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Abstract: Multilayer perceptron is composed of massive distributed neural processors intercon-

nected. The nonlinear dynamic components in these processors expand the input data into a linear 

combination of synapses. However, the nonlinear mapping ability of original multilayer perceptron 

is limited when processing high complexity information. The introduction of more powerful non-

linear components (e.g., S-box) to multilayer perceptron can not only reinforce its information pro-

cessing ability, but also enhance the overall security. Therefore, we combine the methods of cryp-

tography and information theory to design a low-power chaotic S-box (LPC S-box) with entropy 

coding in the hidden layer to make the multilayer perceptron process information more efficiently 

and safely. In the performance test, our S-box architecture has good properties, which can effectively 

resist main known attacks (e.g., Berlekamp Massey-attack and Ronjom–Helleseth attack). This in-

terdisciplinary work can attract more attention from academia and industry to the security of mul-

tilayer perceptron. 

Keywords: S-box; multilayer perceptron; information theory; cyber security 

 

1. Introduction 

Multilayer perceptron (MLP) is a multilayer feedforward network model with one-

way propagation [1–3]. Because of its high nonlinear mapping ability, MLP is one of the 

most basic network models in neural network research. From the perspective of infor-

mation processing, MLP is an abstract simulation of biological neural networks to estab-

lish a simple biological neuron model. Therefore, the basic structure of MLP is based on 

the logic of biological neuron model. The most typical MLP includes three layers: input 

layer, hidden layer, and output layer (as shown in Figure 1). In the hidden layer, each 

node is equivalent to a perceptron, and each node represents a specific output function, 

which is called activation function [4]. The connection between each two nodes represents 

a weighted value for the signal passing through the connection, which is called the 

weight. The output of MLP will be different due to the difference of weight value and 

excitation function, and its powerful fitting ability can be used to solve more complex 

problems. MLP itself is usually the approximation of some algorithm or function in na-

ture, and it may also be the expression of a logical strategy. With the gradual deepening 

of the research on MLP, it has great research potential in both theoretical research and 

application. At present, MLP has been applied in many commercial and industrial fields 

and has brought varying degrees of productivity improvement (e.g., pattern recognition, 

function approximation, and optimal prediction) [5–7]. 
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Figure 1. Structure of the LPC S-box in multilayer perceptron. 

The interior of multilayer perceptron is a highly nonlinear information processing 

system composed of multilayer single perceptron interconnection [8]. When neurons are 

in two different states of activation or inhibition, it can be called a nonlinear relationship. 

The network composed of neurons with a threshold has better performance, which can 

improve fault tolerance and storage capacity. Each neuron of the multilayer perceptron 

receives the input of a large number of other neurons, and generates the output through 

the parallel network, affecting other neurons. This mutual restriction and interaction be-

tween the networks realizes the nonlinear mapping from the input state to the output state 

space [9,10]. However, the overall performance of multilayer perceptron is not the super-

position of the performance of local neurons, and its nonlinear mapping ability is limited. 

Therefore, when processing information with higher complexity, we can introduce 

stronger nonlinear components (e.g., S-box) to make up for this defect. As a nonlinear 

component of multilayer perceptron, S-box is also an important part of symmetric cipher 

(e.g., block cipher) [11–13]. 

The higher dimension multilayer perceptron has very complex nonlinear dynamic 

behaviors, which contain various functions (e.g., activation function and step function). 

As Piotr et al. remarked [14], securely enhance multilayer perceptron must satisfy certain 

conditions, the higher the dimension of S-box, the more statistical analysis it can be ap-

plied to multilayer perceptron, which is complex for algorithm designers and malicious 

password analysts. Yet, the carefully designed S-box is just a strong nonlinear Boolean 

(vector) map with avalanche characteristics. This means, in fact, that the S-box can be con-

sidered as a black box that transforms any input vector into a balanced vector in a non-

predictable way (i.e., nonlinear). Figure 1 shows the architecture of different component 

combinations to achieve balance. 

