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Abstract: Breast cancer is one of the most common death causes amongst women all over the world.
Early detection of breast cancer plays a critical role in increasing the survival rate. Various imaging
modalities, such as mammography, breast MRI, ultrasound and thermography, are used to detect
breast cancer. Though there is a considerable success with mammography in biomedical imaging,
detecting suspicious areas remains a challenge because, due to the manual examination and variations
in shape, size, other mass morphological features, mammography accuracy changes with the density
of the breast. Furthermore, going through the analysis of many mammograms per day can be a
tedious task for radiologists and practitioners. One of the main objectives of biomedical imaging
is to provide radiologists and practitioners with tools to help them identify all suspicious regions
in a given image. Computer-aided mass detection in mammograms can serve as a second opinion
tool to help radiologists avoid running into oversight errors. The scientific community has made
much progress in this topic, and several approaches have been proposed along the way. Following a
bottom-up narrative, this paper surveys different scientific methodologies and techniques to detect
suspicious regions in mammograms spanning from methods based on low-level image features to the
most recent novelties in AI-based approaches. Both theoretical and practical grounds are provided
across the paper sections to highlight the pros and cons of different methodologies. The paper’s main
scope is to let readers embark on a journey through a fully comprehensive description of techniques,
strategies and datasets on the topic.

Keywords: mammograms; low-level features; machine learning; deep learning

1. Introduction

Breast cancer is one of the most commonly diagnosed diseases amongst women world-
wide. It is mainly detected on screening exams or the onset of clinical symptoms. Most
breast cancers start in mammary glands [1]. The incidence of breast cancer has increased
all over the world, and around one million new cases are reported every year [2]. Medical
examinations are the most effective method for diagnosis of this cancer. Radiologists
use various imaging modalities, such as mammography, breast MRI, ultrasounds, ther-
mography and histopathology imaging. Visual inspections of images allow clinicians to
identify suspicious areas that deserve further and more in-depth analysis. The visual
inspection is an operator-dependent and time-consuming task. Over the last few decades,
both academics and tech companies have proposed and developed proper computer-aided
methods to assist the radiologist in diagnosing. Nowadays, CADe (computer-aided de-
tection) and CADx (computer-aided diagnosis) systems are adopted as second opinion
tools by expert clinicians for the detection of suspicious regions or abnormalities [3,4].
Most CADe and CADx tools rely on image analysis, machine learning (ML) and the deep
learning (DL) approach.

Malignant and benignant masses are abnormal regions or cells that can be identified
in mammograms. Various visual descriptors, such as shape, margin and density, are used
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to categorise abnormal cells. These descriptors are adopted in BI-RADS (Breast Imaging
Reporting and Data System) [5], developed by the American College of Radiology. Shape
and margin are adequate and discriminating descriptors for detecting masses [6]. For
mammogram patch detection, low-level image features, such as interest keypoints, area,
orientation, perimeter, and intensity, are frequently used [7,8]. Lot of work has been done
to detect mammogram lesions using low-level image features, such as shapes, texture and
local keypoint descriptors, which are discussed in this work.

AI (artificial intelligence) approaches, such as machine learning (ML) and deep learn-
ing (DL) gradually replaced these image processing-based techniques (e.g., methods relying
on the analysis of low-level image descriptors, such as texture, local keypoints, and bound-
aries) because of their higher accuracy rates. Machine learning links the problem of learning
from input data samples to the universal rules of inference. This approach uses analytical,
statistical, and mathematical techniques that allow the machines to infer knowledge from
training data without explicit programming. Some machine learning approaches [9–11],
such as support vector machine (SVM), naïve Bayes, artificial neural network (ANN), and
set classifiers [12], have become quite common for the development of computer-aided
detection system for breast cancer. Machine learning techniques usually rely first on a
step of image features’ extraction. Generally, the image features are described with arrays,
namely descriptors, which feed training processes. The opportune choice of features then
plays a fundamental role in the overall training accuracy. Historically speaking, there were
some challenges motivating deep learning [13] that have represented an evolution in the
traditional machine learning paradigm. Deep learning focuses on knowledge inference
mechanisms from data and achieves higher levels of generalisation than in conventional
machine learning. One of the most influential deep learning networks is the so-called CNN
(convolutional neural network), characterised by convolutional layers. Other than tradi-
tional machine learning approaches, deep learning techniques are independent of feature
extraction steps because of the high number of inner layers that somewhat perform feature
extraction on the way through layer-embedded operators. DL-based algorithms are not
trained to classify abnormal masses by inputting them with information about their shape,
size, pattern, and other features; the algorithm itself learns what the mass looks like [14],
using thousands of images during the training process. More details about techniques,
architectures and models are provided in the corresponding sections of the paper.

Publicly available and adequately annotated datasets are rare in the medical imaging
field; hence, there is a need for methods to deal with a low number of annotated images for
training models and reaching a high accuracy rate. In this regard, two main approaches,
such as transfer learning and unsupervised deep learning, turn out to be quite helpful.
The former faces the lack of hand-labelled data, using pre-existing deep learning archi-
tectures and fine-tuning them onto a new application domain with a reduced number
of samples [15]. The latter mainly derives direct perceptions from data and uses them
for data-driven decision making. These approaches are more robust, meaning that they
provide the base for varieties of complex problems, such as compression, classification,
denoising, reducing dimensionality, etc. Unsupervised learning is also combined with
supervised learning to create a model with added generalisation. Autoencoders and gener-
ative adversarial networks are widely adopted unsupervised deep learning approaches,
which are discussed in the paper.

