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Abstract: Forests are increasingly subject to a number of disturbances that can adversely influence
their health. Remote sensing offers an efficient alternative for assessing and monitoring forest health.
A myriad of methods based upon remotely sensed data have been developed, tailored to the different
definitions of forest health considered, and covering a broad range of spatial and temporal scales.
The purpose of this review paper is to identify and analyse studies that addressed forest health issues
applying remote sensing techniques, in addition to studying the methodological wealth present in
these papers. For this matter, we applied the PRISMA protocol to seek and select studies of our
interest and subsequently analyse the information contained within them. A final set of 107 journal
papers published between 2015 and 2020 was selected for evaluation according to our filter criteria
and 20 selected variables. Subsequently, we pair-wise exhaustively read the journal articles and
extracted and analysed the information on the variables. We found that (1) the number of papers
addressing this issue have consistently increased, (2) that most of the studies placed their study
area in North America and Europe and (3) that satellite-borne multispectral sensors are the most
commonly used technology, especially from Landsat mission. Finally, most of the studies focused
on evaluating the impact of a specific stress or disturbance factor, whereas only a small number of
studies approached forest health from an early warning perspective.

Keywords: forest health; remote sensing; PRISMA; review

1. Introduction

Forests are complex ecosystems distributed around the globe, covering approximately
31% of Earth’s land surface [1]. Such complexity is due to the wide range of climates that
forests occupy as well as their typical structural heterogeneity. Forests encompass not
just physical and biological components but also the processes and interactions between
them. They provide many ecosystem services, such as habitat, raw materials, chemicals,
water and scenic beauty, among others [2]. This makes them an invaluable asset for their
importance to maintaining biodiversity and mitigating climate change, as well as for their
importance to cultural heritage and socio-economic development. Despite these facts,
forests are globally affected by different factors, either natural or anthropogenic, that can
lead to different grades of forest decline, widely observed around the globe [3–6]. Within
the group of natural factors that lead to forest decline, we find a wide variety of elements
such as plagues, droughts or nutrient unavailability [7–9]. These factors have always been
present, so species and communities have evolved or developed different mechanisms
to mitigate them or to recover after these events. There is also a broad range of human-
caused stress factors, particularly those derived from global climate change [10]. The
importance of human-caused stress factors is due to the speed of the produced changes
compared with natural dynamics, their spatial extent and, most of all, the increase in
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the magnitude of natural events caused by anthropogenic influence upon climate change.
Climate change predictions foresee a global rise in temperatures, changes in precipitation
patterns, an increase in extreme weather events and a series of unpredictable changes in
climate trends that will put at risk the global health of forests. These climate changes also
have the potential of interacting with natural pest dynamics, modifying them in a way that
is difficult to predict.

There is not just one definition of forest health because the complexity of the matter,
but many authors have addressed this issue from different approaches [10–12]. Amongst
them, utilitarian–ecological points of view [13] and the ability of forests to adapt to changes
in the environment [14] stand out. This methodological wealth has led to a wide range of
monitoring programmes at different levels, from local to international networks. One of
the most extensive long-term programmes is the International Co-operative Programme on
Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests), in operation
since 1985. Nowadays more than 40 countries are involved. This programme has two
main objectives: (1) to provide a periodic general perspective on the variation of forests
conditions and (2) to gain knowledge of the cause–effect between forest conditions and
stress factors, both natural and anthropogenic, through ongoing monitoring [15]. To
achieve its goals, this programme has set a plot network where forest health is analysed
on a field-data-gathering basis. Despite the good quality and large amount of data, field-
sampling methods have some serious limitations in projects of this scope, such as the
great involvement of manpower, monetary and time resources, as well as the difficulty of
representing spatial variability and heterogeneity.

The broad range of capabilities of remote sensing technologies and the possibility
of assessing health at an early stage [16–18] make remote sensing an excellent choice for
assessing forest status both spatially and temporally at low cost [19]. This wide variety
of strengths, along with the broadness of the concept of forest health, have led to a wide
diversity of studies from a methodological perspective. Some authors have previously
reviewed the use of remote sensing in the field of forestry [20,21] or even focused on
forest health [12,22–27]. The approaches are varied, most of time focusing on specific
attributes related to forest health or, as in the case of Lausch et al. [12,26,27], analysing
in a comprehensive way the different aspects of remote sensing applied to forest health.
Reviews of previous studies are very useful for the scientific community to support decision-
making. Nevertheless, previous approaches to literature review may be subjective and
biased towards specific aspects of the analysed topic, such as focusing on some particular
species or functional type or reviewing just part of the methodological spectrum. For
instance, Pause et al. [25] aimed their review at the integration of in situ and remote
sensing data to assess forest health. Likewise, despite the comprehensive review by
Lausch et al. [12], lesser attention was paid to the multitemporal component of forest
health. The significant increase in papers related to forest health applications of remote
sensing since the last published review in 2018 [27], together with the advances in platforms
and sensors launched since then, makes it necessary to update the current state of the art.
Systematic reviews, which were originally developed in the field of medicine and human
health, provide methods and guidelines for a systematic search of literature, with the aim of
including all relevant studies on a particular topic and summarizing their information [28].
These methods lead to a decrease in selection bias; as such, Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA), an update of the QUORUM Statement,
consists of a methodology for developing systematic reviews in the field of human health,
composed of a 27-item list divided in four different phases [29]. The objectives of this
review are (1) to identify papers published from 2015 to 2020 that studied forest health
with remote sensing techniques, (2) to analyse the different methodological approaches to
this topic and (3) to quantify the role of different remote sensing technologies addressing
forest health issues. To date, no PRISMA methodology has been applied to reviewing the
current literature of remote sensing of forest health. Using PRISMA methodology in this
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paper affords us a good opportunity to evaluate the state of the art in the last six years
(from 2015 to 2020) of the use of remote sensing technologies in the field of forest health.

2. Materials and Methods

This review was conducted following the PRISMA protocol. To perform the review
according to PRISMA, we included original journal articles that explored forest health
based on remote sensing techniques. These papers had to meet the following eligibility
criteria: (1) study forest health from tree to stand scale; (2) only studies of strictly terrestrial
forest were selected; (3) among studies of tree–grass biomes, such as savannah, only those
studies focusing on tree canopy were included; (4) all studies must focus on actual forest
health issues, so those using only simulations were also discarded.

Web of Science was selected as the information source. It was accessed on 15 March
2021 and 30 July 2021 to obtain all the studies included in this review. We used the following
keyword chain to carry out the query: “((remote sensing) OR (proximal sensing)) AND
(forest OR vegetation OR tree OR woodland) AND (health OR decline OR dieback OR
stress OR mortality)”. We also applied language and date filters to obtain only articles
published in English between 1 January 2015 and 31 December 2020. English language
was chosen as it is considered the language of science. Despite some authors recommend
not to exclude papers due to language constraints, this criterion could help to include only
papers truly accessible to the whole scientific community.

After gathering the journal articles, duplicates were removed, and then titles and
abstracts were screened to exclude previous reviews and those articles that did not meet
the eligibility criteria defined above. To assure that all papers met the eligibility criteria this
phase, each paper was assessed independently by two screeners. They verified point by
point the agreement of each record with the criteria and excluded works not in compliance
with all of them. As the criteria was clear and concise, just a few disagreements emerged.
In those particular cases, both screeners checked together the matching points between the
paper and the criteria until agreement.

In this step, we discarded a few articles studying forest health at leaf scale or referring
to species community engagement due to disagreement with eligibility criterion (1), several
papers studying mangroves (eligibility criterion (2)) and some papers simulating forest
health issues (eligibility criterion (3)). The next step was a full reading of the remaining
studies to assess them for eligibility and filtering. After that, the remaining papers were
finally included in our study.

Once we obtained all the papers to include in the review, we elaborated a list of vari-
ables to extract from each study (Table 1). Variables were selected to represent information
structured by the location and ecological aspects of the studies (spatial scale, functional
type, biome and geographic region), remote sensing technology used (technology, sensor
type, platform and/or satellite programme) and applied methodologies (health parameter,
early warning, analysis type, analysis unit, classification/regression, statistical method,
machine learning and machine learning method, physically based modelling, validation
and time series analysis). The spatial scale was defined according to the extent of the study
area of each paper. Local scale was set as a small study area with specific characteristics of
the location; regional scale comprised broader areas comprising one or several common
biomes; continental scale was chosen when the study areas closely matched with some
of the geographical regions. These variables tried to represent in a broad manner the
possibility of techniques and methods developed to study forest health. Every article was
read extensively and information was extracted to a table according to the target variables.
Each paper was independently reviewed by two of the authors to avoid inconsistencies
between the extracted data. The tables were compared, and disagreements were discussed
and resolved by the reviewers involved. Subsequently, the extracted data were analysed
using RStudio software with customized scripts in order to obtain the results and to rep-
resent them. Data analysis focused on describing the frequency of the different elements
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within each variable. No attempt was done to evaluate the quality of the different papers
evaluated, i.e., no critical appraisal was done.

