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Abstract: Accurate landform classification is a crucial component of geomorphology. Although
extensive classification efforts have been exerted based on the terrain factor, the scale analysis to
describe the macro and micro landform features still needs standard measurement. To obtain the
appropriate analysis scale of landform structure feature, and then carry out landform classification
using the terrain texture, the texture feature is introduced for reflecting landform spatial differen-
tiation and homogeneity. First, applying the ALOS World 3D-30m (AW3D30) DEM and selecting
typical landforms of the southwest Tibet Plateau, the discrete wavelet transform (DWT), which acts
as the texture feature analysis method, is executed to dissect the multiscale structural features of
the terrain texture. Second, through the structural indices of reconstructed texture images, the op-
timum decomposition scale of DWT is confirmed. Under these circumstances, wavelet coefficients
and wavelet energy entropy are extracted as texture features. Finally, the random forest (RF)
method is utilized to classify the landform. Results indicate that the texture feature of DWT can
achieve higher classification accuracy, which increases by approximately 11.8% compared with the
gray co-occurrence matrix (GLCM).

Keywords: DEM; texture structure; wavelet decomposition scale; texture feature vector; landform
classification

1. Introduction

Landforms, which are genetically related to one another, are a combination of var-
ious surface configurations, providing a solid foundation for geomorphology [1]. The
classification principle should not only classify the landform types and embody the di-
versity of spatial structure, but also explain the formation mechanisms of landforms,
which suffer from external forces in temporal and spatial sequence [2]. The
geo-informatics graphic methodology has become a major analysis method, including
the slope spectrum analysis, profile spectrum analysis, and terrain texture analysis [3-5].
Plentiful studies on landform classification, which is in accordance with slope spectrum
features [6,7] and profile curvature [8,9], have been conducted. However, the landform
structure is inconvenient to grasp at different scales and lacks scale universality among
different study areas. Terrain texture, as one of the elements of landform surface, has
formed unique landform features [10,11] and evolution laws under the action of an ex-
ternal agent [12]. According to the homogeneity and heterogeneity of different terrain
texture features, the classification of landform types can be realized [13]. Given that im-
age texture is a critical basis for describing macro features and detailed structures of
landforms [4], the multiscale overall pattern, spatial distribution, and basic terrain direc-
tion of the regional landform were constructed in macro. Focusing on the skeleton of
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macro landform distribution pattern, the texture represents an important landform con-
tour, weakening the single feature description of texture primitives at micro scale. Tex-
ture analysis methods supply objective conditions for carrying out the landform recog-
nition and classification, as well as expand the content of digital terrain analysis tech-
nology [14-16]. Figure 1 shows the textures of the targeted landforms in different data.

(a)

Figure 1. Textures of the targeted landforms in different data. (a) DEM texture; (b) Landsat-8 tex-
ture; (c) Hillshade.

Textures are representative features for visual-based landform classification [17,18],
which have regional characteristics that are consistent with the terrain features. The cor-
relation between texture and terrain analyses is reflected in the fact that texture is the
gray scale mapping of the elevation value and is the arrangement and distribution pat-
tern of landform relief in space with macroscopic regularity and local irregularity. At a
certain scale, the terrain texture is the visual structure feature of landform unit in the
image (texture primitive corresponds to the landform unit, showing the self-similarity of
similar landform structures and periods, as well as the regional heterogeneity of different
landforms). To date, four texture analysis methods can be applied for landform classifi-
cation, which are statistical, model, structure, and signal methods [19]. Even the structure
difference of texture feature is conducive to the landform classification and recognition
[20], ensuring that an appropriate texture analysis model is essential to extract different
texture features and types [21].

On account of the statistical texture analysis method, the gray co-occurrence matrix
(GLCM) is proposed to extract terrain factors and texture feature values [22]. Subse-
quently, the terraced landforms are sorted using the classification and regression tree
[23]. Similarly, Lan and Liu implemented the classification of woodland [21]. Combining
the terrain factor and GLCM texture measure, the automatic recognition of loess land-
forms using the random forest (RF) method is achieved [24]. A discrete Laplacian con-
volution method, which depicts texture morphology, is applied to classify linear dune
landforms in digital surface model images [25]. A multiscale LBP operator has also been
used to describe the texture. Then, the texture measurement and region growth seg-
mentation are combined to realize the recognition of coastal terrain targets [26]. Markov
Random field (MRF) parameters are adopted to reduce the uncertainty of landform clas-
sification on Mars [27]. All these studies on texture feature extraction concentrate on the
spatial domain, lacking the analysis of the relief change and spatial structure conveyed
by the geomorphic origin. Considering that the significant landform features, which are
in possession of good performance at spatial and frequency domains, multiscale texture
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features based on Fourier transform are extracted, and tropical areas are identified by
superimposing landform relief features [28]. For the multiscale digital elevation model
(DEM) texture image, the abilities to represent terrain parameters and identify landform
types are discussed in different roughness algorithms [29].