At present the methods of S-boxes applied on multilayer perception for improving 

security complexity are based on two parallel methodologies [15,16]. The first one mainly 

uses mathematical theories and statistical investigations, while the other is additionally 

supported by the practitioner’s experience. To second a link between the both methodol-

ogies we propose design a structure of S-box based on multilayer perceptron to process 

the data from the overall point of view, this method can enhance its information pro-

cessing ability and improve the overall security. 

Accordingly, for the complex nonlinear architecture of multilayer perceptron, if the 

computational cost of data itself (e.g., compressed data) is reduced, its nonlinear mapping 

ability can also be improved. Modern lossless data compression program is realized 

through the combination of general compression technology and entropy coding. The role 

of lossless data compression algorithm is to increase the randomness of data (i.e., increase 

entropy). On the other hand, the entropy coding method compresses an original data unit 

into the minimum code as the compressed data. Although each of these technologies can 

achieve the compression effect, the combination will produce a better compression ratio. 
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Then, they maximize the entropy of the compressed data (such as arithmetic coding and 

Hoffman coding). Therefore, in the hidden layer, compression technology and entropy 

coding can be combined to increase the throughput of the multilayer perceptron, reduce 

redundant information, and reduce computational overhead. 

Based on the above factors, we combine the methods of cryptography and infor-

mation theory to introduce S-box into multilayer perceptron with Levenshtein entropy 

coding-based in the hidden layer to make the multilayer perceptron process information 

more efficiently and safely. 

In previous studies, there is a scheme to apply S-box to multilayer perceptron. Ar-

rañaga et al. proposed a scheme that S-box can apply it to multilayer perceptron [17]. But 

it does not test the cryptographic characteristics of the implemented S-box, nor is it ap-

plied to the replacement of image processing. 

Zhu et al. [18] proposed an improved chaotic map for image encryption system. The 

framework preliminarily analyzes the conventional technologies of one-dimensional cha-

otic system, replacement box production structure and image encryption algorithm. The 

double chaotic S-box algorithm includes forward backward confusion diffusion operation 

to enhance the performance of image encryption system. The shortcomings of the pro-

posed model do not discuss the side channel attack in the encryption framework, nor is it 

applied to multilayer perceptron. 

A.S. et al. [19] involved an S-box with hybrid prediction and adaptive chaos, and 

calculated and analyzed various performance parameters. However, it is based on em-

bedded system rather than multilayer perceptron, which makes image processing less ob-

vious. 

Yang et al. [20] designed a new chaotic S-box diffusion method based on 2d-mccm, 

which improved the security and efficiency, and proposed a new image encryption algo-

rithm, but it was not constructed based on multilayer perceptron. 

Zhang et al. [21] introduced the learning algorithm based on multilayer perceptron 

and S-box to improve the security integrity of the system. The proposal uses the new way 

of approach to decompose the huge input into two equal parts and each part is trained by 

two perceptrons combined with a special 172P perceptron. It also convenient to quickly 

train the weight-threshold values of the Boolean function in the network through DNA-

like learning algorithm. 

Kotlarz and Kotulski [22] discussed the use of S-boxes to implement cryptographic 

schemes in multilayer perceptron. To realize the elementary permutation, 2-bit and 3-bit 

block of bits were transformed into a block of bits as a combination of small blocks (i.e., 

multilayer perceptron). The permutation of 16-bit blocks is realized in this model. The 

advantage of this method is that it makes use of the fragmentary training sets for each 

block, at the server side, and the complete training set for the whole multilayer perception 

in order to realize the cryptographic algorithm. This fragmentary training system gives 

some security for the algorithm update process provided the internal structure of the com-

plete topology remains secret. 

For the above research, their research scheme not only failed to study the S-box 

through Boolean function, resulting in the inability to analyze the cryptographic proper-

ties, but also failed to combine the S-box and multilayer perceptron into image processing. 

For the above research, their research scheme not only failed to study the S-box 

through Boolean function, resulting in the inability to analyze the cryptographic proper-

ties, but also failed to combine the S-box and multilayer perceptron into image processing. 

We give a low-power chaotic S-box based on multilayer perceptron to optimize, and apply 

it to image processing to improve its information processing ability in the multilayer per-

ceptron. The application of LPC S-box in multilayer perceptron is shown in Figure 2. The 

contributions of this article are as follows: 

(1) We combine the methods of cryptography and information theory to design a low-

power chaotic S-box, and carry out noise reduction and entropy coding compression 
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in the hidden layer, so that the multilayer perceptron can process images more effi-

ciently and safely. 