Although critical appraisal is strongly recommended for systematic reviews [30], it is
not necessary for systematic maps, which is what our systematic evidence synthesis is.

Table 1. Summary of the variables extracted from the analysed papers.

Variable Extracted Data

Year Year of publication
Spatial scale Local, Regional or Continental

Functional type Conifer, Broadleaf or Mixed
Biome Biomes according to Olson [31]

Geographic region Name of the geographic region
Technology Remote sensing technology used
Sensor type Passive, Active or Both

Platform Satellite, Airborne, Terrestrial or UAV
Satellite programme Name of the programme

Health parameter Parameter used to study health
Early warning Yes or No
Analysis type Quantitative or Qualitative
Analysis unit Object, Pixel or Subpixel

Classification/Regression Classification or Regression
Statistical method Parametric, Nonparametric or Both
Machine learning Yes or No

Machine learning method Method used
Physically based modelling Yes or No

Validation Yes or No
Time series analysis Yes or No

3. Results
3.1. Selected Papers

From the 3722 papers returned by the query in Web of Science, the subsequent analysis
of the title and abstract resulted in the exclusion of 3566 papers, 54 of them due to being
previous reviews. Finally, another 47 papers were discarded due to a lack of compliance
with the eligibility criteria. Therefore, 107 articles were finally analysed in our study.
Figure 1 shows a flowchart of the query process followed.

Figure 1. PRISMA flow diagram.
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After selecting the articles to analyse, all of them were extensively read. The informa-
tion from the selected variables was extracted and included in Appendix A, Table A1.

The analysis of the number of papers published by year tended to increase in the
6-year period of study, with a minimum of 11 papers in 2016 and a maximum of 24 in 2019.
For 2020, the number of papers was 22, suggesting a sustained rate of papers in the last
year (Figure 2).

Figure 2. Number of published papers during the period included in the review.

3.2. Location and Ecological Aspects

The studies included in this review, assessed forest health at different spatial scales.
The vast majority of the studies (77.6%) were carried out at a local scale, followed by
the regional scale (19.6%), whereas 2.8% of the studies considered the continental scale.
Regarding the location of the studies, an even distribution is observed between North
America (29.9%) and Europe (29%), followed by Asia (22.4%). The remaining studies were
carried out in Oceania (10.3%), South America (9.3%) and Africa (1.9%). Moreover, there
were two studies encompassing more than one geographic region: North America and
South America [32] and Europe, Asia and Africa [33] (Table 2).

The third variable analysed considered the biome evaluated. Temperate broadleaf and
mixed forests stood out as the most studied biome, with 35.5% of the studies carried out in
this biome, followed by Mediterranean (19.6%), tropical and subtropical moist broadleaf
(13.1%) and temperate needle forests (12.1%). The remaining types of biomes were studied
to a much lesser extent, none of them reaching more than 10% of the studies. Regarding
the functional type studied, broadleaf forests were the most analysed (41.1%), followed by
conifer forests (40.2%), with the health of mixed forest being the least evaluated (18.7%)
(Table 2). While in North America and Europe conifer was the most studied functional type
(75% and 77%, respectively), in Asia, South America and Oceania, broadleaf was the most
studied (58.3%, 70% and 72.7%, respectively). Europe, Asia and Oceania also stood out as
the geographical regions where local scale studies were developed to a higher degree (90%
of the studies in Europe, 87.5% in Asia and 90.9% in Oceania).
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Table 2. Results of parameters related to the location and ecological aspects of the papers, including scale, continent,
functional type and biome.

Scale Total % Geographic Region Total % Functional Type Total %

Local 83 77.6 North America 32 29.9 Broadleaf 44 41.1
Regional 21 19.6 Europe 31 29 Conifer 43 40.2

Continental 3 2.8 Asia 24 22.4 Both 20 18.7
Oceania 11 10.8

South America 10 9.35
Africa 2 1.9

Biome Total %

Temperate broadleaf and mixed forests 38 35.5
Mediterranean forests, woodlands and scrub or sclerophyll forests 21 19.6

Tropical and subtropical moist broadleaf forests 14 13.1
Temperate coniferous forests 13 12.1

Several 9 8.4
Temperate grasslands, savannas and shrublands 4 3.7

Tropical and subtropical dry broadleaf forests 3 2.8
Deserts and xeric shrublands 3 2.8

Boreal forests/taiga 2 1.7

3.3. Remote Sensing

Our analysis included the following variables concerning remote sensing science and
technology: platform, technology and programme. Results show that 72.9% studies used
satellite data, 22.4% used airborne manned platforms, 10.3% used unmanned aerial vehicles
(UAV) and 4.7% used terrestrial platforms (Table 3). Furthermore, the vast majority of the
studies (91.6%) were based on a single platform, 7.5% included two platforms and only
0.9% used three different platforms.

Table 3. Platforms where the sensors were placed.

Platform Total %

Satellite 70 65.4
Airborne 18 16.8

UAV 7 6.5
Airborne and Satellite 4 3.7

Terrestrial 3 2.8
Satellite and UAV 2 1.9

UAV and Airborne 1 0.9
Satellite and Terrestrial 1 0.9

Airborne and UAV and Satellite 1 0.9

With regard to the technology used, passive sensors were indisputably the most
widely used technology, with 85% of the studies using them, whereas active sensors were
used alone just 4.7% of the time. The remaining 10.3% combined both types of sensors
(Figure 3a). More specifically, multispectral data were used in 88 studies, either alone or in
combination with other sensors, while LiDAR was used in 15 studies, hyperspectral in 16,
thermal in 3 and radar and microwaves in 1 study each (Figure 3a,b).

As previously stated, most sensors used were on board satellite platforms. The
most frequently used imagery corresponded to the US programmes Landsat (51.3%) and
Terra/Aqua (26.9%), followed by the European Copernicus programme (16.7%) (Figure 3c).
Following these programmes appeared commercial satellites (Worldview, Digital Globe)
with very high spatial resolution capabilities. Finally, 17.9% of the papers used data from
different programmes (Figure 3d).

No apparent differences on the usage of different remote sensing technologies among
different functional types were found. On the contrary, multispectral technology was the
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most employed among all biomes (82.2% of the studies), but in the cases of temperate
coniferous forests and desert and xeric shrublands, it was used in 100% of their studies (13
and 3 papers, respectively).

Figure 3. Summary of result related to remote sensing technologies, including: (a) type of remote sensing technologies,
(b) number of different remote sensing technologies included in every study, (c) satellite programme and (d) number of
different satellite programmes included in every study.

3.4. Applied Methodologies

Due to “forest health” being an open concept, we flagged different health parameters
analysed in the different studies. Moreover, most of the studies analysed a single health
parameter (66.6%), but some analysed forest health based on several parameters, such
as the case of Tane [34], who tried to detect conifer mortality under drought and beetle
infestation (Figure 4). The use of the different health parameters among the different



Forests 2021, 12, 1134 8 of 35

biomes appears to be generally well distributed, with the exception of the use of stress and
plague in tropical and subtropical moist broadleaf forests, temperate coniferous forests
and tropical and subtropical dry broadleaf forests. In these biomes, stress and plague
parameters were used in the 71.4%, 84.6% and 100% of the cases, respectively.

Figure 4. Health parameters addressed in each paper and combinations.

Developing early warning systems has been pointed out as paramount to improve
forest management and to reduce and mitigate the impact of climate change [35,36]; only
14% of the studies developed early warning approaches to forest health, whereas the
remaining 86% of the studies focused on assessing the impact of different elements on
forest health (Table 4). In 13 out of 15 papers that included early warning approaches,
the studied health parameter was stress or plague. In addition, no apparent relationship
between early warning approaches and studies developed in different biomes was found,
except in the case of temperate broadleaf and mixed forest. In this case, this approach was
present in 8 out of 15 studies. Furthermore, articles included in this review usually studied
forest health at a specific moment, but 42 (39.2%) of the papers employed multitemporal or
time series analysis.

