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Abstract: Accurate and fine-grained prediction of PM2.5 concentration is of great significance for
air quality control and human physical and mental health. Traditional approaches, such as time
series, recurrent neural networks (RNNs) or graph convolutional networks (GCNs), cannot effectively
integrate spatial–temporal and meteorological factors and manage dynamic edge relationships
among scattered monitoring stations. In this paper, a spatial–temporal causal convolution network
framework, ST-CCN-PM2.5, is proposed. Both the spatial effects of multi-source air pollutants and
meteorological factors are considered via spatial attention mechanism. Time-dependent features in
causal convolution networks are extracted by stacked dilated convolution and time attention. All
the hyper-parameters in ST-CCN-PM2.5 are tuned by Bayesian optimization. Haikou air monitoring
station data are employed with a series of baselines (AR, MA, ARMA, ANN, SVR, GRU, LSTM
and ST-GCN). Final results include the following points: (1) For a single station, the RMSE, MAE
and R2 values of ST-CCN-PM2.5 decreased by 27.05%, 10.38% and 3.56% on average, respectively.
(2) For all stations, ST-CCN-PM2.5 achieve the best performance in win–tie–loss experiments. The
numbers of winning stations are 68, 63, and 64 out of 95 stations in RMSE (MSE), MAE, and R2,
respectively. In addition, the mean MSE, RMSE and MAE of ST-CCN-PM2.5 are 4.94, 2.17 and 1.31,
respectively, and the R2 value is 0.92. (3) Shapley analysis shows wind speed is the most influencing
factor in fine-grained PM2.5 concentration prediction. The effects of CO and temperature on PM2.5

prediction are moderately significant. Friedman test under different resampling further confirms the
advantage of ST-CCN-PM2.5. The ST-CCN-PM2.5 provides a promising direction for fine-grained
PM2.5 prediction.

Keywords: PM2.5 prediction; multi-source factors; causal convolution network; Bayesian optimiza-
tion; Shapley analysis; Friedman test

1. Introduction

Due to the impact of urban industrialization, air pollution is a serious social problem.
According to statistics, there are about 1 million deaths caused by air pollutants in China
every year [1]. Fine particulate matter known as PM2.5 is a core indicator of severe air
pollution in many cities around the world. Long-term exposure to high concentrations
of PM2.5 will significantly increase the risk of disease and will cause serious damage to
human respiratory, nervous, cardiovascular and reproductive systems [2]. In addition,
the International Agency for Research on Cancer (IARC) considers PM2.5 as a category
1 carcinogen and a major environmental carcinogen [3]. How to accurately predict PM2.5
concentration in a timely manner is an important research topic of atmospheric environment
protection and public health.
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According to the recent literature on PM2.5 prediction, the modelling of satisfying
PM2.5 prediction should meet the following conditions:

(1) Based on the important influence of air pollutants and meteorological factors on PM2.5
diffusion and evolution, a large number of studies incorporated atmospheric data
monitored by stations into PM2.5 prediction modeling. These atmospheric data mainly
include meteorological factors (atmospheric pressure, temperature, humidity, wind
direction, etc.) and air pollutants (PM2.5, PM10, CO, NO2, etc.).

(2) The temporal and spatial correlation among monitoring stations should be incorpo-
rated into PM2.5 modeling. Due to the existence of many influencing factors, the PM2.5
sequence of the target station and surrounding stations is interdependent in spatial
and temporal dimensions. How to effectively capture the temporal and spatial corre-
lation between different stations is the key to improving the prediction performance.

At present, the innovative work in PM2.5 prediction prefers to adopt the data-driven
manner to model the spatial and temporal distributions of PM2.5 in time series. Recur-
rent neural network (RNN) and its variants serve as the mainstream [4]. However, these
sequence-based methods have problems, such as gradient explosion, gradient disappear-
ance and time consumption in backward propagation [5]. In terms of spatial feature
extraction, graph convolution models and convolutional neural networks have excellent
performance and are widely applied in PM2.5 prediction [6,7]. These models adopt the
principles of the First Law of Geography (https://doi.org/10.2307/143141, accessed on 16
April 2022) and take the correlations among adjacent stations into consideration. Graph
convolutional networks (GCNs) can model the structural attributes and node feature in-
formation of graphs and can extract the spatial features of topology graphs [6]. However,
the current graph model has some limitations: the relationship between artificially defined
variables, and missing connections between nodes also aggravate degradation of model
effects [6]. Hence, a stable edge relationship between dynamic time series is hard to obtain
by graph convolution models. Among them, a dynamic edge relationship represents a se-
ries of dynamic spatial interaction features between nodes. Recently, convolutional neural
networks (CNNs) are adopted to extract spatial features of PM2.5 [7]. CNN-based models
can capture spatial information of local receptive fields through convolution kernel and can
obtain domain-wide spatial features through multi-layer convolution and pooling, enjoying
the advantages of parallel computing and gradient stability [6,7]. CNN-based models pave
a new direction for accurate and fine-grained predictions of PM2.5 concentration.

This study adopts the data-driven approach to model the spatial and temporal dis-
tribution features of PM2.5 from the air monitoring station data to achieve an hourly
prediction of PM2.5 concentration at a single station. Traditional methods, such as time se-
ries, recurrent neural network and graph convolution network, cannot effectively integrate
spatial–temporal and meteorological factors, and it is difficult to extract the spatial distri-
bution features of monitoring stations stably [4,6]. In view of the shortcomings of current
studies, this study incorporates spatial–temporal correlation features, air pollutants and
meteorological factors into PM2.5 prediction modeling. In addition, this study notes that
stacked dilated convolution has the advantages of efficient extraction of time-dependent
features, non-complex recursive structure and few gradient problems in the training pro-
cess. Therefore, stacked dilated convolution is introduced into time feature extraction.
Finally, a fine-grained PM2.5 prediction model (ST-CCN-PM2.5) based on a spatial–temporal
causal convolution network is proposed. The convolutional neural network in the model
can stably capture the spatial distribution features of PM2.5, and the stacked dilated convo-
lution can effectively capture the time-dependent features. In addition, the introduction of
spatial–temporal attention further optimizes the model’s spatial–temporal feature extrac-
tion ability.

The main contributions of this study can be summarized as follows:

(1) In order to capture the nonlinear influencing factors, this study not only considers the
spatial–temporal correlation between stations, but also adopts meteorological factors
and air pollutants that have a strong correlation with the diffusion evolution of PM2.5.

https://doi.org/10.2307/143141
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(2) In terms of fine-grained prediction, the proposed model occupies a fine resolution both
in spatial and temporal dimensions. The hourly prediction shows a more elaborate
depiction of PM2.5 concentration distribution and trend via station-level analysis.

