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Abstract: This study assessed the health of the mangrove ecosystem and mapped the spatial varia-

tion in selected variables sampled across the Matang Mangrove Forest Reserve (MMFR) by using a 

geostatistical technique. A total of 556 samples were collected from 56 sampling points representing 

mangrove biotic and abiotic variables. All variables were used to generate the semivariogram 

model. The predicted variables over the entire MMFR have an overall prediction accuracy of 85.16% 

(AGB), 90.78% (crab abundance), 97.3% (soil C), 99.91% (soil N), 89.23% (number of phytoplankton 

species), 95.62% (number of diatom species), 99.36% (DO), and 87.33% (turbidity). Via linear weight 

combination, the prediction map shows that mangrove ecosystem health in Kuala Trong through-

out the Sungai Kerang is excellent (5: MQI > 1.5). Some landward areas of Kuala Trong were pre-

dicted to have moderate health (3: −0.5 ≤ MQI ≤ 0.5), while Kuala Sepetang was predicted to have 

the bad ecosystem health (2: -1.5 ≤ MQI ≤ −0.5), with active timber harvesting operations and an-

thropogenic activities in the landward areas. The results of this method can be utilised to carry out 

the preferred restoration, through appropriate management and facilities distribution, for improv-

ing the ecosystem health of mangroves. 
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1. Introduction 

Mangroves are characterised by a series of different environmental phenomena and 

ecosystem processes. The mangrove ecosystem consists of a few major components, in-

cluding forest, soil and the marine system. Faridah-Hanum et al. [1] suggested that man-

groves contribute significantly to commercial fisheries and other regulatory ecosystem 

services through sustainable biological integrity and resources of the adjacent marine eco-

system. In addition, mangroves are important for safeguarding ecological and biotic dy-

namics as well as hydrological and sedimentation regulatory functions. 

The dynamics of the mangrove forest are changing worldwide due to the presence 

of natural and anthropogenic forces [2–4]. Consequently, the area extent and distribution 

of mangrove forests must be monitored as frequently as possible for the purpose of man-
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agement and conservation [5–12]. Among the greatest limitations of mangrove manage-

ment and conservation is the lack of proper inventory and regular monitoring. Remote 

sensing and geographic information systems (GIS) have, thus far, proved to be the most 

practical techniques and tools for monitoring mangrove conditions [5,13,14].  

In recent decades, there has been much interest in the use of high-resolution remotely 

sensed imagery data with the integration of mathematical algorithms, artificial intelli-

gence and big data analysis, which can be acquired periodically and over very large geo-

graphical areas, for accurate and precise mangrove forest ecosystem monitoring [5,13,14]. 

There are several completed studies related to mangrove mapping and monitoring using 

geospatial data and remotely sensed imagery data [15–18]. A few of them have also fo-

cused on mangrove ecosystem monitoring and forecasting, especially in the area of forest 

health [2,5,13,19–22]. The findings of these studies are valuable to the relevant authorities 

and organisations concerning the potential impacts of climate change on mangrove for-

ests, and how they may be monitored using remote sensing data. However, field data 

collection is necessary and important to verify the accuracy of the information captured 

by remote sensors [23–25]. Very often, it is difficult to collect samples from a mangrove 

forest due to the rather difficult accessibility to the ecosystem [22,26–28]. Costs are always 

a limiting factor for obtaining a large number of samples from different forest locations, 

and this may affect the accuracy of data analyses. Fortunately, by using well-designed 

sampling strategies, a minimum number of samples can be utilised to obtain optimum 

and feasible spatial and temporal information [29]. Selected measured variables could be 

used to estimate the values of factors in locations not sampled and obtain a complete pic-

ture of conditions such as forest health, and pollution in all the locations that can be ob-

served. This can be done by means of an optimal geostatistical technique called Kriging. 

Kriging is a technique typically used to describe and model spatial patterns, predict values 

of factors in unmeasured locations, and assess the uncertainty associated with a predicted 

value of a factor in the unmeasured locations [28,30]. White et al. [31] suggested that the 

Kriging technique is a low-cost method for valuable decision support analysis and mod-

elling. 

Kriging is a geostatistical technique which describes the values of factors near to the 

original sampling locations, which tend to be statistically more related to the measured 

value at that point than values measured in other locations [32,33]. The predicted values 

in this technique are obtained from the measure of relationships in samples using the 

weighted mean [28,32,34]. In addition, Mirzaei and Sakizadeh [35] as well as Gupta et al. 

[32] pointed out that the weight of Kriging is dependent on the overall spatial arrange-

ment of the measured points and their respective values, in addition to the distances be-

tween the measured points and the prediction location. Thus, Al-Omran et al. [36] de-

scribe Kriging as a reliable linear unbiased estimation. To produce an accurate predicted 

distribution map, ordinary kriging (OK) is the suitable Kriging method to be used [32,37]. 

