
����������
�������

Citation: Huang, K.; Wang, C.;

Liu, R.; Chen, G. A Fast and Accurate

Spatial Target Snapping Method for

3D Scene Modeling and Mapping in

Mobile Augmented Reality. ISPRS

Int. J. Geo-Inf. 2022, 11, 69. https://

doi.org/10.3390/ijgi11010069

Academic Editor: Wolfgang Kainz

Received: 20 October 2021

Accepted: 7 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

A Fast and Accurate Spatial Target Snapping Method for 3D
Scene Modeling and Mapping in Mobile Augmented Reality
Kejia Huang 1, Chenliang Wang 2,* , Runying Liu 1 and Guoxiong Chen 1

1 SuperMap Software Co., Ltd., Beijing 100015, China; huangkejia@supermap.com (K.H.);
liurunying@supermap.com (R.L.); chenguoxiong@supermap.com (G.C.)

2 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing 100101, China

* Correspondence: wangcl@lreis.ac.cn; Tel.: +86-101-5989-6730

Abstract: High-performance spatial target snapping is an essential function in 3D scene modeling
and mapping that is widely used in mobile augmented reality (MAR). Spatial data snapping in a
MAR system must be quick and accurate, while real-time human–computer interaction and drawing
smoothness must also be ensured. In this paper, we analyze the advantages and disadvantages of
several spatial data snapping algorithms, such as the 2D computational geometry method and the
absolute distance calculation method. To address the issues that existing algorithms do not adequately
support 3D data snapping and real-time snapping of high data volumes, we present a new adaptive
dynamic snapping algorithm based on the spatial and graphical characteristics of augmented reality
(AR) data snapping. Finally, the algorithm is experimented with by an AR modeling system, including
the evaluation of snapping efficiency and snapping accuracy. Through the experimental comparison,
we found that the algorithm proposed in this paper is substantially improved in terms of shortening
the snapping time, enhancing the snapping stability, and improving the snapping accuracy of vector
points, lines, faces, bodies, etc. The snapping efficiency of the algorithm proposed in this paper is
1.6 times higher than that of the traditional algorithm on average, while the data acquisition accuracy
based on the algorithm in this paper is more than 6 times higher than that of the traditional algorithm
on average under the same conditions, and its data accuracy is improved from the decimeter level to
the centimeter level.

Keywords: spatial computing; adaptive decomposition; snapping; MAR; GPU; real-time algorithm;
AR interaction; vision-based interaction

1. Introduction

Augmented reality (AR) aims to connect real-world and virtual contents while allow-
ing users to interact in real time. A new perspective of the new world is formed when the
user receives supplementary information (e.g., images, sounds, and text) in addition to the
real world [1]. The current trend in AR technology is to make it simpler for end-users and
professionals to interact with it, as well as to open up new application areas [2]. With the
interaction between users and their surrounding environments, AR is capable of producing
novel visualization and mapping experiences in GIScience and related areas [3–5].

In recent decades, there has been an increase in research activities to develop AR
systems operating and/or presenting the augmented 3D scene modeling on a mobile
device, with the majority of them in the fields of virtual tours [6,7] and ground-based
survey [8,9] and Building Information Modeling (BIM) [10,11], which may be regarded as a
Mobile Augmented Reality (MAR) system [12]. Whether head-mounted or handheld, MAR
systems, have advanced rapidly as a new sort of data visualization technology. To begin
with, these mobile devices, particularly smartphones and tablets, are extremely popular
and portable. Additionally, their performance has surpassed that of certain PCs, with
enough capability for basic data processing and rendering tasks.

ISPRS Int. J. Geo-Inf. 2022, 11, 69. https://doi.org/10.3390/ijgi11010069 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11010069
https://doi.org/10.3390/ijgi11010069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-8139-0597
https://doi.org/10.3390/ijgi11010069
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11010069?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2022, 11, 69 2 of 25

With the advanced techniques and equipment with mobile devices, including motion
sensors and a GPS sensor, as well as a powerful camera system, MAR provides geo-
located information via an AR system, and eliminates the need for separate components of
standard equipment and sensors (e.g., laptop, camera, GPS). MAR has the change to solve
challenges such as limited collaboration and coordination, as well as inadequate contextual
cognition [13] for ground-based survey activities. Rather than simply allowing orientation
or supplying a certain sort of reference information, it can offer pre-event relevant data,
such as the previous location of the entities or the geometry fitted over entity remains and
details on environmental factors that significantly influence the responder’s state, to on-site
visualization or surveying [14], and the knowledge on other survey teams in the region, or
earlier evaluation efforts [8].

MAR also provides a convenient and straightforward approach of retrieving infor-
mation by parsing the vision semantic of the environment [15] and linking additional
valuable features for facility managers [16], including locating build components and
three-dimensional (3D) visualization of invisible information [17]. Rather than focusing
on static images or 3D scale models, the MAR-based approach to visualize architectural
design concentrate on immersive and interactive experiences for cost-effective design evo-
lution and efficient communication between businesses and consumers [18]. With the
help of model information, complex connections with different components can be clearly
recovered by assembling architectural elements. As an architecture firm, SOA (Simon
Oswald Architecture, https://soa-inc.com, accessed on 30 December 2021) (Columbia,
MO, USA) can better utilize and analyze project data to make better decisions and provide
BIM services. By incorporating information from the community scale (GIS, surrounding
structures, etc.) down to manufacturer’s specific components, they can accurately analyze
and optimize spatial and material relationships through quantitative data output, building
performance analyses, and complex phasing drawings as required by each project [19]. A
new component of the model is added close to an existing part. Users of such systems often
move objects by hand and place them in the appropriate position [20].

In an interactive 3D scene modelling system, accurately placing and orienting objects
is the foundation for mapping spatial relationships among scene components. It involves a
range of operations, including the selection of control points, curves, and surfaces, as well
as the translation, rotation, and scaling of scene components into precise relationships with
other components. Although precise 3D modeling is highly complex and requires great
motor skill, much dragging or scaling with the mouse and a large number of keyboard input
instructions, it can be achieved quickly, precisely, and intuitively with 3D snapping, which
assists users in aligning objects. Snapping provides aligned positions with a magnetism [21],
gravity [22] and interactive transformations [23]. An effective snapping optimizes user
interface by using real-time feedback and performing certain computations automatically,
such as calculating the alignment of objects and their intersections.

When manipulating objects in AR scene, a virtual constraint (the rule of spatial rela-
tionships that the objects must satisfy) should be performed for maintaining consistency of
the changes [24] with the relationships between the geometric elements of real and virtual
objects. When the user moves the object near the constraint, the object is automatically
aligned precisely with the virtual constraint according to specific constraint rules that in-
clude extension lines, horizontal lines, vertical lines, points on faces, points on lines, surface
tangents, endpoints, midpoints, intersections, and other mathematical computations for
alignment based on the geometric relationship of 3D space.

However, positioning an object precisely in AR space is not easy because it is difficult
to perceive the depth of an object in the augmented 3D space. Even if the depth of an
object can be perceived by sensor [25], it is still difficult to place the object precisely at a
certain location due to the stability of tracking, small movements of the hand, etc. [26].
Additionally, there are limitations of MAR in the accuracy of the sensor [27], the robustness
and efficiency of tracking solutions and the operational errors caused by human visual

https://soa-inc.com


ISPRS Int. J. Geo-Inf. 2022, 11, 69 3 of 25

perception at distant ranges. This makes accurate placing objects in MAR at long distances
even more challenging.

In addition, the performance of computation is vital for a MAR-based system. Al-
though some mobile applications have desktop-like appearances and capabilities, the
physical resources of mobile devices are still restricted (for example, limited battery capac-
ity and screen size), making it difficult to develop complex algorithms [28]. To make the
battery of mobile devices last longer, snapping in an AR scene should be very efficient to
maintain the rendering fluency. Because of some computations for precise interactive scene
construction including gravity and intersection, nevertheless, snapping is computationally
demanding [22]. When the size or complexity of the object is large or complicated, the
performance of snapping system will decrease [29]. To keep the consistency of virtual
objects with real world, however, it requires feedback and screen updates in real-time.
For each snapping approach in AR, there should be a tradeoff between performance and
intuition. Since, in AR, the human–computer interaction is real-time, the algorithm must
be suitably fast while assuring accuracy without interfering with scene rendering.

Furthermore, the existing 3D snapping systems are mostly limited to a small region
due to the computational capabilities of devices and the modeling methods of spatial
relationships. Consequently, when they are employed for real-world sophisticated scene
modeling, heavy post-processing is required on the outputs of those methodologies. In
this study, the semantic constraints of 3D scene modeling are developed, especially for
indoor modeling. It is capable of properly capturing irregular objects such as walls in any
direction, doors on the wall, windows on the wall, building undersides in any direction,
and cylindrical buildings. Additionally, this research also implemented virtual constraints
on real 3D scenes, such as invisible areas outside the user’s field of view and long-distance
capture inside large buildings.

This study also addresses the constraint calculation problem of capturing 3D objects
in a real-time system. A fast solution for snapping moving objects to existing objects in
an AR environment is proposed in this article. It works well regardless of whether these
geometries are scaled, rotated, moved, or resized. To our knowledge, our method is the
first to demonstrate 3D snapping in AR scene with a complex and larger scale environment.
The main contributions of this paper are as follows:

• A novel constraint model that encompasses the modeling of an entire 3D scene is pro-
posed in this article. Build undersides, vertical elevations, doors, windows, building
thickness and irregular buildings can be captured all in MAR, reducing the cost of 3D
modeling post-processing.

• Long-distance constraints and invisible regions in the user’s field of view are presented
in this study. The constraints include the constraints of long-distance extension lines
of parallel line and vertical line in or out of the field of view, long-distance point on
the surface line, long-distance elevation, and arbitrary plane out of the field of view.

• To achieve high-performance real-time query and calculation, an adaptable and dy-
namic grid indexing strategy [30] is also developed. Using the index method, a virtual
constraint model is created with 3D computational geometry, and the alignment rela-
tionship between the 2D image of the touch interface and the 3D video of the real AR
environment is established.

• A detailed analysis of important design considerations for spatial target snapping
and alignment techniques is conducted in this paper, including the user’s limited
field of view, real-time computation of spatial target constraint extraction by movable
cameras, view change problems in AR, dynamic scene problems, and visualization of
physical constraints.

The rest of the paper is organized as follows: Section 2 discusses the relationship be-
tween our work and existing techniques in AR snapping. Section 3 is devoted to presenting
the constraint rules for real-time AR snapping and the architecture of the proposed method,
and it also describes the key features and theoretical prototype for large-scale AR real-time
snapping. Section 4 examines the effectiveness and performance of the method through a



ISPRS Int. J. Geo-Inf. 2022, 11, 69 4 of 25

series of quantitative and qualitative experiments and then evaluate and discuss the results.
Section 5 concludes the research and recommendations for future work.

2. Related Work

A considerable amount of literature has been published on 3D snapping. The first
detailed study of snapping in 3D space was reported by Bier et al. [23]. The snap-dragging
method was proposed in their study, which support precisely placing a 3D cursor [31],
capturing points, curves, and surfaces as the cursor comes closer to existing geometry.
Furthermore, their method enables snapping between objects, which makes 3D modeling
more precise, but it also makes the snapping computationally expensive [22].

To reduce the amount of computation, several studies have attempted to reduce the
complexity of modeling from different aspects. One solution is that virtual objects can
be utilized as a guide within an interactive modeling environment. Guideline-based 3D
snapping interaction techniques were developed by Oh et al. [32]. The presented method
could improve the efficiency of modeling operations, including sketch, extrude, sculpt
and manipulate, in 3D design systems. However, this research did not take into account
complicated real-world building scenarios. Because the modeling area is small, issues such
as object motion are also ignored.

Another option is to define simple virtual objects to simplify geometric relationships.
Do et al. [29] presented a quick snapping algorithm that defines “hot spots” for each
element, which is a sphere with a specific radius. When the center of the moving objects
falls within the hotspot of any existing geometry, the algorithm snaps to that shape. The
study reported that the algorithm can be more precise and capture 3D objects in real time,
ensuring the correct rendering of the scene, with a small number of test samples. Because
the method is primarily dependent on hot spots for processing, it can adapt to various
geometry types. The study, however, only defines the hot spots at the small object’s center
point, degrading the efficiency of bigger, more complex geometries.