(3) Convolutional neural network and causal convolutional network are employed to
extract the spatial–temporal features of air pollutants with spatial–temporal attention
mechanism. It overcomes the problems existing in typical deep learning methods,
such as time-consuming iteration propagation, gradient vanishing, etc.

(4) We combine ST-CCN-PM2.5 model with end-to-end Bayesian optimizer. It cannot only
avoid obtaining local optimal solution, but also automatically and efficiently extract
the optimal hyperparameters of the model, providing a promising research direction
for PM2.5 prediction.

The rest of this paper is organized as follows: The second part discusses the current
research progress. The third part explains the details of ST-CCN-PM2.5. The fourth part
carries out a number of experiments. The fifth part fulfills discussion. The sixth part
summarizes the conclusions of this paper.

2. Related Works
2.1. On Modeling of Fine-grained PM2.5 Prediction
2.1.1. Linear Models and Time Series Models

These methods are based on the observation data, and parameter estimation is es-
tablished via curve fitting and pre-defined mathematical conditions [8]. Donnelly and
Xiao et al. propose several linear statistical models for the prediction of particulate con-
centrations [9]. Time series models (such as autoregressive (AR) model, moving average
(MA) and autoregressive moving average model (ARMA)) are the first choice to deal
with PM2.5 sequences [10,11]. Barthwal utilizes ARMA and ARIMA time series models to
predict PM2.5 concentration of Delhi National Capital District, India, and achieves good
performance [10]. Reisen et al. employ the method of autoregressive integrated moving
average (ARIMA) to predict PM2.5 concentration, and they believe that the daily average
concentration of particulate matter might be a seasonal integration process with temporal
variance (volatility) [12]. These models reflect the features and trends from time series to
a certain degree, serving as the dominant means for the analysis of time series. However,
PM2.5 diffusion evolution is a dynamic nonlinear process, and linear statistics and time
series are relatively weak in reflecting nonlinear processes; so, the prediction is biased to
a certain extent.

2.1.2. Shallow Neural Networks

Due to the good performance of shallow neural networks, such as support vector
regression (SVR) [13,14] and artificial neural network (ANN) [15–18], many studies ap-
plied shallow learning to prediction tasks. Compared with the linear models and time
series models, shallow neural networks have stronger performance and better predic-
tion performance for the nonlinear system. Araujo et al. adopt ANN to conduct PM2.5
prediction [19]. ANN model can learn the complex nonlinear dependence relationship
between input and output well, and has good robustness and adaptive features. Wei and
Stafoggia et al. study PM2.5 prediction based on the random forest model [20,21], which
has high prediction accuracy: random forest performs well in many current data sets. It
can not only process high-dimensional data, but also has the advantages of fast training
speed and strong generalization ability. Sun and Liu et al. conduct the support vector
machine regression model to predict PM2.5 concentration and achieve ideal prediction
results on small-scale datasets [22,23]. One of the advantages of SVR regression is that its
computational complexity does not depend on the input space dimension. Moreover, it can
learn from small samples, and this method has excellent generalization ability and high
prediction accuracy [13,14]. However, in the case of large samples and computing units, the
representation ability of shallow learning models for complex systems is relatively limited.
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2.1.3. Deep Learning Based Models

In recent years, deep learning has been widely applied in air pollutant prediction
research [24]. Currently, deep learning models applied in atmospheric pollutant concentra-
tion prediction can be roughly divided into three categories: sequence-based, graph-based,
and convolutional neural networks.

Sequence-based models include recurrent neural network (RNN), long-short term mem-
ory (LSTM), gate recurrent unit (GRU) and so on. The RNN proposed by Hopfield can model
time series data and extract the time dependence of context [25]. Subsequently, the RNN
variant model LSTM [26–31] and GRU [32–34] proposed to solve the short-term memory
problem caused by the disappearance of the RNN gradient. Zhang et al. apply the ConvLSTM
model to model the data of sky stations and daily aerosol optical thickness to predict the
daily spatial distribution of PM2.5 concentration [35]. Huang et al. construct a hybrid model
combining the convolutional neural network (CNN) and LSTM, which shows good perfor-
mance in predicting PM2.5 concentration [36]. LSTM and GRU models can not only reflect the
dynamic nonlinear system well, but can also store the memory of a long time-span, which
further improves the prediction accuracy compared with traditional time series models [35].
However, these sequence methods based on RNN still have some problems, such as iteration
propagation time, gradient explosion and gradient disappearance [33].

Graph-based models behave competitively in sequential modeling, such as the graph
convolution network (GCN), which is also introduced into PM2.5 prediction modeling [37].
GCN can well model the structural attributes and node feature information of the graph,
and effectively extract the spatial correlation features between monitoring stations [7].
Based on the excellent spatial feature extraction ability of the GCN model, many PM2.5
prediction studies have incorporated GCN. Wang et al. employ the graph convolution
network to model the spatial–temporal dependence of PM2.5, and utilize the graph con-
volution layer to extract spatial features from the spatial–temporal map. The attention
mechanism is applied to improve the model’s ability to extract spatial features, and the
model achieves good prediction performance [37]. However, in our experiments, we find
that due to various external influences, the graph-based methods have difficulty capturing
the stable edge relationship between dynamic time series.

Causal convolutional networks (CCNs) are derived from convolutional neural networks
(CNNs). These models are originally designed for audio generation and natural language
modeling in computer science, and can extract long time dependent features in time series.
Convolution in the CCN architecture is causal, and the prediction of a given moment depends
only on historical data, avoiding the leakage of information from the future to the past.
Moreover, its architecture does not contain complex recursive structures, such as gating
mechanisms, so CCN is simpler and more efficient than the models based on RNN [38,39].
CNNs are also used to extract spatial distribution features of PM2.5. These models have the
advantages of parallel computing and gradient stability in spatial feature extraction [6,7].

2.1.4. Specialized Models

Studies on specialized models are mainly based on the atmospheric physicochemical
process of pollutant formation and diffusion [40,41]. Zheng et al. construct a source-
oriented chemical diffusion model (CTMs), which estimates air pollutant concentration
through emission inventory, meteorological and chemical mechanisms [42]. The advantage
of these specialized methods exists in that they have a solid theoretical basis and a rela-
tively transparent model. With the incorporation of physical and chemical process of air
pollutants, the prediction performance is improved [43,44]. However, these deterministic
methods rely on theoretical assumptions and may not reflect the real physical processes,
which makes it difficult to explain the nonlinearity and heterogeneity of influencing factors,
leading to prediction bias of physical processes [40,41].
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2.2. On Selection of Impact Factors
2.2.1. Spatial–Temporal Influence Factors

According to the first law of geography: “everything is related to other things, but the
close things are more closely related” [45], there is a natural spatial–temporal correlation
between adjacent stations. Spatial and temporal correlations are widely concerned in
air pollution prediction [46,47]. Some studies pay attention to spatial factor extraction.
Zhao et al. take the target station as the center and select the data of the five nearest stations
as the spatial information input [47]. Bai et al. determines the distance with the maximum
average correlation coefficient as the optimal spatial range through sensitivity analysis
of the correlation between surrounding stations and target stations in different spatial
windows [48]. Pak et al. predict PM2.5 concentration by extracting the temporal and
spatial correlations between monitoring stations and achieve accurate and stable prediction
performance [49]. These studies take self-defined means to extract the spatial–temporal
correlation between stations. However, these methods are highly subjective and lack in
optimization in the extraction of spatial–temporal correlation features.

