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Abstract: In this manuscript, a new class of impulsive fractional Caputo neutral stochastic differ-
ential equations with variable delay (IFNSDEs, in short) perturbed by fractional Brownain motion
(fBm) and Poisson jumps was studied. We utilized the Carathéodory approximation approach and
stochastic calculus to present the existence and uniqueness theorem of the stochastic system under
Carathéodory-type conditions with Lipschitz and non-Lipschitz conditions as special cases. Some
existing results are generalized and enhanced. Finally, an application is offered to illustrate the
obtained theoretical results.

Keywords: fractional differential system of neutral type; fractional brownian motion; fractional
calculus; Poisson jump; Carathéodory approximation

1. Introduction

The theory of fractional differential equations is an important component in the frac-
tional calculus and plays a key role in helping researchers to explore the hidden properties
of the dynamics of complex systems in viscoelasticity, electromagnetism, diffusion, mechan-
ics, control, signal processing, physics, and many other fields [1–5]. The most important
advantage of utilizing systems of fractional order in the applications is their non-local
property. Recently, random fluctuations have appeared commonly in various natural and
synthetic systems, and fractional stochastic differential equations (FSDEs) with random per-
turbations have been applied as the mathematical models of many practical systems. This
motivates researchers to move from fractional deterministic models to fractional stochastic
models to guarantee the model performance. The theory of FSDEs is of interest because
of the applications in many fields of engineering and science such as mechanics, control,
physics, economics and many other areas [6–8]. A considerable amount of literature has
been published on the existence and uniqueness of solutions for FSDEs. One can see [9–17]
and the references therein.

On the other hand, in many mathematical models, the claims often display long-
range memories, possibly due to extreme weather or natural disasters, and in some cases,
many dynamical systems depend not only on present and past states but also contain
the derivatives with delays. Neutral functional differential equations are often used to
describe such systems [18]. In recent decades, the existence and uniqueness of mild
solutions for fractional neutral SDEs have attracted much attention. For instance, Lakhel
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and Mckibben [19] established the existence of mild solutions for a class of FNSDEs
driven by fBm with infinite delay; Dhanalakshmi and Balasubramaniam [20] showed the
stability result of higher-order FNSDEs with infinite delay driven by Poisson jumps and
the Rosenblatt process; Ramkumar et al. [21] obtained the existence and optimal control
for a class of Caputo FNSDEs driven by fBm and Poisson jumps; Alnafisah and Ahmed [22]
proved the existence and controllability for neutral delay Hilfer fractional integrodifferential
equations driven with fBm by means of the fixed point theorem and semigroup theory.

The theory of impulsive differential equations is developing as an active area of
investigation due to the applications in engineering, biology, physics, and many other ar-
eas [23–25]. The systems with impulses are utilized for studying the dynamics of processes
subject to abrupt changes at discrete moments. Very recently, impulsive FSDEs (IFSDEs)
arising in a very natural way as mathematical models are often applied to describe the
case where deterministic changes with impulses are interwoven with noisy fluctuations.
For more details on the existence and uniqueness for IFSDEs, see [26–30] and the refer-
ences cited therein. Dhanalaksmi and Balasubramaniam [31] utilized the existence and
exponential stability of mild solutions for impulsive fractional neutral SDEs driven by fBm
in Hilbert space. Muthukumar and Thiagu [32] derived the existence and approximate
controllability of solutions to fractional neutral impulsive SDEs of order 1 < q 6 2 with
infinite delay and Poisson jumps.

Based on the above and to the best of our knowledge, there is no manuscript consid-
ering the solvability of an impulsive Caputo fractional neutral stochastic system driven
by both fBm and Poisson jumps. In order to fill this gap, we considered the following
IFNSDEs with variable delay driven by fBm and Poisson jumps in Hilbert space:

Dβ
t [y(t)− f (t, y(t− ρ(t)))] = A[y(t)− f (t, y(t− ρ(t)))] + Γ1−β

t

[
g(s, y(s), y(s− ρ(s))) dwH(t)

dt

+
∫

Z h(t, y(t), y(t− ρ(t)), η))Ñ(dt, dη)

]
, t ∈ [0, b], t 6= tk,

4y(tk) = y(t+k )− y(t−k ) = Ik(y(tk)), t = tk k = 1, 2, ..., q, q ∈ N
y(t) = $(t), −τ 6 t 6 0,

(1)

where Dβ
t is the Caputo fractional derivative of order β, 0 < β < 1. Γ1−β

t (.) denotes the
1− β order fractional integral. Let A : D(A) ⊂ X −→ X be an infinitesimal generator of a
solution operator {Sβ(t)}t>0 defined on a Hilbert space X endowed by the inner product
〈., .〉 and norm ‖.‖X . wH is a fBm with Hurst parameter 1/2 < H < 1 defined on a real
separable Hilbert space Y . Let f : [0, b]×X −→ X , g : [0, b]×X ×X −→ L0

2(Y ,X ) and
h : [0, b]×X ×X × Z −→ X be nonlinear functions. Let ℘ = ℘([−τ, 0];X ) be the Banach
space of all continuous functions $ : [−τ, 0] −→ X endowed by the norm

‖$‖ = sup{‖$(θ)‖ : −τ 6 θ 6 0},

and the initial data y(0) = $ = {$(θ) : −τ 6 θ 6 0} is an F0-measurable ℘([−τ, 0],X )-
valued random variable such that E‖$‖2 < ∞. Ñ(dt, dη) = N(dt, dη) − λ̃(dη)dt is the
Poisson counting measure. LetM2([−τ, b],X ) be the space of allX -valuedFt-adapted pro-
cesses {y(t),−τ 6 t 6 b} endowed with the norm E‖y‖2

M2
= E‖ϕ‖2 + E

∫ b
0 ‖y(t)‖

2dt <
∞. Here, Ik : X −→ X , k = 1, 2, ..., q are bounded functions with the fixed times tk satisfy-
ing 0 = t0 < t1 < t2 < ... < tq < b, and y(t+k ) and y(t−k ) represent the right and left limits
of y(t) at time tk, respectively. Further,4y(tj) = y(t+k )− y(t−k ) determines the jump in the
state y at time tk, where Ik is the jump size.

It is noted that when ρ(t) = Ik = 0, our model (1) reduces to the [21] model, which
has been studied by means of successive approximation under non-Lipschitz conditions.
In contrast, we used the Carathéodory approximation approach to obtain the existence
of the unique mild solution for Equation (1) under Carathéodory conditions with the
non-Lipschitz condition used in [21] as a special case. Therefore, some results in [21] are
generalized and enhanced. We highlight the contributions of this article as follows.
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• This article model’s IFNSDEs are more general than the [21] model as it takes the
variable delays described by the term ρ(t) and possible jumps shown as impulses into
consideration.