Several attempts have been made to achieve efficiency and precision. It is difficult to
carry out precise interaction on mobile devices due to the unstable camera view movement
and lower accuracy of the interface. To tackle this issue, Lee et al. [33] proposed a Snap-to-
Feature approach for accurate real-time computation and optimized functions for tracing
in AR system. Unfortunately, the scope of this research was relatively narrow, being
primarily concerned with 2D images manipulation. Another possible solution is to develop
vision-based object precise measurement and snapping for interactive 3D modeling. A
corner-based snapping approach is proposed by Swaminathan et al. [34]. It models the box
fitting completely and has more robust error tolerance for marker placement. Additionally,
the efficiency will not be reduced with the higher accurate measurement. However, it lacks
a convincing mapping of motions on 2D surface onto object manipulation in 3D space. It
also does not perform a range of sensor functions in MAR devices.

The former issue of lacking 2D inputs in 3D space has been addressed to some extent
by Kwan et al. [35], whose work presented the use of snapping technologies to perform 3D
sketch design in MAR. The method integrates multimodal input coupling of 2D input and
3D input, making it simple to create 3D models in situ. However, the solution has faults in
sensor signal processing as well. It is highly influenced by the noise of the tracking signal.
As a result, the system is sensitive to the reliability of ARKit’s motion tracking, which is
occasionally unstable and scenario dependent.

Snapping in 3D, on the other hand, is more complicated since the depth information
is difficult to obtain in the augmented 3D space. Therefore, it is quite natural attempt to
investigate snapping algorithms based on RGB-D images which providing additional depth
information [36,37]. An efficient RGB-D images-based methods to snap virtual objects into
real scenes in real-time is presented by Li et al. [27]. However, the system only exploited
the planar structure of the underlying scenes. In addition, and more importantly, the low
precision of the depth data makes it difficult to consider more complex relationships and
long-distance snapping.



ISPRS Int. J. Geo-Inf. 2022, 11, 69 5 of 25

Nuernberger et al. [38] investigated a technique for automatically snapping virtual
objects with physical constraints generated in real time from the real environment. This
approach is capable of extracting some 3D information from inside buildings, such as 3D
edges and planar constraints. With this constraint of capturing dynamic extraction, the
efficiency of aligning objects with the real world is substantially improved. This research
also focused on real-world capturing noise and constraint visualization, enhancing the
expressiveness of 3D modeling in AR scene. However, their algorithms have not yet reached
a semantic grasp of the physical scene’s complexities, and they are primarily limited to
simple geometric relationships.

From the above discussion, there is very little published research on the efficiency and
accuracy of the alignment and positioning of digital spatial objects in a large or complex
augmented 3D scene. The existing studies of 3D snapping techniques has concentrated on
accurate snapping in a small region rather than on a large or complex environment. Most
previous studies cannot capture the actual build information in the full range, which would
be a challenge that has not been overcome in the current snapping in 3D space.

Additionally, the prior spatial data snapping methods did not full consider adapting to
large-scale snapping in the real environment, and they did not ensure real-time computation
under the large amount of data. For example, the details of the constraint’s computation
of the real environment and the virtual environment in the users’ field of vision in the
interior of a building larger than 100 square meters, including the range of snapping, and
the update frequency of the snapping data index.

3. Research Method
3.1. Principles of the MAR Snapping Constraint

The fundamental prerequisites for efficient and robust snapping algorithms in MAR
are summarized into three aspects. It must be capable of improving the accuracy of the data
acquisition, reducing perusal time of the system, and reducing the difficulty of operating the
AR system in difficult-to-access or even remote areas [34]. The rigorous standards for AR
snapping application scenarios such as performance, accuracy, and interaction with outdoor
environments must be fulfilled. In this paper, these principles are specifically considered.

3.1.1. High-Precision Snapping

The precise snapping of objects is vital for making the shift from manual input to free-
hand operations with greater precision. Since freehand operations are prone to generating
errors and inaccurate results, a high-precision hand tracking system is required.

For wearable computers devices, text input can be via a forearm-mounted keyboard,
gesture-based hand input, or speech recognition [26]. Although forearm keyboards are
more preferable than virtual keyboards, they require the use of both hands. Other methods,
such as gesture recognition and speech recognition have higher error rates than pen-based
systems [39].

When an object is snapped to an axis-aligned mesh, tracker noise and errors caused
by freehand manipulation can be eliminated. Mesh-based snapping is a common feature
of most 2D desktop-based CAD modeling systems [40]. The accuracy of these operations,
however, is determined by the cell size of the mesh. This can lead to the issue of accurately
adjusting the raster resolution.

The alignment process using vertices, edges, and polygons allows virtual objects to
align with each other or with other physical objects instead of attaching vertices to the
mesh. Additionally, the process provides the ability to quickly snap to additional virtual
constraints based on aligned virtual objects. This alignment requires proper registration of
virtual objects with the real environments. Depending on the task, the virtual object can be
registered according to the physical environment and the camera plane coordinate system,
or it can be quickly attached to the physical object through relative relationships.



ISPRS Int. J. Geo-Inf. 2022, 11, 69 6 of 25

3.1.2. High-Speed Snapping

Because AR is a real-time software system, high-speed processing must be assured to
achieve an accurate mapping of the virtual and actual worlds. The snapping operation must
be performed on the camera’s rendered screen in real time, with a frequency of refreshing
more than 25 fps or higher, to ensure that the snapping results with reference to the actual
world are aligned with the camera’s real-time picture and comply with virtual constraints.

Switching snapping modes frequently is highly undesirable for human–computer
interaction processes and touch interfaces, particularly in a collaborative context with the
actual world. To avoid unnecessary switching modes, the snapping operation should not
only run quickly, but also snap all virtual constraint data within the AR viewport (the
entire area rendered to the target surface in the camera model in MAR, i.e., front clipping
plane [41]), and present the ideal output that satisfies the constraint on the camera screen.
This approach preserves the relationships between screen rendering with the corresponding
objects. Additionally, the object could be placed near to the virtual constraints or other
objects without snapping interfering.

3.1.3. Remote Distance Snapping

Long-distance operations are well known to be impacted by tracker noise [42]. Despite
numerous solutions having been developed for indoor virtual reality systems, most studies
are limited to relationships with virtual domains [43]. Scaling does not applicable to AR
because AR information is already registered to the physical world. The one-to-one link
between the virtual world and the physical world will be broken by scaled worlds. While
virtual information is scaled down to the virtual scale, people cannot be scaled up to the
physical scale, resulting in incorrect visual representation.

In addition to the inapplicability of scaled sceneries, it is necessary to support accurate
and rapid snapping for remote hard-to-reach indoor corners, the edges of tables and chairs,
stacked areas, the outer surface of outdoor fences, and the remote side of the river, pits,
and fire zones. This is critical for the snapping task’s integrity and the performance of the
snapping system.

Because of the poor quality of the six-degree-of-freedom tracking sensors, outdoor
AR systems have inherent challenges with long-range operation. Indoor tracking may
achieve millimeter-level tracking accuracy; however, outside tracking is heavily reliant on
GPS or vision-based inertial guiding sensing systems for accuracy. The best precision is
approximately 1 cm. Although the orientation sensors themselves are quite accurate, the
movement of the body when walking can have a negative impact on the accuracy. Relative
tracking of user hands in wearable outdoor AR systems is still an outstanding research
challenge. Thus, tracking the user’s gestures and predicting virtual constraints is a critical
technique for many remote AR and VR solutions.

3.2. ARSnap System Architecture

In this section, we present an AR Snapping algorithms library (ARSnap), which is a
fast and accurate method of AR snapping for 3D spatial targets, as well as the library’s
architecture and core functional algorithm. ARSnap consist of a variety of CGAL-based
computing strategies [44], including 3D spatial alignment and triangulation strategies, with
the purpose of achieving high-performance dynamic snapping for large-scale read world
environments. The essential principles and workflow of large-scale AR real-time snapping
is also proposed in this article.

To process the specific input information from MAR devices [45], the functions of
ARSnap system, unlike the traditional methods, is primarily composed of virtual constraint
modeling of AR in real 3D space, the adaptive grid model of high-performance spatial
target alignment, and the real-time perception of spatial target state changes with movable
cameras. Additionally, it is capable of rendering the model of snapping outputs in MAR
based on the combination of actual and digital objects, as well as supporting snapping and
alignment of the multi-source spatial data.



ISPRS Int. J. Geo-Inf. 2022, 11, 69 7 of 25

The ARSnap system architecture components include the spatial data engine mod-
ule, AR visualization module, AR perception module, AR snapping computing module,
AR snapping interaction module, and AR snapping application module. The system
architecture is shown in Figure 1.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 7 of 26 
 

 

with the purpose of achieving high-performance dynamic snapping for large-scale read 
world environments. The essential principles and workflow of large-scale AR real-time 
snapping is also proposed in this article. 

To process the specific input information from MAR devices [45], the functions of 
ARSnap system, unlike the traditional methods, is primarily composed of virtual con-
straint modeling of AR in real 3D space, the adaptive grid model of high-performance 
spatial target alignment, and the real-time perception of spatial target state changes with 
movable cameras. Additionally, it is capable of rendering the model of snapping outputs 
in MAR based on the combination of actual and digital objects, as well as supporting snap-
ping and alignment of the multi-source spatial data. 

The ARSnap system architecture components include the spatial data engine mod-
ule, AR visualization module, AR perception module, AR snapping computing module, 
AR snapping interaction module, and AR snapping application module. The system ar-
chitecture is shown in Figure 1. 

 
Figure 1. Snapping algorithm (ARSnap) system architecture. 

The procedure of 3D scene modeling and mapping proposed in this paper is mainly 
composed of AR snapping, AR visualization and AR environment perception. Each mod-
ule contains several submodules to create models and outputs. The entire process of 3D 
modelling is shown in Figure 2. The most difficult computation in these steps is the accu-
rate snapping computation of spatial objects based on 3D virtual constraints. One of the 
greatest challenges is that the spatial relationship and snapping of the various snapping 
categories should be considered for AR viewport and real scene in real time. Another key 
component is the interactive modelling extraction based on indoor 3D modelling seman-
tics. Because of the diverse element data, such as ground, wall, regular outlines, irregular 
outlines, elevation, windows and gates, this stage takes the longest in the modelling pro-
cess. Interactive instruction and information are delivered in response to user actions and 
camera movement to trigger the location switching of virtual spatial elements. For exam-
ple, users’ actions, such as close, far and sideways shaking, are feedbacked with touch, 
successful messages, and other guiding information to improve the snapping experience. 
Additionally, the aim of adaptive octree grid indexes for snapping is to increase the effi-
ciency supporting dynamic update of the snapping search region. 

 
Figure 2. The pipeline of accurate 3D modeling in MAR. 

Figure 1. Snapping algorithm (ARSnap) system architecture.

The procedure of 3D scene modeling and mapping proposed in this paper is mainly
composed of AR snapping, AR visualization and AR environment perception. Each module
contains several submodules to create models and outputs. The entire process of 3D
modelling is shown in Figure 2. The most difficult computation in these steps is the
accurate snapping computation of spatial objects based on 3D virtual constraints. One of
the greatest challenges is that the spatial relationship and snapping of the various snapping
categories should be considered for AR viewport and real scene in real time. Another key
component is the interactive modelling extraction based on indoor 3D modelling semantics.
Because of the diverse element data, such as ground, wall, regular outlines, irregular
outlines, elevation, windows and gates, this stage takes the longest in the modelling process.
Interactive instruction and information are delivered in response to user actions and camera
movement to trigger the location switching of virtual spatial elements. For example, users’
actions, such as close, far and sideways shaking, are feedbacked with touch, successful
messages, and other guiding information to improve the snapping experience. Additionally,
the aim of adaptive octree grid indexes for snapping is to increase the efficiency supporting
dynamic update of the snapping search region.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 7 of 26 
 

 

with the purpose of achieving high-performance dynamic snapping for large-scale read 
world environments. The essential principles and workflow of large-scale AR real-time 
snapping is also proposed in this article. 

To process the specific input information from MAR devices [45], the functions of 
ARSnap system, unlike the traditional methods, is primarily composed of virtual con-
straint modeling of AR in real 3D space, the adaptive grid model of high-performance 
spatial target alignment, and the real-time perception of spatial target state changes with 
movable cameras. Additionally, it is capable of rendering the model of snapping outputs 
in MAR based on the combination of actual and digital objects, as well as supporting snap-
ping and alignment of the multi-source spatial data. 

The ARSnap system architecture components include the spatial data engine mod-
ule, AR visualization module, AR perception module, AR snapping computing module, 
AR snapping interaction module, and AR snapping application module. The system ar-
chitecture is shown in Figure 1. 

 
Figure 1. Snapping algorithm (ARSnap) system architecture. 