2.2.2. Other Influencing Factors

In fine-grained PM2.5 concentration prediction, the interaction between other influ-
encing factors and PM2.5 cannot be ignored. Qiao et al. point out that PM2.5 is strongly
correlated with some air pollutants and some meteorological factors [50]. However, sec-
ondary aerosol forms from precursors, such as ammonia and sulfuric acid, should also not
be neglected [51]. Chen et al. believe that there is a cross-influence relationship between
PM2.5 and other air components [52]. For example, wind speed and humidity will affect the
diffusion of PM2.5 in real environments [50]. In addition, vehicular traffic, human activity,
street architecture and urban terrains are among the factors which do have different degrees
of influence on the generation, diffusion and evolution of PM2.5.

In this paper, we take the temporal and spatial correlation of PM2.5 concentration and
the interaction between other air pollutants and meteorological factors into the modeling
so as to reflect the complex, dynamic and nonlinear features in a real environment.

3. Methodology
3.1. ST-CCN-PM2.5 Architecture

The ST-CCN-PM2.5 architecture is shown in Figure 1. Multiple air pollutants and
meteorological data are considered as influencing factors for fine-grained PM2.5 concen-
tration prediction. The modeling process of ST-CCN-PM2.5 mainly consists of two parts:
(1) spatial feature extraction based on fusion of convolutional neural network and spatial
attention; and (2) temporal feature extraction based on temporal attention and stacked
dilated convolution.

In this paper, the three-dimensional feature matrix X ∈ RN×T×L indicating air pol-
lutants and climate data of multiple monitoring stations is utilized as the initial input of
ST-CCN-PM2.5, where N represents all N stations, T represents the time step of historical
data, and L represents the dimension of explanatory variables.
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Figure 1. ST-CCN-PM2.5 architecture.

3.2. Spatial Feature Extraction

In order to extract the correlations between the historical sequence of surrounding
stations and the historical sequence of the target station, Spearman’s rank correlation
coefficient method, which is widely applied in the domain of time series analysis, is
employed as shown in Formula (1).

ρ(Y, Y k) = 1−
6 ∑N

i=1(Y
i −Yi

k

)
N(N 2 − 1)

(1)

Here, the PM2.5 historical data sequence of the target station Y and the sequence of PM2.5
historical data of the k-th surrounding station Yk are both stored in in numerical descending
order, where N stands for the number of samples in the sequence. Spearman’s correlation
coefficient ρ(Y, Y k) is firstly calculated and then stored in ρ_list as shown in Formula (2).

ρ_list = [ρ(Y ∗, Y1), ρ(Y ∗, Y2), . . . , ρ(Y ∗, YN)] (2)

In order to capture the most influential stations for a given target station, we set the
threshold ρth as 0.85 for Spearman’s correlation coefficient selection according to [26]. M
stations are then selected from ρ _list, as shown in Formula (3).

X = {X i|ρ(Y
∗, Yi) > ρth, i ∈ 1, . . . , M} (3)

Here, the feature matrix of the i-th surrounding station a with strong spatial correlation
is represented as Xi. The dimension of Xi belongs to RT×L, where T represents the time
step from the historical data, and L represents the dimension of input variables. The M
surrounding stations compose the three-dimensional feature matrix X, X ∈ RM×T×L.

By increasing the number of output channels, the dimension raising process of the
feature matrix X is accomplished via 1 × 1 convolution kernel as shown in Figure 2.
Firstly, the three red blocks in Figure 2 are convolved with the Mnew filters from a local
perspective. Then, the dimension of Mnew filters (the rectangular boxes in Figure 2) become
1 × 1 × k, where k is the number of convolution kernels. The number of convolution
kernels is the same as the number of channels of the feature matrix X. Finally, the number
of channels of the original feature matrix X is expanded. The new feature matrix X holds
Mnew channels, X ∈ RMnew×T×L. The dimension raising process combines information from
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different channels (i.e., the feature matrix and the filters), hence the ability of a nonlinear
feature extraction is improved.

Figure 2. Dimension raising process of the feature matrix via 1 × 1 convolution kernel.

In order to focus on the features with strong spatial correlation to the target station and
reduce the computational burden, the spatial attention mechanism is adopted in dimension
reduction process, as shown in Figure 3. A yellow column represents the eigenvalue of
a channel, and a blue sequence represents the eigenvalue of the target station. The final
feature sequence is marked as the green column.

Figure 3. Dimension reduction process of feature matrix via spatial attention.

Firstly, the correlation coefficient between the i-th feature sequence of each channel
and the i-th feature sequence of the target station is extracted as shown in Formula (4). In
Formula (4), Simi

m represents the correlation coefficient between the feature sequence of
the i-th item of the m-th channel and the target sequence.

Simi
m= Similarity( f i

target, f i
m) = Spearman( f i

target, f i
m

)
(4)

Then the weight distribution of the i-th item sequence of each channel is calculated
based on the correlation coefficient, so that the model pays more attention to the feature
sequences which can better improve the performance. SoftMax is applied to carry out
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numerical conversion of the correlation coefficients, and the original correlation coefficients
are transformed into probability distribution with the sum of the weights of all elements
being 1. The SoftMax is represented in Formula (5), where ai

m represents the attention
weight of the i-th feature sequence in the m-th channel.

ai
m= So f tmax(Sim i

m) =
exp(Sim i

m)

∑Mnew
j=1 exp(Sim i

j)
(5)

Finally, the i-th feature sequence of each channel is multiplied by the corresponding
weight and then summed up to form the final feature sequence, which is represented by
the green column. The feature sequence Ai and the feature matrix A after the dimension
reduction process is shown in Formula (6).