1.1. Motivation and Study Criteria

The main objective of this paper is to discuss different techniques in the literature to
detect and/or classify suspicious regions spanning from mammograms using low-level
image features to machine learning techniques and deep learning approaches. In the
attempt to feed the open debate on the topic as mentioned earlier, the paper aims at
answering the following questions:
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• Which are various techniques to extract low-level image features from mammograms?
• What machine learning approaches tackle the detection of a mistrustful region in

breast images?
• What are the various supervised and unsupervised deep learning approaches used

for breast image analysis to detect and/or classify a suspicious region from a mam-
mography image?

• What are the most commonly cited and publicly available mammogram datasets?

The survey also briefly discusses various forms of breast abnormalities—morphological
features that are used by radiologists to detect suspicious masses and standard projection
views of mammograms. This article further shows commonly cited and publicly available
datasets of breast mammograms. The same datasets are compared. Furthermore, this paper
mainly presents a comprehensive study of various methods in the scientific literature on
the detection of suspicious regions from mammograms. Three main groups of methods
are presented in this work: low-level image feature-based approaches, machine learning
approaches, and deep learning approaches. The scientific literature is full of techniques
that fall within each of these categories. One of the objectives of this paper is to discuss the
most used and cited ones in the mammogram analysis domain.

This paper surveys hundreds of articles from indexed and referred journals, conference
proceedings and books out of major online scientific databases, including IEEE Xplore, Web
of Science, Scopus, and PubMed. Insightful and comprehensive surveys on mammographic
image analysis are present in the scientific literature. Sadoughi et al. [16] thoroughly
encompassed image processing techniques for detecting breast cancer by mostly focusing
on artificial intelligence techniques. This paper aims to offer a bottom-up review, spanning
both low-level image analysis and artificial intelligence techniques and providing the reader
with all the materials needed to start working on the topic. For a more comparative analysis
amongst studies, the paper is provided with relevant information, such as references,
techniques used, scopes of work, datasets, and various performance metrics.

1.2. Paper Organization

The overall structure of the paper is as follows. Section 2 provides readers with a
description some clinical aspects of breast cancer in terms of mammogram projection
views and various forms of breast abnormalities in mammograms. Section 3 provides an
up-to-date list and details of mammogram datasets along with their comparisons. A link to
the URL of each dataset is also provided. Section 4 reviews the related techniques, focusing
on three categories and different approaches. Finally, the paper ends with a discussion
Section 5, followed by a conclusion (Section 6). The organisation of the entire paper is
depicted in Figure 1.
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Figure 1. Organization of paper.

2. Breast Cancer: Clinical Aspects
2.1. Breast Positioning and Projection View

The early detection of breast cancer depends on some crucial factors, such as the quality
of the imaging technique and the patient’s position while the mammogram images are being
taken. Breast positioning plays such a critical role in the process; improper positioning
may result in inconclusive examination and mammogram artefacts. Mediolateral oblique
(MLO) and bilateral craniocaudal (CC) represent the standard mammogram views. Both
views encompass routine clinical screening mammography as depicted in Figure 2. It
is essential to have proper and acceptable head-turning of the patient to obtain the CC
view and raising of the arms of patients to obtain the MLO view. A correct CC projection
should demonstrate the pectoral muscle on the posterior breast edge, maximum breast
tissue and retro mammary space. As described by Moran et al. [17], a proper MLO view
should ideally show the axilla, the tail of the axilla, and the inframammary fold along with
the breast tissue. For an adequate breast cancer diagnosis, it is crucial to have multi-view
mammographic data. Single-view mammograms may not provide enough information for
a complete screening (some lesions might be missed). Andersson et al. [18] focused on the
influence of the number of projections in mammography on breast disease detection. They
reviewed 491 cases of breast cancer and evaluated the diagnostic importance of standard
projection views. In their study, they reported that 90% of the malignancies were detected
with a single projection view. The percentage of detected malignancies increased to 94%
with multi-view projections. Furthermore, the latter reasonably lowers the number of false
positives. Nowadays, many publicly available datasets include multi-view images [19].
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Figure 2. MLO and CC views of mammogram. Red highlighted sections in the images present
abnormalities. Left images shows right MLO and CC views of benign calcification in upper outer
quadrant of right breast. Right images shows MLO and CC views of spiculated mass lesion in lower
inner quadrant of left breast

2.2. Various Forms of Breast Abnormalities

Breast abnormalities can assume different shapes and characteristics: mass (lesion),
architectural distortion, calcification and asymmetry, as shown in Figure 3. These images
are taken from publicly available mammogram datasets. This section briefly overviews
these abnormalities and associated features.

Figure 3. Categories of breast abnormalities. (A) Mass—well-defined irregular lesion, suspicious spicu-
lated mass. (B) Architectural distortion. (C) Calcification—discrete microcalcification. (D) Asymmetry.

• Mass: A mass is a 3D lesion that can be seen in various projections. Morphologi-
cal features, such as shape, margin and density, are used for mass characterisation.
The shape can be round, oval or irregular. The margin can be not well defined, mi-
crolobulated, speculated, indistinct or circumscribed. Figure 4 shows the graphical
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representation of these morphological features (shape and margin) of a mass along
with their subcategories. When superimposed breast tissues hide margins, that is
called obscured or partially obscured. Microlobulated infers a suspicious finding.
Spiculated margin with radiating lines is also a suspicious finding. Indistinct, also
termed as ill-defined, is a suspicious finding too. Circumscribed is a well-defined
mass that is a benign finding. Density can be high, low or fat-containing. The density
of a mass is related to the expected attenuation of an equal volume of a fibroglandular
tissue [6,20]. High density is associated with malignancy.

