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Abstract: In this study, a novel model that performs ensemble empirical mode decomposition
(EEMD) and stepwise regression was developed to forecast the water level of a tidal river. Unlike
more complex hydrological models, the main advantage of the proposed model is that the only
required data are water level data. EEMD is used to decompose water level signals from a tidal river
into several intrinsic mode functions (IMFs). These IMFs are then used to reconstruct the ocean and
stream components that represent the tide and river flow, respectively. The forecasting model is
obtained through stepwise regression on these components. The ocean component at a location 1 h
ahead can be forecast using the observed ocean components at the downstream gauging stations, and
the corresponding stream component can be forecast using the water stages at the upstream gauging
stations. Summing these two forecasted components enables the forecasting of the water level at a
location in the tidal river. The proposed model is conceptually simple and highly accurate. Water
level data collected from gauging stations in the Tanshui River in Taiwan during typhoons were used
to assess the feasibility of the proposed model. The water level forecasting model accurately and
reliably predicted the water level at the Taipei Bridge gauging station.

Keywords: ensemble empirical mode decomposition (EEMD); flood period; tidal river; water
level forecasting

1. Introduction

An estuary is a transition zone with complex flow conditions in which a river enters
the ocean. Complex factors contribute to the water level in tidal rivers; the water level
is affected by not only the upstream river discharge but also ocean tides [1]. The water
level in a tidal river changes because of the interaction between riverine and marine factors.
Because of the rotation of the Earth and the varying strength of the gravitational pull
from the Moon and Sun, the water level varies quasiperiodically every 12.25 h or twice
every lunar day. [2]. Longer-period effects from storms and seasonal fluctuations influence
salinity. Flooding from the upstream basin can alter the salinity profile and interrupt the
tidal cycle [3]. A major climate factor affecting estuaries is wind; wind creates waves, which
affect water circulation and the mixing of fresh and seawater [4]. Upon circulation and
mixing, the 2% difference in the densities of fresh and seawater creates a pressure gradient
in the horizontal direction that affects the water flow [5]. This density difference is largely
caused by differences in temperature and salinity; however, salinity is by far the dominant
factor affecting tidal river dynamics [6]. Considering all the aforementioned information,
accounting for all physical processes in tidal rivers is challenging. These hydrological
processes are complex, have mutual interactions, and are the driving forces [7] for other
sedimentological, biological, and chemical processes. It is not easy to develop a model that
can deal with all hydrological processes in tidal rivers. No simple conventional method
can accurately forecast the discharge and water level in tidal rivers.
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Because of the extremely unsteady flow conditions of tidal rivers or estuaries, fore-
casting their water levels is a difficult task. Theoretical and empirical approaches are
commonly used to perform this task. The hydrological processes in a tidal river are unique,
and the water level in a tidal river is continually changing because of the interactions
of riverine and marine processes. The factors affecting water levels include the shape
of the tidal river, astronomical tides, wind, salinity, temperature, sediment, flood, storm
surge, and other factors that are too complex to model directly. Consequently, the hydro-
dynamic processes of tidal rivers are complex, nonstationary, and nonlinear [8]. Many of
the concepts or principles identified by modeling other watercourses have been applied
to forecast water levels in tidal rivers. The theoretical approach is based on continuity,
momentum, and energy equations. However, a major disadvantage of theoretical meth-
ods is that the required parameters are usually difficult to determine from the observed
data; in particular, the discharge is challenging to measure [9]. Although there are lots of
open-source models available for free, programming and executing a newly developed
model is time-consuming and costly. Some hydraulic models apply the mass conservation
and momentum principle [10–12] to forecast water levels and current velocities during
spring and neap tidal cycles. Hydrological routing, which is a simpler technique than that
of hydraulic models, uses a continuity equation combined with a storage indication curve
to forecast estuary water levels [13]. These hydraulic and hydrological models usually
apply numerical methods to obtain results. Artificial neural networks (ANNs) have been
widely used for data mining. An ANN is a black-box technique that can be used for water
resource management and modeling hydrological processes [14–16]. An ANN can also be
applied for forecasting tidal river water levels [8,17].