Ai =
Mnew

∑
j=1

ai
j× f i

j

A = (A 1, . . . , Ai, . . . , Al
) (6)

3.3. Temporal Feature Extraction

The causal convolutional network is introduced into temporal feature extraction with
a convolutional operator. Compared with traditional convolutional neural networks, the
causal convolutional network holds a unidirectional structure which guarantees no leakage
of future information to the past [38]. More specifically, this study employs stacked dilated
convolution [39], a variant of the causal convolutional network, into the modeling of fine-
grained PM2.5 concentration prediction. This model possesses the following advantages:
(1) The topological structure of stacked dilated convolution holds a multi-layer fully convo-
lutional network architecture, as shown in Figure 4. Stacked dilated convolution has one
input layer, one output layer and multiple hidden layers. This multi-layer processing mech-
anism can effectively and hierarchically learn and extract abstract representations of input
features; (2) Stacked dilated convolution can effectively increase the receptive field of the
network, which avoids the problem that the modeling time of a simple causal convolutional
network is limited by the size of the convolution kernel. As shown in Figure 4, each layer
extracts information from the previous layer in a skip-like manner, which not only enables
the network to extract long-term dependencies with fewer layers, but also allows each
convolution output to contain larger range information; (3) Stacked dilated convolution
not only overcomes the common pitfalls of recursive models, such as gradient explosion,
gradient vanishing and large memory consumption, but this model has also achieved better
performance than recursive models in many time-series modeling tasks [38,39].

Figure 4. The architecture of stacked dilated convolution.
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As shown in Figure 4, the aggregated spatial feature matrix X is firstly adopted as
the input of the stacked dilated convolution, and the local receptive fields of the previous
layer are connected by feature mapping: here, the number of spatial feature matrix X to
be aggregated is determined by the sliding window size. The convolution kernel is then
shared to obtain the eigenvalues with the activation function. In this study, three data
modules in the input layer are combined as a group through the shared convolution kernel
so that the first hidden layer is constructed. Next, the previous hidden layer is convolved
forward to the following hidden layer according to different dilation rates until it reaches
the output layer of stacked dilated convolution.

As mentioned above, in order to better explore the potential of stacked dilated convo-
lution, it is necessary to first determine two important parameters which directly influences
the time complexity and prediction performance; that is, the sliding window size (denoted
as S in Figure 4) and the dilation rate (denoted as d in Figure 4).

Temporal attention mechanism is deployed to find the best sliding window size. First
of all, the sampling interval is set as 4 with the range of the sliding window size from 4
to 24 according to [26]. Then, the stacked dilated convolution is trained under different
sampled sliding window sizes, and different stations participate in the training process
as target stations at each loop. At last, the results from all the loops comprise the optimal
sliding window value list. Mean square error (MSE), root mean square error (RMSE), mean
absolute error (MAE) and R2 are introduced to evaluate the results. The most frequent
sliding window size is selected as the best sliding window size. In this study, the sliding
window size of stacked dilated convolution is finally set as 24.

The dilation rate allows the convolution kernel to skip d data modules with an indi-
vidual dilation rate in the processing step so as to obtain a larger receptive field without
excessive network depth. As shown in Figure 4, the first dilation rate between input layer
and the first hidden layer is set as 1, and the second dilation rate between the first hidden
layer and the second hidden layer is 2. The third dilation rate between the second hidden
layer and the output layer is 4, which means the convolution kernel is sampled at 4 intervals.
Formula (7) demonstrates the dilation rate setting in stacked dilated convolution.

(F∗ d X)(x t) =
K

∑
k

fkxt−(K−k)d (7)

Here, xt represents the feature sequence of each input layer, fk stands for the convolu-
tion kernel at each forward propagation. d is denoted as the dilation rate, and k is the size
of the convolution kernel. The number of nodes participating in the dilated convolution
operation in the local receptive field is expressed as K, and the size of the receptive field
of stacked dilated convolution is indicated as (K− 1)∗ d + 1. Wider receptive field can be
obtained with larger dilation rate. However, if the value of dilation rate is too large, some
detailed information may be eliminated. In this study, according to [26], the initial values
of convolution kernel, the network layer depth and the dilation rate of stacked dilated
convolution are set as 4, 4 and d = 2i, respectively, where i is the network layer depth.

4. Experiment
4.1. Study Area and Dataset Description

This paper selects Haikou city of Hainan province as the research area. Hainan
province is the second largest island in China, and is located at the southernmost tip of main-
land China, with coordinates between 108◦37′–111◦03′ east longitude and 18◦10′–20◦10′

north latitude. According to the requirements of urban supervision and construction,
Haikou air monitoring stations are distributed in the north of Xiuying district, Longhua
district, Qiongshan district and Meilan district (in Figure 5b). Figure 5b,c shows the spatial
distribution of 95 air monitoring stations. As shown in Figure 5b,c, this paper randomly
selected a target station (in the red spot) from the densely distributed downtown area of
Haikou city.
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Figure 5. Study area and spatial distribution of air monitoring stations (the base of the map is
from ESRI (https://hub.arcgis.com/maps/0c539fdb47d34b17bd1452f6b9f49e97/explore, accessed
on 17 April 2022)): (a) The green part is the boundary map of Hainan province and the gray part
is the boundary map of Haikou city, (b) Distribution of air monitoring stations in Haikou city, and
(c) Distribution of air monitoring stations in Haikou (zoom figure).

Hourly data of air pollutants and climate factors from 95 air monitoring stations
in Haikou city from 1 March 2021 to 20 April 2021 were collected. Original data were
preprocessed with outlier detection and missing value imputation. This study employs
the most primitive threshold method to deal with outliers. Data within a certain threshold
is considered as normal distribution. Missing data, air pollutant concentration which is
negative and temperature which is below zero were regarded as outliers. The outliers
were removed and then interpolated with the first and second order Lagrange method.
For missing values with a long time-span (e.g., in 5 h), these missing data were then
transferred from a nearby time period. If missing values were more than 12 h, this record
was abandoned.

In the feature selection process, Spearman’s rank correlation coefficient method was
employed to identify and eliminate the features that are weakly correlated with PM2.5 in
the original dataset. Eleven features are selected, including PM2.5, PM10, NO2, CO, O3, SO2,
temperature, air pressure, relative humidity, wind direction and wind speed. A detailed
description of each feature is shown in Table 1.

https://hub.arcgis.com/maps/0c539fdb47d34b17bd1452f6b9f49e97/explore
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Table 1. Data set description.

Type Feature Name Data Type Unit

Air quality data

PM2.5 Numeric µg/m3

PM10 Numeric µg/m3

NO2 Numeric µg/m3

CO Numeric µg/m3

O3 Numeric µg/m3

SO2 Numeric µg/m3

Meteorological
data

Temperature Numeric °C
Pressure Numeric hpa

Humidity Numeric %
Wind speed Numeric km/h

Wind direction Categorical (No/E/W/S/N/Unstable/SE/NE/SW/NW) None

4.2. Hyperparameter Tuning Based on Bayesian Optimization

The hyperparameters in the training process of ST-CCN-PM2.5, including network
depth, number of hidden layer nodes and so on, are tuned via Bayesian optimization [53],
which does not need prior experience and can accurately obtain the global optimal solutions.
Figure 6 illustrates the internal principle of Bayesian parameter optimization.