• It is noted that the proofs of Theorem 3.3 in [21] and Theorem 3 in [33] are proved by
means of successive approximation. However, in our case here, Theorem 3.1 is proved
by means of the Carathéodory approximation approach, which is more complicated.

• Our Carathéodory conditions are more general than the non-Lipschitz condition used
in [21] and contain it as special case. Hence, some results in [21] are generalized
and extended.

This article is arranged as follows. In Section 2, we review some preliminary notions
and notations about stochastic integral with respect to fBm as well as fractional calculus and
state our assumptions. Section 3 is devoted to proving our main theorem of the existence
and uniqueness of mild solutions to Equation (1). Then, an application to validate our
research is discussed in Section 4. Finally, the conclusion is given in Section 5.

2. Preliminaries

Through the present section, we collect some notions and notations needed to establish
our main result. Assume (Ω,F ,P) is a filtered probability space with F0 containing all
P-null sets. The fBm with H ∈ ( 1

2 , 1) is a centered process of Gaussian type wH =
{wH(t)}06t6T with the following variance–covariance function:

KH(u, v) = E(wH(u)wH(v)) =
1
2
(u2H + v2H − |u− v|2H), u, v ∈ (−∞, ∞)

and second partial derivative [19]:

∂KH
∂u∂v

= (2H − 2)H|u− v|2H−2, H >
1
2

So, we can write:

KH(u, v) = (2H − 2)H
∫ u

0

∫ v

0
|u1 − v1|2H−2du1dv1.

For any real and separable Hilbert spaces X and Y , assume L(Y ,X ) is the space of
all bounded linear operators from Y to X . Let Q ∈ L(Y ,X ) be the operator defined by
Qen = λnen with finite trace trQ = ∑∞

n=1 λn < ∞, for λn > 0 (n = 1, 2, ...), which are
non-negative real numbers and {en}, which is a complete orthonormal basis in Y . The
infinite dimensional fBm on Y is defined as

wH(t) = wH
Q(t) =

∞

∑
n=1

√
λn.en.wH

n (t),

with real independent fBm’s wH
n . Construct the space L0

2 := L0
2(Y ,X ) of all Hilbert–

Schmidt operators ζ : Y −→ X , equipped with the inner product 〈ϕ, ζ〉L0
2
= ∑∞

n=1〈ϕen, ζen〉
and norm:

‖ζ‖2
L0

2
:=

∞

∑
n=1
‖
√

λnζen‖2 < ∞.

For any φ(s) ∈ L0
2(Y ,X ), s ∈ [0, T] such that ∑∞

n=1 ‖R∗φQ
1
2 en‖2

L0
2
< ∞, the Weiner

integral of φ with respect to wH is defined by:

∫ t

0
φ(s)dwH(s) =

∞

∑
n=1

∫ t

0

√
λnφ(s)endwH

n (s). (2)
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Lemma 1 ([20]). For any φ : [0, b] −→ L0
2(Y ,X ) with

∫ b
0 ‖φ(s)‖

2
L0

2
ds < ∞, satisfying

Equation (2), what follows is satisfied:

E
∥∥∥∥∫ t

0
φ(s)dwH(s)

∥∥∥∥2
6 2Ht2H−1

∫ t

0
‖φ(s)‖2

L0
2
ds.

We refer to [34–38] for more details on the stochastic integral with respect to fBm.

Definition 1 ([3,5]). The β-order fractional integral of Riemann–Lioville sense for g : [0, b] −→ X
is expressed by:

Jβ
t g(t) =

1
Γ(β)

∫ t

0
(t− s)β−1g(s)ds, β > 0.

Definition 2 ([39]). The Caputo β-order derivative with a 0 lower bound for g : [0, b] −→ X is
expressed as:

Dβ
t g(t) =

1
Γ(k− β)

∫ t

0

g(k)(s)
(t− s)β+1−k ds = Jk−β

t g(k)(t), 0 < k− 1 < β < k, t > 0.

For further discussion on the fractional Riemann–Liouville and Caputo derivatives, one can
refer to [3,5,39].

Next, a two-parameter Mittag–Leffler function is defined by the series expansion:

Eβ,α(w) =
∞

∑
k=0

wk

Γ(βk + α)
=

1
2πi

∫
c

λβ−αeλ

λβ − w
dλ, α, β > 0, w ∈ C

where C is a contour that starts and ends with −∞ and encircles the disk |λ| 6 |w| 12 counter-
clockwise.

Following Definition 2.9 of [21], we constructed the definition of the mild solution for
Equation (1) as:

Definition 3. The mild solution y : [−τ, b] −→ X of (1) is a stochastic process satisfying:

(i) y(t) is Cadlag and Ft-adapted.

(ii)
∫ b

0 E‖y(s)‖2ds < ∞, a.s.
(iii) The coming integral equation is true.

y(t) = $(t), t ∈ [−τ, 0],

y(t) = Sβ(t)[$(0)− f (0, $)] + f (t, y(t− ρ(t)))

+
∫ t

0 Sβ(t− s)g(s, y(s), y(s− ρ(s)))dwH(s)

+
∫ t

0

∫
Z Sβ(t− s)h(s, y(s), y(s− ρ(s)), η)Ñ(ds, dη)

+∑0<tk<t Sβ(t− tk)Ik(y(tk)), t ∈ [0, b],

(3)

where Sβ(t) is the solution operator generated by A and given by:

Sβ(t) = Eβ,1(Atβ) =
1

2πi

∫
B̂r

eµt µβ−1

µβ − A
dµ.

(iv) P{y(t) = z(t), ∀ 0 6 t 6 b} = 1 if z(t) is another solution to (1).

The coming assumptions on the coefficients of (1) were prepared for studying the existence and
uniqueness of the mild solution.
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(A1). The infinitesimal generator A : D ⊂ X −→ X of a strong and continuous semigroup of
bounded and linear operator Sβ(t), satisfying Sβ(0) = I (the identity operator on X ); there
exists some constant M > 0 obeying:

‖Sβ(t)‖ 6 M, f or all t ∈ [0, b],

(A2). There exists a function K(t, v) : [0, b]× [0, ∞) −→ [0, ∞), such that:

(a) K(t, v) is local and integrable in t for all fixed v ∈ [0, ∞) and is continuous, monotone
and nondecreasing in v for all fixed t ∈ [0, b].

