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Abstract: Automated segmentation of brain tumors is a difficult procedure due to the variability 

and blurred boundary of the lesions. In this study, we propose an automated model based on Bend-

let transform and improved Chan-Vese (CV) model for brain tumor segmentation. Since the Bendlet 

system is based on the principle of sparse approximation, Bendlet transform is applied to describe 

the images and map images to the feature space and, thereby, first obtain the feature set. This can 

help in effectively exploring the mapping relationship between brain lesions and normal tissues, 

and achieving multi-scale and multi-directional registration. Secondly, the SSIM region detection 

method is proposed to preliminarily locate the tumor region from three aspects of brightness, struc-

ture, and contrast. Finally, the CV model is solved by the Hermite-Shannon-Cosine wavelet ho-

motopy method, and the boundary of the tumor region is more accurately delineated by the wavelet 

transform coefficient. We randomly selected some cross-sectional images to verify the effectiveness 

of the proposed algorithm and compared with CV, Ostu, K-FCM, and region growing segmentation 

methods. The experimental results showed that the proposed algorithm had higher segmentation 

accuracy and better stability. 
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1. Introduction 

With the rapid development of computed tomography (CT) and magnetic resonance 

(MR) imaging techniques, the role of cross-sectional imaging in the diagnosis of brain tu-

mors has expanded. Cross-sectional images are capable of displaying diseased tissues and 

locations at high resolution with good contrast, thereby aiding in treatment planning. 

When working with cross-sectional images, one of the most complex problems is seg-

menting out some specific tissues. Segmentation helps doctors more accurately locate the 

lesion and assess the severity of the lesion, and is an essential and critical process in dis-

ease treatment [1]. Manual localization and segmentation of tumor regions by physicians 

is an expensive, time-consuming, and tedious task, and the segmentation results are not 

reproducible. Since cross-sectional images are low-contrast images, existing segmentation 

methods are often interfered with by bone and fat when detecting tumor contours. 

Clearly, brain tumor segmentation remains a perplexing task.  

Brain tumor segmentation methods mainly include segmentation methods based on 

supervised learning, semi-supervised segmentation methods, and unsupervised segmen-

tation methods. Xu et al. [2] proposed a new joint motion feature learning architecture 

that can establish a direct correspondence between motion features and tissue properties, 

thereby determining the position, size and shape information of the infarction area of 

myocardial infarction. Zhao et al. [3] combined fully convolutional neural networks (FC-

NNs) and Conditional Random Fields (CRFs) to segment brain tumor images slice-by-
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slice, and trained three segmentation models in axial, coronal and sagittal views to achieve 

better performance. Jiang et al. [4] proposed a novel dual-stream decoding CNN architec-

ture that designs a separate branch to process edge-stream information, which can make 

the tumor edge clearer. Zheng et al. [5] proposed a four-dimensional (4D) deep learning 

model, based on three-dimensional convolution and convolutional long short-term 

memory (C-LSTM), which can more effectively learn the features of hepatocellular carci-

noma (HCC) in multi-phase dynamic contrast enhanced (DCE) images. In medical image-

based tumor segmentation, the main problem is insufficient labeled samples [6]. When 

segmenting tumor tissue in medical images, both supervised learning segmentation meth-

ods and semi-supervised segmentation methods suffer from insufficient labeled samples. 

Unsupervised segmentation does not require ground-truth images as a criterion to 

train the model. Although there are several general segmentation methods, such as histo-

gram thresholding [7], region growing [8], CV, and statistical clustering [9], etc., they have 

failed to achieve good results in the domain of brain tumor identification. Wavelet-based 

methods are widely used to solve difficult and hot problems, and their effectiveness has 

been proven in many applications, including data compression [10], signal processing 

[11], image enhancement [12], image compression [13], image segmentation [14], pattern 

recognition [15], etc. Wavelet analysis is able to refine and analyze complex information 

at multi-scales through scaling and translation operators. The commonly used two-di-

mensional wavelets are the tensor product of one-dimensional wavelets, and the number 

of directions is limited. The lack of directionality means wavelet transform is unable to 

make full use of the geometric regularity of the image, so it presents a step-like approxi-

mation to smooth contours or textures in an image. Owing to the above limitations, 

Curvelet [16] and Contourlet [17] were proposed and gradually applied. They increased 

the number of directions, while maintaining the advantages of two-dimensional wavelets. 