This assessment was mainly carried out qualitatively, with 45.8% of the studies pro-
viding continuous data, whereas 37.4% were based on quantitative analyses providing
the degree of damage. The remaining 16.8% provided both, quantitative and qualitative
assessment (Table 4). Regarding the unit of analysis, most of the studies (72%) used a pixel
approach, although in the case of high-resolution imagery, the Geographic Object-Based
Image Analysis (GEOBIA) approach was preferred (15.9%). Both approaches were used in
nine (8.4%) of the papers analysed, and the remaining papers included a subpixel approach
(Table 4). It should be noted that all of the studies but one that applied two or more of these
approaches in the same research included OBIA in their methodology, and all of them
developed the study at local scale.
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Table 4. Results of parameters related to the methodological approach of the papers, including early warning, analysis type,
analysis unit, classification/regression and machine learning method.

Early Warning Total % Analysis Type Total %

No 92 86 Qualitative 49 45.8
Yes 15 14 Quantitative 40 37.4

Both 18 16.8

Analysis Unit Classification/Regression

Pixel 77 72 Classification 40 37.4
OBIA 17 15.9 Regression 39 36.4

Subpixel 2 21.9 Both 18 16.9
Pixel and OBIA 9 8.4

Pixel and Subpixel 1 0.9
Subpixel-OBIA 1 0.9

Machine Learning Method Total %

Random Forest 20 18.7
SVM 3 2.8

Boosted Regression Trees 2 1.9
kNN 2 1.9

CART and Random Forest and SVM 1 0.9
Cubist and Random Forest and SVM and Extreme Gradient Boosting Trees 1 0.9

Feature Analyst 1 0.9
kNN and SVM and Random Forest 1 0.9

Maximum Entropy Algorithm 1 0.9
SVM and SAM 1 0.9

SVM and Gradient Boosting Machine 1 0.9
SVM and kNN and Boosted Regression Trees 1 0.9

TreeNet 1 0.9
Random Forest and kNN 1 0.9

Neural Networks 1 0.9
NA 68 63.5

Concerning the statistical analysis techniques, classification was used more often
(37.4%) than regression(36.4%) since most of the papers aimed at providing a qualitative
analysis of forest health status, focusing on different health parameters such as stress or
plagues among others rather than a quantitative representation of the damage. A total of
16.8% of the papers provided both a quantitative and qualitative analysis. Remarkably,
9.3% of the studies did not used either regression or classification approaches, but used
correlation analysis [37–39], inversion of radiative transfer models [40] or time series
analysis [41] (Table 4). Interestingly, despite the recent popularity of machine learning
algorithms, a bit more than a third of the studies (36.4%) used this modelling framework,
and almost two-thirds used other statistical approaches. Within the machine learning
approach, Random Forest was the most preferred algorithm (Table 4). Furthermore, most
of the articles made use of empirically based modelling, but only two of them (1.9%) used
physically based models.

Finally, with regard to the validation of the studies, 67.3% of them performed some
kind of validation to assess the quality and the potential of the study.

4. Discussion

Forest health has been studied for decades from different perspectives. The literature
on this topic is very large and varied. In the last 6 years, an increase in the number of
papers related to forest health and remote sensing has been observed, especially since
2018. It should be noted that as of this year, Copernicus data have been used in some of
the papers and UAVs have begun to be used to gather data. In addition, the rise in the
number of papers fitting this scope might reflect the interest in studying the increase of
observed forest decay and mortality worldwide [42,43], in addition to an increase of interest
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in public opinion on topics related to the effects of global climate change. Most papers
included in this review focused on studying forest health at the local scale. Gathering
field data, especially in broad areas, is time and budget consuming, so developing remote
sensing-based methodologies allowing researchers to scale up local estimates of forest
health to broader areas is an interesting topic that requires further attention.

Despite the fact that forest decay has been reported across the globe, most of the
studies were carried out in North America and Europe. We found that diverse biomes were
represented through the different articles in our study from temperate to Mediterranean or
tropical. Tropical forests, in spite of occupying a high percentage of forested lands on the
planet and harbouring a great biodiversity, were not as highly represented in the papers
included in this review. The high cloud coverage present in most of the year in this biome
constrains the possibility of developing studies applying optical methods. Nevertheless,
radar technology can perform better in this kind of condition, but it was applied only
once [41] in tropical biomes in the papers included in the review. Furthermore, remote
sensing has been traditionally aimed at studying carbon content and fixation [44] due to its
important role in the global carbon cycle. Nevertheless, in addition to deforestation and
forest degradation, these forests also face health issues affecting their functioning.

It should be noticed that a high number of studies focused on Mediterranean forests,
even though their presence on the planet is limited, based on their total area. The impor-
tance of these forests lies in their function as biodiversity hotspots, along with tropical
forests [45]. Mediterranean forests, especially those placed in the Mediterranean Basin,
host a great variety of vegetation species and many of them are endemic [46]. In addition
to being historically affected by human activity, this type of forest is prone to be affected in
the future by extreme droughts, and some of the diseases present in forests that are now
considered minor may become more severe. Furthermore, invasion of exotic species and
punctual disturbances such as fires or storms are expected to increase [47].

Southern Hemisphere woodlands (some of them in Mediterranean areas) share some
of the risks mentioned above, such as changes in precipitation and fire regimes [48]. Studies
focusing in this area during the length of our review tended to use multispectral sensors
carried on aircrafts as the main technology. Future studies could benefit from methodolo-
gies developed in other Mediterranean areas that make use of the different sensors placed
in satellites, in addition to exploiting the time series generated by programmes such as
Landsat or Copernicus.

We should underline the low number of studies in taiga, even though it represents a
high percentage of forested land on the planet. It also contrasts with the tradition of Nordic
countries in forest management and the important role that this biome plays as a carbon
pool [49].

Regarding the functional types studied in the different papers, our results indicate
that broadleaved forests were studied at an extent that was similar to conifer forests, both
ahead of studies that comprised mixed or both functional types together. This fact concurs
with data extracted from FAO [50] that claims that the production of coniferous industrial
roundwood in 2018 was 30% of the global production, while non-coniferous reached 22% of
the total. This can be explained by the interest in conducting research based on the economic
return of the forest (for timber production), the chances of obtaining some kind of ecosystem
service [51] or the changes in forest value due to climate change [52]. Furthermore, the
interest in studying conifer forests might be related to the special sensitivity to climate
change of these forests, especially to droughts, and the changes in growth rates and
increased mortality rates [53].

Satellite platforms stand out as the most used in the articles analysed due to their
global systematic observation of the Earth’s surface, the catalogue of historic data and the
high temporal and spatial resolution of some of them. Moreover, the free access to Landsat,
MODIS and Sentinel data, and their suitable spectral characteristics to evaluate different
forest health parameters, makes them the most commonly used. Despite the recent release
of Sentinel-2 imagery with better temporal and spatial resolutions and with the inclusion of
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a red-edge band, Landsat is still the satellite mission most employed in this kind of study.
Some of the potential studies of this kind usually take a long time to gather the necessary
data, sometimes years. Thus, it is possible that this trend will change in the near future.

Sensors on board manned or unmanned aircrafts and terrestrial platforms offer higher
spatial resolution information, which can provide more spatial detailed information. More-
over, structural information derived from photogrammetric point clouds using structure
from motion (SfM) techniques can complement the spectral information of these sensors.
Nevertheless, airborne UAV and terrestrial platforms are more limited in terms of spatial
and temporal coverage. Despite UAV being far less scalable and with higher unitary cost
than using satellite data, hence limiting the possibility of gathering data over time, the use
of UAVs to collect remote sensing data has been increasing over the years. In fact, the first
article found in our review that included this kind of platform dated from 2017 [54], and
in 2018 we found three articles using UAV data [55–57], four in 2019 [58–61] and three in
2020 [62–64]. UAVs are very versatile platforms that can host many different sensors, can
obtain very high spatial resolutions, fly over difficult-to-reach areas and are a relatively
cheap tool but are limited by weather conditions, flight regulations, payload and autonomy
range, which limits the area of study [65,66]. Terrestrial platforms, however, have some
accessibility limitations and low potential to cover large areas.

Different remote sensing techniques can help to assess forest health in different ways.
Methods based in shortwave spectral information of vegetation canopies provide us with
information on the biophysical condition of the vegetation [67] as well as on its moisture
content [68,69] and structural information [70], but their penetration capability through
the canopy is very limited, and it is also greatly influenced by weather conditions, mainly
cloudiness.