Considering the above texture analysis methods, the statistical method computes
the probability of adjacent pixels to delineate the second-order texture statistical features
[30], whereas the spatial structure features of landforms are thoughtless. Points, lines,
and polygons, including textures generated by the three, correspond to the structure
feature of texture information. The premise of applying the structural method is how to
determine the texture primitive [31], whereas that of extracting the random terrain tex-
ture is a difficult matter due to landform relief. The key to the model method is how the
texture model, constructed closest to the original landform of the image, is revealed [32].
The spectrum method can display the shape [33] and period of a landform structure in
the same way as the atlas and obtain the statistical features of texture, which is a prefer-
able comprehensive texture analysis method. One of the challenges in texture analysis is
the shortage of adequate tools to express effective textures at different scales. Wavelet
transforms contribute to overcoming this issue. Therefore, the method is utilized in this
study for texture analysis, attempting to quantitatively investigate the spectrum features
of different textures, and to qualitatively extract landform features in the frequency and
spatial domains. From the perspective of geography, the scene classification of different
landforms should be based on the landform unit, requiring the data source to be a com-
bination of landform relief and geometric morphology textures. DEM images satisfy
these conditions [34,35].

The low frequency information of DEM texture is abundant in a region with small
relief, whereas the high frequency information of DEM texture changes rapidly in the
region with large relief [36]. The high-pass frequency of wavelet transform determines
the anomaly of local features related to the landform structure. For example, when the
profile of terrain relief converts into the frequency domain, the singularity of landforms
or the specific frequency change of different topographic waves can be located in space
[37]. The scale analysis is an essential part of landform feature extraction. Given that di-
verse and complex landform structures emerge in high-resolution DEM images, the
structural heterogeneity of textures at different scales should be discussed. The wavelet
transform can reach the effect of spatial structure difference between macro and micro
landforms through multilevel decomposition. Similarly, the detailed wavelet coefficients
facilitate the quantitative analysis of the horizontal and vertical reliefs of the landforms.
Moreover, the approximate wavelet coefficient can be a competent for representing
landform smoothness. Therefore, in terms of low- and high-dimensional feature vectors
calculated by the wavelet transform, a neural network can be used to train the texture for
landform classification [38].

The terrain texture features of China’s typical landform sample areas are widely
expressed in DEM images [39]. To fully explore the level of landform information, the
texture analysis method of wavelet transform, which analyzes the landform structure of a
DEM texture image, is also a valuable research topic. Therefore, the DEM texture image is
taken as the data source, and the samples of landform are selected in the southwestern
Tibet Plateau. The specific objectives are as follows: (1) As for texture feature extraction,
the wavelet transform is used to analyze the structure features of landforms by means of
appropriate decomposition scales; (2) Two texture features (wavelet coefficients and
wavelet energy entropy) and GLCM texture measures are extracted quantitatively to
discuss the difference analysis; (3) Ultimately, the RF classification method is adopted to
train the texture feature vectors, and the classification accuracy result of the wavelet
transform is assessed.
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2. Materials and Methods
2.1. Study Area and Data

Landforms in the southwest Tibet Plateau are complex and diverse [40,41], where
the overall topography is the transition from northwest to southeast, and automatic
landform classification is urgently needed. After the long-term river erosion and geo-
logical processes, the mountainous landforms with ups and downs are created [42]. Ac-
cording to the classification scheme of digital land geomorphology of 1:1,000,000 in
China, seven typical sample types [43], which cater to the altitude and morphological
indices, are selected [44]: (1) AO: High relief extremely high altitude mountain; (2) Al:
High altitude plain; (3) A2: Intermediate relief high mountain; (4) A3: Intermediate relief
middle mountain; (5) A4: Low relief extremely high mountain; (6) A5: Extremely high
altitude plain; and (7) A6: Extremely high altitude high-hill. The location distribution is
illustrated in Figure 2. The experimental data ALOS World 3D-30m (AW3D30) DEM
products, provided by JAXA and ASTER GDEM [45,46], both have a 30 m resolution.
Regarding the validation of height accuracy, the RMSE value of AW3D30 DEM is 4.40 m
[47], whereas the linear error at 95% probability (LE95) and the RMSE of ASTER GDEM
are 17 and 8.7 m, respectively [48]. DEM carries plentiful texture information, not only
the texture spatial cognition of different landforms can be obtained from visual percep-
tion, but also the texture heterogeneity of regional landforms can be quantitatively stud-
ied. Moreover, the texture information of classification feature space can be derived. The
DEM texture offers reliable depictions and discriminations of various landforms, espe-
cially macroscale terrain information at a certain scale, which promotes the improvement
of geomorphological mapping via the terrain texture.
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Figure 2. Location distribution of samples in the southwestern Tibetan Plateau. A0: High relief ex-
tremely high altitude mountain; Al: High altitude plain; A2: Intermediate relief high mountain; A3:
Intermediate relief middle mountain; A4: Low relief extremely high mountain; A5: Extremely high
altitude plain; A6: Extremely high altitude high-hill.