Raghunandan et al. [18] set a fixed window according to the sub-band relationship of the 

Contourlet, and used the SVM classifier to extract features in the wavelet domain of Con-

tourlet for each window to achieve text recognition. Nayak et al. [19] presented a Patho-

logical Brain diagnosis process by Curvelet sub-bands and entropy features in different 

scales and directions. Raikar et al. [20] utilized the multi-scale representation of Curvelet 

for rotator cuff disease diagnosis. In 2006, Guo et al. [21] introduced the shearing matrix 

and scaling matrix for geometric transformation into wavelet transform for the first time, 

and proposed the concept of Shearlet transform to realize multi-scale transformation with 

direction adaptation. Shearlet transform is widely applied, because it is capable of dealing 

with the anisotropic features of the image and capturing the geometric information of the 

edge. Sneha et al. [22] decomposed the image into main information and edge detail fea-

ture information through NSST to fuse multimodal medical images, which can help re-

searchers study brain pathology more precisely. To accurately obtain the curvature infor-

mation of the image, Amit et al. [23] proposed an improved adjustable non-subsampling 

Shearlet transform (ANSST) based on the Meyer window, but it still has great disad-

vantages for the extraction of edge curvature information. As we all know, contour cur-

vature is one of the important features of the image, but the existing wavelet transforms 

lack curvature parameter. Lessig et al. [24] added curvature parameters into the Shearlet 

transform, resulting in a new wavelet transform “Bendlet”, which is the second-order 

Shearlet that can accurately express images and identify contour curvature features. Med-

ical cross-sectional images are piecewise smooth images with obvious curvature charac-

teristics, so Bendlet, based on multi-scale analysis, is more suitable for the analysis and 

processing of medical images. 

Our main contributions can be summarized as follows: 

(1) In this study, we propose a model that can detect the position of the tumor from a 

single image and delineate the tumor region by exploiting the similarity of the images 

themselves. 
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(2) The curvature of the left and right contours of a person’s brain tumor image is not 

the same, which affects the judgment of the location of the tumor. Existing registra-

tion algorithms are prone to wrongly mapping points in medical images. Therefore, 

we propose a registration algorithm based on Bendlet, which can obtain the curva-

ture features of medical images and classify them to register and correct images. 

(3) To solve the problem that the CV model cannot converge to the tumor position and 

the segmentation is incomplete, we propose the SSIM unit detection algorithm, 

which can roughly locate the tumor position from three aspects: brightness, structure, 

and contrast. Then, the CV model is improved by the Shannon-Cosine wavelet ho-

motopy method, which further improves the segmentation accuracy. 

The rest of the paper is organized as follows. Section 2 is our experimental method-

ology. The experimental results and discussion are presented in Section 3, while the con-

clusion appears in Section 4. 

2. Materials and Methods 

The proposed complete workflow for brain tumor detection is illustrated in Figure 1, 

where the proposed method uses the following basic steps: (1) Image registration using 

Bendlet transform, (2) Unit localization, and (3) Refined segmentation. Brain tumors are 

abnormal tissue growths in the brain that cause our brains to compress and deform, so we 

propose a multi-scale and multi-directional registration algorithm based on Bendlet. The 

Bendlet registration method is able to find enough feature points and establish the map-

ping relationship between the two images. Then, the cross-sectional images of the brain 

can be registered and corrected by non-rigid transformation. 

 

Figure 1. Schematic of the proposed brain tumors Segmentation method. 

2.1. Bendlet Registration Techniques 

Our proposed tumor segmentation method is based on the asymmetry between the 

two brain hemispheres. However, the contour curvatures of the two hemispheres of the 

brain are not the same. If the tumor is detected directly without registration, it cannot be 

successfully detected, as shown in Figure 2. 
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Figure 2. Tumor position detected in images without registration. 

2.1.1. Bendlet System 

The classical wavelet methods can detect singular points, have multi-resolution and 

localization characteristics, but cannot achieve the optimal expression of boundary curves. 

Shearlet introduced a shear matrix to control the direction, which is a multi-scale wavelet 

transform with good direction sensitivity and anisotropy. It is an extension of multi-di-

mensional, multi-scale, and multi-direction wavelet transform [25,26]. However, they also 

have disadvantages in characterizing and describing boundary curves, due to the lack of 

bending parameters. In medical imaging, boundary curves of tumors, bone and soft tissue 

segmentation curves provide valuable information, such as image structure. Curvature is 

an important parameter to characterize and describe these curves. Current orientation 

representation systems have achieved great success in extracting and characterizing 

boundary curves, but still fail to accurately classify curvature.  