(b) Furthermore, for all fixed t ∈ [0, b] and x, y ∈ ℘, this inequality is true:

E
∫ t

0
‖g(t, x, y)‖2ds ∨E

∫ t

0

∫
Z
‖h(t, x, y, η)‖2λ̂(η)ds

∨E
(∫ t

0

∫
Z
‖h(t, x, y, η)‖4λ̂(η)ds

) 1
2
6
∫ t

0
K(s,E‖x‖2 +E‖y‖2)ds

(c) For any positive constant γ, the deterministic equation

dϑ

dt
= γK(t, ϑ), t ∈ [0, b]

has a global solution for some initial value ϑ0 > 0.

(A3). There exists a functionM(t, v) : [0, b]× [0, ∞) −→ [0, ∞), such that:

(a) M(t, v) is local and integrable in t for any fixed v ∈ [0, ∞) and is continuous,
monotone, nondecreasing, and concave in v for any fixed t > 0 such thatM(t, 0) = 0
and

∫
0+

1
M(t,v)dv = +∞.

(b) Furthermore, for any fixed t ∈ [0, b] and x1, x2, y1, y2 ∈ ℘, this inequality holds:

E
∫ t

0
‖g(t, x1, x2)− g(t, y1, y2)‖2ds

∨E
∫ t

0

∫
Z
‖h(t, x1, x2, η)− h(t, y1, y2, η)‖2λ̂(η)ds

∨E
(∫ t

0

∫
Z
‖h(t, x1, x2, η)− h(t, y1, y2, η)‖4λ̂(η)ds

) 1
2

6
∫ t

0
M(s,E‖x1 − x2‖2 +E‖y1 − y2‖2)ds

(c) If a non-negative continuous function Y(t), t ∈ [0, b] satisfies{
Y(t) 6 N

∫ t
0 M(s, Y(s))ds, 0 6 t 6 b,

Y(0) = 0,

we have Y(0) ≡ 0 for all positive constant N and 0 6 t 6 b.

(A4). For some positive constant C f and y1, y2 ∈ ℘,

‖ f (t, y1)− f (t, y2)‖2 6 C f ‖y1 − y2‖2 and f (t, 0) = 0,

for all t > 0.

(A5). There exists a constants ck > 0 such that for every k = 1, 2, ..., q,

‖Ik(y1)− Ik(y2)‖2 6 ck‖y1 − y2‖2 and ‖Ik(0)‖2 = 0,



Fractal Fract. 2021, 5, 239 6 of 19

for all y1, y2 ∈ ℘.

Remark 1. LetM(t, v) = B(t)M(v), t ∈ [0, b], where B(t) > 0 is locally integrable andM(v)
is a concave nondecreasing function from [0, ∞[ to [0, ∞[ such thatM(0) = 0,M(v) > 0 for
v > 0 and

∫
0+

1
M(v)

dv = ∞. Then, by the comparison theorem of differential equations, we know
that condition (A3-c) holds.

Now, let us give some concrete examples of the functionM(.). Let ε > 0 and let κ ∈ (0, 1) be
sufficiently small. Define

M1(v) = εv, v > 0,

M2(v) =

{
v log(v−1), 0 6 v 6 κ,
κ log(κ−1) + Ḿ2(κ−)(v− κ), v > κ,

where Ḿ2 denotes the derivative of functionM2. They are all concave nondecreasing functions
satisfying

∫
0+

1
Mi(v)

dv = ∞ (i = 1, 2). In particular, we see that the non-Lipschitz condition
in [21] is a special case of our proposed condition.

3. Existence and Uniqueness

With the help of assumptions (A1)–(A5), we, through this section, develop the ex-
istence of the unique mild solution concerning Equation (1). Assume the Carathéodory
approximation yn(t) is defined for all b > 0 and any integer n > 2/τ as follows:

yn(t) = $(t), −τ 6 t 6 0,

yn(t) = Sβ(t)[$(0)− f (0, $)] + f (t, yn(t− ρ(t)))

+
∫ t

0 1Dc
n(s)Sβ(t− s)g

(
s, yn(s− 1

n ), yn(s− ρ(s))
)

dwH(s)

+
∫ t

0 1Dc
n(s)Sβ(t− s)h

(
s, yn(s− 1

n ), yn(s− ρ(s)), η
)

Ñ(ds, dη)

+
∫ t

0 1Dn(s)Sβ(t− s)g
(

s, yn(s− 1
n ), yn(s− ρ(s)− 1

n )
)

dwH(s)

+
∫ t

0 1Dn(s)Sβ(t− s)h
(

s, yn(s− 1
n ), yn(s− ρ(s)− 1

n ), η
)

Ñ(ds, dη)

+∑0<tk<t Sβ(t− tk)Ik

(
yn(tk − 1

n )
)

, t ∈ [0, b],

(4)

with the indicator functions 1Dn and 1Dc
n of Dn = {t : ρ(t) < 1

n , 0 6 t 6 b} and
Dc

n = [0, b]− Dn, respectively.

Theorem 1. Assume assumptions (A1)–(A5) are fulfilled. Suppose $ is independent of the Pois-
son counting measure Ñ(dt, dη) and fBm wH(t). Then, provided 7C f + 7qM2 ∑

q
k=1 ck < 1,

Equation (1) has a unique mild solution y(t) onM2([−τ, b],X ).

Proof. For the convenience of the readers, the proof is divided into the following steps.
Step 1. This sequence {yn(t)}n>2/τ is claimed to be bounded.
By elementary inequality to (4), it is seen
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E(sup06s6t ‖yn(s)‖2)

6 7E sup06s6t ‖Sβ(t)[$(0)− f (0, $)]‖2 + 7E sup06s6t ‖ f (s, yn(s− ρ(s)))‖2

+7E sup06s6t

∥∥∥∥ ∫ s
0 1Dc

n(r)Sβ(t− r)g(r, yn(r− 1
n ), yn(r− ρ(r)))dwH(r)

∥∥∥∥2

+7E sup06s6t

∥∥∥∥ ∫ s
0

∫
Z 1Dc

n(r)Sβ(t− r)h(r, yn(r− 1
n ), yn(r− ρ(r)), η)Ñ(dr, dη)

∥∥∥∥2

+7E sup06s6t

∥∥∥∥ ∫ s
0 1Dn(r)Sβ(t− r)g(r, yn(r− 1

n ), yn(r− ρ(r)− 1
n ))dwH(r)

∥∥∥∥2

+7E sup06s6t

∥∥∥∥ ∫ s
0

∫
Z 1Dn(r)Sβ(t− r)h(r, yn(r− 1

n ), yn(r− ρ(r)− 1
n ), η)Ñ(dr, dη)

∥∥∥∥2

+7E sup06s6t

∥∥∥∥∑0<tk<s Sβ(t− tk)Ik(yn(tk − 1
n ))

