Sorted particles with the highest fitness values are qualified to an archive A(t) of
non-dominated solutions with their criteria values (Algorithm 1, step 8).

An important step of an algorithm is using three rotation gates to modify the quantum
register Q (Algorithm 1, steps 9–11). The Rx gate is a single-qubit rotation through the
angle θx (radians) around the x-axis. Similarly, the Ry gate is a rotation through the angle
θy around the y-axis. A rotation through θz around the z-axis is the Rz gate. The adequate
matrix operations can be written, as follows [35]:

Rx(θx) =

[
cos θx

2 −i sin θx
2

−i sin θx
2 cos θx

2

]
(30)

Ry
(
θy
)
=

[
cos θy

2 − sin θy
2

sin θy
2 cos θy

2

]
(31)

Rz(θz) =

[
e−i θz

2 0
0 ei θz

2

]
(32)

Figure 3 shows the quantum gates for finding the correction of new particle position. It
determines the new assignment of the vth virtual machine to the host. There are Hadamard
gates and three rotation gates that determine host number. An important role play rotation
angles θx, θy, θz for each qubit m = 1, M. A matrix of angles Mθ can be characterized,
as below:

Mθ =

 θx1 . . . θxm . . . θxM
θy1 . . . θym . . . θyM
θz1 . . . θzm . . . θzM

 (33)

Entropy 2022, 24, 58 13 of 23

Entropy 2022, 24, x FOR PEER REVIEW 13 of 23

𝑀ఏ = ቎𝜃௫ଵ … 𝜃௫௠ … 𝜃௫ெ𝜃௬ଵ … 𝜃௬௠ … 𝜃௬ெ𝜃௭ଵ … 𝜃௭௠ … 𝜃௭ெ ቏ (33)

Figure 3. Hadamard and rotation gates for updating the quantum register Q.

Initially, the angles are determined randomly. However, preferences should be given
to modifications of the quantum register, which cause greater effects in the set of desig-
nated non-dominated solutions in the archive. For this reason, we evaluate each rotational
angle matrix with the number of effective solutions in the archive, which solutions were
determined using a given matrix. A matrix 𝑀ఏ with a higher rating 𝑅(𝑀ఏ) is more likely
to be used in the next iteration because of a tournament selection of the rotation angle
matrix in conjunction with the roulette rule. Each angle of the matrix can be mutated at
the pm rate, which mutation consists in changing the angle by a random value with a nor-
mal distribution with standard deviation 𝜎.

Figure 4 shows results after rotations the quantum register Q followed by measure-
ment. The most preferred host by virtual machines is located at the sixth node. Placement
both at the 7th and the 15th node have much fewer chances to be selected, but they may
be chosen for several VMs.

Figure 4. Distribution of the node selection probabilities after rotations of quantum register.

To sum up, the population P(t) of L particles is created by observing the state of the
quantum register Q(t) in main loop of MQPSO. New positions and velocities of particles
are generated followed by create a neighborhood B(t). Besides, values of criteria are cal-
culated, and solutions are verified if they satisfy constraints. Then, we can find ranks of
feasible solutions for an extended archive C(t) = A(t − 1)∪B(t)∪P(t). If a rank is equal to
zero, a solution is non-dominated in an extended archive.

Non-dominated solutions are accepted for the A(t) archive, only. If the number of
Pareto-optimal solutions exceeds the archive size, a representation of them is qualified,
which takes place by means of the densification function. Solutions with ratings in less
dense areas have a greater chance of qualifying for the archive. In the initial period of

Figure 3. Hadamard and rotation gates for updating the quantum register Q.

Initially, the angles are determined randomly. However, preferences should be given
to modifications of the quantum register, which cause greater effects in the set of designated
non-dominated solutions in the archive. For this reason, we evaluate each rotational
angle matrix with the number of effective solutions in the archive, which solutions were
determined using a given matrix. A matrix Mθ with a higher rating R(Mθ) is more likely
to be used in the next iteration because of a tournament selection of the rotation angle
matrix in conjunction with the roulette rule. Each angle of the matrix can be mutated at the
pm rate, which mutation consists in changing the angle by a random value with a normal
distribution with standard deviation σ.

Figure 4 shows results after rotations the quantum register Q followed by measurement.
The most preferred host by virtual machines is located at the sixth node. Placement both at
the 7th and the 15th node have much fewer chances to be selected, but they may be chosen
for several VMs.

Entropy 2022, 24, x FOR PEER REVIEW 13 of 23

𝑀ఏ = ቎𝜃௫ଵ … 𝜃௫௠ … 𝜃௫ெ𝜃௬ଵ … 𝜃௬௠ … 𝜃௬ெ𝜃௭ଵ … 𝜃௭௠ … 𝜃௭ெ ቏ (33)

Figure 3. Hadamard and rotation gates for updating the quantum register Q.

Initially, the angles are determined randomly. However, preferences should be given
to modifications of the quantum register, which cause greater effects in the set of desig-
nated non-dominated solutions in the archive. For this reason, we evaluate each rotational
angle matrix with the number of effective solutions in the archive, which solutions were
determined using a given matrix. A matrix 𝑀ఏ with a higher rating 𝑅(𝑀ఏ) is more likely
to be used in the next iteration because of a tournament selection of the rotation angle
matrix in conjunction with the roulette rule. Each angle of the matrix can be mutated at
the pm rate, which mutation consists in changing the angle by a random value with a nor-
mal distribution with standard deviation 𝜎.

Figure 4 shows results after rotations the quantum register Q followed by measure-
ment. The most preferred host by virtual machines is located at the sixth node. Placement
both at the 7th and the 15th node have much fewer chances to be selected, but they may
be chosen for several VMs.

Figure 4. Distribution of the node selection probabilities after rotations of quantum register.

To sum up, the population P(t) of L particles is created by observing the state of the
quantum register Q(t) in main loop of MQPSO. New positions and velocities of particles
are generated followed by create a neighborhood B(t). Besides, values of criteria are cal-
culated, and solutions are verified if they satisfy constraints. Then, we can find ranks of
feasible solutions for an extended archive C(t) = A(t − 1)∪B(t)∪P(t). If a rank is equal to
zero, a solution is non-dominated in an extended archive.

Non-dominated solutions are accepted for the A(t) archive, only. If the number of
Pareto-optimal solutions exceeds the archive size, a representation of them is qualified,
which takes place by means of the densification function. Solutions with ratings in less
dense areas have a greater chance of qualifying for the archive. In the initial period of

Figure 4. Distribution of the node selection probabilities after rotations of quantum register.