Bendlet [27] introduced bending elements as another degree of freedom based on 

Shearlet to approximate piecewise smooth images, known as a second-order Shearlet 

transform. Compared with other wavelet transforms, Bendlet transform has great ad-

vantages in image approximation. The construction of Bendlet is different from the Shear-

let in the scaling operator and shearing operator. 

For 0a   and 
[0,1] 

, the  −  scaling is defined in Equation (1): 

,

0
:

0
a

a
A

a


 
=   
 

 (1) 

For l N , ( , )r s b=  and 1( , , )T l
lr r r R=  , the l th−  order shearing operator is 

defined in Equation (2). The value s  takes the role of shearing and b corresponds to a 

bending: 

1
( ) 21

1 2

1
( ) ( , )

0 1

l m
l Tmm

r

r x
S x x x

−

=
 
 =
 
 


 (2) 

The shearing matrix is generated by letting 1l = , and the operator contains the character-

istics of both shearing and bending by letting 2l = . The l th−  order   Shearlet system 

is denoted as Equation (3): 

( , ) ( , )( )( , , ) : , ( , , )l lSH f a r t f a r t 
  =  (3) 

where 
( )
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−

−
−= −

. When 2l = , the above equation is considered as 

second-order Shearlet transform or Bendlet transform. 
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Figure 3a shows some bending elements of the Bendlet system in the spatial domain. 

The four parameters above the image are cone, scale, shear, bending. The Bendlet system 

has multi-scale characteristics ([1, 1, −1, −1], [1, 2, −1, −1]). The shear parameter controls 

different directions, and when the shear parameter is changed, the orientation of Bendlet 

elements change. Figure 3b shows the multi-scale representation of medical image con-

tours in different directions by the Bendlet system.  

 

 

(a) (b) 

Figure 3. Bending elements of the Bendlets system and its representation of images. (a) Bending 

elements in spatial domain. (b) Multi-scale representation of contours in different directions by 

Bendlets system. 

The decay rate of the Bendlet transform varies with a, s, b and t. Classification of cur-

vatures can be completed by different decay rates. For a small boundary radius and large 

curvature, only the coefficient corresponding to the large bending elements decay slowly. 

As the radius increases, the curvature becomes smaller, and the coefficient decays the 

slowest for the small bending parameter. The decay rate is the lowest when the Bendlet 

element overlaps the boundary curve. Meanwhile, the curvature at the boundary can be 

obtained by matching the second-order Taylor expansion of the boundary with a circle 

with radius r > 0 and curvature, which can be calculated by Equation (4): 

( )( )
3

2 2

2

1

b
K

s


=

+
 (4) 

2.1.2. Multi-Scale and Multi-Direction Registration Method Using Bendlet 

To improve the level of medical diagnosis and treatment, it is necessary to analyze 

several images together to obtain comparative information about the patient. We compare 

and analyze normal cross-sectional images with brain lesions to recognize brain tumors. 

Tumors will squeeze normal brain tissue, causing flexible deformation. Note that any in-

accuracy in registration or bias correction stages directly affects the precision of tumor 

segmentation. It is necessary to find enough corresponding feature points for flexible 

transformation to make the two images spatially consistent. 

The cross-sectional images of the brain are piecewise smooth, and common registra-

tion algorithms are prone to false connection points (as shown in Figure 4a). As we can 

see from the images, the tissue usually does not follow any particular direction. Through-

out the image, the tissue structures continually change direction, creating curved edges. 

For piecewise smooth medical images, the curvature becomes an important parameter to 

describe and characterize. Bendlet transform can achieve curvature classification by add-

ing bending elements. 
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(a) (b) 

Figure 4. The Experimental results of image registration between two brain hemispheres (a) The 

registration result of SURF algorithm. When the SURF algorithm is applied to medical images, the 

feature points obtained are few and contain more misalignment points. (b) The registration result 

of the proposed method. Our method increases the number of registered points and reduces mis-

matched points. 

The traditional direction wavelet can detect the curvature through the coefficient re-

sponse value, but it can only represent the information of three directions of the image, 

namely horizontal direction, vertical direction and diagonal direction. Since the shape of 

these elements is a square structure, a large number of coefficient responses are required 

to fully capture all the information, which also increases the noise inside the image. The 

Bendlet transform introduces bending parameters to enable bending characteristics. 