2.2. Methods

Geomorphic ontology is the core and basic methodology of landform classification
that determines the macroscopic direction of geomorphic research. As the visual percep-
tion object, terrain textures should be analyzed completely whether in the characteristic
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Original texture image

change of spatial pattern or the landform fluctuation of frequency domain. Therefore, the
extraction and analysis of multiscale landform structure features are performed accord-
ing to the wavelet transform. In addition, the parameters of the decomposition scales and
vectors of wavelet texture features are obtained at a later time. The former theory offers a
precondition for the latter classification process using the RF method. In terms of the
different texture feature extraction methods, the classification accuracy of landforms is
compared. The specific technical route is displayed in Figure 3.
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Figure 3. The specific technical route (detailed information of MSE, PSNR, MAE, and SSIM can be seen in Section 2.2.2;
discrete wavelet transform (DWT)).
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2.2.1. Texture Mapping

The texture mapping reflected in DEM images is described by the morphology of
different landforms and the significance of texture grayscale. The DEM texture is com-
posed of a primitive arrangement with similar elevation attributes or basic terrain fea-
tures, such as periodicity, directionality, randomness, and scale dependence. Owing to
the arrangement of texture primitive, the spatial structure and texture grayscale have the
largest intra-class similarity among the same landforms. On the contrary, the largest in-
ter-class differences exist in various landforms (i.e., the cultivated land in the plain is flat,
the loess hills are dendritic, the Sichuan Basin is linear, and the sand dunes are honey-
comb and long strip (along the wind direction)). The terrain texture is analyzed in dif-
ferent landform types, arguing that using terrain textures for regional-scale landform
classification is still necessary. Due to the fact that causes of landforms are difficult to
calculate and classify via quantitative indicators, the landform selected in this study are
second-order, as shown in Figure 4.

Figure 4. Texture mapping of landform in DEM images. (a) A4: Low relief extremely high moun-
tain; (b) AO: High relief extremely high altitude mountain; (c) A3: Intermediate relief middle
mountain; (d) A2: Intermediate relief high mountain; (e) Al: High altitude plain; (f) A5: Extremely
high altitude plain; (g) A6: Extremely high altitude high-hill.

The texture morphology is a powerful basis to distinguish different landforms. From
the development degree of landforms to observe texture mapping (Figure 4), as the alti-
tude increases, the landform types transit from high altitude plains to high altitude and
plain high hills. Moreover, the terrain texture in DEM images gradually changes from a
smooth to a strip irregular texture (Figure 4e-g). The texture primitives are arranged
regularly, and the texture roughness increases (Figure 4c,d). As the landform relief in-
creases, the self-similarity of gray level in the local area is enhanced, and the texture
primitives are significant and continuous with small fragmentation (Figure 4a,b). In
general, the structure changes from an irregular shape to a thin branch shape and then, to
a round and thick branch shape. Therefore, different texture morphologies are selected to
express the corresponding texture features (calculated by quantitative or qualitative in-
dicators). The automatic landform recognition can be achieved using a deep learning
training classifier.

2.2.2. Discrete Wavelet Transform (DWT)

The spatial domain performs various landform features in the texture image, which
is the same in the frequency domain. As the comprehensive effect result of the geologic
process, surface morphology can be identified as a superposition of countless mountain
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waves. In other words, mountain waves in different frequencies are added depending on
the weight coefficient. Although relief degrees are diverse, landforms have stabilized the
wavelength frequency in local areas [49], and the frequency features and spatial orienta-
tions of sub-images vary at different decomposition levels. Consequently, the abstraction
and generalization of landform feature information are the core problems to be solved.
Given the directionality and spatial structure of terrain texture in frequency spectra,
DWT is chosen for the terrain texture analysis, considering the excellent characteristics of
local time-frequency variation, scale variation, and direction [50].

The texture image intuitive reflects a 2D signal, whose texture features are locally
irregular and globally regular. Given that the Haar wavelet can implement a multiscale
analysis, thus, it is selected to handle the discrete numerical matrix [51] in this study.
First, the Haar transform with four levels are performed on a DEM texture image, caus-
ing terrain textures in horizontal, vertical, and diagonal directional decompositions to
display regional structure features. The forward decomposition aims to obtain the mul-
tiscale landform features quantitatively. Therefore, these calculated texture features are
expressed by wavelet coefficients and wavelet energy entropy (the former is the similar-
ity coefficient between the original image and the wavelet basis function, and the latter is
the complex expression of the texture energy distribution at different scales). Second, the
inverse wavelet reconstruction [52] is designed to remove a series of noise information in
high frequency and reconstruct the approximate low-frequency DEM texture image [52].
Finally, the four indices: Mean square error (MSE), peak signal-to-noise ratio (PSNR),
mean absolute error (MAE), and structural similarity (SSIM) [53-55] are used as the cri-
teria to evaluate the reconstruction effect of the texture image, and then determine the
wavelet decomposition scale. Therefore, the morphology features of landforms are de-
scribed by the feature vectors. Specific calculations are shown in the following sections.
Specifically, MSE represents the difference between stability and pattern decomposition.
In other words, the smaller the decomposition effect, the better. The PSNR value explains
the degree of image reconstruction and distortion. MAE reflects the actual error of the
forecast image. SSIM measures the significance level of the spatial structure in the texture
image [56]. All the theoretical analysis results agree well with the terrain texture.