The procedure of 3D scene modeling and mapping proposed in this paper is mainly 
composed of AR snapping, AR visualization and AR environment perception. Each mod-
ule contains several submodules to create models and outputs. The entire process of 3D 
modelling is shown in Figure 2. The most difficult computation in these steps is the accu-
rate snapping computation of spatial objects based on 3D virtual constraints. One of the 
greatest challenges is that the spatial relationship and snapping of the various snapping 
categories should be considered for AR viewport and real scene in real time. Another key 
component is the interactive modelling extraction based on indoor 3D modelling seman-
tics. Because of the diverse element data, such as ground, wall, regular outlines, irregular 
outlines, elevation, windows and gates, this stage takes the longest in the modelling pro-
cess. Interactive instruction and information are delivered in response to user actions and 
camera movement to trigger the location switching of virtual spatial elements. For exam-
ple, users’ actions, such as close, far and sideways shaking, are feedbacked with touch, 
successful messages, and other guiding information to improve the snapping experience. 
Additionally, the aim of adaptive octree grid indexes for snapping is to increase the effi-
ciency supporting dynamic update of the snapping search region. 

 
Figure 2. The pipeline of accurate 3D modeling in MAR. 
Figure 2. The pipeline of accurate 3D modeling in MAR.

3.3. ARSnap 3D Virtual Constraint Modeling

In a 3D virtual constraint-based AR system, geometric relationships are represented as
mathematical equations. Therefore, the problem of finding a configuration that satisfies a
set of constraints can be achieved by solving a system of equations. Similarly, determining
multiple constraints requires solving multiple systems of equations [40]. Based on the
above, this paper proposes the following procedure: before starting the snapping operation,
the plane of the real environment should be identified. Then, based on this plane, the
plane matrix equation of the infinite region is built, as well as the virtual constraint rules
in the plane matrix equation. Finally, the snapping operation is performed according to
the specified calculation rules of each type to achieve accurate data acquisition. This paper



ISPRS Int. J. Geo-Inf. 2022, 11, 69 8 of 25

uses an extended median filtering algorithm to extract the optimal plane [46] from multiple
planes identified in the real environment.

After identifying and extracting the optimal plane, the initial point position is ap-
pended. The initial point can be calculated by the interactive input data or accurate existing
data. After obtaining the position, a ray from the intersection position and the camera
position is created to acquire the intersection point in plane for display. The position where
the initial point intersects plane can then be calculated by solving the ray equation and the
parameter equation of plane. Figure 3 depicts the calculation process.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 8 of 26 
 

 

3.3. ARSnap 3D Virtual Constraint Modeling 
In a 3D virtual constraint-based AR system, geometric relationships are represented 

as mathematical equations. Therefore, the problem of finding a configuration that satisfies 
a set of constraints can be achieved by solving a system of equations. Similarly, determin-
ing multiple constraints requires solving multiple systems of equations [40]. Based on the 
above, this paper proposes the following procedure: before starting the snapping opera-
tion, the plane of the real environment should be identified. Then, based on this plane, the 
plane matrix equation of the infinite region is built, as well as the virtual constraint rules 
in the plane matrix equation. Finally, the snapping operation is performed according to 
the specified calculation rules of each type to achieve accurate data acquisition. This paper 
uses an extended median filtering algorithm to extract the optimal plane [46] from multi-
ple planes identified in the real environment. 

After identifying and extracting the optimal plane, the initial point position is ap-
pended. The initial point can be calculated by the interactive input data or accurate exist-
ing data. After obtaining the position, a ray from the intersection position and the camera 
position is created to acquire the intersection point in plane for display. The position 
where the initial point intersects plane can then be calculated by solving the ray equation 
and the parameter equation of plane. Figure 3 depicts the calculation process. 

 
Figure 3. Calculation process of the intersection point between plane p and ray r. 

Equation (1) depicts the formula for calculating the intersection point between plane 
and the ray formed from the initial point and the camera viewpoint. In Euclidean geome-
try, a ray is defined as a point on a straight line and the portion of the line on one side of 
the point (see Equation (A1)–(A3)). In this paper, the snapping system uses three types of 
ray equation scenarios, namely, ray-to-plane (ray intersects any plane in space), ray-to-
line (ray intersects any straight line in space), and ray-to-point (ray intersects any point in 
space). ൜ 𝑝 = 𝑝0 + 𝑡𝑢𝑛 ∙ (𝑝 − 𝑝0) = 0, (1) 

As shown in Equation (1), through camera panning, rotation, and other movements, 
the ray equations generated by the AR viewport are different, and their intersection coor-
dinates in the plane equation are also different. With this fact, we can calculate the inter-
section at any point in the plane and obtain any coordinate in the plane. 

Once the intersection point of the initial point with the plane matrix equation is ob-
tained, the snapping system then activates the virtual constraint module. With this inter-
section point, an adaptive and dynamic grid indexing system can be built with the 3D 
spatial octree query algorithm [47]. Based on changes in the AR viewport, new grids are 
retrieved according to the octree query rules. The existing data and newly collected data 
are extracted with the new grids, and the new octree grid index is update by the extraction 
results to keep the index and data update to date. The grid indexes which should be re-
fetched, and which should be cached locally or to memory, is determined according to the 
position of AR viewport. The adaptive octree model is illustrated in Figure 4. 

Figure 3. Calculation process of the intersection point between plane p and ray r.

Equation (1) depicts the formula for calculating the intersection point between plane
and the ray formed from the initial point and the camera viewpoint. In Euclidean geometry,
a ray is defined as a point on a straight line and the portion of the line on one side of the
point (see Equation (A1)–(A3)). In this paper, the snapping system uses three types of ray
equation scenarios, namely, ray-to-plane (ray intersects any plane in space), ray-to-line (ray
intersects any straight line in space), and ray-to-point (ray intersects any point in space).{

p = p0 + tu
n·(p− p0) = 0

, (1)

As shown in Equation (1), through camera panning, rotation, and other movements,
the ray equations generated by the AR viewport are different, and their intersection co-
ordinates in the plane equation are also different. With this fact, we can calculate the
intersection at any point in the plane and obtain any coordinate in the plane.

Once the intersection point of the initial point with the plane matrix equation is
obtained, the snapping system then activates the virtual constraint module. With this
intersection point, an adaptive and dynamic grid indexing system can be built with the
3D spatial octree query algorithm [47]. Based on changes in the AR viewport, new grids
are retrieved according to the octree query rules. The existing data and newly collected
data are extracted with the new grids, and the new octree grid index is update by the
extraction results to keep the index and data update to date. The grid indexes which should
be re-fetched, and which should be cached locally or to memory, is determined according
to the position of AR viewport. The adaptive octree model is illustrated in Figure 4.

In the large-scale and local complex environments, the efficiency of the snapping
system is significantly increased using an octree grid index structure, especially the query,
cache updating and adaptive computation. Therefore, the octree index is crucial for manip-
ulation and snapping the existing and collected data on site in MAR. In small or simple
environments, the octree index can also be customized to reduce the level and number in
the grid range.

After establishing the initial point location and the octree model, the 3D virtual
constraints for AR snapping can be generated using the available data. The first step is
to calculate the snapping connection point. It can be obtained by calculating the virtual
constraints for target objects, such as snapping planes, line segments, nodes, and endpoints.



ISPRS Int. J. Geo-Inf. 2022, 11, 69 9 of 25

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 9 of 26 
 

 

In the large-scale and local complex environments, the efficiency of the snapping sys-
tem is significantly increased using an octree grid index structure, especially the query, 
cache updating and adaptive computation. Therefore, the octree index is crucial for ma-
nipulation and snapping the existing and collected data on site in MAR. In small or simple 
environments, the octree index can also be customized to reduce the level and number in 
the grid range. 

 

Figure 4. Adaptive octree model. 

After establishing the initial point location and the octree model, the 3D virtual con-
straints for AR snapping can be generated using the available data. The first step is to 
calculate the snapping connection point. It can be obtained by calculating the virtual con-
straints for target objects, such as snapping planes, line segments, nodes, and endpoints. 

When snapping on other planes, the closest set of planes to the AR viewport should 
be calculated at first. The point (a, b, c) within the six degrees of freedom space and the 
projection point (x0, y0, z0) on the plane forms a line. The line should be parallel to the 
normal vector of the plane. With this, the plane set can be calculated by the following 
steps: we compute the coordinates of (x0, y0, z0) by putting the connection point and the 
normal vector into the formula. The distance between the connection point (a, b, c) and 
the projection point (x0, y0, z0) can then be computed. Finally, we can specify a distance 
threshold and retrieve the collection of planes with the shortest distance [48]. During the 
snapping process, we can use this formula to calculate the projection point of the connec-
tion points at different planes, such as the vertical plane, section plane, top plane, and 
ground of different elevations. Figure 5 shows the snapping of real-time virtual con-
straints on different vertical planes. 

Figure 4. Adaptive octree model.

When snapping on other planes, the closest set of planes to the AR viewport should
be calculated at first. The point (a, b, c) within the six degrees of freedom space and the
projection point (x0, y0, z0) on the plane forms a line. The line should be parallel to the
normal vector of the plane. With this, the plane set can be calculated by the following
steps: we compute the coordinates of (x0, y0, z0) by putting the connection point and the
normal vector into the formula. The distance between the connection point (a, b, c) and
the projection point (x0, y0, z0) can then be computed. Finally, we can specify a distance
threshold and retrieve the collection of planes with the shortest distance [48]. During the
snapping process, we can use this formula to calculate the projection point of the connection
points at different planes, such as the vertical plane, section plane, top plane, and ground
of different elevations. Figure 5 shows the snapping of real-time virtual constraints on
different vertical planes.

After determining the projection position of the connection point on the snapping
plane, an adaptive grid model is created. Section 3.5 describes the process in depth; please
refer to that section for more information.

Once the adaptive grid model is established, the optimal elevation lines can be deter-
mined, and the marker positions for aligning the elevation lines can be calculated using
the virtual constraint data in the AR viewport. During this process, a vector of rays in the
direction of the camera viewport and a vector group of elevation lines are generated. Then,
the angle between the two vectors is calculated. The smaller the angle is, the closer it is to
the camera’s viewport direction in a straight line. Two vectors are used to construct quater-
nions and extract Euler angles, which implemented as the following steps: (1) calculate the
vector of the target point extracted from the camera viewpoint to the ray; (2) compute the
quaternion value between two vectors; and (3) according to the formula of the quaternion
and Euler’s angle, the angle between two vectors can be inverted; (4) Since all elevation
segments are horizontal, the rotation axis is (0, 1, 0), and the minimum value of all angles
can be calculated without rotation transformation.

Figure 6 shows ARSnap’s real-time snapping of various virtual marker information
from various angles from the mobile camera. It can be seen that the elevation information
of the virtual object, as well as other perimeter and volume information collected by the
system, can always be user-oriented, and the elevation information is always attached to the
contour of the top plane, allowing the user to check the change of the elevation result. The
perimeter and volume must take into account the optimal display of the camera viewport
in the irregular polyhedral collected by the system, that is, it must be able to accurately
display the appropriate position of the irregular polyhedra under various camera viewing
angles, rather than being limited to a plane or contour line.



ISPRS Int. J. Geo-Inf. 2022, 11, 69 10 of 25ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 10 of 26 
 

 

 
Figure 5. Real-time capture results of the camera’s six degrees of freedom (6-DOF) positions on dif-
ferent vertical planes: (a) 6-DOF projection points in vertical plane a; (b) 6-DOF projection points in 
vertical plane b; (c) 6-DOF projection points in vertical plane c. 

After determining the projection position of the connection point on the snapping 
plane, an adaptive grid model is created. Section 3.5 describes the process in depth; please 
refer to that section for more information. 

Once the adaptive grid model is established, the optimal elevation lines can be deter-
mined, and the marker positions for aligning the elevation lines can be calculated using 
the virtual constraint data in the AR viewport. During this process, a vector of rays in the 
direction of the camera viewport and a vector group of elevation lines are generated. Then, 
the angle between the two vectors is calculated. The smaller the angle is, the closer it is to 
the camera’s viewport direction in a straight line. Two vectors are used to construct qua-
ternions and extract Euler angles, which implemented as the following steps: (1) calculate 
the vector of the target point extracted from the camera viewpoint to the ray; (2) compute 
the quaternion value between two vectors; and (3) according to the formula of the quater-
nion and Euler’s angle, the angle between two vectors can be inverted; (4) Since all eleva-
tion segments are horizontal, the rotation axis is (0, 1, 0), and the minimum value of all 
angles can be calculated without rotation transformation. 