To sum up, the population P(t) of L particles is created by observing the state of the
quantum register Q(t) in main loop of MQPSO. New positions and velocities of particles are
generated followed by create a neighborhood B(t). Besides, values of criteria are calculated,
and solutions are verified if they satisfy constraints. Then, we can find ranks of feasible
solutions for an extended archive C(t) = A(t − 1)∪B(t)∪P(t). If a rank is equal to zero, a
solution is non-dominated in an extended archive.

Non-dominated solutions are accepted for the A(t) archive, only. If the number of
Pareto-optimal solutions exceeds the archive size, a representation of them is qualified,
which takes place by means of the densification function. Solutions with ratings in less
dense areas have a greater chance of qualifying for the archive. In the initial period of
searching the space of feasible solutions, solutions with higher ranks and even unacceptable
solutions based on the fitness function may be qualified.

The algorithm ends the exploration of space when the time limit is exceeded (the
number of particle population generations) or when there is no improvement over a given
number of iterations.

Entropy 2022, 24, 58 14 of 23

6. Pareto-Optimal Solutions and Compromise Alternatives

Let XPareto
n be a set of Pareto-optimal solutions for the many-objective problem of

virtual machine placement (X, F, �≤) (18)–(23) with n criteria, where n = 2, 3, . . . , 7. The
set X of admissible solutions is the same for each n. Because there are seven partial criteria
Ẑmax, Z̃max, Ξ, E,−κRAM

min ,−κdisc
min,−R, we can use a notation F = [F1, . . . , Fn, . . . , FN=7].

There are six sets of Pareto solutions: XPareto
2 , XPareto

3 , . . . , XPareto
7 because n = 2, 3, . . . , 7.

Also, there are six sets of evaluations Y = F(X).
Besides this, n dimensional domination relation in Rn denoted as �n can be defined,

as below:

�n=
{
(a, b) ∈ Y× Y

∣∣ai ≤ bi, i = 1, n
}

, Y = F(X) ⊂ Rn, n = 2, 7 (34)

We can formally explain the number growth of Pareto-optimal solutions in many-
objective optimization problems due to adding the partial criteria by the following theorem.

Theorem 1. A set of Pareto solutions XPareto
n ⊆ X for n (n ≥ 2) criteria in the many-criteria

optimization problem of virtual machines placement (X, F, �≤) (18)–(23) is included in the set of
Pareto solutions XPareto

n+k ⊆ X for n + k criteria, k = 1,2, . . . , N − n (n + k ≤ N) and a domination
relation �n in Rn+k, which can be formulated, as below:

XPareto
n ⊆ XPareto

n+k , k = 1, 2, . . . , N − n (35)

Proof. Let XPareto
2 be a non-empty set of Pareto solutions for two criteria F1 and F2. If

we add the third criterion F3, all solutions from XPareto
2 are still Pareto-optimal. Besides,

there is no admissible solution x ∈ X, x /∈ XPareto
2 that dominates all solutions from the set

XPareto
2 due to three criteria F1, F2, F3. On the other hand, another non-dominated solution

x ∈ X, x /∈ XPareto
2 may exist regarding a smaller value of F3(x). Therefore, XPareto

2 ⊆ XPareto
3 .

Also, we can proof XPareto
3 ⊆ XPareto

4 , XPareto
4 ⊆ XPareto

5 and so on.
We have shown that for every natural number k ≥ 1 the implication T(k)⇒ T(k + 1) is

true since the truth of its predecessor implies the truth of the successor. Since the assump-
tions of the mathematical induction rule are satisfied for this theorem, the formula (35) is
true for every k ≥ 1, which ends the proof. �

It can happen that XPareto
n = XPareto

n+k , but this is extremely rare. Usually, along with
additional criteria, the size of the Pareto set increases significantly in the many-criteria
optimization problem of virtual machines placement (X, F, �≤) (18)–(23).

The algorithm MQPSO determined the compromise solution (Figure 5) character-
ized by the score yp=2 = (1240; 25,952; 10,244; 11,630; 18; 191; 0.92) with the smallest
Euclidean distance to an ideal point yideal = (442; 25,221; 6942; 6750; 19; 195; 0.97) in the
normalized criterion space Y. Coordinates of an ideal point are calculated regarding the
following formulas:

yideal
n =


min

x∈XPareto
7

Fn(x), n = 1, 4

max
x∈XPareto

7

Fn(x), n = 5, 7
(36)

Entropy 2022, 24, 58 15 of 23Entropy 2022, 24, x FOR PEER REVIEW 15 of 23

Figure 5. Pareto-optimal evaluations of two criteria (𝑍መ௠௔௫, 𝑍෨௠௔௫) for Benchmark855.

The nadir point 𝑁∗ is another characteristic point of the criterion space 𝒀. The nadir
point is required to normalize the criterion space. Contrary to the ideal point, 𝑁∗ takes
into account the worst values of the Pareto set 𝒀଻௉௔௥௘௧௢ = 𝐹(𝑿଻௉௔௥௘௧௢) in terms of the pref-
erences, as follows:

𝑁௡∗ = ൞ max௫∈𝑿ళುೌೝ೐೟೚ 𝐹௡(𝑥), 𝑛 = 1,4min௫∈𝑿ళುೌೝ೐೟೚ 𝐹௡(𝑥), 𝑛 = 5,7 (37)

Moreover, an anti-ideal point 𝑃௡௦௨௣ may be used for the normalization of a criterion
space. Coordinates of an anti-ideal point are calculated due to the following formulas:

𝑃௡௦௨௣ = ቐmax௫∈𝑿 𝐹௡(𝑥), 𝑛 = 1,4min௫∈𝑿 𝐹௡(𝑥), 𝑛 = 5,7 (38)

Because an algorithm determines the Pareto set of solutions 𝑿଻௉௔௥௘௧௢ and its evalua-
tion set 𝒀଻௉௔௥௘௧௢ = 𝐹(𝑿଻௉௔௥௘௧௢), we can normalize an evaluation set 𝒀଻௉௔௥௘௧௢ as the 7D hy-
percube 𝒀଻௉௔௥௘௧௢ =[0; 1]7, where the normalized ideal point is 𝑦௜ௗ௘௔௟ = (0; 0; 0; 0; 1; 1; 1), as
below:

𝑦௡ = ⎩⎪⎨
⎪⎧𝐹௡(𝑥) − 𝐹௡௜ௗ௘௔௟𝑁௡∗ − 𝐹௡௜ௗ௘௔௟ , 𝑛 = 1,4𝐹௡(𝑥) − 𝑁௡∗𝐹௡௜ௗ௘௔௟ − 𝑁௡∗, 𝑛 = 5,7 (39)

Figure 5. Pareto-optimal evaluations of two criteria (Ẑmax, Z̃max) for Benchmark855.