The variation in the water level of tidal rivers with time can be regarded as a signal.
Some methods for signal processing analysis, such as the Fourier [18,19] and wavelet [20,21]
transforms, are often used to analyze historical data for forecasting tidal river or estuary
water levels. The Fourier transform can only be applied to linear and stationary processes,
and wavelet transforms can only be applied to linear and nonstationary processes. However,
the hydrological processes in tidal rivers are nonlinear and nonstationary. A novel method
of handling nonstationary and nonlinear data is the Hilbert–Huang transform (HHT),
which was proposed by Huang et al. [22,23]. The HHT is a method of decomposing an
original signal into many intrinsic mode functions (IMFs) with a trend. The fundamental
process of the HHT is the empirical mode decomposition (EMD) or ensemble EMD (EEMD)
method, which involves breaking down a signal into various IMFs. Since their introduction,
the EMD and EEMD methods have rapidly grown in popularity and have been effectively
applied to estuaries [24,25], oceans [26,27], and other engineering fields, including water
resources [28,29].

In this study, a conceptual model was developed for forecasting tidal river water
levels during a flood period (Figure 1). The proposed model only requires water level
data for prediction. EEMD is applied to decompose the water levels in tidal rivers into
several IMFs. The IMFs decomposed through EEMD usually have a physically meaningful
correspondence to physical data [30–33]. The water level in a tidal river is affected by
many factors, such as tide, topography, friction, and river flow [24], in a complex man-
ner. However, these data are difficult to obtain and thus cannot be used to develop a
sophisticated model. By contrast, water level data can be easily collected. IMFs can be
obtained through EEMD; however, because of a lack of data, the factors affecting IMFs
cannot be determined. Therefore, the developed model was simplified by dividing IMFs
into two groups: ocean and stream components. These components were used to establish
regression methods for forecasting the contribution of each component to the water level.
By adding the contributions from the two forecasted components, the water level in tidal
rivers can be obtained. Finally, the water stages of the Tanshui River in Taiwan during
typhoon periods were used as an example to demonstrate the calculation procedures and
validate the reliability and accuracy of the proposed model.
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Figure 1. The approach used for forecasting water level in a tidal river.

2. EEMD and Stepwise Regression
2.1. EEMD Method

Huang et al. [23] proposed the EMD method, which is an intuitive and adaptive
data analysis method. In EMD, basis functions are derived from the original signals. The
aforementioned method directly resolves energies by using the intrinsic time scale of the
original data, which are decomposed into several simple harmonic functions (i.e., IMFs)
with different periodicity. An IMF is a simple oscillatory mode corresponding to a simple
harmonic function and must satisfy the following two requirements. First, in the entire data
set, the number of extrema and the number of zero-crossings must be equal or differ at most
by 1. Second, at any point, the mean value of the envelopes defined by the local maximum
and minimum is 0. Thus, EMD is used to decompose an original signal into multiple IMFs
with different frequencies and a residual signal. These IMFs form a complete and nearly
orthogonal basis for the original signal. An IMF can have variable amplitude and frequency
along the time axis. The EMD method differs from wavelet and Fourier analysis in that the
basis is not predetermined. Consequently, the characteristics of the original signal can be
fully reflected. The EMD method is intuitive, direct, and self-adaptive.

The procedure of extracting an IMF is called sifting. Figure 2 presents an example
of the sifting process for the time series of water level X(t). This process involves the
following steps:

A. The local maxima and minima in X(t) are identified, as shown in Figure 2a.
B. Cubic spline is used on the local maximum and minimum values to generate two

curves approximating the envelopes, namely, the upper and lower envelopes, as
displayed in Figure 2b.

C. A mean curve is calculated from the two envelopes, as illustrated in Figure 2c. The
mean is expressed as follows:

m(u) =
Eu(t) + El(t)

2
(1)

where m(t) is the mean, Eu(t) is the upper envelope, and El(t) is the lower envelope.
A variable d(t) is defined as follows:

d(t) = X(t)−m(t) (2)

where d(t) is the difference between X(t) and m(t). If d(t) does not meet the stopping
criterion, d(t) is set as the new X(t) value, and the aforementioned steps are repeated to
differentiate the extremes until d(t) reaches the stopping criterion.
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An excessive number of selection cycles can reduce the physical meaning of the
IMF’s instantaneous frequency and amplitude; thus, a stopping criterion must be set. The
stopping criterion is based on the amplitude, energy, and phase. Common stopping criteria
include the standard deviation, an S-number criterion [34], and an evaluation function [35].
In this study, the S-number criterion was used, where S is the maximum number of selection
cycles. A selection cycle is terminated when the number of extreme values matches the
number of zero-crossings.