Figure 6 shows ARSnap’s real-time snapping of various virtual marker information 
from various angles from the mobile camera. It can be seen that the elevation information 
of the virtual object, as well as other perimeter and volume information collected by the 
system, can always be user-oriented, and the elevation information is always attached to 
the contour of the top plane, allowing the user to check the change of the elevation result. 
The perimeter and volume must take into account the optimal display of the camera view-
port in the irregular polyhedral collected by the system, that is, it must be able to accu-
rately display the appropriate position of the irregular polyhedra under various camera 
viewing angles, rather than being limited to a plane or contour line. 

Figure 5. Real-time capture results of the camera’s six degrees of freedom (6-DOF) positions on
different vertical planes: (a) 6-DOF projection points in vertical plane a; (b) 6-DOF projection points
in vertical plane b; (c) 6-DOF projection points in vertical plane c.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 11 of 26 
 

 

 
Figure 6. Real-time capture results of virtual marker information from different perspectives: (a) the 
capture results from a top-down perspective; (b) the capture results from a square perspective; (c) 
the capture results from an upward view. 

The task for the optimal elevation line snapping display, as previously explained, is 
to find the optimal plane and determine the location of the AR viewport connection point 
snapped on this optimal plane. The location of the snapped objects, which is aligned with 
doors or windows on any 3D plane, can also be identified with the optimal elevation. In 
this process, vectors are generated from the ray of the camera viewport direction. Normal 
vectors are extracted from the coordinates of the 3D planes in each 3D space. The inter-
section of the camera viewport ray vectors with associated plane vectors is calculated, and 
the vector with the smallest distance is iteratively determined. Furthermore, the only re-
quirement for capturing the virtual elevation between the connection point and any 3D 
plane in space is to calculate the 3D intersection point from the camera viewport’s vector 
and the captured planar set’s normal vector (Figure 3), and then extract the vertical dis-
tance between the intersection points and the corresponding plane. The entire process is 
shown in Figure 7. 

 
Figure 7. The process of capturing the virtual elevation between the connection point and any 3D 
plane in space. 

There are two sorts of field of view limits snapping in MAR. The first is that the user 
cannot see the snapping result of actual or virtual object on the ground at a distance. The 
other is that the user cannot see the snapping results outside his field of vision. In this 
study, a combination of marker bars and ground circles is employed to assist produce a 
distance-related viewer effect in the first issue. Figure 8 shows two sets of marker bars and 
ground circles at varying distances. With real-time rendering of marker bars and ground 
circles, snapping information at various places is constantly user-facing and highlighted. 
The size change of the ground circle provides an effective perception of the snapping dis-
tance. The marker bar model, which is always vertically oriented and whose size is 

Figure 6. Real-time capture results of virtual marker information from different perspectives: (a) the
capture results from a top-down perspective; (b) the capture results from a square perspective; (c) the
capture results from an upward view.

The task for the optimal elevation line snapping display, as previously explained,
is to find the optimal plane and determine the location of the AR viewport connection
point snapped on this optimal plane. The location of the snapped objects, which is aligned
with doors or windows on any 3D plane, can also be identified with the optimal elevation.
In this process, vectors are generated from the ray of the camera viewport direction.
Normal vectors are extracted from the coordinates of the 3D planes in each 3D space. The
intersection of the camera viewport ray vectors with associated plane vectors is calculated,
and the vector with the smallest distance is iteratively determined. Furthermore, the only
requirement for capturing the virtual elevation between the connection point and any 3D
plane in space is to calculate the 3D intersection point from the camera viewport’s vector



ISPRS Int. J. Geo-Inf. 2022, 11, 69 11 of 25

and the captured planar set’s normal vector (Figure 3), and then extract the vertical distance
between the intersection points and the corresponding plane. The entire process is shown
in Figure 7.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 11 of 26 
 

 

 
Figure 6. Real-time capture results of virtual marker information from different perspectives: (a) the 
capture results from a top-down perspective; (b) the capture results from a square perspective; (c) 
the capture results from an upward view. 

The task for the optimal elevation line snapping display, as previously explained, is 
to find the optimal plane and determine the location of the AR viewport connection point 
snapped on this optimal plane. The location of the snapped objects, which is aligned with 
doors or windows on any 3D plane, can also be identified with the optimal elevation. In 
this process, vectors are generated from the ray of the camera viewport direction. Normal 
vectors are extracted from the coordinates of the 3D planes in each 3D space. The inter-
section of the camera viewport ray vectors with associated plane vectors is calculated, and 
the vector with the smallest distance is iteratively determined. Furthermore, the only re-
quirement for capturing the virtual elevation between the connection point and any 3D 
plane in space is to calculate the 3D intersection point from the camera viewport’s vector 
and the captured planar set’s normal vector (Figure 3), and then extract the vertical dis-
tance between the intersection points and the corresponding plane. The entire process is 
shown in Figure 7. 

 
Figure 7. The process of capturing the virtual elevation between the connection point and any 3D 
plane in space. 

There are two sorts of field of view limits snapping in MAR. The first is that the user 
cannot see the snapping result of actual or virtual object on the ground at a distance. The 
other is that the user cannot see the snapping results outside his field of vision. In this 
study, a combination of marker bars and ground circles is employed to assist produce a 
distance-related viewer effect in the first issue. Figure 8 shows two sets of marker bars and 
ground circles at varying distances. With real-time rendering of marker bars and ground 
circles, snapping information at various places is constantly user-facing and highlighted. 
The size change of the ground circle provides an effective perception of the snapping dis-
tance. The marker bar model, which is always vertically oriented and whose size is 

Figure 7. The process of capturing the virtual elevation between the connection point and any 3D
plane in space.

There are two sorts of field of view limits snapping in MAR. The first is that the user
cannot see the snapping result of actual or virtual object on the ground at a distance. The
other is that the user cannot see the snapping results outside his field of vision. In this
study, a combination of marker bars and ground circles is employed to assist produce a
distance-related viewer effect in the first issue. Figure 8 shows two sets of marker bars and
ground circles at varying distances. With real-time rendering of marker bars and ground
circles, snapping information at various places is constantly user-facing and highlighted.
The size change of the ground circle provides an effective perception of the snapping
distance. The marker bar model, which is always vertically oriented and whose size is
adaptive, provides accurate positioning of the snapping location. Additionally, the real
object or virtual object can be captured under various distance conditions.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 12 of 26 
 

 

adaptive, provides accurate positioning of the snapping location. Additionally, the real 
object or virtual object can be captured under various distance conditions. 

 
Figure 8. The combination of marker bar and ground circle to deal with snapping results at varying 
distances that impose visual limitations: (a) close-up snapping of the office area; (b) close-up snap-
ping result of the conference room; (c) long-distance snapping of the office area; (d) long-range 
snapping of the conference room. 

The system is capable of perceiving virtual constraints beyond the user’s range of 
view for the second problem. When a suitable actual or virtual item is captured, the sys-
tem visualizes these constraints outside the user’s field of view, extends with transparent 
surfaces with a specific tolerance for planes, and expands with dotted solid lines for edges. 
This approach has the advantage of guiding the user to the proper global constraint ex-
traction rather than being restricted to the current field of view. The requirement here is 
that the snapping method is not limited to the camera’s field of view, being capable of 
analyzing the scene globally. 

3.4. ARSnap Adaptive Decomposition Method 
To offer snapping recommendations in an interactive layout of large-scale spatial 

data, algorithms should have the ability to analyze large-scale map data effectively, in-
cluding querying, obtaining, and displaying maps. The regular grid technology is em-
ployed to model the map [49]. In addition, the coordinate system in the AR system is usu-
ally a plane nonprojection coordinate system, and the coordinate system of the map is 
usually a geographic coordinate system. In the calculation to map the coordinates in the 
map to the coordinates in the AR, because the geographic coordinate system involves 
spherical coordinates, it is difficult to very accurately calculate the distance, azimuth, area, 
and other parameters, and a projected coordinate system is usually used. However, the 
projected coordinate system based on its projection methods can come with correspond-
ing limitations. For example, errors occur in the Mercator projection (equal cylindrical 
projection on the positive axis) due to the use of equiangular calculations according to the 
latitude interval, especially in areas with large absolute values of latitudes. The greater 
the absolute value of the latitude is, the longer the spherical region stretches, and the 
greater the error. This paper uses the Mercator projection formula to calculate the distance 
to eliminate the error (see Equation (A4)). 

Figure 8. The combination of marker bar and ground circle to deal with snapping results at varying
distances that impose visual limitations: (a) close-up snapping of the office area; (b) close-up snapping
result of the conference room; (c) long-distance snapping of the office area; (d) long-range snapping
of the conference room.



ISPRS Int. J. Geo-Inf. 2022, 11, 69 12 of 25

The system is capable of perceiving virtual constraints beyond the user’s range of
view for the second problem. When a suitable actual or virtual item is captured, the system
visualizes these constraints outside the user’s field of view, extends with transparent
surfaces with a specific tolerance for planes, and expands with dotted solid lines for
edges. This approach has the advantage of guiding the user to the proper global constraint
extraction rather than being restricted to the current field of view. The requirement here
is that the snapping method is not limited to the camera’s field of view, being capable of
analyzing the scene globally.

3.4. ARSnap Adaptive Decomposition Method

To offer snapping recommendations in an interactive layout of large-scale spatial data,
algorithms should have the ability to analyze large-scale map data effectively, including
querying, obtaining, and displaying maps. The regular grid technology is employed to
model the map [49]. In addition, the coordinate system in the AR system is usually a
plane nonprojection coordinate system, and the coordinate system of the map is usually
a geographic coordinate system. In the calculation to map the coordinates in the map to
the coordinates in the AR, because the geographic coordinate system involves spherical
coordinates, it is difficult to very accurately calculate the distance, azimuth, area, and other
parameters, and a projected coordinate system is usually used. However, the projected
coordinate system based on its projection methods can come with corresponding limitations.
For example, errors occur in the Mercator projection (equal cylindrical projection on the
positive axis) due to the use of equiangular calculations according to the latitude interval,
especially in areas with large absolute values of latitudes. The greater the absolute value
of the latitude is, the longer the spherical region stretches, and the greater the error. This
paper uses the Mercator projection formula to calculate the distance to eliminate the error
(see Equation (A4)).

To obtain the map data quickly and in batches in the real-time capture process, the
maps are tiled and numbered, which the grid index is based on, at different scale levels.
The adaptive decomposition method proposed in this research is based on a regular grid. It
divides the converted map data into uniform decomposition subdomains of the equal-area
according to the rule of the number of grid rows, columns and elevation value (i, j, h).
Assuming that the origin of the map data converted into a plane coordinate system is
(x0, y0), the display tile size of the AR map is tile size, and the actual distance represented
by 1 pixel on the AR map screen is the resolution. The map framing formula based on
a regular grid is shown in Equation (2). The row number and column number of the
coordinate point (xN, yN) is calculated after rendering the map:

Col = floor((x0− xN)/(tileSize× resolution))
Row = floor((y0− yN)/(tileSize× resolution))

, (2)

During the interactive capture process, the corresponding map area of the AR viewport
changes. This method extracts a new grid based on the map area change, uses the new grid
to extract the original data and the new data, and reflects the extraction results to the new
octree grid index. The index data are dynamically updated by this method [50,51].

The AR snapping model based on adaptive decomposition is shown in Figure 9. First,
the snap grid is initialized through the virtual visualization range of the AR viewport
and the initialization information of real environment recognition. After the snap grid
is established, we query the virtual constraint data of an a priori map through the initial
viewport range and establish an octree index database. These index data are snapped and
calculated by the 3D virtual constraint module described in Section 3.3. When the user
performs screen interactive gesture operation or camera moving interactive operation, for
the data generating new browsing area, we start the grid reconstruction task based on
adaptive decomposition (hereinafter referred to as adaptive decomposition module). The
adaptive decomposition module first converts the coordinates of the new area generated
by interaction and calculates the spatial coordinate range with unified geographic reference



ISPRS Int. J. Geo-Inf. 2022, 11, 69 13 of 25

to the map’s virtual data. Then, we adaptively calculate the map range near the viewport
according to the moving direction of the viewport, lock the subdomain range according to
the field of view in this direction, merge the new range of the subdomain and the original
map range to form a new map range, calculate the row and column number of the map
range in the map grid, and update the effective range of the viewport according to the
row and column number. The corresponding map virtual data are obtained through the
row and column number, and the snap grid database is updated. Then, the index data are
extracted from the snap grid database and updated to the octree index database. Finally,
the AR snapping model responds to the new interactive snap operation of the application
user through the updated octree index database.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 14 of 26 
 

 

 
Figure 9. AR snapping model based on adaptive decomposition. 