• Architectural distortion: This abnormality is found when normal architecture is
distorted without certain mass visibility. Architectural distortion may include straight
thin lines, speculated radiating lines, or focal retraction [6,20]. This abnormality can
be seen as an additional feature. If there is a mass with distortion, it is likely to be
malignant.

• Calcification: Calcifications are tiny spots of calcium that develop in the breast
tissues. Arrangement of calcifications can be diffuse, regional, cluster, linear or
segmental [6,20]. There are two types; macrocalcification and microcalcification.
Macrocalcifications are large dots of white colour and often spread randomly within
the breast area. Microcalcifications are small deposits of calcium, usually non-cancerous,
but if visualised as particular patterns and clustered, they may reveal an early sign of
malignancy.

• Asymmetries: These are the findings that show unilateral deposits of fibroglandular
tissues, which cannot confirm the definition of mass. That can be seen in only one
projection and is mainly caused by the superimposition of breast tissues that are
normal [6,20].

Morphological features play an essential role in diagnosing breast diseases. Several
studies evaluated the effectiveness of these features to diagnose the disease and to suggest
the malignancy. Gemignani [21] presented a study on breast diseases. Mammographic le-
sions and microcalcifications are studied in the article. According to this study, masses with
spiculated boundaries and irregular shapes have the highest chances of being carcinoma.
Carcinoma is a common type of breast cancer. Rasha et al. [22] used morphological descrip-
tors of BI-RADS for the characterisation of breast lesions. The study was carried out on a
total of 261 breast lesions that were identified on contrast-enhanced spectral mammography
in 239 patients. The authors concluded that morphological descriptors can be applied to
characterise lesions. Most suggestive morphological descriptors are irregular-shaped mass
lesions with spiculated and irregular margins. Wedegartner et al. [23] presented a study
to check the expediency of morphological features to distinguish between malignant and
benign masses. The result of the study shows that the irregular shape of the lesion is highly
indicative of malignancy. The overall taxonomy of breast abnormalities and morphological
features in mammograms are presented in Figure 4.

There is a well-defined tool for risk assessment and quality assurance, developed
by the American College of Radiology, called BI-RADS (Breast Imaging-Reporting and
Data System) [5]. Descriptors, such as shape and margin (along with their morphological
features), are adopted in BI-RADS. Studies of breast imaging are allotted one of seven
categories of BI-RADS assessment [24] as shown below:

• BI-RADS 0 (Assessment Incomplete)—Need further assistance.
• BI-RADS 1 (Normal)—No evidence of lesion.
• BI-RADS 2 (Benign)—Non-cancerous lesion (calcified lesion with high density).
• BI-RADS 3 (Probably benign) —Non-calcified circumscribed mass/obscured mass.
• BI-RADS 4 (Suspicious abnormality)—Microlubulated mass.
• BI-RADS 5 (High probability of malignancy)—Indistinct and spiculated mass.
• BI-RADS 6 (Proven malignancy)—Biopsy-proven malignancy (to check the extent and

presence in the opposite breast).

Limitations of BI-RADS: The BI-RADS assessment is subjective. Several studies
reported an anatomical variability in interpreting mammograms before the use of the
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BI-RADS lexicon, and it was not improved with the help of BI-RADS [25]. Beam et al. [26]
conducted a study on the mammograms of 79 women, out of which 45 were cancerous. One
hundred and eight radiologists reviewed these mammograms. The authors have reported
that mammogram reading sensitivity and specificity varied from 47% to 100% and 36%
to 99%, respectively. In another study, Berg et al. [27] presented intra- and inter-observer
variability amongst five expert radiologists. The assessment of the lesions was highly
variable. The readers agreed on only 55% of the total 86 lesions. Finally, Geller et al. [28]
presented a study to check whether mammographic assessments and recommendations
are appropriately linked or not as per BI-RADS. The study highlighted that BI-RADS 3
category had the highest variability.

Figure 4. Taxonomy of breast abnormalities and morphological features in mammograms.

3. Mammogram Datasets

This section briefs the publicly available mammography datasets that researchers use
to detect and/or classify suspicious regions. Table 1 depicts a summary of the most cited
and commonly used datasets. Sample images from these datasets are shown in Figure 3.

Table 1. List of commonly used mammogram datasets and reference URLs.