The d(t) value that meets the stopping criterion is set as an IMF, namely, Cj(t), where
j is a value from 1 to n. The residual Rj(t) is the new Xj+1(t) value, as expressed in the
following equation:

Rj(t) = Xj+1(t) (3)

EMD is then repeated to obtain additional IMFs. The final IMF n is recorded as Cj=n(t).
The term X(t) represents the superposition of various IMF components (Cj(t) and Rn(t)) and
is expressed as follows:

X(t) =
n

∑
j=1

Cj(t) + Rn(t) (4)
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In EMD, the problem of mode mixing occurs. Mode mixing is a problem in which an
IMF produced through EMD decomposition contains components of different frequencies.
Mode mixing is caused by intermittent signals and noise. In particular, mode mixing occurs
because of unpredictable random noise contained in the original signal infiltrating the
IMFs. This intermittent, irregular noise affects the determination of the upper and lower
envelopes. Consequently, two signals of different time scales can be classified as one IMF, or
signals of the same time scale might be separated into two IMFs. Mode mixing eliminates
the physical significance of the IMF. To overcome this challenge, Wu and Huang [36]
proposed the EEMD method, in which white noise is introduced to eliminate the effect of
the original noise and obtain mode-consistent IMFs. EEMD is performed as follows. First,
a white noise signal wi(t) is added to the original signal to form an ensemble. Second, the
ensemble is subjected to EMD decomposition into several IMFs. Third, the first and second
steps are repeated by adding white noise on each time scale.

Because white noise is stochastic and uniformly distributed on every component, its
effect can be eliminated as its ensemble number increases; that is, if sufficient white noise
addition cycles are performed, the obtained solution approaches the true answer, and the
goal of eliminating noise and mode mixing can be achieved. According to statistical theory,
the influence of the added noise and its relation to the ensemble number is expressed
as follows:

εn =
ε√
n

(5)

where n is the ensemble number, ε is the amplitude of the added white noise, and εn is the
standard error. The noise-added signal based on the aforementioned relation is represented
as follows:

XE(t) = X(t) + ε× noise(t) (6)

The signal in Equation (6) is subjected to EMD decomposition. The IMFs at different
frequencies are obtained from the ensemble average of each component.

Each IMF (Cj(t)) calculated through EEMD inherits the physical meaning of the original
data. Therefore, EEMD is often applied in geographic research [36]. Tidal river water
level is profoundly influenced by tides. If EEMD is used for analysis, water level can be
decomposed into mutually independent IMFs with corresponding frequencies. Thus, the
frequency of each IMF can be compared with the tidal frequency in the studied area. If an
IMF has periodicity, it is likely to be related to tides. Therefore, IMFs generated from water
level data can be classified into two groups: tidal functions and flood functions. By adding
all tidal IMFs, the ocean component can be obtained; similarly, the stream component can
be obtained by summing the remaining IMFs.

2.2. Stepwise Regression Analysis

Stepwise regression, which is a multiple linear regression technique, is an efficient
method of selecting the most useful explanatory variables. This method is a modification
of forward selection. The general idea behind stepwise regression is that at each stage of
selection, all model variables are evaluated using the partial F-test based on a preselected
critical value.

Initially, the candidate variables are identified. Stepwise regression with forward
selection begins with no variables in the regression model. Let the set of all possible
variables be x1, x2, . . . , xm. In stepwise regression, the model is initially fitted with only one
variable. After fitting the variable xi, the fit is checked using the critical F value. Models
with two variables are then considered. The optimal regression model with variables xi
and xj is selected using the F-test and is included in the model. This process continues until
the F-test indicates that the inclusion of further functions is not useful, at which point a
final model is obtained.
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The key task in forecasting tidal river water levels involves constructing regression
models for the ocean and stream components. The goal of the ocean- and stream-component
regression models is to establish the relationship between the downstream and upstream
water levels, respectively, and the forecasted values at the site of interest. By summing the
forecasting values obtained from these two regression models, the water level of a tidal
river can be predicted.