3.5. ARSnap Visual Modeling 
The visual model and related rendering are required to supplement the information 

of the real scene in AR [52]. To keep the information to be relevant or meaningful, the 
models must be located and displayed in a way that they are integrated into the real world 
in terms of alignment, perspective, and grounding. 

When ARSnap detects any horizontal plane, the corresponding virtual prior model 
must be properly projected on the image plane of the mobile screen to guide the user’s 
interaction behavior to obtain the correct capture calculation results. To this end, the ac-
tual pose of the model must be estimated, including direction and position calculations. 
The 2D code or gradient is used to orient the detected features to compare with the 2D 
code or gradient of the corresponding feature in the target model to achieve the above 
purpose. In addition, the distance between adjacent features helps to calculate the scale. 
The above process results in the associated rotation matrix R and translation vector t, 
which can project each point of the virtual prior model on the moving screen, according 
to Equation (A8). 

In the process of MAR snapping, the user aims the camera at the corresponding target 
and carries out two natural interaction modes: gesture interactive operation of touch 
screen and body motion operation of mobile camera to modify and confirm the real-time 
spatial target capture results. Based on the above ARSnap visual view model, the visual 
views of various spatial target snapping results are shown in Figure 10. 

 

Figure 9. AR snapping model based on adaptive decomposition.

3.5. ARSnap Visual Modeling

The visual model and related rendering are required to supplement the information of
the real scene in AR [52]. To keep the information to be relevant or meaningful, the models
must be located and displayed in a way that they are integrated into the real world in terms
of alignment, perspective, and grounding.

When ARSnap detects any horizontal plane, the corresponding virtual prior model
must be properly projected on the image plane of the mobile screen to guide the user’s
interaction behavior to obtain the correct capture calculation results. To this end, the actual
pose of the model must be estimated, including direction and position calculations. The
2D code or gradient is used to orient the detected features to compare with the 2D code
or gradient of the corresponding feature in the target model to achieve the above purpose.
In addition, the distance between adjacent features helps to calculate the scale. The above
process results in the associated rotation matrix R and translation vector t, which can project
each point of the virtual prior model on the moving screen, according to Equation (A8).

In the process of MAR snapping, the user aims the camera at the corresponding target
and carries out two natural interaction modes: gesture interactive operation of touch screen
and body motion operation of mobile camera to modify and confirm the real-time spatial



ISPRS Int. J. Geo-Inf. 2022, 11, 69 14 of 25

target capture results. Based on the above ARSnap visual view model, the visual views of
various spatial target snapping results are shown in Figure 10.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 10. Modeling visual view of buildings in ARSnap: (a) Display the elevation line snap results 
of the real scene, (b) display the vector snap results of the virtual scene; (c) display the snap results 
of the irregular sofa; (d) display the plane snap results of the real scene; (e) display the wall snap 
results of the virtual scene; (f) display the snap results of the regular vending machine. 

4. Experiment and Discussion 
The ARSnap prototype system based on Android ARCore is implemented to test the 

capture function. The entire testing contains snapping on different devices in the real 
scene and the real crowd, on different complex scenarios and usages. In addition, the ex-
periment also compared the snapping time against different virtual constraints in the real 
scene, the acquisition results with snapping and without snapping, and the accuracy with 
different capture algorithm. The capture results of indoor environments with MagicPlan 
and ARPlan3D are also analyzed, to examine whether ARSnap outperforms the popular 
applications. More details about MagicPlan and ARPlan3D can be found in references  
[53–55]. 

We evaluate our approach from several aspects. First, through the time-consuming 
analysis and robustness analysis of each execution process within ARSnap, we show the 
quantitative results of multiple sets of practical application scenarios, which proved the 
effectiveness of the ARSnap algorithm. Second, we compare our capture results with 
methods based on spatial range queries [29]. Third, we show the qualitative results of a 
set of newly collected indoor and outdoor scenes. 

4.1. ARSnap Spatial Data Capture Quantitative Experiment 
Common capture algorithms include the aforementioned traditional capture algo-

rithm (based on the DB space query algorithm), which constructs query conditions ac-
cording to spatial relationships such as intersection, containment, and vertical parallel 
through the constructed spatial objects, traversing points, lines, surfaces, and a matching 
type dataset. The algorithm performs a spatial query and obtains the result record set with 
each visible layer as the unit. The result record set includes the point, line, area, text, and 
other element objects of all visible layers in the current map. In addition, based on the 
capture algorithm of the fixed grid model, the point group is divided into grids, and a 
spatial index is established to achieve efficient capture. The capturing algorithm intro-
duced in this article, based on the dynamic grid model and the dynamic distributed grid, 
can dynamically model the view elements according to the geographic range of the map 

Figure 10. Modeling visual view of buildings in ARSnap: (a) Display the elevation line snap results
of the real scene, (b) display the vector snap results of the virtual scene; (c) display the snap results of
the irregular sofa; (d) display the plane snap results of the real scene; (e) display the wall snap results
of the virtual scene; (f) display the snap results of the regular vending machine.

4. Experiment and Discussion

The ARSnap prototype system based on Android ARCore is implemented to test
the capture function. The entire testing contains snapping on different devices in the
real scene and the real crowd, on different complex scenarios and usages. In addition,
the experiment also compared the snapping time against different virtual constraints
in the real scene, the acquisition results with snapping and without snapping, and the
accuracy with different capture algorithm. The capture results of indoor environments with
MagicPlan and ARPlan3D are also analyzed, to examine whether ARSnap outperforms
the popular applications. More details about MagicPlan and ARPlan3D can be found in
references [53–55].

We evaluate our approach from several aspects. First, through the time-consuming
analysis and robustness analysis of each execution process within ARSnap, we show the
quantitative results of multiple sets of practical application scenarios, which proved the
effectiveness of the ARSnap algorithm. Second, we compare our capture results with
methods based on spatial range queries [29]. Third, we show the qualitative results of a set
of newly collected indoor and outdoor scenes.

4.1. ARSnap Spatial Data Capture Quantitative Experiment

Common capture algorithms include the aforementioned traditional capture algorithm
(based on the DB space query algorithm), which constructs query conditions according
to spatial relationships such as intersection, containment, and vertical parallel through
the constructed spatial objects, traversing points, lines, surfaces, and a matching type
dataset. The algorithm performs a spatial query and obtains the result record set with
each visible layer as the unit. The result record set includes the point, line, area, text, and
other element objects of all visible layers in the current map. In addition, based on the
capture algorithm of the fixed grid model, the point group is divided into grids, and a
spatial index is established to achieve efficient capture. The capturing algorithm introduced



ISPRS Int. J. Geo-Inf. 2022, 11, 69 15 of 25

in this article, based on the dynamic grid model and the dynamic distributed grid, can
dynamically model the view elements according to the geographic range of the map scale,
form a memory index list covering the full view of the map, and query and space objects
according to the spatial index. Relation judgments are used to capture objects. For 3D nodes
(including the intersection of nodes and lines), surface points, line points, vertical lines, and
extension lines, constituting five types of graphics, we compare the operating efficiency of
these three spatial objects capture algorithms (time consumption in milliseconds) (Table 1).

Table 1. Average time consumption of the three snap algorithms for twenty times.

Snap Type Snap Algorithm Proposed in
This Paper

Snap Algorithm Based on a
DB Spatial Query

Snap Algorithm Based on
the Fixed Grid Model

3D node 46 ms 572 ms 109 ms
3D point on region 41 ms 560 ms 102 ms

3D point on line 55 ms 658 ms 116 ms
3D vertical line 53 ms 661 ms 113 ms

3D extended line 65 ms 683 ms 140 ms

We find that the average capture time based on the dynamic grid model capture
algorithm proposed in this paper is within 70 ms for the five graphics types of endpoints,
nodes, line points, vertical lines, and extension lines, while the average capture time based
on the DB space query algorithm is more than 550 ms, and the average capture time of the
capture algorithm based on the fixed grid model is also more than 100 ms. The capture
algorithm proposed in this paper takes time to capture significantly better than the other
two algorithms.

We also compare the average time consumption of this algorithm in the subprocesses
(Table 2). The average time consumption of the grid index query is within 15 ms, and
the average time consumption of the target capture and recognition process is within
30 ms. The result status is drawn; the average time is within 22 ms, and the total average
time is within 70 ms. The spatial target capture algorithm based on the dynamic grid
model designed in this research has low time consumption and can efficiently achieve
graphics capture.

Table 2. Average time consumption of the snap algorithm in the subprocess for twenty times.

Snap Type Grid Index Query Target Capture
and Recognition

Result Status
Drawing Total Time Smooth/Lag

3D endpoint 12 ms 20 ms 14 ms 46 ms smooth
3D node 13 ms 16 ms 13 ms 41 ms smooth

3D point on a line 13 ms 24 ms 18 ms 55 ms smooth
3D vertical a line 14 ms 19 ms 20 ms 53 ms smooth
3D extended line 15 ms 28 ms 22 ms 65 ms no obvious lag

Finally, we compared the most conservative capture conditions with the accuracy
of traditional snapping and all snapping events. We conducted multiple sets of target
area variance analyses in the subjects; the target areas contained prominent characteristic
lines and points, nonobvious characteristic lines and points, etc., which are close to the
production environment of the actual AR system data acquisition [49]. The results show
that there is a significant positive effect on ARSnap in comparison with nonsnapping and
traditional snapping.

Among them, the comparison between nonsnapping and snapping proposed in this
article is the most significant, the error rate of the collection results is generally low, and the
accuracy of the collection results is improved from approximately 3 decimeters to 2–5 cm.
Similarly, from the comparison of traditional snap and ARSnap in this article, the capture
in this article has significantly improved the acquisition accuracy of complex graphics data



ISPRS Int. J. Geo-Inf. 2022, 11, 69 16 of 25

and long-distance and stereo data. This is due to the use of virtual 3D constraint equation
calculation technology to improve complex 3D graphics. The precision of this method
reduces the error rate of manual free-style operations. In addition, incorporation of the
dynamic update-index data mechanism of the adaptive grid greatly improves the accuracy
of capturing large-scale data in the AR map. The specific accuracy comparison results are
shown in Table 3.

Table 3. Accuracy comparison of the three snap types.

Acquisition Area Type Indoor Meeting
Rooms

Outdoor
Buildings

Underground
Parking

Irregular
Buildings

3D
Buildings

No snap 31.0 cm 43.0 cm 37.0 cm 35.9 cm 51.7 cm
Traditional snap algorithm 12.0 cm 14.0 cm 15.5 cm 22.0 cm 27.0 cm

ARSnap (our method) 5.4 cm 7.1 cm 8.3 cm 5.8 cm 7.9 cm

4.2. ARSnap Spatial Data Capture Qualitative Experiment

In this section, we test the newly collected indoor and outdoor scenes and systemati-
cally verify the qualitative results of the capture algorithm introduced in this paper. The
alignment task and the nonalignment task in the capture are compared.

Since the method proposed in this paper is based on 3D computational geometry
technology, it supports real-time geometric modeling of all prior data and collected data.
According to the direction of the AR camera window, the virtual constraint database after
geometric modeling can be queried, and the real-time capture conforms to the 3D virtual
constraint of regular 3D surface points, 3D lines points, 3D midpoints, 3D endpoints,
3D parallel lines, 3D extension lines, 3D elevation lines, 3D edge lines and other data
types, which do not require much when realizing AR interactive data collection data can
be successfully acquired by moving. This capture method reduces the time required for
interactive work, thereby reducing fatigue. Furthermore, the complementary use of many
virtual constraint types and the threshold range of the capture alignment of each data type
can be adjusted according to the tolerance, which improves the real-time response ability of
the AR capture system and the environment, especially the feedback on the accuracy of less
than 5 cm, which can capture far better than not catching [26]. Based on AR visual-inertial
navigation and the 3D ray algorithm to capture any point on the specified 3D plane, the
comparison result is shown in Figure 11.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 11. Capturing points on the specified 3D plane: (a) snapping to a point in a 3D plane (short 
distance); (b) snapping to a point in a 3D plane (far distance). 

We test the effects of the captured visualization results on the human eye. We sepa-
rately capture the endpoints, breakpoints, points, edges, points on the surface, extension 
lines, horizontal lines and vertical lines commonly used in GIS data collection and verify 
them from the perspective of the user experience. Figures 12 and 13 summarize the AR 
capture test results of three data types in GIS data collection. 

 

 
Figure 12. Capturing the extended lines and horizonal lines in 3D space: (a) before snapping the 
extended lines; (b) after snapping the extended lines; (c) before snapping the horizonal lines; (d) 
after snapping the horizonal lines. 