2.2.3. Classification Method of the RF

Among the landform classification algorithms, excellent accuracy is exhibited in the
RF method [24,57,58] since it can perform well in large datasets, high-dimensional fea-
tures, importance evaluations, and even default values [59]. Therefore, it is suitable for
the high-dimensional texture feature training and landform type classification [60]. In
this study, the concrete stages of the RF are as follows: (1) 502 samples are extracted from
the DEM data through the sampling technique, and the training set is four-fifth of the
original texture samples; (2) Regression trees are established for each training set to gen-
erate a forest composed of N decision trees. In the growth process of each tree, m (m < M)
variables are selected randomly from all the M features (M = 21). Conforming to the
principle of minimum Gini index, the optimum attributes are confirmed from these M
features for internal node branching, in order for each tree to fully grow without an ad-
ditional data cut operation; (3) The prediction results of N decision trees are gathered,
and the landform type of the new texture sample is determined by voting; and (4)
One-fifth of the out of bag data, which are probably not selected at each time, are used to
estimate the internal error and predict the classification accuracy [61,62]. To achieve bet-
ter classification accuracy [63,64], a five-fold cross-validation for the experiment is con-
ducted in this study.
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(a) Level 1-Horizontal

(i) Level 3-Diagonal

3. Results
3.1. Determination of Decomposition Scale

The DEM texture image is decomposed layer by layer according to the theory of
DWT. To ensure the relatively uniform selection of samples for each landform type, the
sample size is selected as 256 x 256 pixels. Considering that it is a discrete dyadic wavelet
transform (DDWT), the zero-padding method was used to deal with obvious splicing
boundaries. Theoretically speaking, the total number of pixel rows and columns will be
reduced by half after each layer is decomposed, along with the resolution. Considering
that 16 pixels can be found when decomposed to the fourth layer, which has a strong
ability to macroscopically summarize the landform, only four layers are decomposed in
the experiment. The high-frequency diagram of DWT is illustrated in Figure 5. Taking the
high relief extremely high altitude mountain as a sample example, the law of other
landform sample areas is the same.

(b) Level 1-Vertical (¢) Level 1-Diagonal (d) Level 2-Horizontal

=

(g) Level 3-Horizontal (h) Level 3-Vertical
HE

1P

(j) Level 4-Horizontal (k) Level 4-Vertical (1) Level 4-Diagonal

Figure 5. (a-1) High-frequency diagram of multiscale wavelet decomposition.

After the high-frequency wavelet decomposition, in either the horizontal or vertical
decomposition direction, the rough boundary of landform relief can be seen from level 1,
2, and 3, marked by blue and orange lines. Expressions of gray and white values are
adopted to assess the magnitude of landform relief that is higher than the datum level (as
the blue line shows), and the dark values indicate depression or the erosion intensity of
the landform (as the orange line shows). However, when level 4 is reached, plentiful de-
tails of the landform are ignored, only a few pixels are left to maintain the morphology of
the landform (as the red circle shows). This condition is inconsistent with the moun-
tainous landform that is composed of several discrete units. Regarding the diagonal im-
age, the valley line can be clearly observed (as the purple line shows), and when the



ISPRS Int. |. Geo-Inf. 2021, 10, 658

9 of 20

mountain is decomposed to level 4, the small valley lines extend from the main trunk,
which is contrary to the original landform morphology. The wavelet decomposition un-
der level 4 results in geomorphologic distortion and noise redundancy. Therefore, level 3
is confirmed to decompose different landforms. It not only ensures the primary and
secondary principles in landform synthesis, but also maintains the continuous and rea-
sonable expression of landform structure.

A better scale to decompose highly structured features of natural images is level 3, in
perception. The MSE, PSNR, MAE, and SSIM are used to quantitatively analyze the de-
composition scale (level 3) of the texture structure. For the evaluation indices, namely,
MSE, PSNR, and MAE, the standard measuring unit is inchoate, whereas the SSIM value
ranges from 0 and 1. Therefore, the values of the first three indices are normalized to 0
and 1 via min/max. The 30 principle is used to exclude noise points. The result shows
that two noise points in the samples have little influence on the texture analysis. There-
fore, the elimination of noise data is ignored. The subsamples of different landforms,
whose labels are hand-labeled on the base of the existing landform classification map, are
selected randomly to calculate the four values after wavelet reconstruction, as presented
in Figure 6. Subsample-29, Subsample-12, Subsample-52, Subsample-47, Subsample-48,
Subsample-8, and Subsample-40 belong to sample types A0, A1, A2, A3, A4, A5, and A6,
respectively. The law of the other sample groups, which are randomly selected, is the
same.
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Figure 6. Calculation of the texture image evaluation index after wavelet reconstruction.

Specifically, SSIM is the main criterion and the others are the auxiliary criteria. Ac-
cording to the SSIM value, above 0.4 is adopted as the conformity criteria. After deter-
mining the preliminary appropriate decomposition scale using the SSIM value, the other
three evaluation indices are performed to further check whether the error value between
the reconstructed image and original image within the error range is allowed, thereby
determining the final appropriate decomposition scale.