According to the results of this review, multispectral sensors are the main choice for
forest health assessment. They normally take information in three zones of the electromag-
netic spectrum where vegetation has different behaviours. The visible region (0.4–0.7 µm),
where pigment concentration has a relevant importance due to a high absorption of solar
irradiance, yields low reflectance values. In the near-infrared region (NIR 0.7–1.2 µm),
higher reflectance values in vegetation are caused by cellular structure, which produces a
larger leaf transmittance and reflectance, increased by the multiple scattering between the
canopy leaves. In the boundary between the visible and NIR zones, the red-edge is located.
Bands in this zone have a high potential to estimate chlorophyll and nitrogen content [71],
as it is a transition zone between the high leaf chlorophyll absorption in the red and very
little absorption in the NIR. Lastly, mid-infrared is divided into short-wave infrared or
SWIR (1.2–2.5 µm) and mid-infrared (2.5–8 µm), with the former one having potential
uses in measuring moisture content [72]. Among the sensors and platforms capable of
obtaining information at these wavelengths are Landsat, MODIS, MSI from Sentinel-2,
Worldview and RapidEye, as well as hyperspectral sensors such as AVIRIS. Multispectral
sensors covering some specific wavelengths placed in the red-edge, NIR and SWIR regions
have proved their potential to assess forest health indicators such as water content [73],
leaf discoloration [74], leaf area index [75] and pigment content [76]. Furthermore, most
effects due to the presence of plagues are shown by any of the above indicators, making
multispectral sensors suitable to also assess and detect forest pest damage. As an example,
Abdullah [77] found significant differences in NIR and SWIR regions between healthy and
infested trees with bark beetles, as expected from the changes produced by this plague in
the physiological and biochemical status of the trees. In addition, it is important to consider
that both plagues and abiotic stresses such as droughts can show similar symptoms.

Hyperspectral technology uses the same kind of information as multispectral, but
it is gathered from a greater number of bands with narrower bandwidth that provide us
with very specific information. Ahmad [78] used hyperspectral bands to calculate different
indices related to the biochemical content of the vegetation, such as carotenoid reflectance
index 1 (CRI1) or photochemical reflectance index (PRI), as well as information related
to canopy water content, such as the water band index (WBI). It should be noted that
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computing vegetation indices with hyperspectral data might be considered a sub-optimal
usage of this type of information, as the relevant information is extracted from only a few
bands. However, no study in this review was found that optimally used the hyperspectral
data cube by applying dedicated techniques such as inversion of radiative transfer models,
feature extraction or spectral mixture analysis. Despite hyperspectral imaging being able
to offer good capabilities to detect impacts of stressors on vegetation, the low number of
operational satellite missions during the period analysed limited their application. Recently
launched and future satellite missions such as CHIME, PRISMA, EnMAP or HyspIRI may
help address this lack.

Active sensors emit microwave beams in the case of radar, or laser beams in the
case of LiDAR, and measure the time and/or intensity of the beams to travel back to the
sensor after the surface of study reflected them. These kinds of sensors are very useful
for studying vegetation structure due to their capacity to penetrate through the canopies.
In addition, synthetic aperture radar (SAR) has the possibility of operating under cloudy
weather conditions, unlike optical sensors or LiDAR. Despite this fact, the information that
it provides is limited to moisture and structural information [79,80], yet the potential of
SAR sensors remains largely unexplored [81].

LiDAR is also a good choice when the objective is to study vegetation structure,
allowing accurate assessment of defoliation associated with forest decline and insect
attacks [61,82,83]. Among the studies included in the review, Balzotti [84] used LiDAR
data to study temporal variation of forest structure parameters, such as canopy height and
gap distribution, and Huo [85] used it to explore different grades of defoliation. Radar data
are commonly used to study parameters or events related to moisture content as in Van
Emmerik [86], where passive radar was applied to detect water stress in the Amazon.

Including data obtained from different kinds of sensors in the methodology has been
tested not just in forest health studies but also in other fields [81,87–90]. Studies that com-
bine sensors try to take advantage of the strengths and to avoid weak points of the different
technologies. Approaches are varied; we found in this review that studies that fulfil this
characteristic tend to integrate the data in different phases of the methodology, exploiting
the potential of each technology. For example, Abdullah [77] used two different types of
sensors—multispectral (OLI) and thermal (TIRS), both carried by Landsat 8 satellite—to
generate vegetation indices and canopy surface temperature and to subsequently integrate
them in the analysis of bark beetle infestation through the use of leaf traits, such as stomatal
conductance, chlorophyll fluorescence and water content. Similarly, Campbell [62] inte-
grated information from three different platforms, including UAV, airborne and satellite,
and three different kinds of sensors, RGB, LiDAR and multispectral. Thus, they combined
the spectral and the structural information that passive and active sensors are able to
provide, such as tree crown delineation (LiDAR), individual tree mortality interpretation
(RGB) and tree mortality at regional scale (multispectral). In spite of their more complex
procedures and sometimes the need for higher processing capacity, combining different
remote sensing technologies could lead to a better understanding of forest health.

Just as in the case of multisensor approaches, studies that incorporate data from
different platforms try to bring specific strengths together. Navarro-Cerrillo [91], for
example, used airborne data (LiDAR) to segment images at the individual tree level, while
using satellite imagery to generate vegetation indices to classify tree-damage levels. In
the case of Campbell [62], UAV, airborne and satellite data were integrated to develop a
multiscale approach to mapping tree mortality.

The variety of technologies and methodologies applied to the study of forest health
aligns with the variety of forest health definitions. It is an open concept that—depending
on the scale, among other factors—can be studied from different perspectives. Concerning
forest health, according to Trumbore [10], at the scale of an individual, health can be
defined as the absence of disease. If our interest shifts to larger areas, this concept gets
more diffuse, and indicators of forest health turn out to be more difficult to define. In this
review, we included different keywords or concepts that could be grouped in two different
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classes—namely, causes and consequences of a decrease in forest health. Most of the articles
focused on one of them, but as a result of including the two classes of concepts and the
co-occurrence of these kind factors, it was easy to find papers that targeted more than
one of these concepts. Different causes of disease and observed symptoms used to appear
together, many times one as a direct consequence of the other, such as in Pérez-Romero [92],
where the presence of a plague, in this case Thaumetopoea pityocampa, caused different levels
of defoliation. Similarly, in Marusig [39], the stress produced by droughts led to forest
decline. Regarding forest health terms, most of the studies focused on plagues, followed
by decay. The results from studies dealing with changes in the relationship between forests
and pests or pathogens due to climate change were varied. Nevertheless, expected rising
temperatures, extreme and more frequent droughts and climate extremes will increase
forest vulnerability [93]. Moreover, native plague and pathogen species that in the past
were not a significant problem in forests could become one in the future [94].

Most of the studies attempted to quantify the damage caused by different biotic or
abiotic factors on forest health, yet development of early warning systems based on remote
sensing could allow making decisions about corrective measures to avoid or reduce the
impact of such factors on forest health. The meaning of early warning varies among
different fields, but some studies try to answer key questions about this concept, such as
“How early is early?” or “Why is this a threat?” among others [95]. An early knowledge
of forest health decline could help us to prevent not just ecologic but also economic
losses. According to Trumbore [10], it is very important to define thresholds for rapid
forest decline since it could take decades to restore the capacity of forests to provide
services. In other areas such as security, research has shown that the economic benefits of
developing and implementing early warning systems sometimes exceed the costs by more
than 10 times [96]. We found that methodologies applied to assess forest health in a direct
early warning approach were varied, but almost every study focused on plagues or stress.
Abdullah [77] tried to identify an early stage of bark beetle infestation on the differences in
some leaf traits between infested and healthy leaves. Likewise, Zhan [63] studied three
stages of a pest infestation, one of them the early stage, when the attack has been detected
but the leaves are still green. The three stages were identified based on visual assessment
of canopy colour, defoliation damage and the presence of beetle holes in the trunk. On
the contrary, Rogers [97] studied early signals of mortality based on the temporal series of
a vegetation index. We should underline the lack of studies addressing early symptoms
or setting early warning thresholds despite the importance of the matter. Moreover, the
existence of satellite programmes, such as Landsat, with a large temporal database, in
addition to relatively new missions with more suitable technical specifications, such as
Sentinel, along with better and powerful processing machines, makes it easier nowadays
to develop and implement forest health early warning systems.

Despite having found just fifteen papers addressing this matter, many of the method-
ologies developed in the rest of the articles could be adapted and applied in an early
warning perspective, especially those including time series analysis and spectral trajec-
tories, such as Bode [98], Cohen [99] or Assal [100]. Methodologies based on structural
changes, therefore those using active sensor as LiDAR or SAR, are less susceptible to be
applied to address early symptoms due to structural changes taking longer to manifest than
biochemical or water content changes. Moreover, structural changes are a manifestation
of a more severe impact than changes in water or pigment content, as in the case of bark
beetle infestation. Changes between its first infestation stage and its second stage are
characterised by changes in spectral information, in particular leaf colour, while changes
between the second and third stages are based in structural changes that concretely involve
defoliation [77]. Finally, it is noteworthy to admit that the capability of remote sensing data
for detecting a symptom of a disease at an early stage is limited to the type of affliction.
For example, early warning of defoliating insects is limited to cases in which the attack has
already succeeded (i.e., observed by a decrease in leaf biomass/pigment concentration),
and hence the damage has likely been already significant. On the other hand, droughts



Forests 2021, 12, 1134 14 of 35

and/or trunk/root diseases that cause a hydric stress are detected earlier with thermal
infrared data than with data in the solar spectrum, as stomata closure induces an increase
of canopy temperature.