Figure 6. The internal principle of Bayesian parameter optimization.

In Figure 6, the x-axis represents the searching space of hyperparameters, and the
y-axis represents the loss of the model. In order to perform Bayesian optimization, four
successive steps, namely the objective function, the domain space, optimization algorithm
and experimental result tracking, should be considered. (1) The errors in prediction are
validated via the objective function which refers to Mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE) or R2. (2) Domain space is defined as the
searching space of the hyperparameters to be optimized. (3) The optimization function in
Bayesian optimization consists of two parts: the proxy function and the acquisition function.
These two functions are both included in the TPE (Tree-structured Parzen Estimator)
algorithm [53]. With the help of the TPE, the observation points are fitted and the loss of
the estimation function f ∗ is obtained. The acquisition function is then derived from f ∗,
which is applied to measure the influence weights of the sample points. The sample points
which holds the maximum values of the acquisition function form the new observation
points for the next loop. (4) The hyperparameters and verification losses are stored in the
experimental result tracking part with a number of iterations. The hyperparameters which
own the minimum values of the estimated function f ∗ are finally recorded as the output of
Bayesian parameter optimization.

The Bayesian optimizer in this study concludes four parts: objective function, domain
space, optimization algorithm and experimental result tracking. The objective function
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refers to the validation error of the model adopted in this study. The hyperparameters
to be optimized and their search space are specified in the domain space. The optimiza-
tion algorithm constructs proxy function and optimizes hyperparameters by acquisition
function. The TPE (Tree-structured Parzen Estimator) algorithm is adopted. The tracking
part stores the hyperparameters and verification losses in the optimization process. In the
following part, the hyperparameters to be optimized, the selection of objective function
and the number of optimization iterations are introduced.

In this study, hidden size, levels, kernel size and dropout in stacked dilated convolution
are considered as the hyperparameters. Hidden size represents the number of nodes in
the hidden layer, levels represent the depth of the network layer, kernel size is the dilated
convolution kernel and dropout is the ratio of nodes removed randomly in each iteration.
In the process of Bayesian optimization, RMSE performs as the objective function, and the
initial domain space is arranged according to [38]: hidden size values range from 48 to 64,
and the step is 8; levels vary from 3 to 9, and the step is 1; kernel size values range from
3 to 9, and the step is 1; dropout values range from 0.5 to 0.9, and the step size is 0.01.
Figure 7 shows the influence of different iterations on the loss function.

Figure 7. The influence of iterations on the loss function.

For the sake of convenience, the number of iterations of the Bayesian optimizer is
firstly set as 50 at the beginning. The experimental results in Figure 7 show that, when
the number of iterations is greater than 44, loss of the estimation function does not change
greatly, and the values of four hyperparameters become steady. Figure 8 shows the final
optimal hyperparameters via Bayesian optimization.

Figure 8. Final optimal hyperparameters via Bayesian optimization.

As shown in Figure 8, the red line represents dropout values. The yellow line repre-
sents different kernel sizes. The Green line represents the value of levels. The blue line
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represents the searching space of hidden sizes. The purple line represents the loss function.
After 50 epochs, the values of four hyperparameters become steady. Final optimal values for
ST-CCN-PM2.5 model are as follows: dropout = 0.55, hidden_size = 58.0, kernel_size = 8.0,
and levels = 3.0.

4.3. Prediction Performance Analysis
4.3.1. Target Station Performance Analysis

According to Section 2, this paper employs three types of baselines: namely, linear models
and time series models, shallow neural networks and deep learning models. Since the input
structure and the modeling principles behave quite differently between ST-CCN-PM2.5 and
specialized models, specialized models such as CTMs are not considered in this paper.

Parameter settings of the baselines are as follows. The system order p of the AR
model is set as three [54]. The least square method is used to estimate the autocorrelation
coefficient of MA model, and the order of moving averages (MA) model is set as three [55].
By calculating the autocorrelation coefficient and partial autocorrelation coefficient of the
experimental samples, the p and q orders of the autoregressive moving average model
(ARMA) model are set as five and six, respectively [56]. In SVR, the penalty coefficient of
the objective function is set as one, and the radial basis function is used for kernel parame-
ters [23]. ANN holds two hidden layers, each containing 50 neurons, and ReLU activation
function and Adam random gradient optimizer are used [19]. The size of unit hidden layer
of LSTM and GRU models is sevem, and the weight initialization method adopts uniform
initializer and adds a full connection layer to carry out dimension transformation for the
output [34,57]. ST-GCN block is set as 64, 16 and 64 channels, and the graph convolution
kernel size K and time convolution kernel size Kt are set as 3 [7]. In terms of model input,
for linear statistical and time series models, the PM2.5 historical series are taken as the input
of the model. For shallow learning and deep learning models, we use the same feature
sequence as the model input. In addition, the parameters of the above reference models are
tested for many times by using the general parameter configuration in the literature, and
the parameters with the best prediction performance of the reference model are selected.
Therefore, the parameter configuration adopted by the baselines is easily generalizable.

This paper predicts the PM2.5 concentration at 22:00 on 20 April 2021, and it sets the
data of 24 h before the predicted time as the input data. Since Haikou is a typical tropical
city, real nightlife begins at 22:00 with BBQ, recreation and less supervision, leading to
a relatively higher variance of PM2.5 concentration.

In this paper, MSE, RMSE, MAE and R2 are utilized as evaluation metrics, and the
performance of each model is obtained by five-fold cross validation. The average MSE,
RMSE, MAE and R2 from five-fold cross-validation are considered as the final performance
for each model, as shown in Table 2.

Table 2. Performance comparison between baselines and ST-CCN-PM2.5.

Models MSE RMSE MAE R2

AR 5.622 2.371 1.438 0.942
MA 10.155 3.187 2.082 0.894

ARMA 5.811 2.411 1.449 0.940
SVR 6.295 2.509 1.661 0.934

ANN 6.750 2.598 1.609 0.930
GRU 6.229 2.496 1.557 0.935
LSTM 6.421 2.534 1.575 0.933

ST-GCN 5.763 2.389 1.443 0.941
ST-CCN-PM2.5 3.436 1.854 1.417 0.964

As shown in Table 2, compared with baseline models, the MSE, RMSE and MAE of
ST-CCN-PM2.5 model decrease by 46.51%, 27.05% and 10.38% on average, respectively,
and the R2 value increased by 3.56% on average. The comparison results from a single
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monitoring station proves the advantage of ST-CCN-PM2.5 in fine-grained prediction of
PM2.5 concentration. Figure 9 further explores the prediction ability of ST-CCN-PM2.5 and
other baselines.

Figure 9. The evaluation metrics of model performance comparison: (a) Comparison of MSE values
between different models, (b) Comparison of RMSE values between different models, (c) Comparison
of MAE values between different models, and (d) Comparison of R2 values between different models.