3. Study Area and Data Descriptions

In this study, water level data from the Tanshui River in Taiwan were used to evaluate
the proposed model. As illustrated in Figure 3, the tributaries of the Tanshui River include
the Keelung River, Hsin-Tien River, and Dahan River. The Tanshui River is formed by the
merger of the Tanhan River and Xindian River. The largest tributary of the Tanshui River
is the Keelung River. The Hsin-Tien River is approximately 21 km long and runs south
to north through Taipei to the Taiwan Strait. The main stream of the Tanshui River has
a length of 158.7 km and drains 2575 km2 in north Taiwan. It originates from a 3529 m
high mountain with an average gradient of 1:122. In Figure 3, the circle denotes the tidal
area of the Tanshui River [37]. Tides in the Taiwan Strait primarily comprise the four tide
components O1, K1, M2, and S2; the tide level data mostly comprise the principal lunar
semidiurnal constituent. Semidiurnal tides are the most influential tides in the Tanshui
River. The average tide level at the river mouth gauging station is 0.03 m, with the average
tide range being 2.19 m, spring tide range being 2.89 m, and maximum tide range being
3 m because of the contraction of the channel cross section and wave propagation. The
difference between the two tidal ranges each day is small, and the tidal range of diurnal
tides is approximately 1/5th that of semidiurnal tides.

The Tanshui River flows past the Taipei metropolitan area, which is Taiwan’s political
and cultural center. Taipei, which is situated in a low-lying basin, is susceptible to flooding.
A flood control system was constructed in Taipei beginning in 1970. This system includes
dams, levees, pumping stations, floodways, and a warning system and is designed to
withstand floods with a 200-year return period. Typically, no water flows in the Erchong
Floodway on ordinary days. If extreme flooding occurs, the water from the Tahan River
and Hsin-Tien River is redirected to the floodways and purged downstream in the Tanshui
River. The flood warning system must accurately forecast water levels during flood
periods. Therefore, gauging stations operated by the 10th River Management Office were
established within the Tanshui River estuary region to collect water levels for flood routing;
these stations include Tudigonbi, the Taipei Bridge on the Tanshui River, the Shinhai Bridge
on the Tahan River, and the Chung Cheng Bridge on the Hsin-Tien River.

The narrowest cross section of the Tanshui River is located at the Taipei Bridge. Conse-
quently, when flooding occurs, the velocity and water level at this spot increase considerably,
which often results in serious damage. Therefore, forecasting the water level at the Taipei
Bridge is an essential task for the flood warning system. In this study, EEMD was conducted
to construct a water level forecasting model for flood warnings at the Taipei Bridge. The
results of EEMD were used to assess the reliability and accuracy of the proposed model.
Floods from the Tahan River and the Hsin-Tien River upstream of the Tanshui River and
tides downstream of the Taipei Bridge affect the water level at the Taipei Bridge. Therefore,
the stream component at the Taipei Bridge was forecast using data from the gauging station
at the Shinhai Bridge on the Tahan River and the station at the Chung Cheng Bridge on the
Hsin-Tien River, which is located upstream of the Taipei Bridge. The ocean component at
the Taipei Bridge was forecast using data from the Tudigonbi station located downstream
of the Taipei Bridge. Finally, by adding the forecasted stream and ocean components, the
water level forecast at the Taipei Bridge was obtained.
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Figure 3. Study area and gauging stations.