In addition to the wide variety in the remote sensing technologies that the studies
chose, their statistical methods were also diverse. In terms of statistical methods that help
to develop different kinds of monitoring systems, time series analysis and multitemporal
analysis stand out. We found diverse approaches to this matter, but most of them were
based in the study of the trend or the temporal variation of a parameter during a temporal
series, such as in Anderson [68], Assal [100] or Pasquarella [86]. They are very useful
tools that help to understand forest health dynamics [101] and are a good complement to
early warning systems. In this review, we found that a bit more than a third of the articles
made use of time series data. On the contrary, the combination of early warning and time
series was found in only seven of the articles, most of them including Landsat data as
part of their dataset. This fact is possibly due to Landsat collections offering free of charge
satellite imagery from 1972 to the present time, and hence, the importance of long-term
data collection programmes, such as some of the earth observation satellite programmes.

In terms of the minimum analysis unit, the pixel has been the most typically used,
followed by object-based and sub-pixel analysis, respectively. The pixel has been broadly
used as the unit of analysis because it is the minimal unit in a digital image and its use is
therefore capable of being extended to studies at every scale and from a wide variety of
methodological perspectives. On the contrary, OBIA has been applied in fewer studies and
mostly in those where the need of identifying objects or individual trees is crucial. This
methodological approach is very useful in studies with very high spatial resolution data
availability. Spectral unmixed techniques have been commonly used in agricultural studies
and have been applied together with hyperspectral data. In our study, we found that in
the last 6 years, spectral unmixing methods have been used in the field of forest health
with spectral satellite data. He [102] used spectral unmixing techniques to extract spectra
from green vegetation, non-photosynthetic vegetation and bare soil and later used OBIA
techniques to generate high resolution disease maps.

Depending on the perspective and the approach of the study, quantitative or quali-
tative methods were used according to the need to estimate or measure (quantitative) or
according to the need to differentiate between different health statuses (qualitative). It
must also be noted that some qualitative studies were based in a previous quantitative
analysis. According to the chosen statistical approach, modelling techniques were chosen.
Parametric and nonparametric techniques were found among the papers. One of the facts
to be emphasized is the increase during last five years of studies that included machine
learning (ML) within their statistical methods. Recent progress in processing capacity and
the development of new methods and algorithms will drive new uses in the near future.
These techniques have the potential to deal with highly dimensional data in addition to
being able to classify into categories the complex features that have been widely used in the
field of forestry. Typical applications of these particular statistical methods are the estima-
tion of structural parameters [103–105], modelling and prediction of disturbances [106,107],
species classification [108,109], tree biochemical traits retrieval [110,111] and biomass dy-
namics [112,113]. We found that Random Forest (RF) is the ML algorithm that was most
applied. It could be used both as classifier and as a regression algorithm, and according
to Cutler [114], RF has some advantages compared with other ML methods. Apart from
performing with high accuracy, RF allows the researcher to determine the importance of
the predictor variables, hence allowing for a more transparent interpretation of the model
structure and variable sensitivity than other ML methods, such as artificial neural networks,
which could act more like a black box.

Additionally, RF has the capability of modelling complex relationships between differ-
ent variables and the flexibility to develop several statistical analyses. Apart from RF, other
ML methods were used by Hawrylo [115], who compared the performance of some ML
algorithms for estimating pine defoliation. Regarding statistical methods, the low appear-
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ance of physically based methods among the studies included in this review should also be
noted. Only two articles [40,116] included this technique in their methodologies. Physically
based methods, such as radiative transfer models (RTM), describe the absorption, transmis-
sion and multiple scattering processes that occur when electromagnetic radiation passes
through a medium, in this case a tree canopy. The inversion of RTMs offer researchers a
great opportunity to retrieve different vegetation variables (e.g., canopy structure, pigment
and water concentration, leaf temperature) with remote sensing data when access to in
situ data for developing a statistical model is limited. Despite their potential to achieve
this goal, research including this approach has to deal with problems such as the need
for high processing capacity, which can be solved nowadays with the current computing
capabilities of a personal computer, but also particularly with parallel cloud computing
and the use of graphical processing units (GPUs).

5. Conclusions

This paper reviewed the use of remote sensing for the assessment of forest health in a
systematic way. The number of different sensors and platforms is limited, but nonetheless,
the flexible combinations of them make remote sensing a good perspective from which
study forest health. Despite this review being conducted to cover just the last six years, it is
possible to observe how the remote sensing field and specifically its forest health branch is
incorporating new methods and technologies as they evolve.

The US Landsat mission was the most used source of data among the studies included
in this review. In spite of new satellite missions with a priori better specifications to our
goal, such as Sentinel, the long data history and the open data politics (as with Copernicus
programme) still makes Landsat the most chosen. Despite the development and emergence
of new technologies and methods, multispectral data are still the most used remote sensing
technology in the field of forest health.

In spite of the knowledge of forest health early warning systems, as well as the
knowledge of current approaches to forest health and all the available methodological
strategies, the development of early warning systems is still required to mitigate the impacts
of climate change. Moreover, the combination of time series analysis and multitemporal
studies with early warning approaches could boost the performance of these studies.

Methodological approaches to forest health monitoring and assessment from a remote
sensing perspective are varied and their use depends on the goals that are sought to achieve
in each study. Among the different statistical methods found in the analysed papers ML
algorithms stood out, and their use has been increasing over the years both for regression
and classification purposes.
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Appendix A

Table A1. Extracted data from the articles included in the review.

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[117] 2019 Regional Broadleaf Temperate broadleaf and
mixed forests Asia Multispectral Passive Satellite Landsat Plague

[77] 2019 Local Both Temperate broadleaf and
mixed forests Europe Multispectral and

Thermal Passive Satellite Landsat Plague

[78] 2020 Local Broadleaf Tropical and subtropical
moist broadleaf forests Asia Hyperspectral Passive Airborne Health and

Stress

[32] 2019 Regional Broadleaf Several
North America

and South
America

Multispectral Passive Satellite Landsat Stress and
Mortality

[118] 2015 Regional Several South America Multispectral Passive Satellite Terra/Aqua Stress

[68] 2018 Regional Broadleaf Tropical and subtropical
moist broadleaf forests South America Multispectral Passive Satellite Terra/Aqua Stress

[119] 2015 Local Broadleaf Tropical and subtropical
moist broadleaf forests South America Hyperspectral Passive Satellite NMP Stress

[120] 2018 Local Broadleaf Tropical and subtropical
moist broadleaf forests Oceania Multispectral Passive Terrestrial Plague

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation TimeSeries

Analysis

[117] No Qualitative OBIA Classification Nonparametric Yes TreeNet No Yes Yes
[77] Yes Quantitative Pixel Regression Both No No Yes No
[78] No Quantitative Pixel Classification No No Yes No
[32] Yes Quantitative Subpixel Regression Parametric No No Yes No

[118] No Qualitative Pixel Classification No No No Yes
[68] No Quantitative Pixel Classification No No No Yes

[119] No Quantitative Pixel Classification No No No N
[120] No Quantitative Pixel Regression Parametric No No Yes No

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[100] 2016 Regional Both Temperate grasslands,
savannas and shrublands North America Multispectral Passive Satellite Landsat

Mortality,
Decline and

Stress

[121] 2020 Local Broadleaf Temperate broadleaf and
mixed forests North America LiDAR Active Terrestrial Plague and

Decline
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Table A1. Cont.