As shown in Figure 9, the performance of deep learning models is better than that of
shallow learning models on average. This is because deep learning models can find poten-
tial complex nonlinear structures in high-dimensional data and have better performance
for dynamic nonlinear systems. Surprisingly, the prediction results of traditional AR and
ARMA models behave better than those of shallow neural networks and deep learning
models. One possible explanation for this phenomenon is that, due to the strong periodicity
of experimental data, linear and time series models can better extract time dependence.

4.3.2. All Stations’ Performance Analysis

In order to further evaluate the generalization ability of ST-CCN-PM2.5, all the 95 air
monitoring stations are employed. Similar to Section 4.3.1, the evaluation metrics, including
MSE, RMSE, MAE and R2, and the five-fold cross validation method, are considered for each
station. For consistency, the input and output structures also keep the same as mentioned
in Section 4.3.1. We adopt a “win–tie–loss” method to count the times of “win”, “tie” and
“loss” when various models predict PM2.5 at a given station. Take MSE as an example.
“Win” means that the model has the lowest MSE performance for this specified station.
“Tie” indicates that two or more models have the equal MSE. “Loss” indicates that the
MSE value of a model is not the best for this selected station. Here, we summarize the
win–tie–loss results in Table 3.
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Table 3. Performance comparison between baselines and ST-CCN-PM2.5 among all stations.

Models
MSE RMSE MAE R2

Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss

AR 5 0 90 5 0 90 12 0 83 14 0 81
MA 0 0 95 0 0 95 0 0 95 0 0 95

ARMA 4 0 91 4 0 91 3 0 92 6 1 88
ANN 0 0 95 0 0 95 0 0 95 0 0 95
SVR 0 0 95 0 0 95 0 0 95 0 0 95
GRU 1 0 94 1 0 94 2 0 93 1 0 94
LSTM 0 0 95 0 0 95 0 0 95 0 0 95

ST-GCN 17 0 78 17 0 78 15 0 80 9 0 86
ST-CCN 68 0 27 68 0 27 63 0 32 64 1 30

From Table 3, it is clear that the proposed ST-CCN-PM2.5 outperforms other baselines
in all four evaluations metric in most stations. The numbers of winning stations are 68, 63
and 64 in RMSE (MSE), MAE and R2, respectively. The ST-GCN model takes the second place,
with 17 winning stations. The MA and LSTM models behave the worst, with no winning
result. The win–tie–loss result not only shows the practical value for each model, but also
demonstrates the merit of the proposed ST-CCN-PM2.5 model in a wider spatial perspective.

Next, we further explore the performance’s spatial distribution of ST-CCN-PM2.5
model. Heat maps for all metrics among all 95 stations are presented in Figure 10.

Figure 10. Performance of ST-CCN-PM2.5 for all 95 stations: (a) MSE value heat map of different
stations, (b) RMSE value heat map of different stations, (c) MAE value heat map of different stations,
and (d) R2 value heat map of different stations.

As shown in Figure 10a–d, it is seen that the proposed model has higher accuracy in
most stations. In central downtown, the MSE value is in the range of 0 to 8, and the R2 value
remained in the range of 0.9 to 0.96. After averaging the performance of ST-CCN-PM2.5
from all the 95 stations, the MSE, RMSE and MAE values are 4.94, 2.17 and 1.31, respectively,
and the R2 value is 0.92. These results prove that ST-CCN-PM2.5 has favorable prediction
stability and generalization ability.

However, as shown in Figure 10, the performance of ST-CCN-PM2.5 at marginal or
isolated stations is worse than that of stations in dense distribution areas. This indicates
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the role of stations’ spatial distribution should not be neglected. This should be taken into
account in future PM2.5 prediction improvement.

4.4. Robustness Analysis
4.4.1. Significance via the Friedman Test

The non-parametric Friedman test [58] is adopted to evaluate whether the proposed
ST-CCN-PM2.5 is significantly robust and superior to the baselines in fine-grained PM2.5
concentration prediction.

Three new test datasets under three different quartile positions, namely the upper quar-
tile (75%), median (50%) and lower quartile (25%) of the original data, are first constructed
respectively. At each position, 5% of the original dataset before and after each quartile is
extracted, and three new test datasets, namely, data_25%, data_50% and data_75%, are ob-
tained for the Friedman test. Nine models, including eight baselines (i.e., AR, MA, ARMA,
ANN, SVR, GRU, LSTM and ST-GCN) and the proposed ST-CCN-PM2.5, are collected for
the Friedman test under three new test datasets. For simplicity, RMSE values are selected
as the evaluation metric.

The detailed process of the Friedman test is as follows. First of all, three new datasets
from a specified monitoring station (e.g., stn2) are trained and testified with nine models,
respectively. Next the average ranking list of the nine models is obtained with the help of
RMSE values, as is shown Table 4. The null hypothesis in the Friedman test is evaluated
via Formulas (8) and (9).

X2
F =

12N
k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]
(8)

FF =
(N − 1)χ2

F

N(k− 1)− χ2
F

(9)

Here, N and k represent the number of independent datasets and the number of
models, respectively, and Rj represents the average ranking result of the j-th model in the
three new datasets. The final result of the Friedman test is summarized in Table 4.

Table 4. RMSE index ranking of 9 models in 3 data sets.

Datasets AR MA ARMA ANN SVR GRU LSTM STGCN STCCN

data_25% 2.39(2) 3.22(9) 2.43(4) 2.61(8) 2.54(6) 2.51(5) 2.56(7) 2.41(3) 1.83(1)
data_50% 2.27(2) 3.17(9) 2.38(4) 2.58(8) 2.52(7) 2.46(5) 2.52(7) 2.35(3) 1.76(1)
data_75% 2.33(2) 3.13(9) 2.41(4) 2.55(8) 2.44(6) 2.43(5) 2.44(6) 2.37(3) 1.92(1)
Average 2 9 4 8 6.3 5 6.3 3 1

As shown in Table 4, the RMSE index ranking of nine models from three datasets is
calculated with χ2

F= 21.75 and FF= 19.33. FF follows (8,16) degrees of freedom. When the
confidence level α=0.05, the critical value of F(8, 16) is 2.59. Obviously, the FF value related
to RMSE index ranking is greater than the critical value 2.59. Therefore, the previous null
hypothesis is rejected, which proves that the prediction performance of the ST-CCN-PM2.5
is significantly different from other baselines.