The nadir point N∗ is another characteristic point of the criterion space Y. The nadir
point is required to normalize the criterion space. Contrary to the ideal point, N∗ takes into
account the worst values of the Pareto set YPareto

7 = F
(
XPareto

7
)

in terms of the preferences,
as follows:

N∗n =


max

x∈XPareto
7

Fn(x), n = 1, 4

min
x∈XPareto

7

Fn(x), n = 5, 7
(37)

Moreover, an anti-ideal point Psup
n may be used for the normalization of a criterion

space. Coordinates of an anti-ideal point are calculated due to the following formulas:

Psup
n =

 max
x∈X

Fn(x), n = 1, 4

min
x∈X

Fn(x), n = 5, 7
(38)

Because an algorithm determines the Pareto set of solutions XPareto
7 and its evaluation

set YPareto
7 = F

(
XPareto

7
)
, we can normalize an evaluation set YPareto

7 as the 7D hypercube

YPareto
7 = [0; 1]7, where the normalized ideal point is yideal = (0; 0; 0; 0; 1; 1; 1), as below:

yn =


Fn(x)−Fideal

n
N∗n−Fideal

n
, n = 1, 4

Fn(x)−N∗n
Fideal

n −N∗n
, n = 5, 7

(39)

The normalized nadir point N∗ = (1; 1; 1; 1; 0; 0; 0) is characterized by the maximum
Euclidean distance

√
7 ≈ 2.65 from the normalized ideal point. In the hypercube YPareto

7 , a

Entropy 2022, 24, 58 16 of 23

trade-off (compromise) placement of virtual machines ωp can be selected from the Pareto-
optimal set XPareto

7 due to the smallest value of p-norm Lp, as follows:

Lp(yp) = min
y∈YPareto

7

Lp(y), p = 1, 2, . . . (40)

where

yp is the normalization evaluation point of yp = F(ωp) ∈ YPareto
7 ,

Lp(y) = ‖y− yideal‖p =
(

∑7
n=1

(
yn − yn

ideal
)p)1/p

.

Theorem 2. For the given parameter p = 1, p = 2 or p→∞, the normalization (39) and a domination
relation �≤ in the many-criteria optimization problem of virtual machines placement (X, F, �≤)
(18)–(23), p-norm Lp is a function of solution x, as follows:

L1(x) = ∑4
n=1

Fn(x)− Fideal
n

N∗n − Fideal
n

+ ∑7
n=5

Fn(x)− N∗n
Fideal

n − N∗n
(41)

L2(x) =

√
∑4

n=1

(
Fn(x)− Fideal

n
N∗n − Fideal

n

)2

+ ∑7
n=5

(
Fn(x)− N∗n
Fideal

n − N∗n

)2
(42)

L∞(x) = max

{
max
n=1,4

Fn(x)− Fideal
n

N∗n − Fideal
n

, max
n=5,7

Fn(x)− N∗n
Fideal

n − N∗n

}
(43)

Proof. Let p = 1. Then, L1(y) = ‖y− yideal‖1 =

(
∑7

n=1

(
yn − yn

ideal
)1
)1/1

=

∑7
n=1

(
yn − yn

ideal
)

. Because yideal = (0; 0; 0; 0; 1; 1; 1), we get L1(y) = ∑4
n=1 yn +

∑7
n=5(yn − 1). We insert the right side of Equation (39) instead of yn, and we get the

Equation (41). We prove the correctness of formulas (42) and (43) in a similar way, which
ends the proof. �

7. Numerical Experiments

In order to verify the quality of the mathematical model, the correctness of the for-
mulated many-criteria optimization problem, as well as the quality of the developed algo-
rithm, several multi-variant numerical experiments were carried out, and the designated
compromise solutions were simulated in the GUT-WUT cloud computing environment.
We consider four instances of the virtual machine placement problem such as: Bench-
mark90, Benchmark306, Benchmark855 and Benchmark1020 that are available on site
https://www.researchgate.net/profile/Piotr-Dryja (accessed: 19 November 2022). For
example, Benchmark855 is characterized by 855 binary decision variables, and there-
fore a binary search space contains 2.4 × 10257 items. There are 45 VMs, 15 nodes
and 12 possible hosts. Besides this, there are both 60 integer decision variables and
1.3 × 1069 possible solutions.

If we consider seven criteria, there are 21 pairs:
(

Ẑmax, Z̃max

)
,
(
Ẑmax, Ξ

)
,
(
Ẑmax, E

)
,(

Ẑmax, κRAM
min

)
,
(

Ẑmax, κdisc
min

)
,
(
Ẑmax, R

)
, (Z̃max, Ξ) and so on. Figure 5 shows three eval-

uations of Pareto-optimal solutions in two criteria spaces
(

Ẑmax, Z̃max

)
. Points P1 = (410;

395,223), P2 = (448; 25,952) and P3 = (587; 25,221) are non-dominated due to Ẑmax and Z̃max.
However, the results of the experiments confirmed a significant increase in the num-
ber of Pareto-optimal solutions with the addition of further criteria. For instance, the
other criteria Ξ, E, κRAM

min , κdisc
min, R significantly extended the set of Pareto solutions to

a set {P1, P2, . . . , P200}. While these supplementary 197 points are dominated by two
criteria Ẑmax, Z̃max, each new criterion usually increases the number of Pareto-optimal
solutions that dominate points P1, P2, P3 due to this new metric. As a result, we can expect

https://www.researchgate.net/profile/Piotr-Dryja

Entropy 2022, 24, 58 17 of 23

several Pareto-optimal solutions from which we can choose the compromise evaluation
yp=2 = (1240; 25,952; 10,244; 11,630; 18; 191; 0.92), where each evaluation of solution is pre-
sented as y(x) =

(
Ẑmax(x), Z̃max(x), Ξ(x), E(x), κRAM

min (x), κdisc
min(x), R(x)

)
. The trade-off

evaluation yp=2 = F
(
xp=2) minimizes Euclidean distance to an ideal point in the nor-

malized space R7. On the other hand, P2 is the compromise point in the normalized
space R2.

Figure 6 shows the compromise placement of virtual machines. A solution xp=2

specifies 15 destinations for 45 virtual machines, where the adequate resources are provided
to efficient run all tasks. There are three hosts DELL R520 E5640 v1 (Dell Inc., USA), 4 DELL
R520 E5640 v2, 4 Infotronik ATX i5-4430 (Infotronik, Poland), 2 Infotronik ATX i7-4790,
Fujitsu Primergy RX300S8 (Fujitsu, Japan) and IBM x3650 M4 (IBM, USA) allocated at
15 nodes.