Figure 11. Capturing points on the specified 3D plane: (a) snapping to a point in a 3D plane (short
distance); (b) snapping to a point in a 3D plane (far distance).

We test the effects of the captured visualization results on the human eye. We sepa-
rately capture the endpoints, breakpoints, points, edges, points on the surface, extension
lines, horizontal lines and vertical lines commonly used in GIS data collection and verify



ISPRS Int. J. Geo-Inf. 2022, 11, 69 17 of 25

them from the perspective of the user experience. Figures 12 and 13 summarize the AR
capture test results of three data types in GIS data collection.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 11. Capturing points on the specified 3D plane: (a) snapping to a point in a 3D plane (short 
distance); (b) snapping to a point in a 3D plane (far distance). 

We test the effects of the captured visualization results on the human eye. We sepa-
rately capture the endpoints, breakpoints, points, edges, points on the surface, extension 
lines, horizontal lines and vertical lines commonly used in GIS data collection and verify 
them from the perspective of the user experience. Figures 12 and 13 summarize the AR 
capture test results of three data types in GIS data collection. 

 

 
Figure 12. Capturing the extended lines and horizonal lines in 3D space: (a) before snapping the 
extended lines; (b) after snapping the extended lines; (c) before snapping the horizonal lines; (d) 
after snapping the horizonal lines. 

Figure 12. Capturing the extended lines and horizonal lines in 3D space: (a) before snapping the
extended lines; (b) after snapping the extended lines; (c) before snapping the horizonal lines; (d) after
snapping the horizonal lines.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 13. Capturing geometric nodes in 3D space: (a) 3D geometry node before snapping; (b) 3D 
geometry nodes in snapping; (c) 3D geometry node after snapping. 

In order to verify the solution of the capture algorithm in this paper to the spatial 
location judgment of three-dimensional geographical entities and the relationship judg-
ment of 3DGIS indoor building model, and also to test the accuracy of the capture algo-
rithm in spatial data modeling, we capture a group of doors and windows of buildings, 
respectively, and verify them from the Perspective of user experience. Figure 14 summa-
rizes the test results of capturing interior building doors and walls based on 3DGIS se-
mantic constraints. 

 
Figure 14. Capture of interior building doors and window based on 3D-GIS Semantic Constraints: 
(a) gate snapping based on 3D-GIS semantics; (b) the result of gate snapping, (c) window snapping 
based on 3D-GIS semantics; (d) the result of window snapping. 

Finally, to determine whether the ARSnap proposed in this article can provide simi-
lar results to the reviewed application, we conduct a qualitative comparison test between 

Figure 13. Capturing geometric nodes in 3D space: (a) 3D geometry node before snapping; (b) 3D
geometry nodes in snapping; (c) 3D geometry node after snapping.

In order to verify the solution of the capture algorithm in this paper to the spatial
location judgment of three-dimensional geographical entities and the relationship judgment
of 3DGIS indoor building model, and also to test the accuracy of the capture algorithm in



ISPRS Int. J. Geo-Inf. 2022, 11, 69 18 of 25

spatial data modeling, we capture a group of doors and windows of buildings, respectively,
and verify them from the Perspective of user experience. Figure 14 summarizes the test
results of capturing interior building doors and walls based on 3DGIS semantic constraints.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 13. Capturing geometric nodes in 3D space: (a) 3D geometry node before snapping; (b) 3D 
geometry nodes in snapping; (c) 3D geometry node after snapping. 

In order to verify the solution of the capture algorithm in this paper to the spatial 
location judgment of three-dimensional geographical entities and the relationship judg-
ment of 3DGIS indoor building model, and also to test the accuracy of the capture algo-
rithm in spatial data modeling, we capture a group of doors and windows of buildings, 
respectively, and verify them from the Perspective of user experience. Figure 14 summa-
rizes the test results of capturing interior building doors and walls based on 3DGIS se-
mantic constraints. 

 
Figure 14. Capture of interior building doors and window based on 3D-GIS Semantic Constraints: 
(a) gate snapping based on 3D-GIS semantics; (b) the result of gate snapping, (c) window snapping 
based on 3D-GIS semantics; (d) the result of window snapping. 

Finally, to determine whether the ARSnap proposed in this article can provide simi-
lar results to the reviewed application, we conduct a qualitative comparison test between 

Figure 14. Capture of interior building doors and window based on 3D-GIS Semantic Constraints:
(a) gate snapping based on 3D-GIS semantics; (b) the result of gate snapping, (c) window snapping
based on 3D-GIS semantics; (d) the result of window snapping.

Finally, to determine whether the ARSnap proposed in this article can provide similar
results to the reviewed application, we conduct a qualitative comparison test between
ARSnap and the reviewed application. The test task is to capture a room as close as possible
to the original image. ARSnap develops a 2D view module that displays the captured
results in the application. It also supports exporting the collected results to generate in Unity
so that the generated results can be superimposed on the top of the original room layout
(CAD file) for comparison with the original room layout [56]. A side-by-side comparison of
the results collected in the same room is shown in Figure 15.

Comparative experiments show that the selected applications can correctly capture
the overall layout of the room. RoomScan and ARSnap as proposed in this article have the
best snapping and alignment capabilities. ARSnap with adaptive decomposition method
has shorter alignment time than RoomScan. Since all the walls are straight, the collection
results of the 3D horizontal lines, 3D vertical lines, and 3D extension lines used in this paper
are almost completely consistent with the wall layout of the original room. ARPlan3D
and ARSnap yield some length errors when measuring walls. The reason is that both
of them use Android’s ARCore engine, and the accuracy of pose estimation in a plane
environment is slightly poorer than the ARKit engine used by RoomScan and Magicplan.
The comparison shows that RoomScan and ARSnap are closest to the original room layout,
and both show very similar results. The collection efficiency of ARPlan3D is very high, and
it is the fastest collection of all applications, but the final result is quite different from the
layout of the original room. Magicplan’s door and the starting reference are aligned well,
but when moving to a far corner, a calculation error occurs.



ISPRS Int. J. Geo-Inf. 2022, 11, 69 19 of 25

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 20 of 26 
 

 

ARSnap and the reviewed application. The test task is to capture a room as close as pos-
sible to the original image. ARSnap develops a 2D view module that displays the captured 
results in the application. It also supports exporting the collected results to generate in 
Unity so that the generated results can be superimposed on the top of the original room 
layout (CAD file) for comparison with the original room layout [56]. A side-by-side com-
parison of the results collected in the same room is shown in Figure 15. 

 
Figure 15. Side-by-side comparison results of the same building: (A) RoomScan; (B) ARSnap; (C) 
ARPlan3D; (D) Magicplan. 

Comparative experiments show that the selected applications can correctly capture 
the overall layout of the room. RoomScan and ARSnap as proposed in this article have the 
best snapping and alignment capabilities. ARSnap with adaptive decomposition method 
has shorter alignment time than RoomScan. Since all the walls are straight, the collection 
results of the 3D horizontal lines, 3D vertical lines, and 3D extension lines used in this 
paper are almost completely consistent with the wall layout of the original room. AR-
Plan3D and ARSnap yield some length errors when measuring walls. The reason is that 
both of them use Android’s ARCore engine, and the accuracy of pose estimation in a plane 
environment is slightly poorer than the ARKit engine used by RoomScan and Magicplan. 
The comparison shows that RoomScan and ARSnap are closest to the original room lay-
out, and both show very similar results. The collection efficiency of ARPlan3D is very 
high, and it is the fastest collection of all applications, but the final result is quite different 
from the layout of the original room. Magicplan’s door and the starting reference are 
aligned well, but when moving to a far corner, a calculation error occurs. 

In order to further verify the availability of the 3D model capture method proposed 
in this paper, we conduct complete 3D model acquisition for two groups of indoor infra-
structure. The acquisition results include geometric information such as length, width, 

Figure 15. Side-by-side comparison results of the same building: (A) RoomScan; (B) ARSnap;
(C) ARPlan3D; (D) Magicplan.

In order to further verify the availability of the 3D model capture method proposed in
this paper, we conduct complete 3D model acquisition for two groups of indoor infrastruc-
ture. The acquisition results include geometric information such as length, width, height,
window and door, style and model category. This information can be displayed and further
applied through modeling software import. The modeling results of Indoor 3D model
obtained based on ARSnap in unity are shown in Figure 16.

4.3. Discussion

The present study was designed to develop a fast and accurate spatial target snapping
method. Taking the spatial data of the same building outline as an example, the ARSnap
algorithm (our method) is significantly more efficient and precise than the common meth-
ods. Due to an optimized adaptive grid dynamic updates and limiting snapping field
of view, it is practical for the rapid acquisition of build outlines in small area and is not
restricted to camera types such as binocular cameras or depth camera. Therefore, it is appli-
cable for miniature camera and other small equipment. While the traditional algorithm
requires a large amount of human motion and a long processing time for the environment
perception calculation.

When modelling the indoor 3D models of general meeting rooms or buildings, the
accuracy of the snapping algorithm presented in this paper is nearly 20 times better than
the accuracy without snapping. The findings reported here suggest that the extraction of
virtual constraints from the real environment in the 3D snapping method is significant for
AR spatial data acquisition [29].



ISPRS Int. J. Geo-Inf. 2022, 11, 69 20 of 25

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 21 of 26 
 

 

height, window and door, style and model category. This information can be displayed 
and further applied through modeling software import. The modeling results of Indoor 
3D model obtained based on ARSnap in unity are shown in Figure 16. 

 
Figure 16. The modeling results of Indoor 3D model obtained based on ARSnap in unity: (a) mod-
eling results after capturing the first-floor indoor model; (b) modeling results after capturing the 
second-floor indoor model; (c) details of modeling results of indoor model on the first floor; (d) 
details of modeling results of indoor model on the second floor. 

4.3. Discussion 
The present study was designed to develop a fast and accurate spatial target snap-

ping method. Taking the spatial data of the same building outline as an example, the 
ARSnap algorithm (our method) is significantly more efficient and precise than the com-
mon methods. Due to an optimized adaptive grid dynamic updates and limiting snapping 
field of view, it is practical for the rapid acquisition of build outlines in small area and is 
not restricted to camera types such as binocular cameras or depth camera. Therefore, it is 
applicable for miniature camera and other small equipment. While the traditional algo-
rithm requires a large amount of human motion and a long processing time for the envi-
ronment perception calculation. 

When modelling the indoor 3D models of general meeting rooms or buildings, the 
accuracy of the snapping algorithm presented in this paper is nearly 20 times better than 
the accuracy without snapping. The findings reported here suggest that the extraction of 
virtual constraints from the real environment in the 3D snapping method is significant for 
AR spatial data acquisition [29]. 

In contrast to the existing snapping approaches, our proposed ARSnap is a fast and 
accurate method for snapping the 3D spatial elements, such as the 3D extended lines, 3D 
vertical lines, 3D gates and irregular 3D objects. In regularized 3D alignment and result 
refinement, ARSnap has significant advantages over other methods. However, our re-
search may have several limitations. Using the AR engine of the smartphone [57], the ac-
curacy of our method for position estimation in complex environments has a lot of room 
for improvement compared to applications with Lidar and binocular cameras. Further-
more, the operation switching heights and state changes is not intuitive and causes visual 
confusion. It is possible that hiding unnecessary information and only displaying them 
when altering height is a good practice. 

Figure 16. The modeling results of Indoor 3D model obtained based on ARSnap in unity: (a) modeling
results after capturing the first-floor indoor model; (b) modeling results after capturing the second-
floor indoor model; (c) details of modeling results of indoor model on the first floor; (d) details of
modeling results of indoor model on the second floor.

In contrast to the existing snapping approaches, our proposed ARSnap is a fast and
accurate method for snapping the 3D spatial elements, such as the 3D extended lines,
3D vertical lines, 3D gates and irregular 3D objects. In regularized 3D alignment and
result refinement, ARSnap has significant advantages over other methods. However,
our research may have several limitations. Using the AR engine of the smartphone [57],
the accuracy of our method for position estimation in complex environments has a lot
of room for improvement compared to applications with Lidar and binocular cameras.
Furthermore, the operation switching heights and state changes is not intuitive and causes
visual confusion. It is possible that hiding unnecessary information and only displaying
them when altering height is a good practice.

The adaptive decomposition-based method proposed in this paper can adapt to the
rapid capture and visual loading of various map data types, and support the real-time and
accurate display of different capture results, so as to achieve the maximum efficiency of
vector map visualization in MAR.