4.4.2. Model Generalization Analysis

In order to verify the robustness and generalization of ST-CCN-PM2.5, for each station,
we apply this model to predict PM2.5 at 24 h. The initial parameters of ST-CCN-PM2.5 are
changed by randomly selecting random seeds to make the model have different prediction
results. We conduct ten epochs for each hour point. The experimental results of all
stations are X ∈ RS×H×T , where S represents the number of monitoring stations, H
represents different moments, and T represents the number of tests. We compress the three-
dimensional matrix from the S-axis and reduce the experimental results to two dimensions:
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that is, XnewεRH×T . The dimension reduction is to facilitate the display of the average
prediction interval and to show the changing trend at all hour points. Figure 11 is the violin
plot drawn after dimension reduction.

Figure 11. Hourly PM2.5 prediction. Each hour corresponds to a green violin figure, which reflects
the distribution of 10 predicted values at this hour. The blue broken line represents the predicted
mean at each hour. The red broken line represents the actual PM2.5 value at each hour.

Figure 11 shows the fluctuation range and evolution trend of PM2.5 concentration
in 24 h as a violin figure. The violin figure consists of a fusion of kernel density and
boxplot. For each violin subplot, the inside is a boxplot, and the outside is surrounded
by a kernel density plot. The kernel density map visually shows the data distribution
of the PM2.5 predicted value. In the kernel density graph, the larger the graph area of
a certain region, the greater the probability of distribution near a certain value. Through
the boxplot, the basic distribution information of PM2.5 predicted value at a corresponding
time can be understood. As shown in Figure 11, the inner and outer limits are defined as
the upper and lower boundaries of the black line segment, the upper and lower quartiles
are considered as the upper and lower boundaries of the black rectangle. From Figure 11,
it is obvious that the width of the violin plot at each hour holds a relatively narrow span,
which means that the estimated distribution from ST-CCN-PM2.5 is sufficiently accurate
around the real value for fine-grained PM2.5 concentration prediction. Globally speaking,
the predictions in 24 h fluctuate within a stable range and reflect the dynamics of real PM2.5
concentration distribution in a temporal scale. The blue curve is defined as the mean value
of the 10 predictions, and the red one is the real value. From Figure 11, these two curves
are staggered with a small gap, indicating that the method proposed in this study has good
stability and robustness. The trend of PM2.5 predicted values shows that from 0 o’clock
to 6 o’clock, when human activities are greatly reduced, airborne PM2.5 is dispersed and
transported. From 7 o’clock to 16 o’clock, due to the increase in human activity, traffic
exhaust, factory production and other factors, PM2.5 concentration increases rapidly. From
16 o’clock to 23 o’clock, PM2.5 concentration is maintained at a high level. The violin figure
demonstrates the benign generalization ability of ST-CCN-PM2.5.

4.5. Impact Factors’ Influence Analysis

In this study, Shapley analysis [59] is adopted to analysis the influence of different
impact factors, including different air pollutants and meteorological factors as mentioned
in Table 1. Unlike the qualitative analysis in [50,52], Shapley analysis provides a more exact
quantitative influence rank with the help of feature weight calculation both from local and
global perspectives. Figure 12 shows the local perspective of Shapley analysis from a single
dataset sample.
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Figure 12. Influence of input features on PM2.5 prediction (from local perspective).

The horizontal axis of Figure 12 stands for the weights for each input feature, and
the vertical axis represents the input features, including CO, temperature, wind speed
and so on. F(x) stands for the value of one prediction after considering all the 11 input
features, and E( f (x)) represents the mean value among multiple predictions. The bars in
red demonstrate the positive effect of a specified input feature on the output, while the
blue ones show the magnitude of the negative effect. From Figure 12, it is obvious that
CO, O3 and wind speed have a large negative effect on the change of PM2.5 concentration,
with the reduced influence values by 1.09, 0.42 and 0.42, respectively: Temperature has
the strongest positive effect on PM2.5 concentration, with an increased influence value by
0.60 µg/m3. The local perspective of Shapley analysis in Figure 12 demonstrates subtle
changes in influence quantization for a single input parameter at a single dataset sample.

The result of global perspective in Shapley analysis from all datasets is demonstrated
in Figure 13.

Figure 13. Influence of input features on PM2.5 prediction (from global perspective).

Figure 13 shows the influence weights of input features on output features in all
samples. The horizontal axis represents the influence weight of a feature on the output of
the model, the left vertical axis represents different features and the right vertical axis uses
different colors to represent the level of feature values. The decreasing importance of input
feature influence is represented vertically. It is found that wind speed has the most positive
influence on the prediction of PM2.5. The experimental results are consistent with common
sense; strong wind will transport PM2.5 from surrounding stations to the target station, and
it is easy to generate eddy currents in the city, making it difficult for PM2.5 to escape from the
target station area. The effects of CO and temperature on PM2.5 prediction are moderately
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significant. CO emissions are accompanied with PM2.5 emissions. When CO concentration
is high, PM2.5 prediction results will increase to a certain extent [60,61]. However, as the
temperature drops, the predicted value of PM2.5 is likely to increase [62]. In conclusion, air
pollutants with high influence weights and meteorological factors should not be neglected
in order to improve the prediction performance of air pollutants prediction.

5. Discussion
5.1. The Influence of Spatial Effect

The influence of spatial effect, viz. the spatial distribution of different monitoring,
stations does occupy a crucial role which cannot be neglected in fine-grained PM2.5 con-
centration prediction. As shown in Figure 14, according to win–tie–loss results, if the
monitoring station is an internal station which is located in the downtown or is surrounded
by a number of other stations, the prediction performance of ST-CCN-PM2.5 is relatively
better than isolate stations or stations at the edge of the research area. This phenomenon
provides a direction to further improve the prediction performance, and offers a clue for
the spatial distribution planning of monitoring stations.

Figure 14. Spatial distribution of win–tie–loss results from ST-CCN-PM2.5.

However, not all stations follow this rule. In Figure 14, the prediction performance
from the green spot, which is located in the dense downtown of Haikou city, behaves rela-
tively poor. Possible explanations may hide behind the relation of the external uncertainties
(e.g., traffic conditions, human activities, etc.), which are presented by way of entwining
mutually of sophisticate. Hence, the comprehensive spatial correlations and various spatial
interactions [63] should be incorporated into fine-grained PM2.5 concentration prediction.

5.2. The Influence of Multi-Source Factors

In the research of PM2.5 prediction modeling, it is obvious that the incorporation
of multi-source factors, such as air pollutants and meteorological factors, improve the
estimation performance from literature reviews. Although previous studies can quantify
the influence of input features on output results, there are still some shortcomings. In this
paper, Shapley analysis is employed to derive the actual influence weight of each input
feature on PM2.5 prediction, and the experiment’s results prove that wind speed is the
most influencing factor in fine-grained PM2.5 concentration prediction. The effects of CO
and temperature on PM2.5 prediction are moderate. Incorporating these factors into PM2.5
prediction modeling can significantly improve the prediction performance. Moreover,
other factors, such as terrain, ground objects, traffic conditions and so on, should also be
considered for further research.