When approximating the curve, the energy can be concentrated on several coefficients. It 

requires fewer coefficients than ordinary wavelets to fully detect the curvature infor-

mation in the image. As shown in Figure 5, To capture the curvature information, wavelet 

needs about 13 coefficient values, Shearlet needs 4 coefficients, and Bendlet needs only 2 

coefficients to fully detect curved regions [28]. 

 

 

 

(a) (b) (c) 

Figure 5. Capturing contour curve of cross-sectional images with wavelet, Shearlet, and Bendlet. (a) 

A huge amount of wavelet coefficients is required to detect contour curve information. (b) Few 

Shearlet coefficients are needed to complete detection. (c) Bendlet needs only 2 coefficients to fully 

detect curve information. 

We transformed cross-sectional images of the brain to the frequency domain via 

Bendlet, analyzing the transformation coefficients at each scale. When the bending ele-

ments coincided with the curvature of the image, the coefficient response was very large, 

and contour information could be extracted from medical images by Bendlet. We intro-

duced bending elements in Bendlet as registration elements to describe medical images at 

multi-scales and multi-directions. When the bending element was consistent with the cur-

vature of the image, the point with large coefficient response was found as the registration 

point. Then, stable points at different scales were selected, and feature vectors were con-

structed to realize image registration and correction. As shown in Figure 4, our method 

had more connection points and no mismatch points. 
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2.2. The SSIM Region Detection 

Brain tumors are the abnormal tissue structures on cross-sectional images relative to 

normal images. We can measure the similarity between normal images and brain tumor 

images in terms of brightness, structure, and contrast, and detect the region where abnor-

mal tissue is located. 

The luminance comparison is: 

( )
1

2 2
1

2
,

+

x y

x y

C
l x y

C

 

 

+
=

+
 (5) 

The contrast-based comparison is: 

( )
2

2 2
2

2
c ,

+

x y

x y

C
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 

 

+
=

+
 (6) 

Comparison of the structure can be obtained through Equation (7): 

( )
3

3

+
,

xy

x y

C
s x y

C


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=

+
 (7) 

The three components are combined into a unique expression that is weighted with 

exponents  ,


 and 


: 

( ), [ ( , )] [ ( , )] [ ( , )]SSIM x y l x y c x y s x y  =    (8) 

where, xu  and yu
 are the mean of pixels in the image blocks x  and 

y
, x  and y

 

are the standard deviations of the pixels in the image blocks x and
y

, xy
is the covariance 

between x  and 
y

, 1 2 3, ,C C C  are constants. The formulae: 
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( , )

* -1

H W

x x

i j
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H W


= =

 
= − 
 
 


. 1 2 3{ , , , , }nx x x x  show that the normal image is divided into 

n  image blocks. The values 1 2 3{ , , , , }ny y y y  show that the brain tumor image is di-

vided into n  blocks. We can calculate SSIM values of every two image blocks using 

Equation (8), 1 2 3{ , , , , }nSSIM s s s s= . The block with the smallest SSIM value is the image 

block where the brain tumor is located. 

Segmenting within the unit area can reduce the interference of other organs and im-

prove the accuracy of segmentation. First, we set the degree of overlap and the sliding 

window to split the image into overlapping blocks. Then, the structural similarity of cor-

responding patches is calculated from three aspects of brightness, structure and contrast. 

The block with the smallest value is the unit where the brain tumor is located. In the win-

dow sliding process, if the step size is set too small, the accuracy of the obtained tumor 

unit is improved, but the time complexity increases. If the step size is set too large, the 

detailed features are lost and the error increased. In order to strike a balance between 

computational efficiency and resulting performance, we took the stride size to 50. 

2.3. Refined Segmentation 

Chan and Vese proposed the Chan-Vese (CV) model by the regional feature infor-

mation of the image. The specific energy function is: 
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gray mean of the target area and the background area: 
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0 0
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





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 .  

The level set initialization is required to segment the image by the CV model, and the 

average gray values 1c  and 2c  of the foreground and background are initially esti-

mated according to the initialized level set. Then, each point on the level set is updated 

through the evolution equation. If the gray value of the current point is close to the gray 

average value of the foreground, the value of the corresponding level set of this point 

increases, otherwise it decreases. In CT and MRI images, the grayscale difference between 

brain tumors and background images is very small, and the boundaries are blurred. It is 

difficult to achieve satisfactory segmentation when directly applying the CV model to 

cross-sectional images for brain tumor detection. As shown in Figure 6, the CV model fails 

to converge to the location of the brain tumor. 