Origin and Year Total
Cases

Total Images
(Approx)

View
Type

Image
Type Annotation Reference Link for the Dataset

SureMaPP UK, 2020 145 343 MLO DICOM Centre and radious of circle
enclosing the abnormality https://mega.nz/#F!Ly5g0agB!%E2%80%91QL9uBEvoP8rNig8JBuYfw (accessed on 27 October 2020)

DDSM USA, 1999 2620 10000 MLO, CC LJPEG Pixel level boundary around
abnormality http://www.eng.usf.edu/cvprg/Mammography/Database.html (accessed on 31 May 2021)

CBIS-
DDSM

USA, 1999 6775 10239 MLO, CC DICOM Pixel level boundary around
abnormality https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM (accessed on 31 May 2021)

INBreast Portugal, 2011 115 422 MLO, CC DICOM Pixel level boundary around
abnormality http://medicalresearch.inescporto.pt/breastresearch/GetINbreastDatabase.html (Link is taken from

the base paper. Accessed on 31 May 2021)

MIAS 161 322 MLO PGM Centre and radious of circle
enclosing the abnormality https://www.repository.cam.ac.uk/handle/1810/250394 (accessed on 31 May 2021)

BCDR Portugal, 2012 1734 7315 MLO, CC TIFF Unknown https://bcdr.eu/information/about (accessed on 31 May 2021)
IRMA Germany, 2008 Unknown 10509 MLO, CC Several Several https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6915/1/Toward-a-standard-

reference-database-for-computer-aided-mammography/10.1117/12.770325.short?SSO=1 (accessed on
31 May 2021)

BancoWeb
LAPIMO Brazil, 2010 320 1473 MLO, CC TIFF ROI for few images http://lapimo.sel.eesc.usp.br/bancoweb (assessed on 31 May 2021)

3.1. SureMaPP

SureMaPP [29] is a recently published dataset of mammograms with around 343 images
manually annotated by experts in the field. Two different devices capture this dataset’s
images: GIOTTO IMAGE SDL/W and FUJI- FILM FCR PROFECT CS. Mammograms are
available with two different spatial resolutions: 3584 × 2816 pixels and 5928 × 4728.

https://mega.nz/#F!Ly5g0agB!%E2%80%91QL9uBEvoP8rNig8JBuYfw
http://www.eng.usf.edu/cvprg/Mammography/Database.html
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
http://medicalresearch. inescporto.pt/breastresearch/GetINbreastDatabase.html
https://www.repository.cam.ac.uk/handle/1810/250394
https://bcdr.eu/information/about
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6915/1/Toward-a-standard-reference-database-for-computer-aided-mammography/10.1117/12.770325.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6915/1/Toward-a-standard-reference-database-for-computer-aided-mammography/10.1117/12.770325.short?SSO=1
http://lapimo.sel.eesc.usp.br/bancoweb
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3.2. DDSM

The digital database of screening mammography (DDSM) [30] is a very old mam-
mogram dataset. It consists of 2620 mammography studies from hospitals and medical
universities in the U.S. Each case includes standard views, such as the mediolateral oblique
(MLO) view and craniocaudal (CC) view for the left and right breast.

3.3. CBIS-DDSM

Curated Breast Imaging Subset of DDSM (CBIS-DDSM) [31] is a modified and stan-
dardised version of DDSM. Images of CBIS-DDSM are uncompressed and converted into
DICOM format. This dataset includes an updated region of interest (ROI) segmentation
and bounding box. Other pathological details, such as type of mass, grade of tumour and
cancer stage, are included in the dataset.

3.4. INBreast

INBreast [32] has a total of 410 images acquired at the Breast Centre in CHSJ, Porto.
As for CBIS-DDSM, DICOM format images with both MLO and CC views are provided.
All images are annotated and validated by expert clinicians. Currently, Universidade do
Porto has stopped supporting the dataset, but researchers may have access to the dataset
by requesting the same.

3.5. MIAS

The Mammographic Image Analysis Society (MIAS) [33] dataset consists of 322 screen-
ing mammograms. Annotations are available in a separate file containing the background
tissue type, class and severity of the abnormality, x and y coordinates of the centre of irreg-
ularities, and the approximate radius of a circle enclosing the abnormal region in pixels.

3.6. BCDR

The Breast Cancer Digital Repository (BCDR) [34] is a public mammogram dataset
containing 1734 patient cases. These cases are classified as per Breast Imaging-Reporting
and Data System (BIRADS). BCDR comprises two repositories: Film Mammography-
Based Repository (BCDR-FM) and Full Field Digital Mammography-Based Repository
(BCDR-DM). BCDR-FM contains 1010 patient cases with both MLO and CC views. BCDR-
DM is still under construction. The BCDR dataset can be accessed by registering on the
dataset website.

3.7. IRMA

The IRMA [35] dataset was developed from the union of various other datasets, such
as DDSM, MIAS, the Lawrence Livermore National Laboratory (LLNL), and routine images
from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Images of this
dataset are also available with both views. The dataset contains all types of lesions. IRMA
is enriched with ROI annotations, which make the dataset suitable for supervised deep
learning approaches.

3.8. BancoWeb LAPIMO

The BancoWeb LAPIMO [36] dataset is equipped with a total of 320 cases and 1473
images with MLO and CC views. Pictures of the dataset are grouped into the following
categories: normal, benign and malignant. Annotations and patients’ background informa-
tion are provided with BI-RADS. Annotations in the form of ROI are available for just a
few images, while a textual description of the findings is available for all images. BI-RADS
mammograms are in TIFF format.

4. Related Techniques

The scientific literature offers a wide variety of approaches for biomedical image
processing tasks. Computer-aided detection (CADe) helps to detect regions of interest clini-
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cally from images. Computer-aided diagnosis (CADx) solutions measure the malignancy of
masses [37]. CADe identifies suspicious regions and classifies a detected region as a mass
or non-mass. CADx identifies a mass as a malignant or a benign one; it helps radiologists
recommend biopsy or other follow-ups and treatment planning [38]. This section provides
readers with a list of the state-of-the-art methods and techniques to detect suspicious
regions from mammogram images. More precisely, it is noticed that most approaches
in the scientific literature can be grouped into three prominent families. The following
sections focus on methods relying on different techniques: the extraction of low-level image
features, machine learning models, and deep learning models. For the sake of clarity, we
want to highlight that in our work, we focus on methods for detecting suspicious regions
in mammograms. However, we also consider those mammogram patch classification meth-
ods that have a model or architecture trained over small-sized image patches. We include
them in this paper because those methods classify tiny areas of mammograms by labelling
them as suspicious or non-suspicious. They return patches as classified, small enough to
have them suitable for locating suspicious areas in the whole mammogram image.