(2) Our S-box has the function of replacement, which aims to confuse the binary string 

after encoding and compression, prevent the computer from being invaded illegally 

and maliciously decode the image, so as to encode the image that is difficult to be 

processed by the computer and has low processing efficiency efficiently and safely. 

(3) We selected a group of S-boxes with good cryptographic performance for perfor-

mance testing. The results show that our scheme can effectively resist algebraic at-

tacks, DPA attacks, etc., which can not only make up for the limited nonlinear map-

ping ability of multilayer perceptron, but also improve the security of multilayer per-

ceptron model. 

 

Figure 2. Structure of the LPC S-box in multilayer perceptron. 

2. Preliminaries 

2.1. Boolean Function 

Let n and m be two positive integers, and the vector space ��
� → ��

�  mapping is 

called (n, m) function (i.e., multi output Boolean function or vector Boolean function), 

where � is the multi-input and � is the multi-output. When m = 1, it can be called a single 

output Boolean function. When m = n, we call this multi output Boolean function S-box. 

2.2. Algebraic Degree 

Let F(x) be a (n, m) function, then the algebraic degree of F(x) is defined as: 

��� � = ���
 

{��� (� ∙ �)|0 ≠ � ∈ ��
�} 

where � ∙ � is called the component function, and the algebraic degree of the multi out-

put Boolean function is the minimum value of the non-zero linear combination of all its 

component functions. 

2.3. Algebraic Immunity 

The algebraic immunity of n-ary Boolean function F is expressed by AI (F) and is 

defined as: 

��(�) = ��� {��� � |0 ≠ ���(�)or ���(1 + �)} 

where ���(�) = {� |����, �� = 0}, G is called the annihilator of Boolean function F. 

2.4. Differential Uniformity 

Let F(x) be a (n, m) function, then the differential uniformity of F(x) is: 

�� = ���
������

�
���
����

�
|{����

�|�(� + �) − �(�) = �}| 
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The difference uniformity of F(x) satisfies 2��� ≤ �� ≤ 2�, if it ��  is the maximum 

value 2�, F(x) is an affine function, � and � ∈ ��
�, � is the multi-input, � is the multi-

output. If �� is the minimum value 2���, it is called a fully nonlinear function. 

3. Methodology 

In this paper, a lightweight chaotic S-box is constructed based on entropy coded im-

ages and embedded in multiple hidden layers of multilayer perceptron. The application 

of chaotic S-box in multilayer perceptron is shown in the figure. The chaotic S-box based 

on entropy coded images is an efficient and safe construction scheme. Figure 3 shows the 

interaction of our scheme. 

 

Figure 3. Interaction of our scheme. 

Our scheme includes the following algorithms: pre-processing, denoising, embed-

ding, substitute, block, and supersede. The specific definition of each algorithm is as fol-

lows: 

(1) Pre-processing: first, the original image is processed at the input layer of the multi-

layer perceptron, and a series of binary sequences are obtained through specific al-

gorithms. 

(2) Denoising: in the first hidden layer, the pixels of the input image are filtered to obtain 

a noise reduction image with redundant information removed. 

(3) Embedding: the algorithm performs Levenshtein entropy coding based on each im-

age and completes weighting to obtain a compressed image in the second hidden 

layer. 

(4) Substitute: this algorithm converts the image into a one-dimensional sequence by 

generating the initial parameters of chaos. The blurred image can be obtained by 

shifting the image according to the sequence. 

(5) Block: grouping the long sequence after replacement. 

(6) Supersede: the operation is to input the one-dimensional sequence into the S-box se-

quentially to obtain a new sequence. 

4. Syntax 

4.1. Pre-Processing 

This algorithm runs by the input layer of deep feed-forward artificial neural network. 