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[122] 2017 Local Conifer Temperate grasslands,
savannas and shrublands North America Multispectral Passive Satellite

Terra/Aqua and
Landsat and
Copernicus

Plague and
Mortalityt

[123] 2019 Local Conifer Several Europe Multispectral Passive Satellite RapidEye Decline and
Health

[84] 2017 Local Broadleaf Tropical and subtropical
moist broadleaf forests Oceania LiDAR Active Airborne Decline

[70] 2017 Local Broadleaf Tropical and subtropical
moist broadleaf forests Asia Hyperspectral and

Multispectral Passive Satellite EO-1 Stress and
Decline

[67] 2017 Local Broadleaf Temperate broadleaf and
mixed forests Oceania Hyperspectral Passive Airborne Health and

Stress

[124] 2015 Local Conifer
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Multispectral Passive Satellite Terra/Aqua Stress

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[100] No Quantitative Pixel Regression Parametric No No Yes Yes

[121] No Qualitative Pixel Classification Nonparametric Yes Random
Forest No No No

[122] No Quantitative Subpixel Both Parametric No No Yes Yes
[123] No Quantitative Pixel Regression Parametric No No Yes No
[84] No Quantitative Pixel Classification No No No No
[70] No Quantitative Pixel Regression Parametric No No Yes No
[67] No Qualitative Pixel Classification Parametric No No No No

[124] No Quantitative Pixel Regression Parametric No No Yes No

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[125] 2018 Regional Both Temperate broadleaf and
mixed forests Europe Multispectral Passive Satellite Copernicus and

Landsat Health

[126] 2018 Regional Conifer Temperate coniferous forests North America Multispectral Passive Satellite Landsat Decline and
Stress

[127] 2020 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Oceania Multispectral Passive Airborne Decline and
Mortality

[128] 2016 Regional Both Tropical and subtropical
moist broadleaf forests South America Multispectral Passive Satellite Terra/Aqua Stress
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Table A1. Cont.

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[98] 2018 Local Conifer Temperate grasslands,
savannas and shrublands North America Multispectral Passive Satellite Landsat Plague

[129] 2019 Local Broadleaf Boreal forests/taiga North America Multispectral Passive Satellite
Terra/Aqua and

Landsat and
NOAA

Plague and
Stress

[130] 2019 Local Broadleaf Tropical and subtropical
moist broadleaf forests South America Multispectral Passive Satellite Terra/Aqua Stress

[131] 2020 Local Conifer Temperate coniferous forests North America Multispectral Passive Satellite Landsat Plague

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[125] No Both Pixel Regression Parametric No No Yes Yes
[126] No Quantitative Pixel Regression Nonparametric No No Yes Yes
[127] No Both OBIA Classification No No Yes No
[128] No Quantitative Pixel Classification No No No Yes

[98] No Quantitative Pixel Regression Both Yes

Cubist and
Random

Forest and
SVM and
Extreme
Gradient
Boosting

Trees

No Yes Yes

[129] No Quantitative Pixel Regression Parametric No No Yes Yes
[130] No Quantitative Pixel Classification Nonparametric No No No Yes

[131] No Both Pixel Both Nonparametric Yes Random
Forest No Yes Yes

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[132] 2017 Local Conifer Temperate broadleaf and
mixed forests Europe

Hyperspectral and
Multispectral and

Thermal
Passive Airborne and

Satellite
Terra/Aqua and

Landsat
Decline and

Health

[55] 2018 Local Conifer Temperate broadleaf and
mixed forests Europe Multispectral Passive UAV Decline and

Health

[133] 2019 Local Broadleaf Boreal forests/taiga North America Multispectral Passive Satellite Terra/Aqua and
Landsat Health

[56] 2018 Local Conifer Temperate broadleaf and
mixed forests Europe Multispectral Passive UAV

Mortality,
Decline and

Stress
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Table A1. Cont.

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[134] 2017 Local Both Temperate coniferous forests North America Multispectral Passive Satellite Terra/Aqua Stress and
Mortality

[37] 2015 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Multispectral Passive Satellite Landsat Stress

[62] 2020 Local Conifer Deserts and xeric shrublands North America LiDAR and
Multispectral Both

Airborne and
UAV and
Satellite

Landsat Mortality

[54] 2017 Local Conifer
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Multispectral Passive UAV Plague

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[132] No Qualitative Pixel Regression Parametric No No Yes No

[55] No Qualitative Pixel and
OBIA Classification No No Yes No

[133] No Quantitative Pixel Regression Parametric No No Yes Yes
[56] No Quantitative Pixel Regression Nonparametric No No Yes Yes

[134] No Both Pixel Both Both Yes Random
Forest No Yes Yes

[37] No Quantitative Pixel No No Yes No

[62] No Qualitative Pixel and
OBIA Regression Parametric No No Yes No

[54] No Both OBIA Both Parametric No No Yes No

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[135] 2020 Local Broadleaf Temperate broadleaf and
mixed forests Europe Hyperspectral Passive Airborne Plague and

Mortality
[136] 2016 Local Broadleaf Deserts and xeric shrublands South America Multispectral Passive Satellite Landsat Stress
[99] 2016 Continental Both Several North America Multispectral Passive Satellite Landsat Decline

[137] 2018 Regional Broadleaf Several Oceania Multispectral Passive Satellite and
Terrestrial

RapidEye and
Landsat Health

[40] 2019 Local Conifer Temperate broadleaf and
mixed forests Europe Multispectral Passive Satellite Copernicus and

RapidEye Health

[58] 2019 Local Conifer Temperate coniferous forests Europe Multispectral Passive UAV Decline, Stress
and Plague

[138] 2015 Local Conifer Deserts and xeric shrublands Asia Multispectral Passive Satellite Landsat Mortality

[139] 2020 Local Both Temperate broadleaf and
mixed forests Europe Multispectral Passive Satellite Copernicus Plague



Forests 2021, 12, 1134 20 of 35

Table A1. Cont.

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[135] No Qualitative OBIA Classification Nonparametric Yes

LDA and
PCA-LDA

and PLS-DA
and RF

No Yes No

[136] Yes Both Pixel and
OBIA Both Parametric No No No Yes

[99] No Quantitative Pixel Regression Nonparametric Yes Random
Forest No Yes Yes

[137] No Both Pixel Both Nonparametric Yes

Neural
Network and

Regression
Trees

No Yes Yes

[40] No Quantitative Pixel No Yes Yes No
[58] No Quantitative Pixel No No No No

[138] No Qualitative Pixel Regression Parametric No No No Yes
[139] Yes Both Pixel Both Parametric No No Yes Yes

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[140] 2017 Local Conifer
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

North America Multispectral Passive Airborne Mortality

[141] 2015 Local Conifer Temperate coniferous forests North America Multispectral Passive Airborne Plague and
Mortality

[142] 2020 Local Broadleaf Temperate broadleaf and
mixed forests Asia Multispectral Passive Satellite IRS

Mortality,
Decline and

Stress

[143] 2020 Regional Conifer Temperate coniferous forests North America Multispectral Passive Satellite Terra/Aqua and
Copernicus Plague

[144] 2016 Local Broadleaf Temperate broadleaf and
mixed forests Asia Multispectral Passive Satellite Landsat Plague

[145] 2019 Local Both Temperate coniferous forests North America Multispectral Passive Satellite Landsat Mortality

[33] 2017 Regional Both Several Africa and Asia
and Europe Hyperspectral Passive Satellite Envisat Stress

[146] 2020 Local Conifer Temperate broadleaf and
mixed forests Europe Multispectral Passive Satellite Copernicus Health
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Table A1. Cont.

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[140] No Qualitative OBIA Classification Nonparametric Yes Feature
Analyst No Yes No

[141] No Qualitative Pixel Classification Parametric No No Yes No
[142] Yes Qualitative Pixel No No No Yes
[143] Yes Qualitative Pixel Classification No No No Yes
[144] No Qualitative Pixel Regression Parametric No No No No
[145] No Qualitative Pixel Regression No No No No
[33] Yes Quantitative Pixel Regression Parametric No No No No

[146] No Qualitative Pixel Classification Nonparametric Yes Random
Forest No Yes Yes

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[38] 2020 Local Broadleaf Temperate broadleaf and
mixed forests Asia Multispectral Passive Satellite Copernicus Plague

[147] 2015 Local Both Temperate coniferous forests Europe Multispectral Passive Satellite Landsat Plague

[115] 2018 Local Conifer Temperate broadleaf and
mixed forests Europe Multispectral Passive Satellite Copernicus Plague

[115] 2019 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

North America Multispectral Passive Satellite Landsat Mortality

[148] 2015 Local Conifer Temperate coniferous forests North America Multispectral Passive Satellite NOAA Stress
[82] 2019 Continental Conifer Several North America Multispectral Passive Satellite Landsat Plague

[85] 2019 Local Conifer Temperate broadleaf and
mixed forests Asia LiDAR Active Terrestrial Stress

[149] 2019 Local Broadleaf Temperate broadleaf and
mixed forests Asia Multispectral Passive Satellite Landsat Decline

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[38] No Qualitative Pixel No No Yes No
[147] No Qualitative Pixel Classification Parametric No No Yes No

[115] No Quantitative Pixel Both Nonparametric Yes

kNN and
SVM and
Random

Forest

No Yes No

[102] No Quantitative Subpixel and
OBIA Both Parametric No No Yes No

[148] No Qualitative Pixel Regression Parametric No No No Yes
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Table A1. Cont.