Gidey [38], in his study, stressed that OK was found to have fewer errors of estimation for 

12 water quality variables compared with the inverse distance weighted (IDW) and spline 

methods through an examination of 39 sampling points across 34,100 ha of the catchment 

area. A study by Bhunia et al. [39] also found OK to have fewer errors in estimating the 

suitability of drinking water. They used 12 parameters to examine the quality of ground-

water for over 90,000 ha of land attributed with 402 sampling points. As a result, the ex-

ponential, spherical and stable semivariogram model of OK was found to be the best fit 

for investigating groundwater quality. A study by Castillo et al. [40] used OK to quantify 

and compare the mangrove soil carbon (C) stock for 2749 ha of a bay area using 51 sam-

pling points of mangroves, and 39 sampling points in other competing land uses (aqua-

culture pond, coconut plantation, and cleared mangrove land). In this study, the model of 

soil C stock overestimated the prediction at low values and underestimated the high val-

ues due to the 1:1 ratio of predicted vs. measured values, as the slope of the best-fit line of 

mangrove was 0.69 (stable model) and that of non-mangrove 0.73 (exponential model). 
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However, the overall predicted certainty value of the mangrove soil C stock spatial distri-

bution was 85%, which might be sufficient for site scale estimation purposes. 

The performance of geostatistical analysis was generally measured using prediction 

errors and was affected by many factors, such as sample size, sample design and spatial 

distribution [21,41–43]. To describe the spatial continuity of the data, the variogram was 

calculated using a measure of variability between pairs of sample points at various dis-

tances. Chang et al. [44], in their study, suggested that estimation of only 19 sample points 

could be statistically unreliable, and a minimum sample size of 28 was proposed for sub-

sequent geostatistical analysis. According to Li and Heap [28], and Webster and Oliver 

[34], in general, if there are less than 50 samples, the variograms generated do not usually 

have an obvious spatial structure. The predicted spatial performance will be more accu-

rate with the large sample size and the variogram generated show a favourable spatial 

structure [28,34,45] compared to the small sample size generating a noisy variogram indi-

cating less spatial structure [28,46]. To produce a reliable prediction of the variogram, 

Webster and Oliver [34] suggest that at least 100 samples of data are required; or at least 

50 to 100 samples to obtain a stable variogram. Alternatively, Journel and Huijbregts [47] 

suggest that 30–50 pairs of samples with a lag distance less than half the dimensions of 

the sampled region were considered sufficient to obtain a stable variogram. The size of 

data has become debated by various researchers for less error. Kerry and Oliver [48] sug-

gested that the use of the residual maximum likelihood method (REML) variogram will 

help to produce a more accurate prediction for samples with less than 100 data and the 

nugget has no variance. 

The semivariogram and the cross-semivariogram with Kriging and CoKriging tech-

niques utilise all available data to estimate the minimum sampling density as well as min-

imising uncertainty in subsequent estimations of variable values at a given site. The cur-

rent study aimed to focus on assessing and estimating mangrove ecosystem health, 

through the use of geostatistical analysis. This would facilitate the continuation of the cost-

effective monitoring process of mangrove ecosystem health, particularly in the Matang 

Mangrove Forest Reserve (MMFR). 

2. Methodology 

2.1. Description of Site 

This study was conducted in the Matang Mangrove Forest Reserve (MMFR). The 

MMFR is located in the Northern region of Peninsular Malaysia; it lies from the latitudes 

4°32′10.81″ N to 4°56′03.54″ N, and from longitudes 100°28′33.26″ E to 100°37′40.54″ E; 

stretches from Kuala Gula in the north to Bagan Panchor in the south. The MMFR is the 

largest mangrove forest in Peninsular Malaysia, with a total area of 40,288 ha [49]. This 

forest consists of 19 patches, which are segmented by numerous large and small rivers; 

they are joined with the coastal areas of the Malacca Straits in the West, with a total of 108 

compartments. The Matang mangroves are divided into four management zones, namely 

(1) Kuala Sepetang North, (2) Kuala Sepetang South, (3) Kuala Trong, and (4) Sungai 

Kerang (Figure 1). 
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Figure 1. Map of study area in the MMFR showing original sampling point. 

2.2. Variables 

To identify the parameters that influence mangrove ecosystem health, we used dif-

ferent datasets from Faridah-Hanum et al. [1]. These data have been measured and sam-

pled from 2015 to 2016. In their study, eight variables (aboveground biomass (AGB), abun-

dance of crab, soil nitrogen (N), soil carbon (C), number of phytoplankton species, number 

of diatom species, dissolved oxygen (DO) and turbidity) were chosen from 43 variables 

via principal component analysis (PCA). Later, all 8 variables were integrated and ana-

lysed using ArcGIS software version 10.3 for geostatistical analysis. Consequently, we in-

terpolated all the variables obtained from all the sampling points to represent the status 

of mangrove health in the MMFR. A linear weight combination was used to show the 

distribution map. For validation, we used the vegetation status derived from the vegeta-

tion indices analysis conducted by Rhyma et al. [13]. Figure 2 shows the workflow of the 

methodology performed in this study. 
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Figure 2. Workflow of methodology undertaken in this study. 