4.1. Low Level Image Features

The detection of suspicious regions is accomplished with different approaches; the
main focus in this subsection is to provide the reader with those techniques that rely on
the extraction of low-level image features, such as shapes, texture and local keypoint
descriptors. Furthermore, articles based on low level image features are summarized in
Tables 2 and 3.

4.1.1. Shape Based Features

A non-negligible number of techniques for the detection of mammogram’s suspicious
regions rely on the analysis of shape features, such as concavity, fractals, compactness, and
morphological operators. The following subsections group shape-based feature analysis
methods into two main categories: (1) techniques that rely on the numerical analysis of
shape descriptors; and (2) techniques that employ shape descriptors to feed classification
systems and neural networks.

Shape Descriptor Analysis Approaches

In this subsection, methods relying only on the numerical analysis of shape descriptors
are presented. Raguso et al. [39] tackled the classification of breast masses by employing
fractal analysis. Due to differences in shape complexity of breast masses contours, the
fractal dimension is adopted as a discriminating feature for the purpose. Eltonsy et al. [40]
reported that the growth of a mass forms concentric layers around activity areas in breast
parenchyma structures; they proposed the so-called multiple concentric layers (MCLs)
method to detect those activity areas. Morphological analysis of the concentric layer
model is the cornerstone of the MCLs detection algorithm. There are three fundamental
assumptions that guide the design of the MCLs algorithm. First, it is assumed that the
focal activity layer is the brightest that and its evolving concentric layers tend to grow
dimmer. Second, the morphology of the focal layer contains useful information regarding
the presence of a potentially malignant mass. Third, if the relative incidence of a focal
area with MCLs morphology is low in the breast region, then there is a higher probability
that this area represents a true abnormality. Rangayyan et al. [41] tackled the detection
of mammograms’ masses, using a boundary segmentation approach. They went first to
separate major portions of the boundary and labelled them as concave or convex segments.
Features were computed through an iterative procedure for polygonal modelling of the
mass boundaries. The latter allows analysing shape features localised in each segment.
Rangayaan et al. proposed a spiculation index based on the concavity fraction of a mass
boundary and the degree of the narrowness of spicules. The spiculation index, fractional
concavity and the global shape feature of compactness were combined for the bound-
ary segmentation task. Chakraborty et al. [42] focused their efforts on the detection of
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the pectoral muscle from mammograms. The proposed method first approximates the
boundary by a straight line. Within a selected region, maximum discontinuity points are
determined along each horizontal line, based upon the weighted average gradient. An
adaptive shape-based method is then applied to divide these points into a number of bands.
The band with the maximum number of points is considered the most probable band
containing probable pectoral edge points. A straight line is then estimated based upon
the probable pectoral edge points. Surendiran and Vadivel [6] analysed the distribution of
shape features, such as eccentricity, elongatedness, circularity1 (which measures how much
a mass resembles a circle), circularity2 (which measures how much a mass resembles an
ellipse), compactness, standard deviation, and dispersion to build on shape characteristics
descriptors. Mustra et al. [43] proposed a method based on morphological operators and
geometry for accurate nipple detection in craniocaudal mammograms.

Shape Descriptors for Classification Systems

This subsection aims to list and describe those classification systems fed with shape-
based features. Li et al. [44] introduced a method to convert 2D breast mass’ contours in
mammography into 1D signatures. The method provides a descriptor for contour features
and breast mass regularity. The whole 1D signature is divided into subsections. The
contour descriptor consists of four local features extracted from subsections. The contour
descriptor is the root mean square (RMS) slope. On top of that, KNN, SVM and ANN
classifiers are used to classify benign and malignant breast masses. Elmoufidi et al. [45]
proposed a multiple-instance learning method based on the analysis of combined texture
and shape features to classify malignant and benign masses in the breast. Elmoufidi et al.
addressed the classification using features such as the equivalent circle of ROI (region
of interest) and the bounding box, which is defined by the smallest rectangle containing
the ROI. Zhang et al. [46] proposed a method that relies on two main steps encompassing
eleven features: nine features from both spatial and morphology domains, and two cluster
description features. The first stage plays a critical role in detecting coarse visual features,
while the second stage allows for detecting finer analysis and classification. Soltanian-
Zadeh et al. [47] ran microcalcification classification by comparing multi-wavelet, wavelet,
haralick, and shape features. Several useful properties, such as symmetry, orthogonal-
ity, short support, and a higher number of vanishing moments, simultaneously can be
retrieved by using the mentioned features. The usefulness of these properties is well
known in wavelet design. The symmetric property allows symmetric extension when
dealing with the image boundaries. Felipe et al. [48] carried out experiments to test out the
effectiveness of Zernike moments as shape descriptors for mammograms’ classification.
Zernike moments calculated from the pixels’ values of images retain pattern information
related to shape. Soltanian-Zadeh et al. [49] presented two image processing methods
for differentiating benign from malignant microcalcifications in mammograms. The gold
standard method for differentiating benign from malignant microcalcifications is a biopsy,
which is invasive. The goal of the proposed methods is to reduce the rate of biopsies with
negative results. In the first method, the authors extracted 17 shape features from each
mammogram. These features are related to the shapes of individual microcalcifications or
to their clusters. In the second method, the co-occurrence method of Haralick achieves the
extraction of 44 texture features from each mammogram. The best features from each set
are extracted with a genetic algorithm by maximising the area under the ROC curve. This
curve is created using a k-nearest neighbour (kNN) classifier and a malignancy criterion.
The final step consists of comparing ROCs with the largest areas obtained, using each
technique. Zyout et al. [50] presented a shape-based approach for the classification of
MC (microcalcification) clusters. The proposed diagnosis scheme applies an embedded
feature selection framework, called PSO-kNN (particle swarm optimisation and k-nearest
neighbours), representing a unified scheme for accomplishing the feature selection and the
classifier learning tasks. Sahiner et al. [51] dealt with the characterisation of breast masses
on mammograms by developing a three-stage segmentation method based on clustering,
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active contour, and spiculation detection stages. After segmentation, extracted morphologi-
cal features described the shape of the mass. Texture features were also extracted from a
band of pixels surrounding the mass. Stepwise feature selection and linear discriminant
analysis were employed in the morphological, texture, and combined feature spaces for
classifier design. Junior et al. [52] proposed a method to detect breast cancer through
diversity analysis, geostatistical and concave geometry (alpha shapes). Furthermore, they
assessed the effectiveness of each feature, using support vector machine (SVM) in the MIAS
and DDSM databases.