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[82] No Qualitative OBIA Classification Nonparametric Yes Random
Forest No Yes Yes

[85] No Qualitative OBIA Classification Nonparametric Yes Random
Forest No Yes No

[149] Yes Both Pixel Both Both Yes SVM No No Yes

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[150] 2018 Local Both Temperate broadleaf and
mixed forests

Europe LiDAR and
Both Airborne Mortality

Multispectral

[151] 2016 Local Both Temperate broadleaf and
mixed forests North America

LiDAR and
Both Airborne

Plague and
MortalityMultispectral

[152] 2019 Local Broadleaf Tropical and subtropical dry
broadleaf forests Asia Hyperspectral and

Multispectral Passive Satellite Landsat and EO-1 Health and
Stress

[153] 2016 Local Conifer Temperate coniferous forests Asia Multispectral Passive Satellite Landsat Decline
[154] 2020 Regional Both Several Europe Multispectral Passive Satellite Terra/Aqua Stress

[155] 2019 Regional Broadleaf Tropical and subtropical
moist broadleaf forests Africa Multispectral Passive Satellite Terra/Aqua Stress

[9] 2016 Regional Both Tropical and subtropical
moist broadleaf forests Asia Multispectral Passive Satellite Terra/Aqua Stress

[156] 2018 Local Conifer Temperate coniferous forests North America LiDAR and
Multispectral Both Airborne Stress

Reference Early
Warning Analysis Type Analysis

Unit Classification/Regression Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[150] No Qualitative OBIA Classification Nonparametric Yes Random
Forest No Yes No

[151] No Qualitative Pixel Classification Nonparametric Yes SVM No Yes No

[152] No Qualitative Pixel Classification Nonparametric Yes SVM and
SAM No Yes No

[153] No Qualitative Pixel Classification Parametric No No No No
[154] No Quantitative Pixel Regression Parametric No No No Yes
[155] No Both Pixel Both No No Yes Yes
[69] No Quantitative Pixel Regression Parametric No No No Yes

[156] No Quantitative Pixel Regression Parametric No No Yes No
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Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[39] 2020 Local Both
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Multispectral Passive Satellite Copernicus Decline and
Stress

[157] 2020 Local Conifer Temperate broadleaf and
mixed forests Oceania Hyperspectral Passive Airborne Plague and

Stress

[158] 2020 Local Conifer Temperate broadleaf and
mixed forests Oceania LiDAR and

Multispectral Both Airborne and
Satellite WorldView Plague and

Stress

[159] 2016 Local Broadleaf Tropical and subtropical
moist broadleaf forests Asia Multispectral Passive Satellite SPOT Health

[160] 2018 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Oceania LiDAR Active Airborne Mortality

[161] 2020 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

South America Multispectral Passive Satellite Terra/Aqua Stress

[162] 2017 Local Broadleaf Tropical and subtropical
moist broadleaf forests Asia Multispectral Passive Satellite Terra/Aqua Stress

[163] 2016 Local Broadleaf Temperate broadleaf and
mixed forests North America Multispectral Passive Satellite WorldView Plague and

Decline

Reference Early
Warning

ANALYSIS
TYPE

Analysis
Unit Classification/Regression Statistical

Method Machine Learning ML Method
Physically

Based
Modelling

Validation Time
Series Analysis

[39] No Qualitative Pixel Parametric No No No No

[157] No Quantitative Pixel and
OBIA Regression Both Yes Random

Forest No Yes No

[158] Yes Quantitative Pixel and
OBIA Regression Both Yes Random

Forest No Yes No

[159] No Quantitative Pixel No No Yes No

[160] No Both Pixel Both Nonparametric Yes
Random

Forest and
kNN

No Yes No

[161] No Both Pixel Regression Parametric No No Yes Yes
[162] No Both Pixel No No No Yes

[163] Yes Qualitative OBIA Both Both Yes Random
Forest No Yes No
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Table A1. Cont.

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[164] 2017 Regional Broadleaf Tropical and subtropical
moist broadleaf forests South America Multispectral Passive Satellite Terra/Aqua and

Landsat Decline

[59] 2019 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Multispectral Passive Satellite and
UAV Copernicus Decline

[91] 2019 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe LiDAR and
Multispectral Both Airborne and

Satellite WorldView Decline

[165] 2015 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Multispectral Passive Satellite Terra/Aqua Defoliation and
Mortality

[86] 2018 Local Broadleaf Temperate broadleaf and
mixed forests North America Multispectral Passive Satellite Landsat Plague

[166] 2017 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

North America LiDAR and
Hyperspectral Both Airborne Stress

[92] 2019 Local Conifer
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Multispectral Passive Satellite Landsat Defoliation and
Plague

[57] 2018 Local Conifer
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

North America Hyperspectral Passive UAV Stress and
Mortality

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[164] No Quantitative Pixel Regression Parametric No No Yes Yes
[59] No Qualitative OBIA Classification No No Yes Yes

[91] No Quantitative OBIA Classification Nonparametric Yes Random
Forest No Yes No

[165] No Quantitative Pixel Regression Parametric No No No Yes
[86] No Both Pixel Regression Parametric No No No Yes

[166] Yes Both OBIA Classification Nonparametric Yes

SVM and
Gradient
boosting
machine

No Yes No

[92] No Quantitative Pixel Regression Nonparametric Yes kNN No No Yes
[57] No Quantitative OBIA Regression Nonparametric No No Yes No
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Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[167] 2017 Regional Both Temperate coniferous forests North America Multispectral Passive Satellite Landsat Stress

[168] 2019 Regional Both
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

North America Microwaves Passive Satellite Terra/Aqua Stress and
Mortality

[169] 2018 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Multispectral Passive Satellite Copernicus Decline and
Health

[97] 2018 Continental Both Several North America Multispectral Passive Satellite Terra/Aqua and
Landsat

Decline and
Mortality

[170] 2015 Local Broadleaf
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Multispectral Passive Satellite Landsat Plague

[60] 2019 Local Conifer Temperate broadleaf and
mixed forests Asia Multispectral Passive UAV Plague

[171] 2018 Local Broadleaf Temperate broadleaf and
mixed forests Oceania Multispectral Passive Satellite Landsat and

Worldview Health

[172] 2016 Local Broadleaf Temperate grasslands,
savannas and shrublands Oceania LiDAR and

Hyperspectral Both Airborne Health

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[167] No Quantitative Pixel Both Parametric No No No No

[168] No Quantitative Pixel Regression Nonparametric Yes Random
Forest No No No

[169] No Quantitative Pixel Classification No No No No
[97] Yes Quantitative Pixel Regression Parametric No No No Yes

[170] No Quantitative Pixel Regression Parametric No No Yes No

[60] Yes Qualitative Pixel and
OBIA Classification Nonparametric No No Yes No

[171] No Quantitative Pixel Both Yes Random
Forest No Yes No

[172] No Both OBIA Classification Nonparametric Yes Random
Forest No Yes No



Forests 2021, 12, 1134 26 of 35

Table A1. Cont.

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[173] 2020 Local Broadleaf Temperate broadleaf and
mixed forests Asia Multispectral Passive Satellite Terra/Aqua Decline and

Mortalityt

[61] 2019 Local Conifer Temperate broadleaf and
mixed forests Europe Thermal and LiDAR Both UAV and

Airborne
Plague and

Stress

[167] 2019 Local Both Temperate broadleaf and
mixed forests Europe LiDAR and

Hyperspectral Both Airborne Plague and
Mortality

[174] 2020 Local Conifer Temperate broadleaf and
mixed forests Europe LiDAR and

Multispectral Both Airborne Plague

[34] 2018 Regional Conifer
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

North America Hyperspectral Passive Airborne
Plague,

Mortality and
Stress

[175] 2019 Local Conifer
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Multispectral Passive Satellite Landsat Plague and
Stress

[41] 2017 Regional Broadleaf Tropical and subtropical
moist broadleaf forests South America Radar Active Satellite ISS Stress

[176] 2017 Local Conifer Temperate broadleaf and
mixed forests North America Multispectral Passive Satellite Landsat Plague

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[173] No Qualitative Pixel Regression Parametric No No No Yes

[61] No Quantitative Pixel and
OBIA Regression Parametric No No Yes No

[83] No Qualitative OBIA Classification Nonparametric Yes Random
Forest No No No

[174] No Both Pixel Both Nonparametric Yes
Boosted

No Yes NoRegression
Trees

[34] No Qualitative Pixel and
Subpixel Classification Nonparametric Yes Random

Forest No Yes No

[175] No Quantitative Pixel Both Nonparametric Yes kNN No Yes Yes
[41] No Qualitative Pixel No No No Yes

[176] No Quantitative Pixel Both Both Yes
Boosted

Regression
Trees

No Yes No
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Table A1. Cont.