In Figure 5, the decomposition level is determined according to the effect of land-
form relief, and then the objective quantitative indicators are used to evaluate the simi-
larity between the terrain texture of reconstruction and the original image texture.
Learning from the meaning of the four indicators in Section 2.2.2, the smaller the MSE
and MAE values and the larger the PSNR and SSIM values, the higher the similarity
between the terrain texture and the original texture, and the better the effect of the re-
construction. These conditions are close to the appropriate wavelet decomposition scale.
Depending on the evaluation criteria of MSE and MAE, the decomposition scale corre-
sponding to the maximum reconstruction error is removed, namely, level 4 (Figure 6).
The PSNR and SSIM values are fluctuated at [0.3, 0.9]. However, when the decomposition
is at level 1, the SSIM value is above 0.9. In other words, the effect of removing detailed
landform features while retaining primary structure features is scarce. Therefore, the
level 1 wavelet reconstruction is eliminated.



ISPRS Int. |. Geo-Inf. 2021, 10, 658

10 of 20

In contrast to decomposition levels 2 and 3, MSE and MAE exhibit a positive growth
trend, whereas PSNR and SSIM show a downward trend, which conforms to the law of
wavelet reconstruction as the decomposition scale increases. Focusing on the two levels
of reconstruction error, MSE and MAE are approximately 0.4, PSNR is above 0.6, and
SSIM is approximately 0.8 at level 2. Note that MSE and MAE are approximately 0.7,
PSNR is above 0.3, and SSIM is approximately 0.4 at level 3. From the perspective of error
theory, the values between decomposition levels 2 and 3 satisfy the accuracy evaluation
of wavelet reconstruction. Although level 2 seems to be good numerically, in essence, the
decomposition level is upgraded to a high one, and the resolution is reduced to half of
the previous level. Equally, the detailed expression of terrain texture features is reduced
innumerably, and the texture structure of the landform is clear, facilitating the analysis of
the landform differences. Therefore, the level 3 wavelet reconstruction is chosen through
the quantitative analysis. Moreover, it increases the number of features in texture analy-
sis, which is convenient for the application of texture in landform classification research.

3.2. Extraction of Texture Feature Vectors

According to the appropriate analysis scale, texture feature vectors are determined
at the first three decomposition scales, and four directional features can be generated on
each decomposition scale. Concretely speaking, 21-dimensional eigenvectors are com-
posed in this study, including the mean values of wavelet coefficient (M_AP1, M_H1,
M_V1, M_D1... M_D3, 4 x 3 dimension) in the total three decomposition scales and
wavelet energy entropy in low frequency, horizontal, and vertical directions (E_AP1,
E_HI1, E_V1..E_V3, 3 x 3 dimension). AP represents the approximate value of DEM tex-
ture image passed by DWT; H, V, and D correspond to the values of horizontal, vertical,
and diagonal decompositions; numbers 1, 2, and 3 represent the decomposition scale.
Examples of feature extraction with different landforms are presented in Table 1.

Table 1. Wavelet eigenvalues of different landform textures.

Texture Feature Vector

Landform Types

A0 Al A2 A3 A4 A5 A6

M_API1
M_H1
M_V1
M_D1

M_AP2
M_H2
M_V2
M_D2

M_AP3
M_H3
M_V3
M_D3
E_API
E_H1
E V1
E_AP2
E_H2
E_V2
E_AP3
E_H3
E V3

8653.6161 9814.7509  9476.0397  4293.0924 10,250.9564 10,037.4176 10,655.9054
17,307.2321 19,629.5018 18,952.0795 8586.1848 20,501.9129 20,074.8353 21,311.8109
34,614.4641 39,259.0037 37,904.1591 17,172.3696 41,003.8259 40,149.6707 42,623.6219

0.5911 -0.1545 0.9291 1.9932 -0.3359 0.1231 0.1576
-1.3961 -0.1581 0.1683 0.6722 0.0444 0.2361 0.2982
0.0037 -0.0011 -0.0012 0.0144 0.0018 0.0029 -0.0013
2.4643 -0.6325 3.7229 7.8841 -1.3646 0.4441 0.6453
-5.5351 -0.6681 0.6022 2.6728 0.1791 0.94843 1.2391
0.0474 0.0001 -0.0261 0.0682 0.0144 0.0078 -0.0011
9.0101 —-2.5345 14.8371 31.4296 -5.0751 1.8197 2.6656
—22.0288 -2.6971 2.6118 8.5498 0.5437 3.7606 4.6998
0.1259 0.0491 -0.1794 1.2285 -0.0776 0.0008 -0.2276
99.9902 99.9999 99.9956 99.9844 99.9993 99.9999 99.9996
0.0005 0.0001 0.0002 0.0009 0.0001 0.0001 0.0001
0.0021 0.0001 0.0009 0.0034 0.0001 0.0001 0.0001
99.9908 99.9999 99.9961 99.9873 99.9994 99.9999 99.9994
0.0005 0.0001 0.0002 0.0008 0.0001 0.0001 0.0001
0.0018 0.0001 0.0008 0.0028 0.0001 0.0001 0.0001
99.9936 99.9999 99.9957 99.9903 99.9993 99.9998 99.9993
0.0003 0.0001 0.0002 0.0006 0.0001 0.0001 0.0001

0.0013 0.0001 0.0009 0.0022 0.0001 0.0001 0.0001
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Before the analysis, the extracted texture features are preprocessed, whose values
were normalized to 0 and 1, to remove the influence of the unit and turn it into a dimen-
sionless texture feature vector. A total of 502 samples are generated, and the calculation
process is shown in Formula (1).