Pros and Cons

Some pros and cons for both approaches can be noticed by observing Table 2. Overall,
those techniques based on the analysis of shape descriptors achieve good results in terms of
accuracy. Raguso et al. [39] score 0.97 in the area under ROC. Nevertheless, the results are
reported only on a local dataset, and no performance metrics are provided over publicly
available databases. The experiments run by Rangayyan et al. [41] showed a certain level
of accuracy and reliability of shape descriptors, such as spiculation index, fractional con-
cavity and compactness on mass classification (accuracy of 80%) on MIAS. The method of
Chakraborty et al. [42] reported very few false positives and false negatives in the detection
of the pectoral muscle by using lightweight features, such as the average gradient. A mor-
phological descriptor–based technique by Eltonsy, N.H. et al. [40] revealed high accuracy
rates on DDSM, even though only the specificity is provided and no information about
the number of false positives is given. Mustra et al. [43] used morphological descriptors
and geometrical properties by which a 97.92% detection rate for nipple detection task
was achieved in craniocaudal mammograms from a local dataset. The performance of the
methods mentioned above shows reasonable accuracy rates and is lightweight. On the
other side, their results show lower accuracy than the methods proposed by Li et al. [44],
Zhang et al. [46], Sahiner et al. [51], and Junior et al. [52], which feed shape descriptors
into SVMs, clustering, k-nearest classifier, etc. The method of Junior et al. showed a high
sensitivity and detection rate on two different publicly available datasets (DDSM and
MIAS), using geostatistical and concave geometrical descriptors and SVM.

4.1.2. Texture-Based Features

Texture indicates visual patterns in visual content. Because of the complexity and
diversity in natural images, texture analysis and description still represents a challenge [7].
In this section, the readers are provided with a description of texture analysis-based
methods for detecting suspicious regions in mammograms. Like the previous section,
this section is further divided into two subsections. The first one groups those methods
relying on the analysis of texture feature descriptors, while the second one encompasses
techniques, where the texture descriptors feed into the classification systems.

Texture Descriptors’ Analysis

Ramos et al. [53] proposed a technique that relies on texture features extracted from
co-occurrence matrices, wavelet and ridgelet transform of mammogram images. They
focused their efforts on detecting suspicious regions out of craniocaudal mammograms.
Properties, such as entropy, energy, average, sum variance and cluster tendency, are
calculated on top of texture features. The features mentioned above also undergo a GA
(genetic algorithms) check to assess their effectiveness. Haindl and Remeš [54] dealt
with enhancing suspicious breast tissue abnormalities, such as microcalcifications and
masses, by helping radiologists detect developing cancer. They addressed the task, using a
two-dimensional adaptive causal auto-regressive texture model to represent local texture
characteristics. Furthermore, they used the Karhunen-Loeve transform to combine more
than 200 local textural features (sensed with different frequency bands) into a single multi-
channel image. Zheng et al. [55] presented a lattice-based approach that relies on a regular
grid virtually overlaid on mammographic images. They used a local window centred on
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each lattice point to extract texture features within the breast. Tai et al. in [56], presented an
automatic CADe (computer-aided detection) system that relies on local and discrete texture
features for mammographic mass detection. In greater detail, Tai et al. [56] segmented
adaptive square suspicious areas. In their study, the co-occurrence matrix and optical
density transformation are used to describe suspicious regions with local texture and
discrete photometric distributions. The same features undergo stepwise linear discriminant
analysis to rank abnormal areas. Mudigonda et al. [57] introduced the concept of texture
flow-field analysis to the mammogram analysis.