In this present study, a total of 56 sampling points (Figure 1) were selected for the 

purpose of estimating mangrove ecosystem health using geostatistical analysis. These 

sampling points were selected based on the classification of disturbance levels, namely 

least disturbed, moderately disturbed and highly disturbed from previous work [1,22]. 

All the variables were then converted into spatial data. In order to do this, attributes 

for all the variables were given coordinates, represented in points; they were saved in the 

vector format of shapefile (*.shp) so that the data could be analysed using the geostatistical 

tools of ArcGIS software version 10.3. During the sampling process, coordinates were 

taken by using the Global Positioning System (GPS) Garmin 72H with standardised units 

as in Kertau Rectified Skew Orthomorphic (RSO). Since the sampling points for four var-

iables—AGB, crab abundance, soil C and soil N—were located under a dense canopy, we 

collected two coordinates; first, at the point where the boat reached the river bank, and 

the second at the point where we collected the samples within. From the first point, we 

used measuring tape and a compass to obtain the distance and direction to reach the sec-

ond point. Both coordinates were checked for fore bearing and back bearing with distance 
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conducted in AutoCAD software version 2018. This was to ensure good accuracy of the 

GPS reading. All the variables collected differ in terms of the number of samples and lo-

cations, as presented in Table 1. 

Table 1. Variables, number of samples and number of sampling points collected within the MMFR 

*. 

Variables 

Number of Samples  

(Number of Sampling Points) 

Kuala Sepetang Kuala Trong Sungai Kerang 

Mangrove biotic integrity 

Aboveground biomass 

(tonnes/ha) 

193 

(5) 

33 

(5) 

144 

(5) 

Crab abundance  
68  

(5) 

191  

(5) 

352  

(5) 

Mangrove soil 

Soil carbon (%) 
12  

(3) 

12  

(3) 

24  

(6) 

Soil nitrogen (%) 
12  

(3) 

12  

(3) 

24  

(6) 

Marine mangrove 

Number of phytoplankton 

species 

123  

(2) 

121  

(2) 

81  

(2) 

Number of diatom species  
87 

(2) 

88 

(2) 

56 

(2) 

Mangrove hydrology 

Dissolved oxygen (mg/L) 
16  

(8) 

11  

(5) 

22  

(11) 

Turbidity (NTU) 
16  

(8) 

9  

(5) 

22  

(11) 

* Number in brackets shows the number of sampling points for each variable in the respective 

regions. 

2.3. Geostatistical Analysis 

For prediction with geostatistical analysis, the general formula used is as in Equation 

(1). 

𝑧̂(𝑥0) =∑𝜆𝑖

𝑛

𝑖=1

𝑧(𝑥𝑖) (1) 

where 𝑧̂ is the predicted value of the primary variable at the point of interest x0, λi is the 

weight assigned to the sampled point, and 𝑛 represents the number of sampled points 

used for the prediction [28]. 

In this study, a geostatistical analysis was performed using the Geostatistical Analyst 

extension available in ArcGIS software version 10.3 to generate prediction distribution 

maps. Prior to that, the distribution of the original sampling location needed to be checked 

if there were outliers. Gidey [38] and Bhunia et al. [39] recommended that this could be 

confirmed by checking the skewness adjacent to 0, and the kurtosis near 3. From our ex-

amination, AGB, crab abundance, soil C, soil N, and turbidity have a symmetric distribu-

tion of sampling points, while the number of phytoplankton species, number of diatom 

species and DO do not. Therefore, normalisation of log transformation was applied on 

soil C, the number of phytoplankton species and turbidity variables due to the asymmetric 

distribution. 

Once all the variables were normalised, Kriging was performed. The ordinary 

Kriging (OK) method was chosen to simplify the original sampling density and ensure 

the accuracy of prediction, as suggested by Omran [37]. To estimate the health of the man-

grove ecosystem, we chose the output surface type of prediction by default [50]. To exam-

ine the accuracy of the predicted distribution map, all the variables were tested with 11 
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semivariogram models viz. circular, spherical, tetraspherical, penstraspherical, exponen-

tial, gaussian, rational quadratic, hole effect, k-bessel, j-bessel and stable. This step is 

known as the cross-validation technique. The results then appeared as a prediction map 

and a graph presenting the cross-validation of the variables, which summarised and in-

terpreted mangrove ecosystem health. Further, the results provide samples, the mean 

(ME), the root mean square error (RMSE), the mean standardised error (MSE), the RMS 

standardised error (RMSSE), and the average standard error (ASE). We then checked the 

ME, the RMSE and the RMSSE to choose the best-fit model. The prediction is considered 

good and precise if the ME is nearing 0, the RMS nearing 0, and the RMSSE nearing 1 [38–

40]. 