The proposed model requires water level data for the Tudigonbi, Shinhai Bridge, and
Chung Cheng Bridge stations to forecast the water level at the Taipei Bridge. The water
level at each gauging station during typhoon periods differs considerably from that on
ordinary days. Therefore, in this study, 15 typhoon or heavy storm events with complete
water level data from 2004 to 2015 were used to establish a model for forecasting estuarine
water levels. High-water data were selected as those from the period starting 1 day before
the issue of a typhoon warning and ending the day after lifting the warning. A total of
10 out of the 15 events were further categorized for calibrating the proposed model; the
remaining five events were used to verify the model. Table 1 lists the starting and ending
times and the highest and lowest water levels at the Taipei Bridge for each typhoon event.
Figure 4 presents the water level at each gauging station during Typhoon Soudelor; all
gauging stations had an atypically high water level. The water level at the Chung Cheng
Bridge and Shinhai Bridge, which are located at the boundary of the tidal area, increased
sharply because of flooding. The water level at the Taipei Bridge also increased; however,
this increase was smaller than those at the Chung Cheng Bridge and Shinhai Bridge. The
only station close to the river mouth, namely, the Tudigonbi station, also exhibited a higher
water level than usual; however, the difference was small. The periodic regularity of the
water level disappeared for all gauging stations.

Table 1. Summary description of water levels at the Taipei Bridge during typhoons.

Phase Typhoon Duration Water Level (m)

Max. Min.

Calibration

Nock−Ten 22/10/2004–27/10/2004 1.88 −1.11
Haitang 15/7/2005–21/7/2005 1.93 −1.34
Matsa 2/8/2005–7/8/2005 3.62 −1.13

Longwang 29/9/2005–4/10/2005 1.83 −1.12
Fung−Wong 25/7/2008–30/7/2008 1.98 −1.13

Fanapi 19/9/2010–21/9/2010 1.56 −0.91
Saola 29/7/2012–4/8/2012 5.28 −1.09
Soulik 10/7/2013–14/7/2013 2.88 −1.15

Kong−Rey 26/8/2013–23/8/2013 1.68 −0.74
Soudelor 5/8/2015–10/8/2015 5.17 −1.01

Verification

Mindulle 27/6/2004–4/7/2004 2.38 −1.58
Kalmaegi 15/7/2008–19/7/2008 1.81 −1.12
Sinlaku 10/9/2008–17/9/2008 3.45 −0.91
Trami 19/8/2013–23/8/2013 2.85 −1.15

Dujuan 26/9/2015–30/9/2015 3.78 −1.21
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Figure 4. Water level hydrographs during Typhoon Soudelor.

4. Practical Applications

All hydrographs of the 15 events were connected, and EEMD was conducted to obtain
the IMFs. The uppermost plot of Figure 5 presents the gauge height (G) at the Taipei Bridge,
and the subsequent curves are represented in IMF1 to IMF8. IMF1, IMF2, IMF3, and IMF4
had periodicity; that is, these IMFs exhibited a pattern of cycles that repeat at intervals.
Table 2 lists the periodicity for all IMFs at each gauging station. The frequencies (dividing
the number of times an event occurs by the duration) of IMF1 and IMF2 for each station
were approximately 0.0805 h−1, which is similar to the M2 tidal component frequency
presented in Table 3. This result suggests that IMF1 and IMF2 represent the influences of
the semidiurnal tides. The periodicity of IMF3 for all stations was close to the principal
solar or lunar diurnal constituent (P1 and O1 in Table 3), which indicated that diurnal tides
contributed to the IMF3 component. IMF5, IMF6, IMF7, and IMF8 were clearly related
to the tides. Therefore, IMF1–IMF4, which exhibited periodicity, were classified as ocean
components, and the remaining IMFs were classified as stream components. Thus, the
following equation is obtained:

OC = IMF1 + IMF2 + IMF3 + IMF4 (7)

SC = G − OC (8)

where OC is the ocean component and SC is the stream component.

Table 2. Frequency (hr−1) of the gauging stations.

Station IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

Chung Cheng Bridge 0.0805 0.0805 0.0400 0.0218 0.0075 0.0049 0.0027
Shinhai Bridge 0.0805 0.0805 0.0415 0.0213 0.0098 0.0052 0.0025
Taipei Bridge 0.0805 0.0805 0.0388 0.0186 0.0100 0.0049 0.0025

Tudigonbi 0.0805 0.0805 0.0388 0.0174 0.0091 0.0049 0.0025
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Table 3. The classical tidal type.