Entropy 2022, 24, x FOR PEER REVIEW 17 of 23

several Pareto-optimal solutions from which we can choose the compromise evaluation 𝑦௣ୀଶ = (1240; 25,952; 10,244; 11,630; 18; 191; 0.92), where each evaluation of solution is
presented as y(x) = (𝑍መ௠௔௫(𝑥), 𝑍෨௠௔௫(𝑥), 𝛯(𝑥), 𝐸(𝑥), 𝜅௠௜௡ோ஺ெ(𝑥), 𝜅௠௜௡ௗ௜௦௖(𝑥), 𝑅(𝑥)). The trade-off
evaluation 𝑦௣ୀଶ = 𝐹(𝑥௣ୀଶ) minimizes Euclidean distance to an ideal point in the normal-
ized space R7. On the other hand, P2 is the compromise point in the normalized space R2.

Figure 6 shows the compromise placement of virtual machines. A solution 𝑥௣ୀଶ
specifies 15 destinations for 45 virtual machines, where the adequate resources are pro-
vided to efficient run all tasks. There are three hosts DELL R520 E5640 v1 (Dell Inc., USA),
4 DELL R520 E5640 v2, 4 Infotronik ATX i5-4430 (Infotronik, Poland), 2 Infotronik ATX
i7-4790, Fujitsu Primergy RX300S8 (Fujitsu, Japan) and IBM x3650 M4 (IBM, USA) allo-
cated at 15 nodes.

Figure 6. The compromise placement of 45 VMs 𝑥௣ୀଶ for Benchmark855.

The 7D compromise estimation 𝑦௣ୀଶ = 𝐹(𝑥௣ୀଶ) is dominated by the other solutions
due to several pairs of criteria, but there is at least one pair of criteria, where it is non-
dominated. Figure 7 shows Pareto evaluations found by MQPSO for the cut (𝛯, 𝐸). In this
case, the compromise point is dominated by seven evaluation points. However, 𝑦௣ୀଶ is
close to the Pareto front of this pair criterion cut (𝛯, 𝐸). A similar situation occurs in Fig-
ure 5, where the compromise score is dominated by 11 elements. On the other side, these
evaluations are dominated by the compromise solution in Figure 6. In summary, the com-
promise solution is not dominated by other alternatives in the sense of the four criteria
and is, therefore, not dominated in the sense of the seven criteria as well.

The 7D estimation 𝑦௣ୀଶ of compromise solution was determined for an ideal point 𝑦௜ௗ௘௔௟ = (442; 25,221; 6942; 6750; 19; 195; 0.97) (Table 1). For normalization of the criterion
space, the nadir point N* = (2764; 49,346; 87,359; 20,740; 5.2; 21.5; 0.53) was used. Besides
this, it was calculated the anti-ideal point 𝑦௔௡௧௜ି௜ௗ௘௔௟ (3600; 50,000; 87,500; 22,000; 4; 7;
0.33) that can be applied for an alternative normalization. A selection of a compromise
solution is carried out in the normalized space due to minimization p-norm 𝐿௣.

Figure 6. The compromise placement of 45 VMs xp=2 for Benchmark855.

The 7D compromise estimation yp=2 = F
(
xp=2) is dominated by the other solutions

due to several pairs of criteria, but there is at least one pair of criteria, where it is non-
dominated. Figure 7 shows Pareto evaluations found by MQPSO for the cut (Ξ, E). In
this case, the compromise point is dominated by seven evaluation points. However, yp=2

is close to the Pareto front of this pair criterion cut (Ξ, E). A similar situation occurs in
Figure 5, where the compromise score is dominated by 11 elements. On the other side,
these evaluations are dominated by the compromise solution in Figure 6. In summary, the
compromise solution is not dominated by other alternatives in the sense of the four criteria
and is, therefore, not dominated in the sense of the seven criteria as well.

Entropy 2022, 24, 58 18 of 23

Entropy 2022, 24, x FOR PEER REVIEW 18 of 23

If we choose the nadir point N* for the normalization of the criterion space Y, the
evaluation of the compromise solution is 𝑦௣ୀଶ for p = 1 and p = 2 (No. 1 in Table 1). With-
out losing the generality of the considerations, Table 1 presents the best 20 solutions in the
sense of 𝐿ଶ and normalization using the nadir point. When analyzing the coordinates of
the points closest to the ideal point, it can be noticed that in this case the “middle” values
of the criteria are preferred instead of lexicographic solutions, which are characterized by
the best value of the selected criterion. The most preferred values in each of the seven
categories are marked in yellow (Table 1).

Figure 7. Pareto-optimal evaluations for two selected criteria 𝛯 and 𝐸.

The undoubted advantage of the compromise solution is its full dominance over
other competitors due to the size of the disk storage reserve in the most critical host. In
this respect, the remaining solutions are characterized by slightly worse values. The ad-
vantage is also the largest reserve of RAM memory because only solution number 4 (Table
1) has the same value. Moreover, the compromise alternative has the shortest data trans-
mission time through the busiest cloud transmission node. In this case, solutions No. 5, 9
and 18 are also characterized by an equally high quality of data transmission. Consuming
more electricity than several solutions is perhaps the biggest disadvantage of the compro-
mise solution. However, this is not too much of a difference to the most energy-efficient
placements of the VMs migration.

Solutions No. 2 and 3 are characterized by lower electric power consumption by more
than 2 kilowatts. Furthermore, they are not the best in terms of any criterion, but in terms
of 𝐿ଶ, they are very close to the compromise solution.

If we choose the nadir point N* for the normalization, the evaluation of compromise
solution is 𝑦௣→ஶ for p→∞ (No. 4 in Table 1). Table 2 presents the p-norm values for the
best 20 Pareto-optimal VMs placements sorted by 𝐿ଶ. Solution No. 4 differs from 𝑥௣ୀଶ in
that all criteria values are more balanced with respect to the ideal point coordinates. This
is due to the greater consumption of electricity by the solution No. 1, which causes the
value of the 𝐿௣→ஶ to be 0.349. On the other hand, the solution No. 4 is characterized by 𝐿௣→ஶ = 0.335.

Figure 7. Pareto-optimal evaluations for two selected criteria Ξ and E.