The deep structure comprises many layers of non-linearly activating nodes. Each neuron-

like node is connected from one layer to another. The input of one layer is connected to 

another layer with different adjustable weights to form a complete neural network. When 

the original image is input to the deep feed-forward artificial neural network, it will be 

extracted by equation �(�) = ∑ ����
�
��� + �, where �(�) is the activity of the neurons in 

the input layer at a time t, �� denotes the input M × N size image with adjustable weight, 

�� is the weights among the input and hidden layer, and � represents the bias. The fol-

lowing Algorithm 1 describes the implementation process of Pre-Processing. 
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Algorithm 1 Pre-processing. 

1: Input: �� 

2: Output: �(�) 

3: extract features �(�) = ∑ ����
�
��� + � 

4: Return the activity of the neurons �(�) 

4.2. Denoising 

This algorithm is executed by the first hidden layer. Its purpose is to improve the 

image contrast and eliminate the unwanted pixels in an image. In this algorithm, the adap-

tive sigma filter (smoothing filter) places the pixels of the input image in the adaptive 

kernel (i.e., window) with different sizes. Then, it organizes the neighboring pixels �� 

(i.e., ��,���, ����,� , ��,���, ����,�) in the form of a matrix with ‘i’ row and ‘j’ column. In the 

kernel area, the intensity values of pixels are sorted in ascending order. Finally, the noise 

pixels are removed from the filter window by the central pixel ��,� to obtain the denoised 

image ��
�. The following Algorithm 2 describes the implementation process of Denoising. 

Algorithm 2 Denoising. 

1: Input: �� 

2: Output: ��
� 

3: divides the original picture �� into segments; 

4: //segments are horizontal and vertical; 

5: arranges the pixel in a kernel size R*R;  

6: picks the central pixels ��,�; 

7: picks the neighboring pixels ��; 

8: measures the deviation ��� = ∑���,� − ���; 

9: removes the noisy pixels from the filter window; 

10: Return the denoised image ��
�  

4.3. Embedding 

This algorithm (i.e., Levenshtein entropy encoding-based compression) is run by the 

second hidden layer. Embedding can make pictures lossless compression, reduce storage 

costs, and improve transmission efficiency. For this algorithm, each image is weighted by 

� = �(��
�), where � indicates a weight assigned to ��

�, the sum of weight value is equal 

to one (� = 1), and the resultant code is termed a complete code. The length of codeword 

and the weighted path length are determined. Then, the probability and entropy are cal-

culated. Finally, the compressed images are obtained at the second hidden layer by the 

output of previous layer �(�) and the output of deep learning �(�). The following Algo-

rithm 3 describes the implementation process of Embedding. 

Algorithm 3 Embedding. 

1: Input: ��
� 

2: Output: �� 

3: assigns the weight � = �(��
�);  

4: sets the length of codeword �(�) = (��, … , ��); 

5: sets the weighted path length �� = ���; 

6: //�� is the lengths of the code words 

7: calculates the probability of pixels � = 2���; 

8: calculates the entropy �(�) = −� ���� �; 

9: calculates �(�) = � ��
��� + ��

�

���
�(� − 1); 

10: calculates �(�) = �(�)��; 

11: //�� is the weight of hidden layers; 



Entropy 2022, 24, 1552 7 of 14 
 

 

12: //�� is a weight between input and hidden layers; 

13: //�� is an adjustable weight of two layers; 

14: //�(� − 1) is the output from first hidden layer; 

15: Return the compressed image ��  

4.4. Substitute 

The algorithm first generates the secret key of 256bit binary number, and then the 

secret key will be divided into 32 8-bit binary numbers ��(� = 1,2 ··· ,32). Next, the system 

generates the initial parameters (w0, e, q, x0, v1, v2) of chaos, converts the picture into a one-

dimensional sequence D with the size of M × N, and then substitutes the chaotic parame-

ters into the formula:���� = 1 − �|���(1 − ��) − (1/�)|, where �� ∈ [0,1], � ∈ [0,2], � ∈

[0,4], e and q are system parameters. The sequence T with the length of M × N can be ob-

tained by the above formula for eliminating the transient benefits. Then, the substitution 

operation is carried out. Sequence T’ is obtained by arranging the values in sequence T 

from small to large. Displacement sequence T’’ can be obtained according to the position 

information of the elements of sequence T’ in sequence T. Finally, image ��’ can be ob-

tained by displacement of image �� according to the sequence. The following Algorithm 

4 describes the implementation process of Substitute. 