, Xmax — X
X — max (1)
Xmax — Xmin
where x is the texture eigenvalue of a row vector; x5, and x,;, are the maximum and
minimum values of the texture eigenvalue in a row vector, respectively.

3.3. Landform Classification

Different texture features have significant regional differences in the southeast Tibet
Plateau, and similarities can be found among individual types (Figure 7). These similari-
ties are related to the transition characteristics of landforms, but are sufficient to support
the classification model as a feature variable. In view of the overfitting that may occur
among similar landform types, RF has strong generalization ability and random sam-
pling. The model features of random extraction and voting output can effectively allevi-
ate these disadvantages. Furthermore, the K-fold cross validation is performed to opti-
mize the hyperparameters and avoid overfitting.

I .I_“'_L L
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Figure 7. Texture feature in different landforms.

On the basis of the texture feature values extracted in Section 3.2, the landform clas-
sification results are achieved using the RF method by learning the differences among
different landform types and the homogeneities of similar landform types. The classifi-
cation process is illustrated in Figure 8.

The 502 samples of landform types are selected in the southwestern Tibet Plateau,
and the number of each sample type is shown in Table 2. These landform types are com-
bined with the parameters determined in Figure 8 to construct the RF classifier for sam-
ple training. Moreover, 80% of the total samples are adopted as training samples, and the
remaining 20% serve as test samples to evaluate the effect of training model fitting.

In terms of the DEM image texture, the classification experiment is conducted using
the 21-dimension texture feature values of DWT. Finally, the classification accuracy
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reaches 90% in seven landform types, and fine classification results are acquired using
the RF method.

DEM textureimage

A
¥

Sample sets of different landforms

v WA Vi Vi v Vv

Sample 1 Sample 2 Sample 3 Sample4 | .. Sample 7
Random >
sampling
[~ ]
e
v
criterion=Gini

test_size=0.2
random_state=10
n_estimators=10

max_depth=3

Landform classification result

Figure 8. Classification process of landform types based on the RF method.

Table 2. Number of different landform samples.

Landform Types Number of Samples  Area/km?
High relief extremely high altitude mountain (A0) 85 58.9824
High altitude plain (A1) 86 58.9824
Intermediate relief high mountain (A2) 87 58.9824
Intermediate relief middle mountain (A3) 51 58.9824
Low relief extremely high altitude mountain (A4) 98 58.9824
Extremely high altitude plain (A5) 45 58.9824

Extremely high altitude high-hill (A6) 50 58.9824
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4. Discussion
4.1. Comparison of Texture Structure between AW3D30 DEM and ASTER GDEM

The DEM texture image, as an important source of geographical spatial cognition,
plays an irreplaceable role in directly reflecting landform structure features. The signifi-
cance of DEM texture is the criterion to judge the quality of texture structure extraction.
Compared with the ASTER GDEM texture images, which present the relief features of
pure topographical morphology, the elevation information of AW3D30 covers other than
the ground surface, and it is the real expression of surface relief to a large extent, as dis-
played in Figure 9. The clarity on the terrain texture of AW3D30 is also higher than the
ASTER GDEM whether from the macroscopic scale (Figure 9b) or the microscopic scale
(Figure 9a). Visually looking at the interpolation results of the ASTER GDEM image,
white noise is densely packed in the green box (Figure 9b). Therefore, the authenticity of
the terrain texture is poor in ASTER GDEM data, affecting the calculation of texture fea-
ture value. Meanwhile, AW3D30 DEM is less expressed, especially in the landform area
with a disordered texture, such as the plain (Figure 9a), where spatial structure textures
are obvious from the visual perception and image noise points in the orange box [39]. As
the expression of texture structure reflected in Figure 9a, the width of the AW3D30 DEM
texture is larger than that of ASTER GDEM in the mountainous area. The AW3D30 DEM
texture in the plain area seems as a flame, whereas ASTER GDEM shows a scat-
tered-patch texture. In fact, a gradual transition characteristic is displayed in the spatial
pattern among the landform types, and the AW3D30 DEM texture in the plain area is
displayed intuitively in relation to this kind of property (color transition from black, to
gray, and to white). Rather, the point texture of ASTER GDEM is adverse to the analysis
of macroscopic landform features. Therefore, selecting the suitable data source is criti-
cally important in texture structure analysis. Given that AW3D30 DEM connects the ter-
rain texture and geometric form, and DWT acquires multiscale texture features, the in-
ternal landform structure and the external surface sediment transfer and evolution are
expected to be further revealed. Ultimately, a nonlinear self-organizing dynamic evolu-
tion system with the combination of material causes and morphological mechanisms can
be realized.