∥∥∥∥2

6 ∑7
j=1 Fj

(5)

Thus, we have by conditions (A1) and (A4)

F1 6 14M2[E‖$‖2 + C fE‖$‖2] 6 14M2(1 + C f )E‖$‖2, (6)

and

F2 6 7E‖ f (t, yn(t− ρ(t)))‖2 6 7C fE sup
06s6t

‖yn(s)‖2. (7)

By Lemma 1 , Burkholder’s inequality for pure jump stochastic integrals in X [40] and
condition (A2), we obtain

F3 + F4 6 14M2Ht2H−1E
∫ t

0 1Dc
n(s)‖g(s, yn(s− 1

n ), yn(s− ρ(s)))‖2ds

+7M2Cb

[
E
∫ t

0

∫
Z 1Dc

n(s)‖h(s, yn(s− 1
n ), yn(s− ρ(s)), η)‖2λ̃(dη)ds

+E
(∫ t

0

∫
Z 1Dc

n(s)‖h(s, yn(s− 1
n ), yn(s− ρ(s)), η)‖4λ̂(dη)ds

) 1
2
]

6 7M2(Cb + 2Ht2H−1)
∫ t

0 1Dc
n(s)K

(
s,E‖yn(s− 1

n )‖2 +E‖yn(s− ρ(s))‖2
)

ds.

(8)

Similarly,

F5 + F6

6 7M2(Cb + 2Ht2H−1)
∫ t

0 1Dn(s)K
(

s,E‖yn(s− 1
n )‖2 +E‖yn(s− ρ(s)− 1

n )‖2
)

ds.
(9)

For F7, we have by conditions (A1) and (A5)

F7 6 7qM2 ∑
q
k=1 ckE‖yn(tk − 1

n )‖2

6
(

7qM2 ∑
q
k=1 ck

)
E sup06s6t ‖yn(s)‖2.

(10)

Combining Equations (5)–(10), it concludes

E( sup
06s6t

‖yn(s)‖2)

6
14M2(1 + C f )E‖$‖2

1− 7C f − 7qM2 ∑
q
k=1 ck

+
7M2(Cb + 2Ht2H−1)

1− 7C f − 7qM2 ∑
q
k=1 ck
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×
∫ t

0
1Dc

n(s)K
(

s, 2E‖$‖2 + 2E sup
06r6s

‖yn(r)‖2

)
ds

+
7M2(Cb + 2Ht2H−1)

1− 7C f − 7qM2 ∑
q
k=1 ck

∫ t

0
1Dn(s)K

(
s, 2E‖$‖2 + 2E sup

06r6s
‖yn(r)‖2

)
ds

6
14M2(1 + C f )E‖$‖2

1− 7C f − 7qM2 ∑
q
k=1 ck

+
7M2(Cb + 2Ht2H−1)

1− 7C f − 7qM2 ∑
q
k=1 ck

×
∫ t

0
K
(

s, 2E‖$‖2 + 2E sup
06r6s

‖yn(r)‖2

)
ds.

Hence, we have

2E‖$‖2 + 2E( sup
06s6t

‖yn(s)‖2)

6
2[1 + 14M2(1 + C f )− 7C f − 7qM2 ∑

q
k=1 ck]

1− 7C f − 7qM2 ∑
q
k=1 ck

E‖$‖2

+
14M2(Cb + 2Ht2H−1)

1− 7C f − 7qM2 ∑
q
k=1 ck

∫ t

0
K
(

s, 2E‖$‖2 + 2E sup
06r6s

‖yn(r)‖2

)
ds.

Then, for any solution ϑt, condition (A2-c) gives

ϑt 6
2[1 + 14M2(1 + C f )− 7C f − 7qM2 ∑

q
k=1 ck]

1− 7C f − 7qM2 ∑
q
k=1 ck

E‖$‖2

+
14M2(Cb + 2Ht2H−1)

1− 7C f − 7qM2 ∑
q
k=1 ck

∫ t

0
K(s, ϑs)ds.

Since E‖$‖2 6 ∞, it reads

E
(

sup
06s6t

‖yn(s)‖2

)
6 ϑt 6 ϑT < ∞, n >

2
n

.

Therefore, {yn(t)}n>2/τ is uniformly bounded, and Step 1 is then fulfilled.

Step 2. For s, t ∈ [0, b], s < t and n > 2/τ, it reads

E‖yn(t)− yn(s)‖2 6 C1‖Sβ(t− s)− I‖2 + C2(t− s) + C3 ∑
s<tk<t

ck,

where C1, C2, and C3 are defined through the proof.
Note that:

E‖yn(t)− yn(s)‖2

6 2E‖ f (t, yn(t− ρ(t)))− f (s, yn(s− ρ(s)))‖2 + 2E‖Jn(t, s)‖2

6 2C fE‖yn(t)− yn(s)‖2 + 2E‖Jn(t, s)‖2

6 2
1−2C f

E‖Jn(t, s)‖2,

(11)

where:

E‖Jn(t, s)‖2

6 5E
∥∥∥∥ ∫ s

0
1Dc

n(v)[Sβ(t− v)− Sβ(s− v)]g(v, yn(v−
1
n
), yn(v− ρ(u)))dwH(v)
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+
∫ t

s
1Dc

n(v)Sβ(t− v)g(v, yn(v−
1
n
), yn(v− ρ(v)))dwH(v)

∥∥∥∥2

+5E
∥∥∥∥ ∫ s

0

∫
Z

1Dc
n(v)[Sβ(t− v)− Sβ(s− v)]h(v, yn(v−

1
n
), yn(v− ρ(v)), η)Ñ(dv, dη)

+
∫ t

s

∫
Z

1Dc
n(v)Sβ(t− v)h(v, yn(v−

1
n
), yn(v− ρ(v)), η)Ñ(dv, dη)

∥∥∥∥2

+5E
∥∥∥∥ ∫ s

0
1Dn(v)[Sβ(t− v)− Sβ(s− v)]g(v, yn(v−

1
n
), yn(v− ρ(v)− 1

n
))dwH(v)

+
∫ t

s
1Dn(v)Sβ(t− v)g(v, yn(v−

1
n
), yn(v− ρ(v)− 1

n
))dwH(v)

∥∥∥∥2

+5E
∥∥∥∥ ∫ s

0

∫
Z

1Dn(v)

×[Sβ(t− v)− Sβ(s− v)]h(v, yn(v−
1
n
), yn(v− ρ(v)− 1

n
), η)Ñ(dv, dη)

+
∫ t

s

∫
Z

1Dn(v)Sβ(t− v)h(v, yn(v−
1
n
), yn(v− ρ(v)− 1

n
), η)Ñ(dv, dη)