Finally, by mapping the spatial information generated by the capture process and cap-
turing results from the two-dimensional screen to the physical world, the three-dimensional
model of the building is directly recognized, and the corresponding irregular surfaces such
as bottom, wall, top, door and window are superimposed on the actual building with
mobile devices, so as to locate and correct the potential capture results on site.

5. Conclusions and Future Work
5.1. Conclusions

Spatial data capture is an important function in map drawing and spatial data editing.
Fast and efficient spatial data capture algorithms can greatly improve the efficiency of
spatial data editing and reduce time costs. The present paper proposes a new dynamic
capture algorithm for space targets in MAR. The algorithm is an adaptive and dynamic grid
indexing mechanism. It constructs a virtual constraint model based on 3D computational
geometry and constructs a 2D image on the touch interface. An alignment relationship
is extracted from the real 3D AR environment. By logically dividing the area where the



ISPRS Int. J. Geo-Inf. 2022, 11, 69 21 of 25

specified space target on the AR map is located, the element data are obtained, the grid
index-point string set key-value index table and the element hierarchical linked list are
established, and the user’s finger or camera is identified using the touch interface. The two
natural interactive modes of movement directly capture high-efficiency query, calculation,
and analysis of space targets.

We experimentally compared the average capture time of the DB space query algorithm
proposed in this paper and the dynamic grid model capture algorithm and found that the
average capture time of this algorithm is significantly lower than that of the other two
methods. The dynamic grid capture algorithm is a new spatial object capture processing
method that can improve the capture performance while maintaining the stability and
detailed characteristics of the capture. This method improves efficiency and reduces
the operation time of applications such as spatial data collection, interior design, and
mobile mapping. The feedback on the accuracy is less than 10 cm because the data can be
successfully obtained without too much movement, and the capture is far better than no
capture. Capture reduces the time required, thereby reducing fatigue. In addition, there
are significant differences between ARSnap parameters, which indicates that there may be
a wide range of suitable values, which means that developers will be able to choose the
value that best suits the user’s needs according to different collection areas.

5.2. Future Work

In addition to the two natural interaction methods through the user’s screen gesture
interaction operation and the movement of the camera body movement operation, in the
future, we plan to study many other ways that users can actively choose constraints. For
example, the user should be able to select a constraint by touching it.

With the development of AI technology and spatial computing technology, natural lan-
guage processing and computer vision scene understanding are also important directions
for future work. For example, when the user approaches the road, the spatial data capture
system automatically constrains the road lines on both sides of the lane. This kind of
capture of physical objects is still an open research field, that is, using artificial intelligence
and other technologies to align physical objects with physical constraints in AR [58]. The
application of spatial information in this respect may be mobile indoor mapping and real
3D mapping.

Semantic capture is used in spatial information. Usually, when we talk about snapping,
we default to using snapped 3D computational geometric relations. This may include
geometrical proximity in translation or rotation, targets that are perpendicular or parallel
to each other or have a common parallel line, alignment with the main direction/axis
(e.g., gravity), and alignment to the midpoint; however, the use of semantic relations is
another possible method for snapping [38]. However, this requires a detailed semantic
understanding of the physical scene, and we plan to conduct research in this area in the
future as well.

Author Contributions: Conceptualization, Kejia Huang and Chenliang Wang; methodology,
Kejia Huang and Chenliang Wang; project administration, Kejia Huang; software, Kejia Huang,
Runying Liu and Guoxiong Chen; supervision, Kejia Huang; validation, Kejia Huang and
Runying Liu; visualization, Kejia Huang, Chenliang Wang and Runying Liu; writing—original draft,
Kejia Huang and Chenliang Wang; writing—review and editing, Kejia Huang and
Chenliang Wang. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Strategic Priority Research Program of Chinese Academy
of Sciences, Grant No. XDA20040301, the National Natural Science Foundation of China under Grant
(41571439), a grant from State Key Laboratory of Resources and Environmental Information System,
the Key Project of Natural Science Research of Anhui Provincial Department of Education under
Grant (KJ2020A0720).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



ISPRS Int. J. Geo-Inf. 2022, 11, 69 22 of 25

Data Availability Statement: Not applicable.

Acknowledgments: The authors express thanks to anonymous reviewers for their constructive
comments and advice.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

r(t) = o + td, 0 ≤ t ≤ ∞, (A1)

p :
(

p− p′
)
·N = 0, (A2)

Set p = r(t) and solve for t

(p− p′)·N = (o + td− p′)·N = 0

t = (p′−o)·N
d·N Check : 0 ≤ t ≤ ∞ ,

(A3)

where r denotes the ray, t is the parameter of the ray, d is the direction vector of the ray, p
denotes the set of points of a plane, N is a normal vector to the plane and p’ is a point on
the plane.

e′ =
√
(

a
b
)2 − 1, (A4)

where a is the semimajor axis of the ellipsoid and b is the semiminor axis of the ellipsoid.
Our map data use the WSG84 ellipsoid parameters, so a is equal to 6,378,137.0 m and b is
equal to 6,356,752.3142 m.

K = NB0 × cos(B0) =
a2/b√

1 + e2 × cos2(B0)
× cos(B0), (A5)

XN = K ln

[
tg
(

π

4
+

B
2

)
×
(

1− e sin B
1 + e sin B

) e
2
]

, (A6)

YB = K(L− L0), (A7)

where L0 and B0 are the longitude and latitude of the standard origin (0, 0), respectively,
L and B are the longitude and latitude of the center point brought into the calculation,
respectively, and e is the eccentricity. According to Equations (A6) and (A7), the X-axis
and Y-axis distances (in meters) corresponding to the coordinate origin (0, 0) of the latitude
and longitude coordinates in the map under Mercator projection can be calculated. Then,
through the translation and rotation operations of the plane equation, the coordinates in
the plane coordinate system of the AR camera are obtained.

xc = [R|t]× X →

 x
y
z

 =

 r1 r2 r13 tx
r4 r5 r6 ty
r7 r8 r9 tz




X
Y
Z
1

 (A8)

where xc is the projection in the image coordinates, X is the real-world coordinates of
the point, and [R|t] is the pose matrix. To align the camera pixels with the coordinate
projection, the inherent matrix of the camera is used in Equation (A9):

K =

 f γ px 0
0 f py 0
0 0 1 0

 (A9)



ISPRS Int. J. Geo-Inf. 2022, 11, 69 23 of 25

where f represents the inclination coefficient between the focal length γ x-axis and y-
axis, which is equal to zero. Therefore, considering the calibration matrix K, the entire
transformation matrix becomes (see Equation (A10)):

M = K× T → M =

 f γ px 0
0 f py 0
0 0 1 0

×
 r1 r2 r13 tx

r4 r5 r6 ty
r7 r8 r9 tz

 (A10)

where the T is the pose matrix. Finally, given a point with Xi real-world coordinates, then
its equivalent coordinate Xf on the camera image plane is (see Equation (A11)):

X f = M× Xi (A11)

References
1. Azuma, R.T. A Survey of Augmented Reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [CrossRef]
2. Behzadan, A.H.; Dong, S.; Kamat, V.R. Augmented reality visualization: A review of civil infrastructure system applications. Adv.

Eng. Inform. 2015, 29, 252–267. [CrossRef]
3. Chmelařová, K.; Šašinka, Č.; Stachoň, Z. Visualization of Environment-related Information in Augmented Reality: Analysis of

User Needs. In Proceedings of the International Cartographic Conference:Advances in Cartography and GIScience, Washington,
DC, USA, 2–7 July 2017; Peterson, M.P., Ed.; Springer: Heidelberg, Germany, 2017; pp. 283–292.

4. Çöltekin, A.; Lochhead, I.; Madden, M.; Christophe, S.; Devaux, A.; Pettit, C.; Lock, O.; Shukla, S.; Herman, L.; Stachoň, Z.; et al.
Extended Reality in Spatial Sciences: A Review of Research Challenges and Future Directions. ISPRS Int. J. Geo-Inform. 2020, 9,
439. [CrossRef]

5. Slocum, T.A.; Blok, C.; Jiang, B.; Koussoulakou, A.; Montello, D.R.; Fuhrmann, S.; Hedley, N.R. Cognitive and Usability Issues in
Geovisualization. Cartogr. Geogr. Inf. Sci. 2001, 28, 61–75. [CrossRef]

6. Lee, G.A.; Dunser, A.; Nassani, A.; Billinghurst, M. AntarcticAR: An outdoor AR experience of a virtual tour to Antarctica.
In Proceedings of the 2013 IEEE International Symposium on Mixed and Augmented Reality—Arts, Media, and Humanities
(ISMAR-AMH), Adelaide, SA, Australia, 1–4 October 2013; IEEE: Manhattan, NY, USA, 2013; pp. 29–38.

7. Lee, G.A.; Dunser, A.; Kim, S.; Billinghurst, M. CityViewAR: A mobile outdoor AR application for city visualization. In
Proceedings of the 11th IEEE International Symposium on Mixed and Augmented Reality 2012—Arts, Media, and Humanities
Papers, ISMAR-AMH 2012, Atlanta, GA, USA, 5–8 November 2012; IEEE: Manhattan, NY, USA, 2012; pp. 57–64.

8. Kim, W.; Kerle, N.; Gerke, M. Mobile augmented reality in support of building damage and safety assessment. Nat. Hazards Earth
Syst. Sci. 2016, 16, 287–298. [CrossRef]

9. Aurelia, S. Heightening Satellite Image Display via Mobile Augmented Reality—A Cutting-Edge Planning Model. In Artificial
Intelligence Techniques for Satellite Image Analysis; Hemanth, D.J., Ed.; Springer International Publishing: Cham, Switzerland, 2020;
pp. 1–24, ISBN 978-3-030-24178-0.

10. Gheisari, M.; Goodman, S.; Schmidt, J.; Williams, G.; Irizarry, J. Exploring BIM and Mobile Augmented Reality Use in Facilities
Management. In Proceedings of the Construction Research Congress 2014, Atlanta, Georgia, 19–21 May 2014; Castro-Lacouture,
D., Irizarry, J., Ashuri, B., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 1941–1950.

11. Gheisari, M.; Foroughi Sabzevar, M.; Chen, P.; Irizzary, J. Integrating BIM and Panorama to Create a Semi-Augmented-Reality
Experience of a Construction Site. Int. J. Constr. Educ. Res. 2016, 12, 303–316. [CrossRef]

12. Chatzopoulos, D.; Bermejo, C.; Huang, Z.; Hui, P. Mobile Augmented Reality Survey: From Where We Are to Where We Go. IEEE
Access 2017, 5, 6917–6950. [CrossRef]

13. Kerle, N. Remote Sensing Based Post-Disaster Damage Mapping with Collaborative Methods. In Intelligent Systems for Crisis
Management. Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2013; pp. 121–133,
ISBN 9783642332180.

14. Zollmann, S.; Schall, G.; Junghanns, S.; Reitmayr, G. Comprehensible and Interactive Visualizations of GIS Data in Augmented
Reality. In Proceedings of the 8th International Symposium on Visual Computing, ISVC 2012, Advances in Visual Computing,
Kreta, Greece, 16–18 July 2012; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S.,
Schulze, J., Acevedo, D., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 675–685.

15. Williams, G.; Gheisari, M.; Chen, P.-J.; Irizarry, J. BIM2MAR: An Efficient BIM Translation to Mobile Augmented Reality
Applications. J. Manag. Eng. 2015, 31. [CrossRef]

16. Gheisari, M.; Irizarry, J. Investigating human and technological requirements for successful implementation of a BIM-based
mobile augmented reality environment in facility management practices. Facilities 2016, 34, 69–84. [CrossRef]

17. Schall, G.; Zollmann, S.; Reitmayr, G. Smart Vidente: Advances in mobile augmented reality for interactive visualization of
underground infrastructure. Pers. Ubiquitous Comput. 2013, 17, 1533–1549. [CrossRef]

18. Wang, J.; Wang, X.; Shou, W.; Xu, B. Integrating BIM and augmented reality for interactive architectural visualisation. Constr.
Innov. 2014, 14, 453–476. [CrossRef]

http://doi.org/10.1162/pres.1997.6.4.355
http://doi.org/10.1016/j.aei.2015.03.005
http://doi.org/10.3390/ijgi9070439
http://doi.org/10.1559/152304001782173998
http://doi.org/10.5194/nhess-16-287-2016
http://doi.org/10.1080/15578771.2016.1240117
http://doi.org/10.1109/ACCESS.2017.2698164
http://doi.org/10.1061/(ASCE)ME.1943-5479.0000315
http://doi.org/10.1108/F-04-2014-0040
http://doi.org/10.1007/s00779-012-0599-x
http://doi.org/10.1108/CI-03-2014-0019


ISPRS Int. J. Geo-Inf. 2022, 11, 69 24 of 25

19. BIM Services: Building Information Modeling. Available online: https://soa-inc.com/how-we-work/bim-services/ (accessed
on 30 December 2021).