The mean error (ME), the root mean square error (RMSE) and root mean square 

standardised error (RMSSE) were obtained using ArcGIS interpolation techniques [51]. 

The equation for the ME, the RMSE and the RMSSE is presented in Equations (2)–(4), re-

spectively. 

ME =
∑ (𝑛
𝑖=1 𝑍̂(𝑠𝑖) − (𝑧𝑠𝑖))

𝑛
 (2) 

RMSE = √
∑ (𝑛
𝑖=1 𝑍̂(𝑠𝑖) − (𝑧𝑠𝑖))

2

𝑛
 (3) 

RMSSE =
∑ (𝑛
𝑖=1 𝑍̂(𝑠𝑖) − (𝑧𝑠𝑖))/𝜎(𝑠𝑖)

𝑛
 (4) 

The semivariogram depicts the spatial autocorrelation of the measured sample points 

characterise by the nugget effect, the sill and the range [52]. The nugget effect describes 

the small-scale variability of the data and measurement errors that appear spatially ran-

dom at the scale of investigation and is the extrapolated y-axis intercept of the semivario-

gram [53–56]. The sill represents the maximum variability of measured points, and the 

range is the maximum distance up to which a variable is spatially autocorrelated [53,54]. 

The nugget-to-sill ratio therefore represents the degree of spatial dependency which the 

smaller ratios indicate greater proportions of spatially dependent variation [53,54]. This 

ratio is an important feature of semivariogram [54]. This method was suggested by Beh-

rens et al. [53], and Engström and Esbensen [54], and was a useful method to assess the 

overall observable variability represented by the sill.  

2.4. Reclassification and Standardisation 

Since the resulting map for all the variables estimated through Kriging was in the 

raster format, we needed to reclassify and standardise the map for ease of analysis [57–

59]. All the variables were reclassified into 5 classes following the mangrove quality sub-

index (MQISi),; where i is the type of variable [1], viz. 1 (worst; MQISi < −1.5), 2 (bad; −1.5 

≤ MQISi ≤ −0.5), 3 (moderate; −0.5 ≤ MQISi ≤ 0.5), 4 (good; 0.5 ≤ MQISi ≤ 1.5), and 5 (excel-

lent; MQISi > 1.5). Thus, the Natural Breaks (Jenks) reclassification method was used to 

classify all the variables into five classes of MQISi relative basis [60]. 

2.5. Linear Weight Combination Model 

In order to determine the ecosystem health of the entire MMFR, we applied the linear 

weight combination (Equation (5)) to all the variables. Prior to that, the weightage of 12% 

was prorated for 7 variables, viz. crab abundance, soil C, soil N, number of phytoplankton 

sp., number of diatom sp., DO, and turbidity, assuming all the variables have equal influ-

ences on mangrove ecosystem health. We gave 16% weightage to AGB, which is the high-

est among all the variables. This is the reason: the vegetation status used by Faridah-

Hanum et al. [1] to calculate AGB was the main indicator in determining the condition of 

the mangrove. Vegetation and vegetation health is the level of primary producers within 
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ecosystems [61]. A previous study by Wang et al. [62] and Mouat [63] suggested ecosys-

tem vigour as part of the parameters to determine ecosystem health which was convenient 

to use the vegetation index of remote sensing to apply on the large scale. Thus, we used 

the vegetation indices from Rhyma et al. [13] to validate the mangrove ecosystem health 

distribution map generated in this present study. Different variables may have different 

influences in determining mangrove ecosystem health. In addition, different management 

regimes of mangroves [49,64] may also influence the ecosystem's health determination. 

This limitation was not discussed in our current work; however, future works will encom-

pass the weightage of variables based on ranking order while considering the different 

management regimes for mangrove ecosystem health. Thus, the weightage was calculated 

by using the arithmetic operation of raster data (multiplication) and the operation is ex-

pressed in Equation (6). Thus, the range of combined MQISi was interpreted as 1 (worst; 

MQI < −1.5), 2 (bad; −1.5 ≤ MQI ≤ −0.5), 3 (moderate; −0.5 ≤ MQI ≤ 0.5), 4 (good; 0.5 ≤ MQI 

≤ 1.5), and 5 (excellent; MQI > 1.5). 

𝑆 =∑𝑊𝑖𝑋𝑖

𝑛

𝑖

 (5) 

where 𝑊𝑖𝑋𝑖 is the ith factor weight, and the ith factor is the criterion score. 