The 7D estimation yp=2 of compromise solution was determined for an ideal point
yideal = (442; 25,221; 6942; 6750; 19; 195; 0.97) (Table 1). For normalization of the criterion
space, the nadir point N* = (2764; 49,346; 87,359; 20,740; 5.2; 21.5; 0.53) was used. Besides
this, it was calculated the anti-ideal point yanti−ideal (3600; 50,000; 87,500; 22,000; 4; 7; 0.33)
that can be applied for an alternative normalization. A selection of a compromise solution
is carried out in the normalized space due to minimization p-norm Lp.

Table 1. Criteria values for the best 20 Pareto-optimal solutions sorted by L2 in the normalized
criterion space by the nadir point.

No. ^
Zmax(s)

~
Zmax(s) Ξ ($) E (watt) κRAM

min (GB) κdisc
min(TB) R

1 1240.78 25,952.49 10,244.00 11,630.00 18.0 191 0.92
2 1404.84 29,973.30 13,455.00 9500.00 17.5 190 0.90
3 1389.77 29,973.30 16,114.00 9525.00 17.0 185 0.91
4 1105.84 29,973.30 30,352.00 11,430.00 18.0 188 0.91
5 1240.78 25,952.49 24,412.00 11,625.00 16.0 180 0.92
6 1254.24 29,973.30 30,895.00 11,125.00 17.0 190 0.91
7 1061.17 29,973.30 20,240.00 12,760.00 17.0 165 0.88
8 1374.70 29,973.30 8796.00 11,530.00 15.0 187 0.88
9 1683.01 25,952.49 20,888.00 7825.00 14.0 188 0.87
10 1240.78 32,897.52 19,126.00 10,650.00 16.0 188 0.78
11 1733.44 29,973.30 15,623.00 8200.00 17.0 98 0.88
12 1547.61 29,973.30 8,317.00 10,450.00 12.0 122 0.90
13 1683.01 29,973.30 9329.00 9650.00 14.0 132 0.77
14 1718.37 29,973.30 14,248.00 8250.00 11.0 123 0.88
15 1683.01 29,973.30 14,393.00 8550.00 12.0 122 0.77
16 1733.44 29,973.30 12,945.00 8450.00 15.0 99 0.75
17 1658.75 29,973.30 18,574.00 8825.00 8.0 155 0.97
18 1683.01 25,952.49 18,509.00 9500.00 9.0 77 0.89
19 1061.17 29,973.30 36,498.00 11,010.00 17.0 21 0.77
20 1130.09 34,725.16 29,234.00 10,055.00 12.0 98 0.59

Entropy 2022, 24, 58 19 of 23

If we choose the nadir point N* for the normalization of the criterion space Y, the
evaluation of the compromise solution is yp=2 for p = 1 and p = 2 (No. 1 in Table 1). Without
losing the generality of the considerations, Table 1 presents the best 20 solutions in the
sense of L2 and normalization using the nadir point. When analyzing the coordinates of the
points closest to the ideal point, it can be noticed that in this case the “middle” values of the
criteria are preferred instead of lexicographic solutions, which are characterized by the best
value of the selected criterion. The most preferred values in each of the seven categories
are marked in yellow (Table 1).

The undoubted advantage of the compromise solution is its full dominance over other
competitors due to the size of the disk storage reserve in the most critical host. In this
respect, the remaining solutions are characterized by slightly worse values. The advantage
is also the largest reserve of RAM memory because only solution number 4 (Table 1) has the
same value. Moreover, the compromise alternative has the shortest data transmission time
through the busiest cloud transmission node. In this case, solutions No. 5, 9 and 18 are also
characterized by an equally high quality of data transmission. Consuming more electricity
than several solutions is perhaps the biggest disadvantage of the compromise solution.
However, this is not too much of a difference to the most energy-efficient placements of the
VMs migration.

Solutions No. 2 and 3 are characterized by lower electric power consumption by more
than 2 kilowatts. Furthermore, they are not the best in terms of any criterion, but in terms
of L2, they are very close to the compromise solution.

If we choose the nadir point N* for the normalization, the evaluation of compromise
solution is yp→∞ for p→∞ (No. 4 in Table 1). Table 2 presents the p-norm values for the best
20 Pareto-optimal VMs placements sorted by L2. Solution No. 4 differs from xp=2 in that all
criteria values are more balanced with respect to the ideal point coordinates. This is due to
the greater consumption of electricity by the solution No. 1, which causes the value of the
Lp→∞ to be 0.349. On the other hand, the solution No. 4 is characterized by Lp→∞ = 0.335.

Table 2. The p-norm values for the best 20 Pareto-optimal VMs placements sorted by L2.

No.
Lp for the Nadir Point Lp for the Anti-Ideal Point

p = 1 p = 2 p→∞ p = 1 p = 2 p→∞

1 0.973 0.511 0.349 0.810 0.424 0.320
2 1.186 0.542 0.415 0.994 0.438 0.305
3 1.256 0.548 0.408 1.068 0.450 0.300
4 1.358 0.585 0.335 1.197 0.524 0.307
5 1.358 0.596 0.348 1.177 0.516 0.320
6 1.467 0.623 0.350 1.287 0.549 0.297
7 1.581 0.644 0.430 1.381 0.566 0.394
8 1.504 0.667 0.402 1.273 0.562 0.313
9 1.445 0.712 0.534 1.193 0.572 0.393

10 1.782 0.745 0.432 1.504 0.615 0.310
11 1.873 0.864 0.559 1.593 0.727 0.516
12 2.042 0.892 0.507 1.766 0.774 0.467
13 2.148 0.915 0.534 1.785 0.741 0.393
14 2.144 0.954 0.580 1.842 0.818 0.533
15 2.335 0.995 0.534 1.963 0.825 0.467
16 2.292 1.004 0.556 1.908 0.820 0.511
17 2.042 1.022 0.797 1.804 0.899 0.733
18 2.492 1.169 0.725 2.166 1.031 0.667
19 2.738 1.253 1.000 2.405 1.122 0.926
20 3777.134 1.301 0.864 2.671 1.075 0.594

If we select the anti-ideal point yanti−ideal , the differences between the coordinate
values of the point and the ideal point are greater than when the nadir point is taken
into account. As a result, we are dealing with a completely different normalization. The

Entropy 2022, 24, 58 20 of 23

specificity of this computational instance is such that the ideal point has the greatest impact
on the change of normalization for the reliability of the cloud because the distance to the
ideal point coordinate is increased by 45.5%. On the other hand, the increase in the length
of the value range of 36% is characterized by the load of the CPU bottleneck host in the
computing cloud. For the other five criteria, the impact on standardization is below 10%.

However, the change of the normalization point with respect to the ideal point did not
result in any major changes related to the compromise solutions. Solution No. 1 remained a
compromise solution for p = 1 and for p = 2. On the other hand, a new compromise solution
has been identified for p→∞ (Table 1, No. 6). In this case, ∆y1 decreased from 0.350 to
0.260, which caused Lp→∞ to be affected by ∆y4, which is 0.290.