∥∥∥∥2

+5E
∥∥∥∥ ∑

0<tk<s
[Sβ(t− tk)− Sβ(s− tk)]Ik(yn(tk −

1
n
))

+ ∑
s<tk<t

Sβ(t− tk)Ik(yn(tk −
1
n
))

∥∥∥∥2

:=
5

∑
i=1

Ji. (12)

Now for J1, we have by Lemma 1 and conditions (A1) and (A2):

J1 6 10E
∥∥∥∥ ∫ s

0
1Dc

n(v)
[
Sβ(t− v)− Sβ(s− v)

]
g(v, yn(v−

1
n
), yn(v− ρ(v)))dwH(v)

∥∥∥∥2

+10E
∥∥∥∥ ∫ t

s
1Dc

n(v)Sβ(t− v)g(v, yn(v−
1
n
), yn(v− ρ(v)))dwH(v)

∥∥∥∥2

6 20Hs2H−1‖Sβ(t− v)− Sβ(s− v)‖2
∫ s

0
1Dc

n(v)

×K(v,E‖yn(v−
1
n
)‖2 +E‖yn(v− ρ(v))‖2)du

+20H(t− s)2H−1‖Sβ(t− v)‖2
∫ t

s
1Dc

n(v)

×K(v,E‖yn(v−
1
n
)‖2 +E‖yn(v− ρ(v))‖2)dv

6 20Hs2H−1M2‖Sβ(t− s)− I‖2
∫ s

0
1Dc

n(v)K(v, 2E sup
06r6v

‖yn(r)‖2)dv

+20H(t− s)2H−1M2
∫ t

s
1Dc

n(v)K(v, 2E sup
06r6v

‖yn(r)‖2)dv. (13)

For J2, we have by Burkholder’s inequality and conditions (A1) and (A2):

J2 6 10E
∥∥∥∥ ∫ s

0

∫
Z

1Dc
n(v)

×
[
Sβ(t− v)− Sβ(s− v)

]
h(v, yn(v−

1
n
), yn(v− ρ(v)), η)Ñ(dv, dη)

∥∥∥∥2

+10E
∥∥∥∥ ∫ t

s

∫
Z

1Dc
n(v)Sβ(t− v)h(v, yn(v−

1
n
), yn(v− ρ(v)), η)Ñ(dv, dη)

∥∥∥∥2
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6 10Cb M2‖Sβ(t− s)− I‖2E
[ ∫ s

0

∫
Z

1Dc
n(v)‖h(v, yn(v−

1
n
), yn(v− ρ(v)), η)‖2λ̃(dη)dv

+

( ∫ s

0

∫
Z

1Dc
n(v)‖h(v, yn(v−

1
n
), yn(v− ρ(v)), η)‖4λ̃(dη)dv

) 1
2
]

+10Cb M2E
[ ∫ t

s

∫
Z

1Dc
n(v)‖h(v, yn(v−

1
n
), yn(v− ρ(v)), η)‖2λ̃(dη)dv

+

( ∫ t

s

∫
Z

1Dc
n(v)‖h(v, yn(v−

1
n
), yn(v− ρ(v)), η)‖4λ̃(dη)dv

) 1
2
]

6 10Cb M2‖Sβ(t− s)− I‖2
∫ s

0
1Dc

n(v)K(v, 2E sup
06r6v

‖yn(r)‖2)dv

+10Cb M2
∫ t

s
1Dc

n(v)K(v, 2E sup
06r6v

‖yn(r)‖2)dv. (14)

Similarly, for J3 and J4, we have:

J3 + J4 6 10M2‖Sβ(t− s)− I‖2[Cb + 2Hs2H−1]
∫ s

0
1Dn(v)K(v, 2E sup

06r6v
‖yn(r) ‖2)dv

+10M2[Cb + 2H(t− s)2H−1]
∫ t

s
1Dn(v)K(v, 2E sup

06r6v
‖yn(r)‖2)dv. (15)

For J5, we have by conditions (A1) and (A5) and Hölder’s inequality:

J5 6 10E
∥∥∥∥ ∑

0<tk<s

(
Sβ(t− tk)− Sβ(s− tk)

)
Ik(yn(tk −

1
n
))

∥∥∥∥2

+10E
∥∥∥∥ ∑

s<tk<t
Sβ(t− tk)Ik(yn(tk −

1
n
))

∥∥∥∥2

6 10qM2‖Sβ(t− s)− I‖2
q

∑
k=1

ckE‖yn(tk −
1
n
)‖2

+10qM2 ∑
s<tk<t

ckE‖yn(tk −
1
n
)‖2

6 10qM2‖Sβ(t− s)− I‖2
q

∑
k=1

ckE sup
06s6t

‖yn(s)‖2

+10qM2 ∑
s<tk<t

ckE sup
06s6t

‖yn(s)‖2. (16)

Combining Equations (12)–(16) and using Step 1, we have:

E‖Jn(t, s)‖2 6 10M2‖Sβ(t− s)− I‖2[Cb + 2Hs2H−1]
∫ s

0
1Dc

n(v)K(v, 2E sup
06r6v

‖yn(r)‖2)dv

+10M2[Cb + 2H(t− s)2H−1]
∫ t

s
1Dc

n(v)K(v, 2E sup
06r6v

‖yn(r)‖2)dv

+10M2‖Sβ(t− s)− I‖2[Cb + 2Hs2H−1]
∫ s

0
1Dn(v)K(v, 2E sup

06r6v
‖yn(r)‖2)dv

+10M2[Cb + 2H(t− s)2H−1]
∫ t

s
1Dn(v)K(v, 2E sup

06r6v
‖yn(r)‖2)dv

+10qM2‖Sβ(t− s)− I‖2
q

∑
k=1

ckE sup
06s6t

‖yn(s)‖2
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+10qM2 ∑
s<tk<t

ckE sup
06s6t

‖yn(s)‖2

6 10M2‖Sβ(t− s)− I‖2[Cb + 2Hs2H−1]
∫ s

0
K(v, 2E sup

06r6v
‖yn(r)‖2)dv

+10M2[Cb + 2H(t− s)2H−1]
∫ t

s
K(v, 2E sup

06r6v
‖yn(r)‖2)dv

+10qM2‖Sβ(t− s)− I‖2
q

∑
k=1

ckE sup
06s6t

‖yn(s)‖2

+10qM2 ∑
s<tk<t

ckE sup
06s6t

‖yn(s)‖2

6 10M2
[

s(Cb + 2Hs2H−1) sup
06v6s

K(v, 2C) + qC
q

∑
k=1

ck

]
‖Sβ(t− s)− I‖2

+10M2[Cb + 2H(t− s)2H−1] sup
06v6t

K(v, 2C)(t− s) + 10qCM2 ∑
s<tk<t

ck, (17)

where the constant C comes from Step 1. Inserting Equation (17) in Equation (11), the
required result is obtained with constants:

C1 =

20M2
[

s(Cb + 2Hs2H−1) sup06v6s K(v, 2C) + qC ∑
q
k=1 ck

]
1− 2M f

,

C2 =
20M2[Cb + 2H(t− s)2H−1] sup06v6t K(v, 2C)

1− 2M f
, and C3 =

20qCM2

1− 2C f
.