4.2. Comparison of Texture Feature Extraction between DWT and GLCM

Three high-frequency texture and low-frequency approximate texture images are
obtained using the Haar wavelet after a one-layer decomposition. Information on the
mutation position, structure arrangement, image details, and interference noise is fas-
tened on the high-frequency image, whereas the place where the gray level is located
gently changes in the original texture image and focuses on the low-frequency image.
The micro and macro landform features are preserved via DWT. Conversely, the mul-
tiscale texture feature extraction of the GLCM method requires data preprocessing, such
as resampling into different resolution texture images or discussing second-order statis-
tical texture features under different analysis windows. Only micro grayscale texture
images are derived from GLCM in four directions (0, 45, 90, and 135°). The mean value is
regarded as the texture feature in the region. Aiming at the frequency domain of image
processing, DWT is a global analysis method that complements the spatial and frequency
domains. One thing that can be obtained in the spatial domain is the statistical texture
feature values. In the frequency domain, the detailed texture structure feature images,
which map the regional differences of landforms, can be obtained. GLCM is a probability
statistical analysis method of pixel gray level in the spatial domain. However, it fails to
resolve obvious features of spatial structure distribution of terrain texture primitives. In
general, whether from the visual perception, which interprets the texture primitive fea-
tures of spatial structure distribution (i.e., the orientation and period of texture primi-
tives) or achieves the landform classification using the machine learning method to train
texture features that are processed by normalization, DWT obtains texture features and



ISPRS Int. ]. Geo-Inf. 2021, 10, 658 14 of 20

has more advantages than GLCM due to the multi-perspective texture analysis. Moreo-
ver, the classification accuracy has been improved to a certain extent by approximately
11.8%, as presented in Table 3. An improved landform classification effect of DWT with
21 dimension features was obtained than with 24 dimension features of the GLCM
method, showing that lesser texture features are adopted enough to express the landform
features. In addition, two parameters are used for classification, which have more com-
prehensive and representative significance than the six parameters of GLCM, especially
in the course of refining extraction.
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Figure 9. Detailed comparisons of AW3D30 DEM and ASTER GDEM texture images. (a) AW3D30 texture image; (b)
ASTER GDEM texture image.
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On account of the RF method, the classification results of different landforms are
calculated by the confusion matrix, and the performance of RF is analyzed, as shown in
Table 4. The result indicates that the GLCM method presents a huge amount of misclas-
sification in the extremely high altitude plains and high hills, which are misclassified to
the low relief extremely high mountain. This misclassification may be due to the classi-
fication ability of extracted texture features, in which these high-altitude regions are too
poor to distinguish the differences among landforms. On the contrary, DWT has a bal-
anced improvement in user accuracy (UA) and producer accuracy (PA) in landform
classification results, which are above 65% in each type. Furthermore, drawing on the
spatial significance of landform structures, the range of each terrain texture is expressed
as 58.9824 km. Compared with the GLCM on this spatial scale, the PA of the DWT is in-
creased by more than 67% on A3 (intermediate relief middle mountain), A5 (extremely
high altitude plain), and A6 (extremely high altitude high-hill). In sum, the texture anal-
ysis method based on DWT can obtain superior performance in the classification effect.

Table 3. Results of classification accuracy using the DWT and GLCM for the texture features ex-
traction among landforms.

Texture Analysis . Landform Classification
Feature Parameter (Extraction Number)
Method Accuracy (%)
DWT Wavelet coefficient (12); Wavelet energy 91.09
entropy (9)

Contrast (4); Dissimilarity (4); Homogene-

GLCM ity (4); Energy (4); Correlation (4); ASM (4) 79-21
Table 4. The PA and UA of classification of different landforms.
Landforms DWT GLCM
PA (%) UA (%) PA (%) UA (%)
A0 100 100 100 100
Al 94.1 94.1 100 100
A2 95 100 100 100
A3 100 100 32.3 100
A4 83.3 88.2 100 100
A5 100 77.8 0 0
A6 66.7 72.7 0 0

4.3. Texture Structure Analysis on the Scale Characterization among Different Landforms

The dimensional characterization of texture structure is embodied in texture primi-
tives, which correspond to the terrain textures displayed by the landform structures in
the Tibet Plateau. These primitives are diverse under the conditions of different analysis
scales. In the aspect of research levels, a multiresolution DEM texture image is used to
analyze regional spatial landform distribution patterns from a macro perspective, explore
local landform structure from a micro perspective, and study the surface relief and pro-
file from diagonal decompositions, that both enhance the comprehensive analysis of
multi-dimensional landform features. As seen from the SSIM value of the texture (Figure
6), we can gain several structure features: (1) Directed at different landform types, high
altitude plains > extremely high altitude plains > extremely high altitude high-hills > low
relief extremely high altitude mountains > high relief extremely high altitude mountains
> intermediate relief high mountains > Intermediate relief middle mountains. The results
reveal that a certain correlation exists between landform relief and structural similarity.
(2) In the field of scale research, the variation trend of the texture structure in the plain
and hilly areas is stable, whereas the landforms (high mountains and middle mountains)
are greatly affected by the scale. The larger the decomposition scale, the more obvious the
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main texture structure, the smaller the similarity with the surrounding pixels, and the
higher the contrast. Therefore, the regional spatial distribution pattern of mountainous
structures is increasingly prominent, showing that the decomposition scale is related to
the complexity of texture structure of the landform types. (3) Speaking from the fluctua-
tion range of SSIM at different scales, high and middle mountainous areas > plain and
hilly areas, reflects that the landforms of the plains and hilly areas have a disorganized
texture without direction, whereas other mountainous landforms do not have this tex-
ture, which has the distinct expression of terrain texture features. In conclusion, the
structural decomposition with different scales heightens the differences among landform
types. Therefore, a better classification result can be obtained.