 

 

 

(a) (b) (c) 

Figure 6. Brain tumor segment by CV model under different numbers of iterations. (a) 50 iterations. 

(b) 300 iterations. (c) 1000 iterations. 

A PDE can be obtained after variation of the CV model, and the Hermite interval 

Shannon-cosine wavelet can better handle the boundary conditions for the solution of the 

PDE. When we solve PDE through multi-scale Shannon-cosine wavelet, the wavelet coef-

ficients can distinguish and judge the boundary of the tumor region to achieve accurate 

segmentation.  

Variation of the CV model yields the following partial differential equation: 

2 2

1 0 1 2 0 2( ) div +
| |

I c I c
t



 
   

 




  
= − − − 

  
  

( )2 2



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=

+
  

where 

div
| |





 
 
    is the curvature of the contour curve, div  is divergence operator. 

The level set function can be expressed as: 
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where ,k jw is the interval interpolation basis functions, and 
j

n  is Shannon-Cosine 

wavelet [29]:  

( )

( ) ( )

( ) ( )

2

1

2

1

,

2
2 0 1 1 2 ,         0

2 1 1 2 ,                          1

(2 ),                                                    2,3, , 2 2

2 2

N
j j

n

N
j j

n

j j
k j

j j

n n
x n x n k

N N

n
x n x n k

N

w x x k k

x

 

 





=

=

   
− + − + + + =   

   

 
− + − + = 

 

= − = −

−





( ) ( )

( ) ( )

2

1

2

1

1 1 2 2 ,      2 1

2
2 2 1 1 2 2 ,   2

N
j j j

n

N
j j j j j

n

n
n x n k

N

n n
x n x n k

N N



 

=

=











 
+ + − − − = − 

 

    
 − + − + + − − =   
    





 

( ) ( )

( )

( )
( ) ( ) ( )

0

π
sin

2 π
cos

π 2 2

j j
n n

j
n m

j j j j
n n n n

j n
n

j

x x x

x x
n N N

a x x x x x x
N

x x

 

 
=

= −

−
         

= −  − + − − −       
        −




 

 

We defined 


 and its derivative is: 
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is denoted by nF . 

We can construct a linear homotopy model: 

1( , , ) (1 )J

n nx y t F F   += − +  (11) 

where ( )t  is the homotopy parameter. 
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According to perturbation theory, the solution of Equation (11) is: 
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Substituting Equation (9) into Equation (10): 

0

1
1 1

0:

:

n

n n

J

J

F

F F

 

  +

=

= −
  

Substituting the wavelet transform coefficient into Equation (9), we have: 
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                 ( , , ), ( , , ), ( , , ))] ( , , , ( , , ),

                ( , ,

J JJ J J
n n n n

J J J J
n n

J

t
x y t x y t F t x y x y t x y t x y t

x y t x y t x y t F t x y x y t

x y

    

   



+


= +

+

(0,1) (2,0) (1,1) (0,2)
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After locating the unit area where the tumor is located in Section 2.2, we can segment 

the tumor tissue through the improved CV model, so that the tumor tissue can be accu-

rately detected and segmented, as shown in Figure 7. 

 

Figure 7. The improved CV model detection. 

3. Results 

3.1. Performance Evaluation Metrics 

We evaluated the segmentation performance by 
Accuracy

, JSC, DSC， which are 

described as follows:  
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TP+TN
=

TP+T
Accu

N+F
racy

P+FN
 (12) 

TP
JSC=

TP+FP+FN
 (13) 

2TP
DSC=

FP+2TP+FN
 (14) 

where True Positive (TP): correct identification, and False Negative (FN): incorrect rejec-

tion. True Negative (TN): correct rejection and False Positive (FP): incorrect identification, 

as shown in Table 1. 

Table 1. Brain tumors segmentation outcome. 

Confusion Matrix 
Real 

Positive Negative 

Predict 
Positive TP FP 

Negative FN TN 

In addition, paired t-test was performed on the proposed model and other models in 

test 6 for comparison with respect to these evaluation metrics. p-value of <0.05 was con-

sidered statistically significant. 