The decision-maker can choose one value of the parameter p. We prefer an influence
of all criteria on the compromise solutions for p = 1 but some of them can achieve very
poor values. On the other hand, if p = 2, we favor the minimal Euclidean distance to the
ideal point. Finally, all criteria achieve similar good values not far from ideal ones if p→∞
is selected.

Another dilemma is related to a selection between the nadir point and the anti-ideal
point for the normalization of the criterion space. The nadir point gives information about
a range of all efficient solutions. Besides this, the anti-ideal point gives information about
the range of the admissible set. If the selection of compromise solutions is considered from
the Pareto set, the nadir point is more suitable than the anti-ideal point for the criterion
space normalization. As a consequence, the compromise solution can be selected.

We suggest selecting both p = 2 and the nadir point to determine the compromise
solution from the set of Pareto-optimal elements of two or three criteria. The other approach
is based on many-objective analysis with seven criteria, where an extended analysis is
needed because of greater sensitivity of compromise solutions to the parameter p and
the choice of the normalization point. In this way, a decision-maker can find some trade-
off solutions after introducing a limit on the size of the representation of Pareto-optimal
solutions, which is the specificity of solving optimization problems with many criteria.

A very important experiment is to compare the quality of the designated solutions by
the proposed method with other methods. Outcome evaluations of Pareto placement of
virtual machines are presented in Table 3. The Benchmark855 was used for this purpose, too.
We consider fifteen non-dominated solutions obtained by MQPSO, Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [37], Multi-criteria Genetic Programming (MGP) [38], Multi-
criteria Differential Evolution (MDE) [4] and Multi-criteria Harmony Search (MHS) [39].

Table 3. Criteria values for 15 Pareto-optimal solutions determined by five multi-objective metaheuristics.

No. Algorithm ^
Zmax(s)

~
Zmax(s) Ξ ($) E (watt) κRAM

min (GB) κdisc
min(TB) R L1 L2 Lp→∞

1 MQPSO 1241 25,952 10,244 11,630 18 191 0.92 1.52 0.97 0.84
2 MQPSO 1405 29,973 13,455 9500 18 190 0.9 2.01 1.18 1.00
3 MQPSO 1390 29,973 16,114 9525 17 185 0.91 2.14 1.18 0.99
4 NSGA-II 587 25,221 33,259 12,223 15 177 0.92 2.54 1.25 1.00
5 NSGA-II 442 25,221 12,133 12,163 17 112 0.87 2.57 1.28 1.00
6 MDE 442 29,973 15,351 12,675 16 152 0.84 2.89 1.29 0.89
7 MDE 581 25,221 15,292 11,598 11 149 0.89 2.90 1.30 1.00
8 MHS 442 25,952 18,427 12,786 17 112 0.89 2.79 1.31 1.00
9 MQPSO 1106 29,973 30,352 11,430 18 188 0.91 2.66 1.31 0.87

10 NSGA-II 435 29,973 28,293 12,322 12 156 0.9 3.45 1.48 0.86
11 NSGA-II 580 21,931 18,400 14,838 11 155 0.9 3.22 1.56 1.00
12 MDE 414 29,973 10,242 14,259 17 112 0.87 3.18 1.56 1.00
13 MGP 448 25,952 22,849 12,684 12 114 0.89 3.65 1.59 0.97
14 MDE 385 33,994 14,707 14,104 14 150 0.91 3.95 1.68 0.86
15 MHS 411 36,187 18,320 12,847 14 177 0.83 3.75 1.70 1.00
16 nadir 1,405 36,187 33,259 14,838 11 112 0.83 7.00 2.64 1.00
17 ideal 385 21,931 10,242 9500 18 191 0.92 0.00 0.00 0.00

Entropy 2022, 24, 58 21 of 23

To compare 15 solutions provided by five metaheuristics, we achieved a new ideal
point yideal = (385; 2193; 10,242; 9500; 18; 191; 0.92). In addition, the new nadir point
N* = (1405; 36,187; 33,259; 14,838; 11; 112; 0.83) was used for normalization. When analyz-
ing the computational load of each algorithm, it was assumed that the population consists
of 100 particles (MQPSO), chromosomes (MDE, MHS) or compact programs (MGP). The
population number is set to 10,000 and the maximum computation time is 30 min. In
MQPSO, the values of individual coefficients were as follows: c0 = 1, c1 = 2, c2 = 2, vmax = 1.
In the differential evolution algorithm MSE, q = 0.9 and Cp = 0.4 were assumed. More-
over, an additional type of mutation was used, based on the multi-criteria tabu search
algorithm [2]. In contrast, in the harmony search MHS algorithm, the mutation rate pm was
0.1 and the crossover rate pc was 0.01. Using MGP genetic programming, it was assumed
that the maximum number of nodes in the programming tree was 50, and the mutation
rate and crossing rate were the same as for MHS.

An optimal swarm size is problem-dependent. If the number of particles in the swarm
is greater, the initial diversity is larger, and a larger search space is explored. On the other
hand, more particles increase the computational complexity, and the PSO exploration leads
to a parallel random search. We observed that more particles lead to fewer swarms to reach
the Pareto-optimal solutions, compared to a smaller number of particles. Our experiments
confirmed that the MQPSO has the ability to find Pareto-optimal solutions with sizes of
60 to 100 particles. Each run was repeated 10 times, and Table 3 lists the best solutions
obtained with each algorithm. The p-norm values for the best 15 Pareto-optimal VMs
placements were sorted by L2. Moreover, the other values for p-norm were calculated, too.

Based on the obtained data, it can be concluded that the MQPSO method is better than
the other methods due to the number of Pareto-optimal solutions in the first 12. The closest
three solutions to the ideal point are determined with MQPSO. An important argument
is also the fact that the average distance from the ideal point is the smallest for effective
solutions provided by the MQPSO method. NSGA-II is the second metaheuristic with an
average distance of 1.39 versus 1.16 achieved by MQPSO. If we consider the p-norm for
p = 1, the compromise solution is the same. Also, the three nearest solutions to the ideal
point are produced by MQPSO. On the other hand, solution No. 10 provided by NSGA-II
and solution No. 14 determined by MDE are very close to the compromise solution due to
Lp→∞. Moreover, the algorithm MQPSO has great potential to be extended in the nearest
feature due to development of the quantum computers and a quantum algorithmic theory.