Step 3. It is proved that {yn(t)}n>2/τ is Cauchy inM2([−τ, b],X). Using Equation (4), for
m > n > 2/τ, it is easy to obtain:

E( sup
06s6t

‖ym(s)− yn(s)‖2) 6
2

1− 2C f
E( sup

06s6t
‖Υn(s)‖2), (18)

where:

Υn(t) =
∫ t

0

{
1Dc

m(s)Sβ(t− s)g(s, ym(s−
1
m
), ym(s− ρ(s)))

−1Dc
n(s)Sβ(t− s)g(s, yn(s−

1
n
), yn(s− ρ(s)))

}
dwH(s)

+
∫ t

0

∫
Z

{
1Dc

m(s)Sβ(t− s)h(s, ym(s−
1
m
), ym(s− ρ(s)), η)

−1Dc
n(s)Sβ(t− s)h(s, yn(s−

1
n
), yn(s− ρ(s)), η)

}
Ñ(ds, dη)

+
∫ t

0

{
1Dm(s)Sβ(t− s)g(s, ym(s−

1
m
), ym(s− ρ(s)− 1

m
))

−1Dn(s)Sβ(t− s)g(s, yn(s−
1
n
), yn(s− ρ(s)− 1

n
))

}
dwH(s)

+
∫ t

0

∫
Z

{
1Dm(s)Sβ(t− s)h(s, ym(s−

1
m
), ym(s− ρ(s)− 1

m
), η)

−1Dn(s)Sβ(t− s)h(s, yn(s−
1
n
), yn(s− ρ(s)− 1

n
), η)

}
Ñ(ds, dη)
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+ ∑
0<tk<t

Sβ(t− s)
[
Ik(ym(tk −

1
m
))− Ik(yn(tk −

1
n
))
]
=

5

∑
i=1

Θi. (19)

The integrals above are computed by the technique of plus and minus:

Θ1 =
∫ t

0
1Dc

m(s)Sβ(t− s)g(s, ym(s−
1
m
), ym(s− ρ(s)))dwH(s)

−
∫ t

0
1Dc

n(s)Sβ(t− s)g(s, yn(s−
1
n
), yn(s− ρ(s)))dwH(s)

+
∫ t

0
1Dc

n(s)Sβ(t− s)g(s, ym(s−
1
m
), ym(s− ρ(s)))dwH(s)

−
∫ t

0
1Dc

n(s)Sβ(t− s)g(s, ym(s−
1
m
), ym(s− ρ(s)))dwH(s)

+
∫ t

0
1Dc

n(s)Sβ(t− s)g(s, yn(s−
1
m
), yn(s− ρ(s)))dwH(s)

−
∫ t

0
1Dc

n(s)Sβ(t− s)g(s, yn(s−
1
m
), yn(s− ρ(s)))dwH(s)

=
∫ t

0
1Dc

n(s)Sβ(t− s)
{

g(s, ym(s−
1
m
), ym(s− ρ(s)))

−g(s, yn(s−
1
m
), yn(s− ρ(s)))

}
dwH(s)

+
∫ t

0
1Dc

n(s)Sβ(t− s)
{

g(s, yn(s−
1
m
), yn(s− ρ(s)))

−g(s, yn(s−
1
n
), yn(s− ρ(s)))

}
dwH(s)

+
∫ t

0
1Dc

m−Dc
n(s)Sβ(t− s)g(s, ym(s−

1
m
), ym(s− ρ(s)))dwH(s).

Taking expectation, elementary inequality, Lemma 1, conditions (A1)–(A3), and Step 1,
we have:

E sup
06s6t

‖Θ1‖2 6 6Ht2H−1M2
∫ t

0
1Dc

n(s)M
(

s,E‖ym(s−
1
m
)− yn(s−

1
m
)‖2

+E‖ym(s− ρ(s))− yn(s− ρ(s))‖2
)

ds

+6Ht2H−1M2
∫ t

0
1Dc

n(s)M
(

s,E‖yn(s−
1
m
)− yn(s−

1
n
)‖2
)

ds

+6Ht2H−1M2
∫ t

0
1Dc

m−Dc
n(s)K

(
s,E‖ym(s−

1
m
)‖2

+E‖ym(s− ρ(s))‖2
)

ds

6 6Ht2H−1M2
∫ t

0
1Dc

n(s)M
(

s, 2E sup
06v6s

‖ym(v)− yn(v)‖2
)

ds

+6Ht2H−1M2
∫ b

0
1Dc

n(s)M
(

s,E‖yn(s−
1
m
)− yn(s−

1
n
)‖2
)

ds

+6Ht2H M2
(

sup
06s6t

K(s, 2C)
)

µ(Dc
m − Dc

n). (20)

Similarly, we have for Θ2 by Burkholder’s inequality, conditions (A1)–(A3) and Step 1:
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E sup
06s6t

‖Θ2‖2 6 3E sup
0<s<t

∥∥∥∥ ∫ s

0

∫
Z

1Dc
n(v)Sβ(s− v)

{
h(v, ym(v−

1
m
), ym(v− ρ(v)), η)

−h(v, yn(v−
1
m
), yn(v− ρ(v)), η)

}
Ñ(dv, dη)

∥∥∥∥2

+3E sup
0<s<t

∥∥∥∥ ∫ s

0

∫
Z

1Dc
n(v)Sβ(s− v)

{
h(v, yn(v−

1
m
), yn(v− ρ(v)), η)

−h(v, yn(v−
1
n
), yn(v− ρ(v)), η)

}
Ñ(dv, dη)

∥∥∥∥2

+3E sup
0<s<t

∥∥∥∥ ∫ s

0

∫
Z

1Dc
m−Dc

n(v)Sβ(s− v)

×h(v, ym(v−
1
m
), ym(v− ρ(v)), η)Ñ(dv, dη)

∥∥∥∥2

6 3Cb M2
∫ t

0
1Dc

n(s)M
(

s, 2E sup
06v6s

‖ym(v)− yn(v)‖2
)

ds

+3Cb M2
∫ b

0
1Dc

n(s)M
(

s,E‖yn(s−
1
m
)− yn(s−

1
n
)‖2
)

ds

+3Cb M2
(

sup
06s6b

K(s, 2C)
)