Type Characterizes Name Cycle
(Hour/Cycle)

Frequency
(hr−1)

Semidiurnal tides

K2 Lunisolar diurnal constituent 11.9672 0.0836
S2 Principal solar semidiurnal constituent 12.0000 0.0833
M2 Principal lunar semidiurnal constituent 12.4206 0.0805
N2 Large lunar elliptic semidiurnal constituent 12.6583 0.0775
2N2 Second large lunar elliptic semidiurnal constituent 12.9054 0.0790

Diurnal tides

K1 Lunisolar diurnal constituent 23.9345 0.0418
P1 Principal solar diurnal constituent 24.0659 0.0416
O1 Principal lunar diurnal constituent 25.8193 0.0387
Q1 Large lunar elliptic constituent 26.8684 0.0372

Overtides
S4 Solar quarter constituent 6.0000 0.1667
M4 Large lunar quarter constituent 6.2103 0.1610
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Figure 5. Water level hydrograph and IMFs of data from the Tanshui River at the Taipei Bridge.
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Figure 6 presents the results of the EEMD decomposition of the water level at the Taipei
Bridge into ocean and stream components. The results reveal how tides and upstream
discharge affect the water level at the Taipei Bridge.

The lag time of the ocean components at the Taipei Bridge is related to the tides.
Therefore, the regressors for forecasting the 1 h ahead ocean component (at t + 1) are the
neighboring values of the ocean component at the Taipei Bridge and Tudigonbi for up to 3 h
before the event (i.e., from t − 2 to t). A suitable linear regression model is given as follows:

OCT, t+1 = β0 + β1OCT,t + β2OCT,t−1 + β3OCT,t−2 + β4OCD,t + β5OCD,t−1 + β6OCD,t−2 (9)

where OCT and OCD indicate the forecasted ocean components at the Taipei Bridge and
Tudigonbi, respectively; the subscripts t − 2, t − 1, t, and t + 1 indicate the time; and β0, β1,
. . . , β6 are the regression coefficients. By fitting Equation (9) to the ocean component data
of the calibration phase by using the stepwise regression method, the following equation
is obtained:

OCT, t+1 = −0.004 + 1.791OCT,t − 0.456OCT,t−1 + 0.213OCT,t−2 − 1.052OCD,t−1 (10)
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Figure 6. Water level, ocean component, and stream component hydrographs of the Tanshui River at
the Taipei Bridge.

Figure 7 presents a comparison of the observed ocean component (OCo) and forecasted
ocean component (OCp) and reveals that the water levels forecast through EEMD and
stepwise regression are consistent with the observed water levels in the model calibration
and verification processes. This figure also indicates that the proposed model can effectively
reflect tidal dynamics.
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Linear regression was conducted to forecast the stream component at the Taipei Bridge.
The forecasted stream component at time t + 1 is a function of the stream components at the
Chung Cheng Bridge and Shinhai Bridge at times t, t − 1, and t − 2. Stepwise regression
was applied to produce the following stream component forecasting model:

SCT, t+1 = 0.042 + 1.333SCC,t − 1.311SCC,t−1 + 0.503SCS,t (11)

where SCT,t+1 is the forecasted stream component of the Taipei Bridge at time t + 1; SCC,t−1 is
the stream component of the Chung Cheng Bridge at time t − 1; and SCC,t and SCS,t are the
stream components of the Chung Cheng Bridge and Shinhai Bridge at time t, respectively.
Scatter plots of the observed and forecasted stream components in the calibration and
verification phases are displayed in Figure 8. The terms SCo and SCp denote the observed
and forecasted stream components, respectively. All the data points fall on or near the line
of agreement between the observed and predicted results, which indicates the accuracy of
the forecasted stream components.

Figures 9 and 10 present a comparison of the water levels forecast by the proposed
model and the observed water levels in the calibration and validation phases. The fore-
casted water level is the sum of the forecasted ocean and stream components. The forecasted
water levels of the proposed model are highly accurate. A comparison of the forecasted
and observed water levels indicates that tidal amplitude, phase, and spring and neap tide
modulations are accurately captured by the proposed model. Furthermore, the forecasted
peaks are similar to the observed peaks. Therefore, the effect of floods on the water level in
a tidal river can also be accurately forecast by the proposed EEMD model.