8. Concluding Remarks

Smart education systems, intelligent health care and smart cities require deep learning
models and efficient management of computer resources that can be supported by the
live migration of virtual machines. Because the formulated problem of many-objective
optimization is NP-hard, we proposed the many-objective PSO algorithm with quantum
gates to provide Pareto-optimal placements of virtual machines in computing clouds.
Efficient solutions determined by MQPSO satisfy seven criteria such as electric power of
hosts, reliability of the cloud, the workload of the bottleneck host, communication capacity
of the critical node, RAM usage, disc memory capacity and computer costs. Hadamard
gates support forming an initial population in the quantum register by introducing a
superposition of qubits. Also, rotation gates can change the current state of the quantum
register to explore the neighborhood of the current particle. Extensive numerical results
from the experimental cloud based on the OpenStack platform showed that MQPSO is a
very efficient tool supporting the management of live migration in the computing cloud.

The cloud can share the workload, which permits efficient training of machine learning
algorithms, too. Solvers based on MQPSO can find the compromise solution for parameter
p = 2 from the set of Pareto-optimal alternatives that is a recommendation regarding telepor-
tation of virtual machines. Due to the experimental validation of Pareto solutions, a higher
quality performance of the cloud is achieved than the performance obtained by solutions
from well-known algorithms such as genetic programming or differential evolution.

Entropy 2022, 24, 58 22 of 23

In our future work, we are going to study the other metaheuristics with quantum
gates for the migration of virtual machines with the extended set of optimization criteria.

Funding: This research was partially funded by Warsaw University of Technology, Poland, grants
RDN ITiT 504 04547 1120 and RW MiNI 504 04236 1120. The APC was funded by Multidisciplinary
Digital Publishing Institute, Basel, Switzerland.

Data Availability Statement: Datasets such as Benchmark90, Benchmark306, Benchmark855 and
Benchmark1020 are available on site https://www.researchgate.net/profile/Piotr-Dryja (owner
Jerzy Balicki and Piotr Dryja) under CC BY license. Cite: Balicki, J.; Dryja P. Multi-objective tabu-
based differential evolution for teleportation of smart virtual machines in private computing clouds.
In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland,
28 June–1 July 2021; pp. 1904–1911.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Agarwal, A.; Raina, S. Live migration of virtual machines in cloud. Int. J. Sci. Res. Publ. 2012, 2, 1–5.
2. Balicki, J. Tabu programming for multiobjective optimization problems. Int. J. Comp. Sci. Netw. Secur. 2007, 7, 44–50.
3. Dhanoa, I.S.; Khurmi, S.S. Analyzing energy consumption during VM live migration. In Proceedings of the International

Conference on Computing, Communication & Automation, Galgotias University, Greater Noida, India, 15–16 May 2015;
pp. 584–588.

4. Balicki, J.; Dryja, P. Multi-objective tabu-based differential evolution for teleportation of smart virtual machines in private comput-
ing clouds. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021;
pp. 1904–1911.

5. Liu, D.S.; Tan, K.C.; Huang, S.Y.; Goh, C.K.; Ho, W.K. On solving multiobjective bin packing problems using particle swarm
optimisation. Eur. J. Oper. Res. 2008, 190, 357–382. [CrossRef]

6. Agrawal, R.K.; Kaur, B.; Agarwal, P. Quantum inspired Particle Swarm Optimization with guided exploration for function
optimization. Appl. Soft Comput. 2021, 102, 107122. [CrossRef]

7. Masdari, M.; Nabavi, S.S.; Ahmadi, V. An overview of virtual machine placement schemes in cloud computing. J. Netw. Comp.
Appl. 2016, 66, 106–127. [CrossRef]

8. Wang, X.; Yuen, C.; Hassan, N.U.; Wang, W.; Chen, T. Migration-aware virtual machine placement for cloud data centers.
In Proceedings of the Workshop on Cloud Computing Systems, Networks, and Applications, London, UK, 8–12 June 2015.
[CrossRef]

9. Sutar, S.G.; Mali, P.J.; More, A. Resource utilization enhancement through live virtual machine migration in cloud using ant
colony optimization algorithm. Int. J. Speech Technol. 2020, 23, 79–85. [CrossRef]

10. Kumar, R.; Prashar, T. Performance analysis of load balancing algorithms in cloud computing. Int. J. Comp. Appl. 2015, 120, 19–27.
[CrossRef]

11. Biswas, M.I.; Parr, G.; McClean, S.; Morrow, P.; Scotney, B. A practical evaluation in OpenStack live migration of VMs using 10 Gb/s
interfaces. In Proceedings of the 2016 Symposium on Service-Oriented System Engineering, Oxford, UK, 29 March–2 April 2016;
pp. 346–351.

12. Mahmoudi, S.A.; Belarbi, M.A.; Mahmoudi, S.; Belalem, G.; Manneback, P. Multimedia processing using deep learning tech-
nologies, high-performance computing cloud resources, and Big Data volumes. Concurr. Comput. Pract. Exp. 2020, 32, e5699.
[CrossRef]

13. Caviglione, L.; Gaggero, M.; Paolucci, M.; Ronco, R. Deep reinforcement learning for multi-objective placement of virtual
machines in cloud datacenters. Soft Comput. 2021, 25, 12569–12588. [CrossRef]

14. Mohanraj, T.; Santhosh, R. Multi-swarm optimization model for multi-cloud scheduling for enhanced quality of services. Soft
Comput. 2021, 1–11. [CrossRef]

15. Marotta, A.; D’andreagiovanni, F.; Kassler, A.; Zola, E. On the energy cost of robustness for green virtual network function
placement in 5G virtualized infrastructures. Comput. Netw. 2017, 125, 64–75. [CrossRef]

16. Marotta, A.; Zola, E.; D’andreagiovanni, F.; Kassler, A. A fast robust optimization-based heuristic for the deployment of green
virtual network functions. J. Netw. Comp. Appl. 2017, 95, 42–53. [CrossRef]

17. Nguyen, M.; Dolati, M.; Ghaderi, M. Deadline-aware SFC orchestration under demand uncertainty. IEEE Trans. Netw. Serv.
Manag. 2020, 17, 2275–2290. [CrossRef]

18. Hosseini, F.; James, A.; Ghaderi, M. Probabilistic Virtual Link Embedding Under Demand Uncertainty. IEEE Trans. Netw. Serv.
Manag. 2019, 16, 1552–1566. [CrossRef]

19. Zhang, Q.; Li, H.; Liu, Y.; Ouyang, S.; Fang, C.; Mu, W.; Gao, H. A new quantum particle swarm optimization algorithm for
controller placement problem in software-defined networking. Comput. Electr. Eng. 2021, 95, 107456. [CrossRef]