Algorithm 4 Substitute. 

1: Input: �� 

2: Output: ��’ 

3: generates the �� =
(��⊕��⊕��⊕��⊕��⊕��)�� ��

��
���

�� ���(1); 

4: generates the � =
(��⊕��⊕��⊕��⊕���⊕���)�� ��

��
���

�� ���(1) + 1; 

5: generates the � =
(���⊕���⊕���⊕���⊕���⊕���)�� ��

��
���

�� ���(1) + 2; 

6: generates the �� =
(���⊕���⊕���⊕���⊕���⊕���)�� ��

��
���

�� ���(1);  

7: generates the �� =
(���⊕���⊕���⊕���⊕���⊕���)�� ��

��
���

�� ���(1) + 3; 

8: generates the �� =
(���⊕���⊕���⊕���⊕���⊕���)�� ��

��
���

�� ���(1) + 3; 

9: //�� is the lengths of the code words 

10: displaces the �� to one-dimensional sequence �; 

11: eliminates transient effects to get sequence �; 

12: executes substitution operation; 

13: Return the image ��’ 

4.5. Block 

The block algorithm is to segment the image to facilitate the next supersede algo-

rithm. The following Algorithm 5 describes the implementation process of Block. 

Algorithm 5 Block. 

1: Input: ��’ 

2: Output: ��’ 

3: divides the ��’ to m × n numbers block with M/m × N/n size; 

4: converts pixels of each block into one-dimensional sequence ��; 

5: Return the sequence �� 
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4.6. Supersede 

The specific process of this S-box operation is to input the one-dimensional sequence 

�� into the S-box in turn to obtain the sequence ��. The following Algorithm 6 describes 

the implementation process of Supersede. 

Algorithm 6 Supersede. 

6: Input: �� 

7: Output: �� 

8: run equation �(��) = ��, (� = 1,2,···, � × �); 

9: Return the sequence ��  

5. Benchmark Test 

In this section, we estimate the index performance of our S-box and other schemes. 

Experimental environment for performance analysis is as follows: the processor is Intel® 

CoreTM i5-8300H CPU @2.30 GHz; the system type is a 64-bit operating system. Based on 

this system, this paper uses C programming language to calculate nonlinearity, differen-

tial uniformity, and transparency order operations. 

In the multilayer perceptron, a series of operations of S-box can be used in the hidden 

layer. Because the S-box has a high degree of nonlinearity, it is related to the nonlinear 

mapping of the hidden layer. The nonlinearity, difference uniformity, and transparency 

order involved in this paper can be applied to the adaptive function of multilayer percep-

tron, which plays an important role in the optimization of S-box. The relation of attributes 

of S-box based on multilayer perceptron is shown in Table 1 below. 

Table 1. Relation. 

Multilayer perceptron S-box 

Adaptability Reduce manual intervention 

Fault tolerance Nonlinearity 

Weight coefficient Differential uniformity 

Threshold coefficient Transparency order 

Iterative training Multi turn transformation 

Ergodicity Confusion principle 

Stability Reliability 

Low-power Differential power analysis 

We classify all the optimal 4-bit S-boxes and generate 16 optimal S-boxes under dif-

ferent nonlinearity and uniformity conditions according to the affine equivalence princi-

ple (i.e., optimum in differential, linear, and algebraic attacks). In this paper, a new scheme 

of S-box with multilayer perceptron based on Levenshtein entropy coding algorithm is 

proposed, and the performance of various scheme 4-bit S-box is tested. 

Ta Thi Kim Hue et al. [23] defined the 4-bit optimal S-box for the first time, that is, 

the bijective S-box whose nonlinearity and differential uniformity reach the critical value 

4 at the same time. We have found the representative elements of eight types of optimal 

4-bit S-boxes and used intuitive symbols �� to represent different schemes. The optimal 

4-bit S-box of our S-box is named ��,1,2,3,4,5,6,7. The 4-bit S-box proposed by Canteaut et al. 