20. Fernquist, J.; Shoemaker, G.; Booth, K.S. “Oh Snap”—Helping Users Align Digital Objects on Touch Interfaces. In Proceedings of
the Human-Computer Interaction—INTERACT 2011, Lisbon, Portugal, 5–9 September 2011; Campos, P., Graham, N., Jorge, J.,
Nunes, N., Palanque, P., Winckler, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 338–355.

21. Beaudouin-Lafon, M.; Mackay, W.E. Reification, polymorphism and reuse: Three principles for designing visual interfaces. In
Proceedings of the Working Conference on Advanced Visual Interfaces—AVI ’00, Palermo, Italy, 23–26 May 2000; ACM Press:
New York, NY, USA, 2000; pp. 102–109.

22. Bier, E.A. Snap-dragging in three dimensions. ACM SIGGRAPH Comput. Graph. 1990, 24, 193–204. [CrossRef]
23. Bier, E.A.; Stone, M.C. Snap-dragging. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive

Techniques—SIGGRAPH ’86, Dallas, TX, USA, 18–22 August 1986; ACM Press: New York, NY, USA, 1986; pp. 233–240.
24. Hsu, C.; Alt, G.; Huang, Z.; Beier, E.; Bruederlin, B. Constraint-based manipulator toolset for editing 3D objects. In Proceedings of

the Symposium on Solid Modeling and Applications, Atlanta, GA, USA, 14–16 May 1997; ACM Press: New York, NY, USA, 1997;
pp. 168–180.

25. Du, C.; Chen, Y.-L.; Ye, M.; Ren, L. Edge Snapping-Based Depth Enhancement for Dynamic Occlusion Handling in Augmented
Reality. In Proceedings of the 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Merida, Mexico,
19–23 September 2016; IEEE: Manhattan, NY, USA, 2016; pp. 54–62.

26. Baudisch, P.; Cutrell, E.; Hinckley, K.; Eversole, A. Snap-and-go: Helping Users Align Objects Without the Modality of Traditional
Snapping. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April
2005; ACM: New York, NY, USA, 2005; pp. 301–310.

27. Li, Y.; Luo, X.; Zheng, Y.; Xu, P.; Fu, H. SweepCanvas: Sketch-based 3D prototyping on an RGB-D image. In Proceedings of the
30th Annual ACM Symposium on User Interface Software and Technology, UIST 2017, Quebec City, QC, Canada, 22–25 October
2017; ACM: New York, NY, USA, 2017; pp. 387–399.

28. Geiger, P.; Schickler, M.; Pryss, R.; Schobel, J.; Reichert, M. Location-based mobile augmented reality applications: Challenges,
examples, lessons learned. In Proceedings of the 10th International Conference on Web Information Systems and Technologies—
Volume 1: BA, (WEBIST 2014), Barcelona, Spain, 3–5 April 2014; SCITEPRESS—Science and and Technology Publications: Setubal,
Portugal, 2014; Volume 1, pp. 383–394.

29. Do, T.V.; Lee, J.-W. A Quick Algorithm for Snapping 3D Objects in Augmented Reality. In Proceedings of the 2009 International
Symposium on Ubiquitous Virtual Reality, Guangju, Korea, 8–11 July 2009; IEEE: Manhattan, NY, USA, 2009; pp. 61–63.

30. Huang, K.; Wang, C.; Wang, S.; Liu, R.; Chen, G.; Li, X. An Efficient, Platform-Independent Map Rendering Framework for Mobile
Augmented Reality. ISPRS Int. J. Geo-Inform. 2021, 10, 593. [CrossRef]

31. Bier, E.A. Snap-Dragging Interactive Geometric Design in Two and Three Dimensions; University of California: Berkeley, CA, USA,
1988.

32. Oh, J.-Y.; Stuerzlinger, W.; Danahy, J. SESAME: Towards Better 3D Conceptual Design Systems. In Proceedings of the 6th
Conference on Designing Interactive Systems, San Diego, CA, USA, 23–28 June 2019; ACM Press: New York, NY, USA, 2006;
pp. 80–89.

33. Lee, G.; Yang, U.; Kim, Y.; Jo, D.; Kim, K. Snap-to-Feature Interface for Annotation in Mobile Augmented Reality Advances in
mobile computing platforms. In Proceedings of the Augmented Reality Super Models Workshop at the 9th IEEE International
Symposium on Mixed and Augmented Reality (ISMAR ’10), Seoul, Korea, 13–16 October 2010; IEEE: Manhattan, NY, USA, 2010;
pp. 1–24.

34. Swaminathan, R.; Schleicher, R.; Burkard, S.; Agurto, R.; Koleczko, S. Happy measure: Augmented reality for mobile virtual
furnishing. Int. J. Mob. Hum. Comput. Interact. 2013, 5, 16–44. [CrossRef]

35. Kwan, K.C.; Fu, H. Mobi3DSketch: 3D Sketching in Mobile AR. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, Glasgow, UK, 4–9 May 2019; ACM Press: New York, NY, USA, 2019; pp. 1–11.

36. Newcombe, R.A.; Fitzgibbon, A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.
KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on
Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; IEEE: Manhattan, NY, USA, 2011; pp. 127–136.

37. Shao, T.; Monszpart, A.; Zheng, Y.; Koo, B.; Xu, W.; Zhou, K.; Mitra, N.J. Imagining the unseen: Stability-based cuboid
arrangements for scene understanding. ACM Trans. Graph. 2014, 33, 1–11. [CrossRef]

38. Nuernberger, B.; Ofek, E.; Benko, H.; Wilson, A.D. SnapToReality: Aligning Augmented Reality to the Real World. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; ACM: New York, NY,
USA, 2016; pp. 1233–1244.

39. Albinsson, P.A.; Zhai, S. High precision touch screen interaction. Conf. Hum. Factors Comput. Syst.-Proc. 2003, 105–112. [CrossRef]
40. Wu, S.T.; Abrantes, M.; Tost, D.; Batagelo, H.C. Picking and snapping for 3D input devices. Brazilian Symp. Comput. Graph. Image

Process. 2003, 140–147. [CrossRef]
41. Viewports and Clipping (Direct3D 9)—Win32 Apps|Microsoft Docs. Available online: https://docs.microsoft.com/en-us/

windows/win32/direct3d9/viewports-and-clipping (accessed on 18 December 2021).

https://soa-inc.com/how-we-work/bim-services/
http://doi.org/10.1145/91394.91446
http://doi.org/10.3390/ijgi10090593
http://doi.org/10.4018/jmhci.2013010102
http://doi.org/10.1145/2661229.2661288
http://doi.org/10.1145/642611.642631
http://doi.org/10.1109/SIBGRA.2003.1241002
https://docs.microsoft.com/en-us/windows/win32/direct3d9/viewports-and-clipping
https://docs.microsoft.com/en-us/windows/win32/direct3d9/viewports-and-clipping


ISPRS Int. J. Geo-Inf. 2022, 11, 69 25 of 25

42. Hoang, T.N.; Thomas, B.H. In-situ refinement techniques for outdoor geo-referenced models using mobile AR. In Proceedings of
the 2009 8th IEEE International Symposium on Mixed and Augmented Reality, Orlando, FL, USA, 19–22 October 2009; IEEE:
Manhattan, NY, USA, 2009; pp. 193–194.

43. Nuernberger, B.; Ofek, E.; Benko, H.; Wilson, A.D. SnapToReality: Aligning augmented reality to the real world. Conf. Hum.
Factors Comput. Syst.-Proc. 1244. [CrossRef]

44. Fabri, A.; Pion, S. CGAL: The Computational Geometry Algorithms Library. In Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 4–6 November 2009; ACM Press:
New York, NY, USA, 2009; pp. 538–539.

45. Panou, C.; Ragia, L.; Dimelli, D.; Mania, K. An architecture for mobile outdoors augmented reality for cultural heritage. ISPRS
Int. J. Geo-Inform. 2018, 7, 463. [CrossRef]

46. He, T.; Gan, J. A new method of removing salt-and-pepper noise basing on grey system model in images. In Proceedings of the
2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, Xiamen, China, 29–31 October 2010; IEEE:
Manhattan, NY, USA, 2010; Volume 1, pp. 574–576.

47. Keling, N.; Mohamad Yusoff, I.; Lateh, H.; Ujang, U. Highly Efficient Computer Oriented Octree Data Structure and Neighbours
Search in 3D GIS. In Advances in 3D Geoinformation; Abdul-Rahman, A., Ed.; Springer International Publishing: Cham, Switzerland,
2017; pp. 285–303, ISBN 978-3-319-25691-7.

48. Distance from a Point to a Plane. Available online: https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane (accessed
on 1 January 2022).

49. Guo, M.; Han, C.; Guan, Q.; Huang, Y.; Xie, Z. A universal parallel scheduling approach to polyline and polygon vector data
buffer analysis on conventional GIS platforms. Trans. GIS 2020, 24, 1630–1654. [CrossRef]

50. Huang, K.; Zuo, Y.; Li, S.; Zhong, E.; Song, G.; Liu, Y. A Spatial Target Acquisition Algorithm Based on Dynamic Grid Model.
Geomatics Spat. Inf. Technol. 2018, 41, 65–67. (In Chinese with English Abstract) [CrossRef]

51. Youcun, L.; Bo, S.; Tianding, H.; Baisheng, Y. 3D GIS interactive editing method: Research and application in glaciology. In
Proceedings of the 2nd International Conference on Information Science and Engineering, Hangzhou, China, 4–6 December 2010;
IEEE: Manhattan, NY, USA, 2010; pp. 3384–3387.

52. Zhang, Z. Camera Calibration. In Computer Vision; Springer: Boston, MA, USA, 2014; pp. 76–77.
53. The Ultimate Guide to Understanding Augmented Reality (AR) Technology. Available online: https://www.realitytechnologies.

com/augmented-reality/ (accessed on 30 December 2021).
54. Ruler App—Camera Tape Measure by Grymala. Available online: https://appgrooves.com/app/ruler-app-photo-ruler-by-

grymala-ltd (accessed on 30 December 2021).
55. Bosch Measuring Tools Software Partners. Available online: https://pt-pro.resource.bosch.com/media/glm-50-c-100038368-

preview-pdf-276075.pdf (accessed on 30 December 2021).
56. Saar, O. RoomMapperAR a Mobile Augmented Reality Room Mapper. Bachelor’s Thesis, University of Tartu, Tartu, Estonia,

5 October 2019.
57. Nowacki, P.; Woda, M. Capabilities of ARCore and ARKit Platforms for AR/VR Applications. Adv. Intell. Syst. Comput. 2020, 987,

358–370. [CrossRef]
58. Lee, G.A.; Billinghurst, M. A user study on the Snap-To-Feature interaction method. In Proceedings of the 2011 10th IEEE

International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; IEEE: Manhattan, NY, USA,
2011; pp. 245–246.

http://doi.org/10.1145/2858036.2858250
http://doi.org/10.3390/ijgi7120463
https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane
http://doi.org/10.1111/tgis.12670
http://doi.org/10.3969/j.issn.1672-5867.2018.03.019
https://www.realitytechnologies.com/augmented-reality/
https://www.realitytechnologies.com/augmented-reality/
https://appgrooves.com/app/ruler-app-photo-ruler-by-grymala-ltd
https://appgrooves.com/app/ruler-app-photo-ruler-by-grymala-ltd
https://pt-pro.resource.bosch.com/media/glm-50-c-100038368-preview-pdf-276075.pdf
https://pt-pro.resource.bosch.com/media/glm-50-c-100038368-preview-pdf-276075.pdf
http://doi.org/10.1007/978-3-030-19501-4_36

	Introduction 
	Related Work 
	Research Method 
	Principles of the MAR Snapping Constraint 
	High-Precision Snapping 
	High-Speed Snapping 
	Remote Distance Snapping 

	ARSnap System Architecture 
	ARSnap 3D Virtual Constraint Modeling 
	ARSnap Adaptive Decomposition Method 
	ARSnap Visual Modeling 

	Experiment and Discussion 
	ARSnap Spatial Data Capture Quantitative Experiment 
	ARSnap Spatial Data Capture Qualitative Experiment 
	Discussion 

	Conclusions and Future Work 
	Conclusions 
	Future Work 

	Appendix A
	References