µ(Dc
m − Dc

n). (21)

By similar analysis for Θ3 and Θ4, we obtain:

E sup
06s6t

(‖Θ3‖2 + ‖Θ4‖2)

6 3M2(Cb + 2Ht2H−1)
∫ t

0
1Dm(s)M

(
s, 2E sup

06v6s
‖ym(v)− yn(v)‖2

)
ds

+3M2(Cb + 2Ht2H−1)
∫ b

0
1Dm(s)M

(
s,E‖yn(s−

1
m
)− yn(s−

1
n
)‖2

+E‖yn(s− ρ(s)− 1
m
)− yn(s− ρ(s)− 1

n
)‖2
)

ds

+3M2(Cb + 2Ht2H)

(
sup

06s6b
K(s, 2C)

)
µ(Dn − Dm). (22)

For Θ5, we have by the technique of plus and minus, conditions (A1) and (A5):

E sup
06s6t

‖Θ5‖2 6 2qM2
q

∑
k=1

ckE‖ym(tk −
1
m
)− yn(tk −

1
m
)‖2

+2qM2
q

∑
k=1

ckE‖yn(tk −
1
m
)− yn(tk −

1
n
)‖2

6 2qM2
q

∑
k=1

ckE sup
06s6t

‖ym(s)− yn(s)‖2

+2qM2
q

∑
k=1

ckE‖yn(tk −
1
m
)− yn(tk −

1
n
)‖2. (23)

Collecting (18)–(23), we find:

E( sup
06s6t

|ym(s)− yn(s)|2) 6 C4

∫ t

0
M
(

s, 2E sup
06v6s

‖ym(v)− yn(v)‖2
)

ds
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+C4

∫ b

0
1Dc

n(s)M
(

s,E‖yn(s−
1
m
)− yn(s−

1
n
)‖2
)

ds

+C4

∫ b

0
1Dm(s)M

(
s,E‖yn(s−

1
m
)− yn(s−

1
n
)‖2

+E‖yn(s− ρ(s)− 1
m
)− yn(s− ρ(s)− 1

n
)‖2
)

ds

+C6E‖yn(tk −
1
m
)− yn(tk −

1
n
)‖2

+C5

(
sup

06s6b
K(s, 2C)

)
µ(Dn − Dm), (24)

where C4 = 30M2(Cb+2Ht2H−1)

1−2C f−24qM2 ∑
q
k=1 ck

, C5 = 60M2(Cb+2Ht2H)

1−2C f−24qM2 ∑
q
k=1 ck

and C6 =
24qM2 ∑

q
k=1 ck

1−2C f−24qM2 ∑
q
k=1 ck

.

In the lines that follow, we can estimate:∫ b

0
1Dc

n(s)M
(

s,E‖yn(s−
1
m
)− yn(s−

1
n
)‖2
)

ds

=
∫ 1

n

0
1Dc

n(s)M
(

s,E‖yn(s−
1
m
)− yn(s−

1
n
)‖2
)

ds

+
∫ b

1
n

1Dc
n(s)M

(
s,E‖yn(s−

1
m
)− yn(s−

1
n
)‖2
)

ds

6
∫ 1

n

0
1Dc

n(s)M
(

s, 2E‖yn(s−
1
m
)‖2 + 2E‖yn(s−

1
n
)‖2
)

ds

+bM

s, C1‖Sβ(
1
n
− 1

m
)− I‖2 + C2(

1
n
− 1

m
) + C3 ∑

s− 1
n <tk<s− 1

m

ck


6M

(
s, 4E‖$‖2 + 4C

) 1
n

+bM

s, C1‖Sβ(
1
n
− 1

m
)− I‖2 + C2(

1
n
− 1

m
) + C3 ∑

s− 1
n <tk<s− 1

m

ck

, (25)

∫ b

0
1Dm(s)M

(
s,E‖yn(s−

1
m
)− yn(s−

1
n
)‖2

+E‖yn(s− ρ(s)− 1
m
)− yn(s− ρ(s)− 1

n
)‖2
)

ds

6M
(

s, 8E‖$‖2 + 8C
)
(

1
n
+

1
m
)

+bM

s, 2C1‖Sβ(
1
n
− 1

m
)− I‖2 + 2C2(

1
n
− 1

m
) + 2C3 ∑

s− 1
n <tk<s− 1

m

ck

, (26)

and:

E‖yn(tk −
1
m
)− yn(tk −

1
n
)‖2

6 C1‖Sβ(
1
n
− 1

m
)− I‖2 + C2(

1
n
− 1

m
) + C3 ∑

s− 1
n <tk<s− 1

m

ck. (27)
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Let

Y(t) = lim sup
m,n−→∞

2E( sup
06s6t

‖ym(s)− yn(s)‖2). (28)

Since µ(Dn − Dm) −→ 0 andM(s, .) = 0 as n, m −→ ∞, and employing (25)–(27),
Equations (24) and (28) beside Fatou’s lemma yield:

Y(t) 6 2C4

∫ t

0
M(s, Y(s))ds. (29)

Lastly, through Equation (29) and condition (A3), the following is obtained:

Y(t) = lim sup
m,n−→∞

2E( sup
06s6t

‖ym(s)− yn(s)‖2) = 0,

which yields:

lim sup
m,n−→∞

E( sup
06s6t

‖ym(s)− yn(s)‖2) = 0,

which shows that {yn(t)}n>2/τ is Cauchy sequence onM2([−τ, b];X ). The Borel–Cantelli
lemma shows that, as n −→ ∞, yn(t) −→ y(t) holds uniformly for every t ∈ [0, b]. Conse-
quently, by the limit on both sides of (4), y(t) defines the mild solution of (1) with property:

E( sup
06s6t

‖y(s)‖2) = 0, 0 6 t 6 b.

Lastly, the proof of existence is complete. The uniqueness proof is presented in the
Appendix A. Hence, the Theorem 1 proof is completed.

If g(t, ., .) ≡ g(t, yt), h(t, ., ., η) ≡ h(t, yt, η) and f (t, .) ≡ f (t, yt), Equation (1) reduces
to the following equation:

Dβ
t [y(t)− f (t, yt)] = A[y(t)− f (t, yt)] + Γ1−β

t

[
f (s, ys)

dwH(t)
dt

+
∫

Z f (t, yt, η)Ñ(dt, dη)

]
, t ∈ [0, b], t 6= tk,

4y(tk) = y(t+k )− y(t−k ) = Ik(y(tk)), t = tk k = 1, 2, ..., q, q ∈ N
y(t) = $(t), −τ 6 t 6 0,

(30)

Corollary 1. Assume assumptions (A1)–(A5) are fulfilled. Suppose $ is independent of the
Poisson counting measure Ñ(dt, dη) and fBm wH(t). Then, provided 7C f + 7qM2 ∑

q
k=1 ck < 1,

Equation (30) has a unique mild solution y(t) onM2([−τ, b],X ).