(16 x AGB) + (12 x crab abundance) + (12 x soil C) + (12 x soil N) +  

(12 x no. of phytoplankton) + (12 x no. of diatom) + (12 x DO) + (12 x turbidity) 
(6) 

3. Results and Discussion 

3.1. Best-Fit Model of Geostatistical Analysis 

Table 2 shows the mangrove quality variables of mangrove ecosystem health. Varia-

bles with skewness falling between −1 and −0.5 or between 0.5 and 1 (soil C, no. of phyto-

plankton species and DO) are normalised for further geostatistical analysis. 

Table 2. Descriptive statistics of mangrove quality variables. 

Variables Minimum Maximum Mean Median SD Skewness Kurtosis 

AGB (tonne/ha) 7.83 61.32 30.047 24.24 16.322 0.237 2.23 

Crab abundance 3 91 40.733 38 26.196 0.234 * 2.26 

Soil C (%) 6.527 20.908 10.711 9.0787 4.5865 
1.080 

(0.660) 
3.01 

Soil N (%) 0.113 0.648 0.34942 0.3215 0.17625 0.230 * 1.90 

No. of phytoplankton 

sp. 
57 120 94.167 100.5 23.439 

−0.591 

(−0.834) 
2.03 

No. of diatom sp. 51 84 69.333 73.5 12.956 −0.461 * −0.46 

DO (mg/L) 2.215 5.655 4.0135 4.25 1.0155 −0.334 * 1.87 

Turbidity (NTU) 8.48 116.03 44.026 33.346 27.995 
0.654 

(0.409 *) 
2.76 

* The distribution is approximately symmetric, indicating near normal distribution. Values in 

brackets are after normalisation. 

Prediction performances were assessed by cross-validation, which examined the ac-

curacy of the estimated distribution map. Additionally, the spatial autocorrelation of the 

measured sample points was examined based on the ratio between the nugget and sill. 

The nugget effect can be attributed to measurement errors or spatial sources of variation 

at distances smaller than the sampling interval or both [52]. Bhunia et al. [39] suggested 

that the ratio values of <0.25, 0.25–0.75 and > 0.75 show strong, moderate and weak spatial 

autocorrelation, respectively. Although three variables of our study are characterised by 

moderate (soil C and turbidity) and weak (number of phytoplankton spp.) autocorrela-

tion, which indicates that the locations of sampling points are farther apart, our future 

work will encompass the scales of spatial variation in data collection. However, in this 
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study, we proceed to estimate mangrove ecosystem health with the existing original data. 

The methodology and steps of geostatistical analysis undertaken in this study will be use-

ful for our future work in estimating mangrove ecosystem health with good accuracy by 

understanding the spatial variation in sample points [39]. 

Table 3 summarises the semivariogram model of mangrove ecosystem health varia-

bles using hole effect, spherical, circular, exponential, Gaussian, stable, and rational quad-

ratic models. All models were chosen based on the overall prediction accuracy obtained 

through examination of the ME that is nearing 0, the RMSSE nearing 1, and the smallest 

RMSE from all the 11 models tested with semivariogram. Later, these models were used 

to predict and map the spatial distribution of all the variables of the entire MMFR. 

Table 3. Best-fit model of semivariogram for OK interpolation. 

Variables Model Nugget/Sill 
Prediction Errors 

ME RMSE RMSSE 

AGB (tonne/ha) Hole Effect 1.108 −0.3397 14.8418 0.9953 

Crab abundance Spherical 0 −0.1055 9.2213 0.9050 

Soil C (%) Circular 0.327 −0.0283 2.7024 0.9651 

Soil N (%) Exponential 0.169 −0.0005 0.0993 0.9762 

No. of phytoplankton sp. Gaussian 0.086 −0.0165 10.7670 1.3591 

No. of diatom sp. Hole Effect 0.032 −0.1975 4.3751 0.9919 

DO (mg/L) Stable 1.348 −0.0001 0.6430 0.9348 

Turbidity (NTU) Rational Quadratic 0 1.1194 12.6746 0.7975 

3.2. Geospatial Distribution Map 

The geospatial distribution of mangrove ecosystem health was spatially autocorre-

lated as a result of the interpolation using eight selected variables. Figure 3 a–h show the 

predicted values for all the variables. To reflect this spatial prediction autocorrelation of 

the selected variables over the entire MMFR, recent images subsequent to the completion 

of data collection in Rhyma et al. [13] were compared and observed from a geospatial 

distribution map produced in this study. This procedure was suggested by Palmer et al. 

[65], who opined that guiding images can be useful information to verify a healthy eco-

system. 