Texture Descriptors for Classification Systems

In the methods described in this subsection, texture descriptors feed into classifiers,
logistic regression, clustering functions, and self-organising maps to classify suspicious
regions in mammographic images. Farhan and Kamil [58] demonstrated the usefulness of
texture analysis in mammograms to discriminate breast masses from normal tissue. They
conducted their study on the MIAS [33], using LBP (local binary pattern) and a logistic
regression classifier. Zheng et al. [55] as well as Mohanty et al. [59] extracted a range of
statistical and structural (local binary pattern, and fractal dimension) features to carry out
experimental detection of suspicious regions in mammograms. An association between
lattice-based texture features and breast cancer was evaluated using logistic regression.
Li et al. [60] presented a texture feature descriptor for mammographic image classification
into different breast density categories. More precisely, they adopted the commonly used
local binary patterns (LBP) and considered more feature details by including its variant,
local quinary patterns (LQP). The descriptor turned out to be robust against rotations
and translations. Quintanilla-Domínguez, et al. [61] analysed regions of interest (ROI)
in mammograms by using the top-hat transform to enhance the ROI. Top-Hat transform
increases the contrast between the background and well-defined/circumscribed masses,
ill-defined masses, speculated masses, architectural distortions and asymmetries as de-
scribed in MIAS [33]. After applying the top-hat transform with a 3× 3 sized structuring
element, the method carries out a window-based extraction of statistical moments, such as
mean and standard deviation. K-means clustering and SOM (self organising maps) address
grouping and labelling tasks. Hung and Lin [62] provided the scientific community with a
GPU computing implementation of GLRLM to speed up the extraction process of texture
features from mammograms. Gaussian smoothing and sub-sampling operations were
employed to pre-process mammograms by Mudigonda et al. [57]. Mass segmentation is
accomplished by establishing intensity links from the central portions of masses to their
spatial neighbourhood. Mammogram regions are classified with flow orientation in adap-
tive areas of pixels across the boundaries of masses. A logistic regression system ingests the
output of the last step. Biswas and Mukherjee [63] recognised architectural distortions in
mammograms with a generative model carrying out the extraction of distinctive textures.
The first layer of the architecture in this study consists of a multiscale-oriented filter bank
that draws filter vectors as texture descriptors. The second layer of the proposed model is
responsible for textural primitives’ representation tackled with a mixture of Gaussians.

Pros and Cons

Pros and cons of the previous section methods are described here. It is noticeable how
texture descriptors, such as co-occurrence matrices, wavelet and ridgelet transforms [53],
local texture features and KL transforms [54], lattice-based features [55], GLCM features
and density features [56] and texture flow-field [57] perform reasonably well, in order,
on mass classification, texture irregularity enhancement, density percentage in mammo-
grams. Nevertheless, Ramos et al. [53] reach 0.9 in the AUC on a local dataset, while
no performance metrics are given on public databases. The method of Haindl et al. [54]
showed a remarkably high percentage of false positives. The method of Zheng et al. [55]
achieved AUC values within the range [0.60, 0.74]. Tai et al. [56] obtained 99% sensitivity
on DDSM but no data about false positives’ rates are given. With the only exception of local
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patterns [60], when texture features feed into classification systems [58,59,61], they return
noticeably high rates of accuracy (93.6% on DDSM), sensitivity and specificity (greater
than 99% on MIAS). However, as in the method of Biswas et al. [63], the classification
systems’ performance may slightly drop when other texture features and descriptors are
used (mixture of Gaussians).

4.1.3. Local Keypoint Descriptors

Local keypoints and their corresponding descriptors, such as SIFT [64] and SURF [65],
have been widely adopted over many computer vision topics [66]. Since their first introduc-
tion in 1999, a lot of water went under the bridge [64]. Different methods for image retrieval,
image registration, object recognition, object classification, pattern recognition, robot locali-
sation, wide baseline matching, and video shot retrieval ingest keypoint descriptors. Since
then, biomedical researchers have started detecting regions of interest in images with local
keypoint descriptors because of their robustness against varying illumination conditions
and spatial noise distribution, geometric and photometric transformations in images. As
far as it concerns the subject of this survey, several state-of-the-art methods rely on local
keypoint descriptor. The following two subsections group methods and techniques into
two main approaches: local keypoint descriptor analysis, and local keypoint descriptors
for classification systems.

Local Keypoint Descriptor Analysis

Jiang et al. [67] proposed a method specifically for a query mammographic region of
interest (ROI). They compared SIFT descriptors extracted from the ROI to a vocabulary
tree, which stores all the quantised features of previously diagnosed mammographic ROIs.
The method improves its performances with contextual information in the vocabulary tree.
Jiang and Zhang conducted experiments on 11,553 mammographic ROIs. Guan et al. [68]
focused on the liability of SIFT keypoints on microcalcification segmentation in MIAS
dataset images. In greater detail, they fine-tuned the SIFT extraction parameters over MIAS
by looking into the following steps: scale-space extrema detection, keypoint localisation,
orientation assignment, and keypoint descriptor. Insalaco et al. [69] proposed a SURF-based
method for detecting suspicious regions in mammograms. Their method is unsupervised
and it relies on three main steps: pre-processing, feature extraction and selection. The
histogram-based image intensity threshold assumes a relevant role in their method. The
method allows extracting features from two versions of the same mammogram with
different dynamic grey intensity levels.