5.3. Advantages of ST-CCN-PM2.5 Compared with Other Typical Deep Learning Models

A literature review in the most recent 5 years (from 2017 to 2022) shows the dominant
position both for RNN-based models and graph-based models in sequential modeling and
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analysis. Apart from fine-grained air pollutant concentration prediction, RNN-based models
and graph-based models also show strong ability in intelligent transportation system (ITS),
recommender system (RS), stocking market and so on. However, the natural defects in these
two kinds of models should not be neglected, especially in fine-grained PM2.5 concentration
prediction: (1) Gradient disappearance and gradient explosion, time consumption and large
memory requirement [64] limit the application of RNN-based models, such as LSTM [27,28]
and GRU [32,33]; (2) Unstable factors in graph-based models, such as the Markov hypothe-
sis [37], and difficulty in capturing the dynamic edge relationship between stable nodes [65],
make it difficult for graph-based models to effectively extract spatial and temporal features in
fine-grained PM2.5 concentration prediction especially in a wide research area (i.e., city-level
and regional level prediction) [65,66]; (3) The state-of-the-art models (i.e., ConvTrans [67],
Informer [68], FC-GAGA [69], MAGCN [70] and Multi-STGCnet [71], etc.) which focus on
fine-grained time series prediction behave not so optimistically if these models are directly
employed into fine-grained PM2.5 concentration prediction. Possible reasons from our failure
experiences are summarized as follows: (1) Some models (e.g., Informer) cannot guarantee
the output results in a fine-grained temporal granularity since these models are designed
for long-term prediction. Data volume and input feature space may not satisfy the spec-
ified requirement of these models (e.g., Informer, Multi-STGCnet); (2) The real process of
air pollutants spreading in the atmosphere cannot be accurately reflected. Compared with
vehicular traffic, solar energy and passenger flows, the dynamic of air pollutants spreading in
the atmosphere behaves in a much more unconstrained manner which is not only influenced
by spatial adjacence, but also the atmospheric conditions (e.g., wind speed, temperature,
etc.); (3) The natural defects in the sequence-based models (e.g., Informer, FC-GAGA) and
graph-based models (e.g., MAGCN, Multi-STGCnet) do have a negative effect on fine-grained
PM2.5 concentration prediction.

The ST-CCN-PM2.5 model proposed in this study provides a new direction for fine-
grained PM2.5 concentration prediction via the marriage of convolution neural networks
(CNNs) and causal convolution networks (CCNs). First of all, convolutional neural net-
works can capture stable spatial distribution features [6,7] in the spatial feature extraction.
In the temporal feature extraction, stacked dilated convolution, a variant of causal convo-
lutional networks, is employed to capture effective temporal features with small memory
requirements [38,39]. The introduction of spatial–temporal attention mechanism makes ST-
CCN-PM2.5 have stronger spatial–temporal feature extraction ability compared with other
deep learning models, and only two parameters (i.e., the sliding window size and the di-
lation rate) of ST-CCN-PM2.5 need to be considered in the modeling process. Furthermore,
the ST-CCN-PM2.5 proposed in this study provides an open framework which can further
incorporate additional impact factors (e.g., population distribution, transportation, etc.). The
excellent prediction performance, the simplicity of the structure, and the open framework
make ST-CCN-PM2.5 a possible solution for fine-grained air pollutant concentration prediction.

6. Conclusions
6.1. Summary of Experimental Results

In the past decades, due to the process of urbanization and industrialization, air
pollution is always an important social problem, threatening human life and safety, among
which fine particulate matter (PM2.5) has brought many diseases to human beings. In order
to protect human health and the sustainable development of the atmospheric environment,
fine-particle prediction of PM2.5 and other air pollutants is particularly important.

We consider the interaction of air pollutants in our modeling. According to the driving
effect of meteorological factors on PM2.5 concentration evolution and the temporal and
spatial dependence between air monitoring stations, a ST-CCN-PM2.5 model based on
causal convolution network is proposed to improve the performance of sequence-based
models and graph-based ones.

ST-CCN-PM2.5 is based on spatial–temporal models (i.e., CNN and CCN) to extract
spatial–temporal correlation. The temporal and spatial attention mechanism is employed
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to optimize the feature extraction capability. Compared with traditional approaches, it
has stable gradient, lower memory requirement and stable capability in spatial–temporal
feature extraction. In this study, Bayesian optimizer is applied to optimize the model’s
hyperparameters, and the optimal combination of hyperparameters is devoted to the
subsequent experiments.

In the experiment, we first compared the performance of ST-CCN-PM2.5 with a series
of baseline models, including AR, MA, ARMA, ANN, SVR, GRU, LSTM and ST-GCN.
Secondly, we used various models to predict the PM2.5 concentration of all stations. The
experimental results show that:

For a single station, ST-CCN-PM2.5 is superior to the baseline models in the four eval-
uation indexes of PM2.5 concentration prediction task. Compared with the baseline models,
MSE, RMSE and MAE decrease by 46.51%, 27.05% and 10.38% on average, respectively,
and R2 increase by 3.56% on average.

For all stations, ST-CCN-PM2.5 achieves the best performance in a win–tie–loss experi-
ment. The winning stations are 68, 63 and 64 in RMSE (MSE), MAE and R2, respectively. In
addition, its average MSE, RMSE and MAE are 4.94, 2.17 and 1.31, and the average R2 is
0.92. Experimental results show that the model has a stable generalization ability.

In the model performance verification, in order to analyze the performance differences
between the models, the Friedman test is used to prove that the prediction performance
of ST-CCN-PM2.5 is significantly better than that of the benchmark model. In order to
analyze the robustness of the model, we use the model to predict the PM2.5 of all stations
in Haikou at 24 moments in the future. The experimental results show that the model has
stable prediction interval for PM2.5 prediction at different times.

In addition, Shapley analysis is introduced to quantitatively analyze the influence of
each input feature on the prediction results. The experimental results show that wind speed
has the greatest influence on PM2.5 prediction, while CO and temperature have moderate
influence on PM2.5 prediction.

In summary, the above experimental results and analysis show that ST-CCN-PM2.5
has good prediction generalization ability and robustness and provides a new baseline for
PM2.5 prediction.

6.2. Caveats and Future Directions

There are still some limitations in this study. The model proposed in this paper may
not be so adaptable to transfer learning. When the model is transferred from a problem
requiring less memory information to a problem requiring longer memory, its predictive
performance may be reduced due to its receptive field. In addition, the model in this paper
predicts poor performance in small sample data. In addition, we only apply this model to
a single-step prediction of PM2.5 concentration.

In the future, we will investigate the effects of ensemble learning on the prediction
of fine-grained air pollutant concentration, and we are eager to marry specialized models
(e.g., CMAQ) with our ST-CCN for a better performance.
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