4.4. Features Analysis of Landform Spatial Structure Using Different Texture Methods

As a basic geometric quantity for describing the surface undulation, elevation is the
direct source of grayscale mapping in the terrain texture. Therefore, the difference varia-
tion of the regional landform structure can be analyzed in line with the adjacent texture
grayscale. Two texture analysis methods, termed GLCM and DWT, are compared.

In landform type AO (high relief extremely high altitude mountain), dissimilarity
(DIS) (GLCM measure) is selected to reflect the gray difference and analyze the landform
spatial structure. Figure 10a—d shows the texture features of GLCM-DIS in different di-
rections. Whether in horizontal (Figure 10a) or in vertical (Figure 10c), the huge gray
differences are in the lower left corner, where the heterogeneity in elevation is greater
than that of other locations, revealing a great variation of landform relief. At the left di-
agonal of 45°, the great heterogeneity is a claw-like (yellow line) area, highlighting that
the valleys and the surrounding mountains are in sharp contrast. Two long strips (yellow
line) along with great heterogeneity appear in the right diagonal 135°. Therefore, the
spatial structure of the gully landform is remarkable.

Focusing on the DWT texture analysis (Figure 10e-h), the result shows that the
landform spatial structure indicates clear priorities at different decomposition scales. At
levels 1 and 2, landforms can only be regarded as porphyritic agglomeration distribution.
At level 3 (the appropriate decomposition scale in Section 3.1), landforms exhibit plate,
strip, and plate structures (as the red star displays). A fist-like shape at the top, lower left,
and lower right are also shown. However, the landform structures are distorted and
rough, with only a strip valley at the lower right by the level 4 decomposition. The mul-
tiscale landform structure in this study is composed of visual contour and mountain
slope. The spatial structure is scale dependent, meaning that geospatial cognition about
the same spatial pattern, such as spatial convergence and dispersion, is discrepant under
different scales. In other words, the recombination or manifestation of spatial structure
changed with scale.

Different from the GLCM method in the spatial structure analysis, which calculates
the texture difference via different directions, landform structures are suggested as in-
consistent in a protruding point. Given that a complete landform spatial structure is in
trouble by one calculation, DWT is a comprehensive method, and the spatial size of
landform structure varies at each decomposition scale. Through the appropriate de-
composition scale, the spatial structure characteristics of landforms can be completely
expressed. A low decomposition scale determines the macro structure features, whereas
a high decomposition scale determines the micro structure features, which is effective in
depicting the valley structures. In summary, the texture analysis method based on DWT
has good performance for local landform spatial structures that are efficient and realistic.
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Figure 10. Landform spatial structure features of different texture analysis methods. (a) GLCM - 0°; (b) GLCM - 45°%; (c)
GLCM - 90°; (d) GLCM - 135°; (e) Level 1 — Horizontal; (f) Level 2 — Horizontal; (g) Level 3 — Horizontal; (h) Level 4 —

Horizontal.

5. Conclusions

DWT is an important method for multiscale structure decomposition, and DEM is a

key data source for analyzing the landform texture. Using a DEM texture image to extract
terrain texture structure and feature vector through multilevel DWT can realize landform
classification. Additionally, DWT can perform well in the analysis of the spatial structure
and anisotropy of geographic elements at different scales. The main results and conclu-
sions are as follows:

(1) On the basis of the AW3D30 texture image, the DWT method is employed to obtain

(2)

)

the local structural features of landforms in low and high frequencies with different
decomposition scales. The fine texture structure of a landform is depicted at a low
decomposition level. Nevertheless, the coarse texture is stored at a high decomposi-
tion level. In the end, the features of the main texture spatial distribution account
for the landform direction.

The appropriate decomposition scale is confirmed using the image evaluation indi-
ces of the wavelet reconstruction. Meanwhile, the wavelet coefficients and wavelet
energy entropy of the texture are calculated on this scale. Furthermore, the sec-
ond-order statistical features of six texture measures are extracted using the GLCM
method, which makes a full precondition for the landform classification.

Given the different texture feature values and the number of samples, the RF
method is adopted to classify landforms. Approximately 80% of the total features
are selected as training samples to fit the classification model, and the other 20% are
used as test samples to evaluate the classification accuracy. The texture method
based on DWT, which acquires high classification accuracy with less texture feature
dimension, is superior to GLCM in analyzing the gray spatial correlation of the
texture structure. A concrete change suggests that the PA of the DWT is increased
by more than 67% on A3 (intermediate relief middle mountain), A5 (extremely high
altitude plain), and A6 (extremely high altitude high-hill). The overall accuracy was
improved by approximately 11.8%.
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On the basis of the basic features of terrain texture, the analysis of macro landform
features is realized, the classification and recognition of multi-class landform types are
carried out, and the basic relief forms and the spatial differentiation features of landform
development are quantitatively analyzed. The limitation of this study lies in the lack of
the optimum analysis window for landform units under different resolutions. In other
words, the sample size analysis of the texture image is lacking. Given that the presenta-
tion details of the landform are heterogeneous with different scales, including the con-
siderable abrupt and gradual change, the texture structure is insufficient to adequately
express integrity, which can be the focus of future studies. To improve classification ac-
curacy, statistical features can be combined with structural features to carry out the
landform classification necessary for deep learning.
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