The quantitative metrics used for evaluating the accuracy of the proposed model were
correlation coefficient (ρ) and root-mean-square error (RMSE), which are defined as follows:

ρ =
∑
(
Gp − Gp

)(
Go − Go

)√
∑
(
Gp − Gp

)2
∑
(
Go − Go

)2
(12)

RMSE =

√
∑
(
Gp − Go

)2

N
(13)

where Gp and Go are the forecasted and observed water levels, respectively; Gp and Go are
the means of the forecasted and observed water levels, respectively; and N is the number
of data sets. Table 4 lists the statistics corresponding to Figures 7–10. All correlation
coefficients are close to unity. The RMSEs are between 0.10 and 0.17 m. These values are
considerably smaller than the water level range. These statistical measures indicate that
the proposed model is accurate, and its predictions are consistent with the observations;
thus, this model can effectively forecast the water level in a tidal river.

Table 4. Summary of performance metrics carried out by comparing observations and forecasts.

Phase RMSE (m) ρ

Ocean component Calibration 0.10 0.986
Verification 0.13 0.978

Stream component Calibration 0.14 0.937
Verification 0.12 0.969

Water level
Calibration 0.18 0.971
Verification 0.17 0.976
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Figure 7. Accuracy of 1 h ahead ocean component forecasting during typhoons: (a) calibration phase;
(b) Verification phase.
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Figure 8. Accuracy of 1 h ahead stream component forecasting during typhoons: (a) Calibration
phase; (b) Verification phase.
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Figure 9. Comparison between 1 h ahead forecasted water levels and observed water levels during
typhoons for calibration phase: (a) Typhoon Nock−Ten; (b) Typhoon Nock−Ten; (c) Typhoon
Matsa; (d) Typhoon Longwang; (e) Typhoon Fung−Wang; (f) Typhoon Fannapi; (g) Typhoon Saola;
(h) Typhoon Soulik; (i) Typhoon Kong−Rey; (j) Typhoon Soudelor.
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Figure 10. Accuracy of 1 h ahead water−stage forecasting during typhoons at verification phase: (a) Ty-
phoon Mindulle l; (b) Typhoon Kamaegi; (c) Typhoon Sinlaku; (d) Typhoon Trami; (e) Typhoon Dujuan.

5. Summary and Conclusions

Numerous factors affect hydrological processes, and data collection in estuaries is
challenging. Therefore, forecasting tidal river water levels is a difficult task. The proposed
EEMD-based model is simpler than other hydrological and hydraulic models. EEMD
does not require the numerous uncertain parameters used in other flooding simulation
algorithms for forecasting water levels in tidal rivers, such as Manning’s coefficient, channel
bed elevation, energy slope, and cross-sectional area. The only input data required by the
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proposed model are water level data, which are comparatively easy to obtain. Moreover,
the proposed simple model does not require complex theories or computations; only EEMD
and stepwise regression are used. First, EEMD is used to decompose the water level into
ocean and stream components as the regressors representing the two influential factors for
the water level of tidal rivers: the tides and river flow. Estuarine water level forecasting can
then be achieved by separately performing stepwise regression on the ocean and stream
components at downstream and upstream locations, respectively, and summing the results
for a target location.

A successful implementation of the proposed methodology was demonstrated in a
case study of the Tanshui River, which is a tidal river. A water level forecasting model
was constructed to forecast the 1 h ahead water level at the Taipei Bridge. The qualitative
results, RMSEs, and correlation coefficients indicate that the developed model can achieve
accurate water level forecasting during high-water-level periods in tidal rivers. Moreover,
the clear physical meaning of each component reveals the simplicity and reliability of the
proposed model.

The comparison of the proposed model and the other methods for forecasting water
levels in tidal rivers, such as the Variational Mode Decomposition method, should be
performed in the future. If additional data on tidal rivers can be obtained, water level
components can be decomposed into other groups apart from only ocean and stream
components, which can enable a more reliable and accurate model to be established for
forecasting water levels in tidal rivers.
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