The excellent quality of AGB (MQISi > 1:5) is recorded in some parts of Kuala Sepe-

tang (North East of the landward region) and Sungai Kerang (South region) with 34.07–

39.67 tonnes/ha, while the worst quality of AGB (MQISi < −1.5) is recorded in the middle 

of the MMFR covering Kuala Trong in the seaward region, and the Northern part (sea-

ward region) of Kuala Sepetang with 17.35–29.89 tonnes/ha. In our on-site observations of 

the ground truth, there were high tree compositions within many transects in the Kuala 

Sepetang and Sungai Kerang areas. This was the positive result of the tree harvesting ro-

tation system carried out in the MMFR. Most areas of Kuala Sepetang, especially in the 

landward region, underwent timber harvesting in the year 2006 [48,63]. According to our 

data collected in the year 2016, most of the areas had been replanted and regenerated with 

new trees aged approximately 10 years. The southern part of Sungai Kerang is designated 

as Virgin Jungle Reserve (VJR), which means no timber harvesting is permitted within 

that area. This is the reason the southern part of Sungai Kerang has a high AGB value. 

These situations are consistent with a study conducted by Imani et al. [66], the findings of 

which reveal that the forest structure has greater effects on the aboveground biomass. 

According to Askar et al. [67], and Baghi and Oldeland [68], the NDVI is the right 

analysis to estimate AGB and is often used in interpreting ecosystem health. On the other 

hand, Escadafal [69] suggested that the SAVI can be a complementary analysis to the 

NDVI where the areas studied are characterised by sparse vegetation cover that results in 

a bright soil background and creates a soil noise signal. Observations of Rhyma et al. [13] 

show that Sungai Kerang has low NDVI and SAVI values in the seaward region, and this 



Forests 2022, 13, 1185 10 of 19 
 

 

is in line with a spatial prediction autocorrelation derived from the OK method using the 

Hole Effect semivariogram model, as shown in Figure 3a. High AGB observed is in the 

landward region of Kuala Sepetang and southern part of Sungai Kerang, which also have 

high NDVI (0.31—Kuala Sepetang; 0.64—Sungai Kerang) and SAVI values (0.54—Kuala 

Sepetang; 1.11—Sungai Kerang). 

Vegetation distribution exerts a significant influence on crab abundance. Lindquist 

et al. [70] described crabs prefer seeds, propagules, fruits, seedlings and leaf litter as their 

sources of food. Cannicci et al. [71] suggested that the spatial prediction autocorrelation 

of mangrove crabs is commonly associated with tree zonation and abiotic factors such as 

ground temperature and soil granulometry. Our predicted results indicate an excellent 

quality of crab abundance (MQISi > 1:5) in some parts of Sungai Kerang, with 59–81 crabs 

observed; the worst quality of crab abundance (MQISi < −1.5) mostly occurs in the seaward 

regions of Kuala Trong stretching towards Kuala Sepetang, with 3–23 crabs observed as 

Figure 3b. By observing the values in the NDVI and SAVI maps [13], VJR and land with 

matured mangrove trees (mostly aged more than 20 years) are identified as areas of ex-

cellent crab abundance. Within this physical environment, there are rich food sources for 

the crabs. In addition, there is no disturbance from tree thinning activities go; this is a 

primary reason Sungai Kerang has excellent crab abundance compared with the other re-

gions. Kuala Sepetang was reported by Perak State Forestry Department as a production 

forest; thus, there are lots of disturbances from human activities related to timber harvest-

ing operations, and this factor coupled with the upstream anthropogenic activities may 

have reduced the abundance of crabs [5]. 

Crab activities contribute to the recycling of nutrients [72–75]. Qiu et al. [76] describe 

crab burrowing activities that can promote retention and accumulation of soil C and soil 

N. Our spatial prediction autocorrelation of soil C as Figure 3c and soil N as Figure 3d are 

comparable with the spatial prediction autocorrelation of crab abundance distribution, 

and our study findings are consistent with those of Qiu et al. [76]. Both soil C and soil N 

are important in the growth and productivity of mangrove species [77]. Compton et al. 

[78], in their study, suggested that vegetation has no effects on soil nutrients. Faridah-

Hanum et al. [1] reported soil C and soil N show a positive relationship with the degree 

of disturbance in the MMFR; both nutrients increase from the least disturbed sites to the 

most disturbed sites. The least disturbed sites in their study are characterised by high 

dense vegetation, and the most disturbed sites are characterised by low dense vegetation 

as reported in the work of Rhyma et al. [22]. As such, our trends of the spatial prediction 

autocorrelation of vegetation with soil C and soil N are non-comparable. 

For the marine-mangrove variables, spatial prediction autocorrelation shows the sea-

ward region of Kuala Trong throughout Sungai Kerang in the Southern part has an excel-

lent number of phytoplankton species (MQISi > −1.5), with an average of 106–120 species. 