[24] named ��,�The data of ours 8 optimal 4-bit S-box and Canteaut et al. S-boxes [24] are 

shown in Table 2. 
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Table 2. The 4-bit S-box representation. 

Scheme S-box Representative Element 

LPC  

S-box 

�� 0, 2, 10, 3, 4, 6, 9, 14, 11, 7, 5, 1, 12, 8, 13, 15 

�� 6, 10, 14, 2, 15, 8, 13, 1, 12, 9, 7, 4, 5, 0, 3, 11 

�� 2, 1, 6, 12, 4, 10, 15, 7, 3, 5, 13, 11, 9, 8, 14, 0 

�� 4, 8, 3, 15, 11, 7, 12, 0, 9, 5, 14, 2, 6, 10, 1, 13 

�� 10, 13, 4, 5, 7, 3, 9, 12, 14, 6, 0, 15, 8, 1, 2, 11 

�� 3, 5, 8, 2, 13, 4, 12, 6, 7, 0, 9, 10, 15, 11, 1, 14 

�� 9, 13, 8, 11, 3, 15, 5, 0, 14, 7, 1, 4, 12, 10, 2, 6 

�� 9, 12, 15, 0, 1, 8, 2, 11, 3, 14, 13, 4, 5, 10, 6, 7 

Canteaut et al. [24] 
�� 0, 6, 14, 1, 15, 4, 7, 13, 9, 8, 12, 5, 2, 10, 3, 11 

�� 0, 9, 13, 2, 15, 1, 11, 7, 6, 4, 5, 3, 8, 12, 10, 14 

5.1. Nonlinearity 

In order to resist linear cryptographic attacks, Boolean functions used in cryptosys-

tems should be as far away from the Hamming distance of all affine functions as possible 

[25,26]. The nonlinearity NL(F) of Boolean function F is defined as the minimum Ham-

ming distance between F and all affine functions. The nonlinearity of each scheme is ob-

tained from the data input into the S-box, as in Figure 4. 

 

Figure 4. Nonlinearity of each scheme. 

The upper bound of the nonlinearity of a n × n S-box is 2��� − 2
�

�
��, and the upper 

bound of the nonlinearity of a 4-bit S-box is 6. It can be seen from Figure 4 that the non-

linearity of LPC S-box is up to 4, which is high for 4-bit, because it is difficult to construct 

an S-box close to the upper bound. The higher the nonlinearity, the closer the nonlinear 

ability between input and output is to the upper bound, the stronger the corresponding 

anti-linear attack ability. Hence, LPC S-box has excellent ability to resist linear crypto-

graphic attacks 

5.2. Differential Uniformity 

The value of differential evenness of Boolean function is inversely related to the abil-

ity to resist differential cryptographic attacks. The differential uniformity of each scheme 

is obtained from the data input into the S-box, as in Figure 5. 
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Figure 5. Differential uniformity. 

The range of differential uniformity for n × n S-boxes is 0 ≤ �� ≤ 2�, and the range 

of differential uniformity for 4-bit S-boxes is 0 ≤ �� ≤ 16. By comparison, the difference 

uniformity of the LPC S-box is up to 8, and the difference uniformity of the Canteaut et al. 

[24] scheme is all 4. In terms of security performance, the smaller the maximum value of 

the differential propagation probability, the stronger the S-box resists differential attacks. 

Hence, LPC S-box has excellent ability to resist differential attacks. 

5.3. Transparency Order 

Transparency order is an indicator to measure the ability of Boolean functions to re-

sist differential power analysis (DPA) attacks. The lower the transparency order of Bool-

ean function, the stronger the ability to resist DPA attack. The DPA attack has nothing to 

do with the security of the algorithm, which is an attack based on the characteristics of the 

algorithm on the device [27]. The transparency order of each scheme is obtained from the 

data input into the S-box, as in Figure 6. 

 

Figure 6. Transparency order of each scheme. 

According to the above definition analysis, the transparency order, and nonlinearity 

of the 4-bit S-box are negatively correlated. When the S-box has high nonlinearity, its 

transparency order is low. It can be seen from Figure 6 that the average level of 
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transparency order of LPC S-box is slightly smaller than that of the Canteaut et al. [24] 

scheme. Correspondingly, LPC S-box has excellent ability to resist DPA attacks. 