Remark 2. If Ik(.) ≡ 0(k = 1, 2, ..., q) in Equation (30), Corollary 1 consists with Theorem
3.3 in Ramkumar et al. [21], where the authors applied the successive approximation to utilize
existence and uniqueness problem under non-Lipschitz conditions. However, here, the results were
utilized by using Carathéodory approximation under Carathéodory conditions with reference to [21]
non-Lipschitz conditions as special case. So, Corollary 1 generalizes some of the results in [21].
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4. Application

Consider the following IFNSPDEs driven by fBm and Poisson jumps:

Dβ
t

[
z(t, y)−

∫ 0
−τ α1(r) sin z(t + r, y)dr

]
= ∂2

∂y2

[
z(t, y)−

∫ 0
−τ α1(r) sin z(t + r, y)dr

]
+ 1

Γ(1−β
)
∫ t

0 (t− r)−β

[ ∫ t
0

∫ t
−τ e4(τ−t)z(r, y)drdwH(r)

+
∫

Z η

( ∫ t
−τ α2(r− t)z(r, y)dr

)
Ñ(dt, dη)

]
,

4z(tk, y) := z(t+k , y)− z(t−k , y) = α3
2k z(tk, y), k ∈ N

y ∈ D = (0, π], t ∈ [0, b]
z(t, 0) = z(t, π) = 0, t ∈ [0, T],
z(t, y) = ϕ(t, y), −τ 6 t 6 0, y ∈ D,

(31)
with Dβ

t , which is a fractional Caputo derivative of order 0 < β < 1, and wH , 1
2 < H < 1 is

fBm. Let X = L2([0, π]), and define the operator A : D(A) ⊂ X −→ X by Az = ´́z with
domain D(A) = {z ∈ X ; z, ź are absolutely continuous, ´́z ∈ X , z(0) = z(π) = 0}. Then,

Az = ∑∞
n=1 n2(z, zn)zn, z ∈ D(A), where zn(y) =

√
2
π sin(ny), n ∈ N, which is a set of

orthogonal eigenvectors of A. Define the fBm in Y by:

wH(t) =
∞

∑
n=1

√
λnwH

n (t)en,

where {wH
n (t), n ∈ N} are standard mutually independent fBms. Thanks to the subordina-

tion principle of solution operator, A is the infinitesimal generator of a solution operator
{Sβ(t), t > 0}. Since Sβ(t) is strongly continuous on [0, ∞) by a uniformly bounded
theorem, there exists a constant M > 0 such that ‖Sβ(t)‖2 6 M2, for t ∈ [0, b]. De-
fine the nonlinear functions f : [0, b] × ℘ −→ X , g : [0, b] × ℘ × ℘ −→ L0

2(Y ,X ) and
h : [0, b]× ℘× ℘× Z −→ X by:

f (t, $)(y) =
∫ 0

−τ
α1(ζ) sin($(ζ)(y))dζ, ζ ∈ [−τ, 0], y ∈ D,

g(t, ψ, $)(y) =
∫ 0

−τ
e−4ζ$(ζ)(y)dζ,

h(t, ψ, $)(y) =
∫ 0

−τ
α2(ζ)$(ζ)(y)dζ,

Ik(y(tk)) =
α3

2k z(tk, y), k ∈ N

and assuming that
∫

Z η2λ̃(dη) < ∞. Finally, system (31) takes the abstract form of model (1)
and assumes that assumptions (A1)–(A5) are satisfied. Then, Theorem 1 guarantee that
model (31) has a mild solution, which is unique.

5. Conclusions

Through this study, the existence of the unique mild solution for a class of IFNSDEs
with variable delay driven by fBm and Poisson jumps was investigated in Hilbert space.
Our model is more general than [21,33] models as it takes the variable delays described by
the term ρ(t) and possible jumps shown as impulses into consideration. First, a new class
of sufficient conditions for the existence of mild solutions of the aforementioned class of
equations was established, which is more general than the non-Lipschitz condition used
in [21] and contains it as special case. The existence results were formulated and proved by
using a solution operator, fractional calculus, the Carathéodory approximation approach,
and stochastic analysis techniques. An application was provided to validate the obtained
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theoretical results. Our results improve and enhance some results in [21]. Our future work
is to consider the problem of an averaging principle for IFNSDEs with variable delay under
fBm and Poisson-jump perturbations.
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Appendix A

Proof of the Uniqueness: Let x(t), y(t) be two solutions of Equation (1). Then, the unique-
ness is obvious on the interval [−τ, 0], and for t ∈ [0, b], by similar analysis of Equation (18),
elementary inequality, Lemma 1, Burkholder’s inequality, and conditions (A1), (A3), and
(A5), it is easy to obtain:

E( sup
06s6t

‖x(s)− y(s)‖2)

6
12M2Ht2H−1

1− 2c f

∫ t

0
E‖g(s, x(s), x(s− ρ(s)))− g(s, y(s), y(s− ρ(s)))‖2ds

+
6M2Cb
1− 2c f

[
E
∫ t

0

∫
Z
‖h(s, x(s), x(s− ρ(s)), η)− h(s, y(s), y(s− ρ(s)), η)‖2λ̃(dη)ds

+E
( ∫ t

0

∫
Z
‖h(s, x(s), x(s− ρ(s)), η)− h(s, y(s), y(s− ρ(s)), η)‖4λ̃(dη)ds

) 1
2
]

+
6qM2

1− 2c f

q

∑
k=1

E‖Ik(x(tk))− Ik(y(tk))‖2

6
6M2(Cb + 2Ht2H−1)

1− 2C f − 6qM2 ∑
q
k=1 ck

∫ t

0
M(s, 2E sup

06u6s
‖x(u)− y(u)‖2)ds.

Then:

2E( sup
06s6t

‖x(s)− y(s)‖2) 6
24M2(Cb + Ht2H−1)

1− 2C f − 6qM2 ∑
q
k=1 ck

∫ t

0
M(s, 2E sup

06u6s
‖x(u)− y(u)‖2)ds,

which, with the aid of condition (A3.c), gives:

E( sup
06s6t

‖x(s)− y(s)‖2) = 0, 0 6 t 6 b

Therefore, x(t) = y(t) for all 0 6 t 6 b. Hence, the uniqueness is proved.
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