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[177] 2015 Local Broadleaf Temperate broadleaf and
mixed forests Asia Multispectral Passive Satellite DigitalGlobe Decline and

Health

[178] 2015 Local Broadleaf Temperate broadleaf and
mixed forests Asia Multispectral Passive Satellite DigitalGlobe and

Landsat
Decline and

Health

[179] 2017 Regional Both Temperate broadleaf and
mixed forests North America Multispectral Passive Satellite Landsat Plague

[180] 2020 Local Conifer Temperate broadleaf and
mixed forests Oceania Multispectral Passive Airborne Health

[181] 2018 Regional Conifer Temperate coniferous forests North America Multispectral Passive Satellite Landsat Plague

[182] 2018 Local Conifer Tropical and subtropical dry
broadleaf forests Asia Multispectral Passive Satellite Landsat Plague

[183] 2020 Local Conifer Tropical and subtropical dry
broadleaf forests Asia Multispectral Passive Satellite WorldView Plague

[116] 2018 Local Conifer
Mediterranean forests,

woodlands and scrub or
sclerophyll forests

Europe Hyperspectral and
Multispectral Passive Airborne and

Satellite Copernicus Decline

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[177] No Qualitative Pixel Classification Parametric No No Yes No

[178] No Qualitative Pixel Classification Nonparametric Yes Random
Forest No Yes No

[179] No Qualitative Pixel Classification Nonparametric Yes
Maximum

Entropy
Algorithm

No Yes No

[180] No Qualitative OBIA Classification Nonparametric Yes

SVM and
kNN and
Boosted

regression
trees

No Yes No

[181] No Quantitative Pixel Both Nonparametric Yes Random
Forest No No No

[182] Yes Both Pixel Classification No No Yes Yes

[183] No Qualitative OBIA Regression Both Yes Random
Forest No Yes No

[116] No Quantitative Pixel and
OBIA Regression No Yes Yes No
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Table A1. Cont.

Reference Year Spatial Scale Functional
Type Biome Geographic

Region Technology Sensor Type Platform Satellite
Programme

Health
Parameter

[63] 2020 Local Conifer Temperate broadleaf and
mixed forests Asia Multispectral Passive Satellite and

UAV
CHEOS and
Copernicus

Plague and
Mortality

[64] 2020 Local Conifer Temperate broadleaf and
mixed forests Asia Hyperspectral Passive UAV Plague

[184] 2018 Local Conifer Temperate broadleaf and
mixed forests Asia Multispectral Passive Satellite Landsat Plague

Reference Early
Warning Analysis Type Analysis

Unit
Classification/

Regression
Statistical
Method Machine Learning ML Method

Physically
Based

Modelling
Validation Time

Series Analysis

[63] Yes Qualitative Pixel and
OBIA Classification Nonparametric Yes

CART and
Random

Forest and
SVM

No Yes No

[64] No Qualitative Pixel Classification Nonparametric Yes SVM No Yes No
[184] No Quantitative Pixel Regression Parametric No No No Yes
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systems–case studies from Czechia and Slovakia. Lesn. Cas. 2018, 64, 259–275. [CrossRef]

126. Bell, D.M.; Cohen, W.B.; Reilly, M.; Yang, Z. Visual interpretation and time series modeling of Landsat imagery highlight drought’s
role in forest canopy declines. Ecosphere 2018, 9, e02195. [CrossRef]

127. Bell, R.A.; Callow, J.N. Investigating Banksia coastal woodland decline using multi-temporal remote sensing and field-based
monitoring techniques. Remote Sens. 2020, 12, 669. [CrossRef]

128. Bi, J.; Myneni, R.; Lyapustin, A.; Wang, Y.; Park, T.; Chi, C.; Yan, K.; Knyazikhin, Y. Amazon forests’ response to droughts: A
perspective from the MAIAC product. Remote Sens. 2016, 8, 356. [CrossRef]

129. Boyd, M.A.; Berner, L.T.; Doak, P.; Goetz, S.J.; Rogers, B.M.; Wagner, D.; Walker, X.J.; Mack, M.C. Impacts of climate and insect
herbivory on productivity and physiology of trembling aspen (Populus tremuloides) in Alaskan boreal forests. Environ. Res. Lett.
2019, 14, 085010. [CrossRef]

130. Branco, E.R.F.; Dos Santos, A.R.; Pezzopane, J.E.M.; Dos Santos, A.B.; Alexandre, R.S.; Bernardes, V.P.; Da Silva, R.G.; De Souza,
K.B.; Moura, M.M. Space-time analysis of vegetation trends and drought occurrence in domain area of tropical forest. J. Environ.
Manag. 2019, 246, 384–396. [CrossRef] [PubMed]

131. Bright, B.C.; Hudak, A.T.; Meddens, A.J.; Egan, J.M.; Jorgensen, C.L. Mapping multiple insect outbreaks across large regions
annually using Landsat time series data. Remote Sens. 2020, 12, 1655. [CrossRef]

132. Brovkina, O.; Cienciala, E.; Zemek, F.; Lukeš, P.; Fabianek, T.; Russ, R. Composite indicator for monitoring of Norway spruce
stand decline. Eur. J. Remote Sens. 2017, 50, 550–563. [CrossRef]

133. Bumann, E.; Awada, T.; Wardlow, B.; Hayes, M.; Okalebo, J.; Helzer, C.; Mazis, A.; Hiller, J.; Cherubini, P. Assessing responses
of Betula papyrifera to climate variability in a remnant population along the Niobrara River Valley in Nebraska, USA, through
dendroecological and remote-sensing techniques. Can. J. For. Res. 2019, 49, 423–433. [CrossRef]

134. Byer, S.; Jin, Y. Detecting drought-induced tree mortality in Sierra Nevada forests with time series of satellite data. Remote Sens.
2017, 9, 929. [CrossRef]

http://doi.org/10.3390/rs10091419
http://doi.org/10.1080/17538947.2020.1794064
http://doi.org/10.1016/j.proenv.2011.09.038
http://doi.org/10.3390/rs9040394
http://doi.org/10.3390/rs71215841
http://doi.org/10.1890/07-0539.1
http://doi.org/10.1080/22797254.2017.1417745
http://doi.org/10.1016/j.isprsjprs.2018.01.017
http://www.ncbi.nlm.nih.gov/pubmed/29551855
http://doi.org/10.3390/s19183965
http://www.ncbi.nlm.nih.gov/pubmed/31540009
http://doi.org/10.1016/j.jhydrol.2015.01.005
http://doi.org/10.1016/j.envpol.2015.05.041
http://doi.org/10.3390/rs10030404
http://doi.org/10.1002/ecs2.3156
http://doi.org/10.1016/j.rse.2016.11.001
http://doi.org/10.3390/f10110943
http://doi.org/10.1007/s10661-015-4375-z
http://doi.org/10.1515/forj-2017-0051
http://doi.org/10.1002/ecs2.2195
http://doi.org/10.3390/rs12040669
http://doi.org/10.3390/rs8040356
http://doi.org/10.1088/1748-9326/ab215f
http://doi.org/10.1016/j.jenvman.2019.05.097
http://www.ncbi.nlm.nih.gov/pubmed/31195258
http://doi.org/10.3390/rs12101655
http://doi.org/10.1080/22797254.2017.1372697
http://doi.org/10.1139/cjfr-2018-0206
http://doi.org/10.3390/rs9090929


Forests 2021, 12, 1134 34 of 35

135. Chan, A.H.; Barnes, C.; Swinfield, T.; Coomes, D.A. Monitoring ash dieback (Hymenoscyphus fraxineus) in British forests using
hyperspectral remote sensing. Remote Sens. Ecol. Conserv. 2020, 7, 306–320. [CrossRef]

136. Chávez, R.O.; Clevers, J.G.P.W.; Decuyper, M.; De Bruin, S.; Herold, M. 50 years of water extraction in the Pampa del Tamarugal
basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)? J. Arid Environ. 2016, 124, 292–303.
[CrossRef]

137. Cunningham, S.C.; Griffioen, P.; White, M.D.; Nally, R.M. Assessment of ecosystems: A system for rigorous and rapid mapping
of floodplain forest condition for Australia’s most important river. Land Degrad. Dev. 2018, 29, 127–137. [CrossRef]

138. Dorman, M.; Svoray, T.; Perevolotsky, A.; Moshe, Y.; Sarris, D. What determines tree mortality in dry environments? A
multi-perspective approach. Ecol. Appl. 2015, 25, 1054–1071. [CrossRef]
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