5.4. Algebraic Degree 

For resisting the Berlekamp Massey-attack and the Ronjom-Helleseth attack, the 

Boolean function in the S-box must have a high algebraic degree. The algebraic degree of 

function F, expressed by ���(�), is the number of variables contained in the highest order 

term in its algebraic normal form. We obtain their algebraic degree by inputting the data 

of S-box, and obtain the data shown in Figure 7 according to the simulation calculation. 

 

Figure 7. Algebraic degree of each scheme. 

The upper bound for the number of algebras of the 4-bit S-box is 4, and it can be seen 

from the figure that the number of algebras of the LPC S-box is up to 3. This has a higher 

algebraic degree for a 4-bit S-box, because it is difficult to construct an S-box close to the 

upper bound, and the closer the algebraic number is to the upper bound, the stronger the 

anti-algebraic attack capability of the corresponding S-box. Therefore, both the LPC S-box 

and the Canteaut et al. [24] scheme have outstanding resistance to Berlekamp Massey-

attack and the Ronjom-Helleseth attack. 

5.5. Algebraic Immunity 

Algebraic attacks are often used in stream cipher systems, threatening the security of 

the entire cryptosystem. In order to resist algebraic attacks, people have proposed a new 

security index of Boolean functions (e.g., algebraic immunity). The algebraic immunity of 

n-ary Boolean function F is expressed by ��(�). We obtain their algebraic immunity by 

inputting the data of S-box, and obtain the data shown in Figure 8 according to the simu-

lation calculation. 
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Figure 8. Algebraic immunity of each scheme. 

The upper bound of the algebraic immunity of an n × n S-box is ��(�) ≤ �
�

�
�, and the 

upper bound of the algebraic immunity of a 4-bit S-box is 2. As can be seen from Figure 7, 

the algebraic immunity of LPC S-boxes all reach the upper bound of 2, which has the 

highest algebraic immunity for 4-bit S-boxes, so the constructed S-boxes are optimal. 

Hence, LPC S-box has excellent ability to resist algebraic attacks. 

5.6. Overall Performance Analysis 

In the benchmark test, the cryptographic performance index of the S-box of the exist-

ing scheme is compared, which is based on the verification of the security of the S-box in 

the multilayer perceptron. The nonlinearity, transparency order, algebraic degree, and al-

gebraic immunity selected in the experiment are supplementary explanations for the se-

curity of the S-box. The data itself reflects the security of the 4-bit S-box. The calculation 

results of the transparency order verify that the correlation between the original data and 

the output data is reduced through the S-box of the hidden layer, and a better anti-DPA 

performance is obtained. Related research has proved that power consumption is the main 

function of Hamming weight of data privacy in displacement operation [28]. If Hamming 

weight of data privacy is disclosed, attackers can determine the number of bits of data 

privacy by solving a series of linear equations. In DPA, the attacker associates the power 

consumption with the data value manipulated in the replacement process, and uses the 

corresponding function solution to obtain data privacy information. Therefore, a high-

performance transparency order will reduce power consumption. High nonlinearity is 

also difficult for attackers to solve linear equations [29], so the calculation of nonlinearity 

can also show the correlation between S-box and low power consumption. Therefore, we 

tested based on the cryptographic performance indicators of the S-box in the multilayer 

perceptron, and proved that LPC S-box reduced the overhead for the overall system op-

eration in terms of computing, thus achieving the goal of low power consumption. 

6. Summary 

In this paper, a low-power chaotic S-box is designed based on the multilayer percep-

tron, and the existing image is preprocessed, denoised, entropy coded compression, S-box 

replacement, and other operations through the algorithm to make the image processing 

more efficient and safe. By comparing the performance of eight types of low-power 4-bit 

S-boxes with that of some commonly used lightweight 4-bit S-boxes, we know that the 

LPC S-box has excellent performance. In the performance test of Boolean functions in low-

power S-boxes, LPC S-box has good nonlinearity, differential uniformity, and transpar-

ency, and can effectively resist linear attacks, differential attacks, and DPA attacks. 
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