3.2. Comparison of Segmentation Results with Different Methods 

To verify the effectiveness of the proposed method, we randomly selected some im-

ages to test. For each brain tumor cross-sectional image, we compared the results of each 

algorithm with the results of manual segmentation. Figure 8 is the original image. Figure 

9 shows the visualization results obtained by the proposed algorithm, CV, K-FCM [9], 

Ostu [30] and region growing algorithm [8] for brain tumor segmentation. The experi-

mental results of the threshold algorithm were obtained by manually adjusting the thresh-

old parameters several times. Except for the algorithm in this paper, the other methods 

could not fully achieve automated detection and segmentation. From Table 2, we can ob-

serve the quantitative results of the four detection algorithms for brain tumor. When 
Accuracy , JSC and DSC were higher, it indicated that the prediction accuracy of the target 

was higher. The proposed method outperformed other algorithms on Accuracy , JSC, and 

DSC. Therefore, from the comprehensive analysis in Figure 9 and Table 2, it can be seen 

that the algorithm in this study had high accuracy in detecting and segmenting brain tu-

mors. The proposed method has certain competitiveness compared with other classical 

algorithms, and is expected to provide a reliable reference for clinical decision-making. In 

addition, as is shown in Table 3, there are significant differences between the proposed 

model and other models. 

   

(a) (b) (c) 
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(d) (e) (f) 

Figure 8. Examples of brain tumor images. (a)Test1. (b) Test2. (c) Test3. (d) Test4. (e) Test5. (f) Test6. 
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(a) (b) (c) (d) (e) 

Figure 9. Comparison of the proposed method with others. (a) SRG. (b) K-FCF. (c) CV. (d) Ostu. (e) 

The proposed method. 

Table 2. Comparative results on six main metrics using different methods. 

  Accuracy  JSC  DSC  

 Test1 

K-FCM 0.9917 0.6542 0.7910 

CV 0.9948 0.8109 0.8956 

SRG 0.9883 0.4941 0.6614 

Ostu 0.7415 0.0810 0.1498 

Ours 0.9955 0.8298 0.9070 

 Test2 

K-FCM 0.9944 0.7744 0.8729 

CV 0.9962 0.8653 0.9278 

SRG 0.7948 0.1018 0.1849 

Ostu 0.7363 0.0847 0.1563 

Ours 0.9972 0.8993 0.9470 

Test3 

K-FCM 0.9591 0.0302 0.0587 

CV 0.9996 0.7856 0.8799 

SRG 0.9997 0.8297 0.8681 

Ostu 0.9132 0.0147 0.0290 

Ours 0.9999 0.9428 0.9705 

Test4 

K-FCM 0.9991 0.7750 0.8732 

CV 0.9992 0.8032 0.8908 

SRG 0.9986 0.6046 0.7536 

Ostu 0.9611 0.0825 0.1524 

Ours 0.9994 0.8381 0.9119 

Test5 

K-FCM 0.9988 0.4384 0.6096 

CV 0.9986 0.3453 0.5134 

SRG 0.9984 0.2340 0.3792 

Ostu 0.8133 0.0109 0.0215 

Ours 0.9990 0.5322 0.6947 

Test6 

K-FCM 0.8995 0.9276 0.9624 

CV 0.6966 0.6449 0.7841 

SRG 0.7585 0.7793 0.8759 

Ostu 0.9374 0.0017 0.0034 

Ours 0.9995 0.9285 0.9629 

Table 3. The Paired t-test for the proposed model and other models (p-Value). 

 Accuracy JSC DSC 

K-FCM-Ours 0.040913566 0.080455 0.10538 

CV-Ours 0.17593634 0.02078 0.025113 

SRG-Ours 0.080970625 0.01242 0.021317 

Ostu-Ours 0.007289404 2.65 × 10−5 5.41 × 10−6 
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4. Conclusions 

Owing to the variability and fuzzy boundary of brain tumor lesions, it is very chal-

lenging to develop an automated tumor detection system. We introduced Bendlet into 

cross-sectional images to extract the dominant features between the normal and abnormal 

images and realized image registration and correction. Meanwhile, the block where the 

brain tumor was located was assessed from three aspects of brightness, structure and con-

trast, which enabled driving the contour line of the improved CV model to the required 

boundary, even near the weak edge. The ideas presented in this work also offer a potential 

direction to improve detection accuracy for all types of medical diagnoses. 
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