On the other hand, almost all of Kuala Sepetang region is predicted to have the lowest 

number of phytoplankton sp. with approximately 57–67 species (MQISi < −1.5) as Figure 

3f. In a study by Faridah-Hanum et al. [1], phytoplankton species are found to be highly 

distributed in the least disturbed areas. According to the study by Rhyma et al. [13], Kuala 

Trong has the highest NDVI value (0.65) compared with Sungai Kerang and Kuala Sepe-

tang. The distribution of phytoplankton is subject to environmental conditions of the 

coastal ecosystem. Nursuhayati et al. [79] and Revilla et al. [80] describe nutrients, turbid-

ity, and salinity influence the number and abundance of phytoplankton species, while 

Mackey and Currie [81] stress disturbances in the coastal ecosystem affect species diver-

sity and species richness of phytoplankton communities. This might be the reason Kuala 

Sepetang has the lowest number of phytoplankton sp. due to active timber harvesting 

operations as well as anthropogenic activities in the upstream region. 

Antonelli et al. [82] and Desrosiers et al. [83] explained diatom as a bio-indicator of 

coastal ecosystems due to their sensitivity to nutrient loadings. In our spatial prediction 

autocorrelation, an excellent number of diatoms species (MQISi > −1.5) are distributed in 

small parts of Kuala Trong and Sungai Kerang in the seaward region, with 80–88 species 
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as Figure 3f. Our spatial prediction autocorrelation using the OK semivariogram model 

of the hole effect shows there is an excellent number of diatom species in the middle region 

of Kuala Sepetang, with the highest number in the seaward region. This prediction con-

tradicts the finding of Faridah-Hanum et al. [1] which describes diatoms are highly dis-

tributed in areas with a high level of total dissolved solids, and lowly distributed in areas 

with high turbidity. There are ongoing timber harvesting operations in Kuala Sepetang, 

and the area has higher turbidity resulting from erosion materials as well as the upstream 

anthropogenic activities; this combination of factors might have contributed to the worst 

number of mangrove-marine variables—the number of phytoplankton sp. and number of 

diatoms spp. as Figure 3e,f. Farther distances between the locations of sampling points (as 

mentioned in Section 3.1) may have influenced our spatial prediction autocorrelation. 

The availability of aquatic organisms is influenced by conditions of water quality 

[84,85]. The DO as presented in Figure 3g is predicted to have a pattern similar to that of 

phytoplankton and diatom, except in the middle part of Kuala Sepetang. However, the 

spatial prediction autocorrelation of turbidity is slightly different for DO in the upper part 

of Sungai Kerang (right at the bottom of Kuala Trong), which is predicted to have high 

turbidity as Figure 3h. Using the Rational Quadratic semivariogram model, the original 

data were used in predicting turbidity for the entire MMFR; the overall prediction accu-

racy is low compared with other variables—ME: 1.1194; RMSE: 12.6746; RMSSE: 0.7975 

[38–40]. This might be the reason for the different trend of turbidity as compared with DO 

[86]. 

  

(a) AGB (b) crab abundance 
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(g) DO (h) turbidity 

Figure 3. Spatial interpolation of (a) AGB, (b) crab abundance, (c) soil C, (d) soil N, (e) no. of phyto-

plankton species, (f) no. of diatom species, (g) DO, and (h) turbidity. 

3.3. Mangrove Ecosystem Health Distribution 

In this study, mangrove ecosystem health is assessed using the MQI. The MQI was 

developed by Faridah-Hanum et al. [1] to determine a baseline of mangrove ecosystem 

health which took into consideration the mangrove forest, contributing components of a 

mangrove forest, soil, surrounding marine ecosystem, and hydrology variables. They 

found three of five types of health classes for three regions of the MMFR are MQI 2 (bad) 

for Kuala Sepetang, MQI 5 (excellent) for Kuala Trong and MQI 4 (good) for Sungai 

Kerang. However, their findings were based on selected and accessible sampling loca-

tions. With the geostatistical analysis, their findings could be utilised to predict health 

classes for unsampling locations with distribution areas. As a validation method, the 

NDVI was used by Faridah-Hanum and colleagues [1].  

Vegetation indices have been developed over the last four decades [87]. Over forty 

vegetation indices have been developed for qualitatively and quantitatively evaluating 

vegetation covers using spectral measurements of canopy cover [88]. In this study, vege-

tation indices studies by Rhyma et al. [13] were used to validate and quantify the areas of 

health distribution prior to their capability to indicate the vigour of vegetation [88]. This 

method has been successfully applied in previous studies such as Razali et al. [20], Bannari 

et al. [87], Chellamani et al. [88] and Flores-Cárdenas [89]. 