20. Li, G.; Wang, W.; Zhang, W.; You, W.; Wu, F.; Tu, H. Handling multimodal multi-objective problems through self-organizing
quantum-inspired particle swarm optimization. Inf. Sci. 2021, 577, 510–540. [CrossRef]

https://www.researchgate.net/profile/Piotr-Dryja
http://doi.org/10.1016/j.ejor.2007.06.032
http://doi.org/10.1016/j.asoc.2021.107122
http://doi.org/10.1016/j.jnca.2016.01.011
http://doi.org/10.1109/ICCW.2015.7247464
http://doi.org/10.1007/s10772-020-09682-2
http://doi.org/10.5120/21240-4016
http://doi.org/10.1002/cpe.5699
http://doi.org/10.1007/s00500-020-05462-x
http://doi.org/10.1007/s00500-021-06184-4
http://doi.org/10.1016/j.comnet.2017.04.045
http://doi.org/10.1016/j.jnca.2017.07.014
http://doi.org/10.1109/TNSM.2020.3029749
http://doi.org/10.1109/TNSM.2019.2946949
http://doi.org/10.1016/j.compeleceng.2021.107456
http://doi.org/10.1016/j.ins.2021.07.011

Entropy 2022, 24, 58 23 of 23

21. Blum, C.; Puchinger, J.; Raidl, G.; Roli, A. Hybrid metaheuristics in combinatorial optimization: A survey. Appl. Soft Comput.
2011, 11, 4135–4151. [CrossRef]

22. D’Andreagiovanni, F.; Krolikowski, J.; Pulaj, J. A fast hybrid primal heuristic for multiband robust capacitated network design
with multiple time. Appl. Soft Comput. 2015, 26, 497–507. [CrossRef]

23. Ghasemi, M.; Akbari, E.; Rahimnejad, A.; Razavi, S.E.; Ghavidel, S.; Li, L. Phasor particle swarm optimization: A simple and
efficient variant of PSO. Soft Comput. 2019, 23, 9701–9718. [CrossRef]

24. Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing, M.; Igel, C. Detection of traffic signs in real-world images: The German
Traffic Sign Detection Benchmark. In Proceedings of the International Joint Conference on Neural Networks, Dallas, TX, USA,
4–9 August 2013; Volume 1288.

25. Jiang, R.; Zhang, J.; Tang, Y.; Wang, C.; Feng, J. A collective intelligence based differential evolution algorithm for optimizing the
structure and parameters of a neural network. IEEE Access 2020, 8, 69601–69614. [CrossRef]

26. Cardoso, L.P.; Mattos, D.M.; Ferraz, L.H.G.; Duarte, O.C.M.; Pujolley, G. An efficient energy-aware mechanism for virtual
machine migration. In Proceedings of the Global Information Infrastructure and Networking Symposium, Guadalajara, Mexico,
28–30 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6.

27. Muhammed, A.S.; Ucuz, D. Comparison of the IoT platform vendors, Microsoft Azure, Amazon Web Services, and Google Cloud,
from users’ perspectives. In Proceedings of the 8th International Symposium on Digital Forensics and Security (ISDFS), Beirut,
Lebanon, 1–2 June 2020; pp. 1–4.

28. Jin, N.; Wu, J.; Ma, X.; Yan, K.; Mo, Y. Multi-task learning model based on multi-scale CNN and LSTM for sentiment classification.
IEEE Access 2020, 8, 77060–77072. [CrossRef]

29. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
dataset for semantic urban scene understanding. In Proceedings of the conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 27–30 June 2016; pp. 1–12.

30. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A large video database for human motion recognition.
In Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2556–2563.

31. Galligan, S.D.; O’Keeffe, J. Big Data Helps City of Dublin Improves Its Public Bus Transportation Network and Reduce Congestion; IBM
Press: Armonk, NY, USA, 2013.

32. Rao, G.S.; Stone, H.S.; Hu, T.C. Assignment of tasks in a distributed processor system with limited memory. IEEE Trans. Comput.
1979, 28, 291–299. [CrossRef]

33. Florios, K.; Mavrotas, G.; Diakoulaki, D. Solving multiobjective, multiconstraint knapsack problems using mathematical
programming and evolutionary algorithms. Eur. J. Oper. Res. 2010, 203, 14–21. [CrossRef]

34. Mavrotas, G. Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl.
Math. Comput. 2009, 213, 455–465. [CrossRef]

35. QuTech. Quantum Inspire Home. Retrieved from Quantum Inspire. Available online: https://www.quantum-inspire.com/
(accessed on 22 September 2021).

36. Fonseca, C.M.; Fleming, P.J. Genetic algorithms for multiobjective optimisation: Formulation discussion and generalization.
In Proceedings of the 5th International Conference on Genetic Algorithms, Champaign, IL, USA, 1 June 1993; Morgan Kaufmann
Publishers Inc.: San Francisco, CA, USA, 1993; pp. 416–423.

37. Deb, D.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

38. Balicki, J.; Korłub, W.; Krawczyk, H.; Paluszak, J. Genetic programming with negative selection for volunteer computing system
optimization. In Proceedings of the 6th International Conference on Human System Interaction, Sopot, Poland, 6–8 June 2013;
pp. 271–278.

39. Balicki, J.; Korłub, W.; Paluszak, J.; Tyszka, M. Harmony search for self-configuration of fault-tolerant and intelligent grids.
In Computer Information Systems and Industrial Management, Proceeding of 15th IFIP TC8 International Conference, CISIM 2016, Vilnius,
Lithuania, 14–16 September 2016; Saeed, K., Homenda, W., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2016; Volume 9842, pp. 566–576. [CrossRef]

http://doi.org/10.1016/j.asoc.2011.02.032
http://doi.org/10.1016/j.asoc.2014.10.016
http://doi.org/10.1007/s00500-018-3536-8
http://doi.org/10.1109/ACCESS.2020.2986398
http://doi.org/10.1109/ACCESS.2020.2989428
http://doi.org/10.1109/TC.1979.1675348
http://doi.org/10.1016/j.ejor.2009.06.024
http://doi.org/10.1016/j.amc.2009.03.037
https://www.quantum-inspire.com/
http://doi.org/10.1109/4235.996017
http://doi.org/10.1007/978-3-319-45378-1

	Introduction
	Related Work
	Live Migration of Intelligent Virtual Machines
	Many-Objective Optimization Problem
	Many-Objective Particle Swarm Optimization with Quantum Gates MQPSO
	Pareto-Optimal Solutions and Compromise Alternatives
	Numerical Experiments
	Concluding Remarks
	References