Figure 4 shows the combined results of all the variables through weighted overlay 

after they are standardised into five health classes. Approximately 307.9 ha of the MMFR 

are predicted to have excellent health (MQI > −1.5), distributed in small parts of Sungai 

Kerang; 15935.68 ha are predicted to have good health (0.5 ≤ MQI ≤ 1.5), concentrated in 

Kuala Trong and Sungai Kerang; 5224.34 ha are predicted to have moderate health (−0.5 

≤ MQI ≤ 0.5), distributed in small parts of Kuala Trong and Kuala Sepetang in the middle 

of the MMFR. Bad (17795.63 ha) and worst (715.55 ha) ecosystem health (MQI < −1.5) occur 
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mainly in areas along the Kuala Sepetang river, which is active with timber harvesting 

operations and has a high concentration of anthropogenic activities. When the present 

study is viewed together with the results of previous studies undertaken by Faridah-

Hanum et al. [1] and Rhyma et al. [13], all the variables are relevant in evaluating the 

mangrove health (divided into 3 regions: Kuala Sepetang, Kuala Trong and Sungai 

Kerang), and they are similar to the trend of the MQI with the NDVI and the SAVI (Table 

4). The results of this study indicate the geostatistical analysis of OK can lead to desired 

management and facilities distribution for improving the ecosystem health of the MMFR, 

which can be attained through continual monitoring. 

Table 4. Vegetation indices and the MQI of the Matang Mangrove Forest Reserve (sources: Faridah-

Hanum et al. [1] and Rhyma et al. [13]). 

Region 
Vegetation Indices [13] 

MQI [1] 
NDVI SAVI 

Kuala Sepetang −0.916667–0.314991 −1.55556–0.545049 MQI 2 (bad) 

Kuala Trong −0.689846–0.652204 −1.15279–1.12794 MQI 5 (excellent) 

Sungai Kerang −0.732505–0.638626 −1.22977–1.10828 MQI 4 (good) 

 

Figure 4. Mangrove ecosystem health classification based on LWC. 
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3.4. Limitation of Study 

In this study, we faced two main limitations. The first is the model validation, and 

the second is the performance evaluation of eight (8) variables used with the MQI. Since 

the study area is managed by different management regimes, each variable's influence on 

mangrove ecosystem health determination may vary. Different management regimes 

practised in this study area characterised the vegetation with different ages due to timber 

harvesting at 30 years. Before that, thinning is conducted at the ages of 15 and 20, aiming 

to produce straight timber for charcoal. These uneven forest stand age and density may 

vary the ecosystem in the respective area. Thus, the ecosystem health obtained from the 

linear weight combinations may differ slightly from the actual ground conditions. This is 

because each variable may affect different management regimes differently. All variables 

can be ranked as the most important to see their performance in evaluating mangrove 

ecosystem health. Multi-criteria analysis is an alternative to rank all variables [90,91] be-

fore mangrove ecosystem health modelled with linear weight combination analysis. In 

this current work, we are assuming all variables influence mangrove ecosystem health at 

a similar rate as tested by Faridah-Hanum et al. (2019). These eight (8) variables have been 

evaluated with principal component analysis (PCA) from 43 variables. In addition, vali-

dation with the NDVI in this study to examine vegetation conditions at different manage-

ment regimes is reflective of the MQI identified in the study area. Lausch et al. [61], Wang 

et al. [62], and Mouat [63] also explained that the NDVI could be a helpful method to 

evaluate the health of the ecosystems. In our ongoing study, we aim to differentiate the 

validation by different stand ages and density while ranking the important variables with 

multi-criteria analysis. 

4. Conclusions 

This study was conducted to evaluate the health of the mangrove ecosystem for the 

entire MMFR with respect to spatial variation. Variables chosen for this evaluation are 

acceptable according to the study by Faridah-Hanum et al. [1]. The OK geostatistical anal-

ysis has successfully estimated the values of the mangrove ecological variables, with the 

best-fit model of hole effect for AGB and number of diatom sp., spherical for crab abun-

dance, circular for soil C, exponential for soil N, Gaussian for the number of phytoplank-

ton sp., stable for DO, and rational quadratic for turbidity, in terms of a good ME, RMSE 

and RMSSE. The best-fit model of semivariogram shows the accuracy of interpolation. 

The prediction geospatial distribution map produced, and accuracy assessment con-

ducted with vegetation indices from Rhyma et al. [13] show that the ecosystem health of 

the MMFR is: excellent in small parts of Sungai Kerang; good in the Kuala Trong and 

Sungai Kerang regions; moderate in some areas of Kuala Trong; and bad in Kuala Sepe-

tang region. 

The outcomes of this study may provide valuable insights into mangrove ecosystem 

health and factors contributing to excellent biological growth. The information can be uti-

lised to formulate appropriate management plans, particularly for conserving the MMFR 

to the highest level of health. The application of geospatial modelling could be a useful 

tool for managers in making decisions associated with mangrove management such as 

intensity of rehabilitation and extent of resource protection. Modelling applied in this 

study can also be used for monitoring long-term changes in mangrove quality, and hence 

overall health in the years to come. 
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