Local Keypoint Descriptors for Classification Systems

In this section methods, local keypoint descriptors feed into classification systems.
Utomo et al. [70] tested out some well-known scale and rotation invariant local features,
such as SIFT, SURF, ORB, BRISK, and KAZE, to check which of them might replace the
convolutional layers of CNN models. They kept the fully connected layers of the CNN
model as the classifier, while they removed the convolutional layers. Furthermore, they
assigned the high-level feature maps at the flatten layer with scale and rotation invariant
local features. Utomo et al. [70] carried out experiments on MIAS dataset images. SIFT
and SURF reportedly exhibited state-of-the-art performances when paired to VGG16 and
MobileNetV2 models. Salazar-Licea et al. [71] presented a technique that combines SIFT
features and K-means clustering to detect ROIs in mammograms. Their method first
enhances the image quality through image thresholding and contrast limited adaptive
histogram equalization (CLAHE). Then, they locate regions of interest in mammograms,
using SIFT and binary robust independent elementary features (BRIEF) and feed keypoint
coordinates into K-means clustering. Bosch et al. [72] presented a technique to model and
classify breast parenchymal tissue. The authors analysed the spatial distribution of different
tissue densities in an unsupervised manner by using SIFT and texture features. They also
used both a classifier based on local descriptors and the probabilistic latent semantic
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analysis (pLSA) to detect meaningful aspects in mammograms. The MIAS and DDSM
datasets were used to compare performances of different state-of-the-art methods to theirs.
Liasis et al. [73] provided the scientific community with a method to investigate statistical
distributions of different texture descriptors with support vector machines (SVMs) for
breast density classification in mammogram images. They tested out features, such as
SIFT, LBP (Local Binary Patterns) and texton histograms. TMatos et al. [74] conducted a
study on the effectiveness of different features, such as (SIFT), speed up robust feature
(SURF), oriented fast and rotated BRIEF (ORB) and local binary pattern (LBP) descriptors
for local feature extraction in mammograms. The mentioned features are represented with
the BOF (bags of features) approach to decrease data dimensionality. The same features fed
support vector machine (SVM), adaptive boosting (Adaboost) and random forests (RF) for
mammogram patch classification. Deshmukh and Bhosle [75] carried out some experiments
on mammogram classification with SURF: they optimised SURF, ran the mammogram
image classification with an associative classifier ingesting the optimised SURF. SURF
descriptors and spatial distance measurements are taken into account to discard some
regions. Mammogram classification relies on SURF features and the random forest method.
Abudawood et al. [76] conducted experimental campaigns to assess LBP (local binary
pattern) effectiveness against other image features, such as SURF, sparse coding and BRISK,
using Gaussian process, k-nearest neighbours, support vector machines and AdaBoost.

Pros and Cons

As for those methods based on shape and texture features, a further subsection
provides the paper with the pros and cons of local keypoint-based methods. The method
of Jiang et al. [67] successfully detected masses on a local mammogram dataset of 11,553
ROIs, achieving 90.8% accuracy by using an approach based on SIFT and vocabulary
tree. It would be interesting to assess its performances on a public dataset to compare it
with other state-of-the-art techniques on the task. SIFT descriptors were also adopted for
detecting microcalcification by Guan et al. [68], but no accuracy metrics and comparison
to other techniques are provided. Assuming that the method of Insalaco et al. [69] mainly
relies on histogram-based image intensity thresholds, it would be interesting to know how
robust the method is over datasets with different features. Utomo et al. [70] conducted
noteworthy experiments to compare other keypoint descriptors feeding into FCN, and
they achieved 100% sensitivity and specificity on MIAS for mass classification. It would
be interesting to assess their performance on other datasets such as InBreast, DDSM and
SuReMaPP. Bosch et al. [72] used local keypoint and pLSA for classifying parenchymal
tissue on MIAS and DDSM. It is noticeable how performance accuracy rates drop by
13 percent from MIAS 95.42% to DDSM 84.75% showing better suitability of the proposed
method for the MIAS dataset. Experimental results show higher accuracy rates for methods
that feed local keypoint descriptors into classification systems at the expense of a higher
computational cost. However, having most of the classification overall high accuracy
performances, their accuracy rates drop when run over different datasets. In addition,
the method of Deshmukh et al. [75] seems to have the most well-balanced accuracy rate
over two datasets, such as DDSM and MIAS. It obtained, respectively, 92.30% and 96.87%
accuracy rates on MIAS and DDSM. A graph showing accuracy rates of some methods
based on low-level image features are shown in Figure 5. Due to heterogeneity in the
metrics and datasets provided by the reference articles, only some techniques having the
same datasets and metrics are plotted. More details are provided in Tables 2 and 3 for a
broader range of techniques.
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Figure 5. Some techniques based on the analysis of low-level features are plotted above according to their accuracy rates on
DDSM and MIAS.

Table 2. Methods based on low-level image features (a).

Reference Technique Task Performed Dataset Performances

[39] Fractal Analysis Mass Classification
Local Dataset
San Paolo Hospital,
Bari, Italy

Area under ROC: 0.97

[44] Local contour features, +SVM Mass Classification DDSM Accuracy: 99.6%

[45]
Multiple instance learning:
textural and shape
features + K-means

Mass Classification DDSM and MIAS
Sensitivity:
95.6% on DDSM
94.78% on MIAS

[46] Spatial and Morphology
domain features

Microcalcification
clusters’ detection USUHS Sensitivity: 97.6%

[47] Multiwavelet, wavelet,
Haralick, and shape features

Microcalcification
classification Nijmegen Database Area under ROC: 0.89
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Table 2. Cont.

Reference Technique Task Performed Dataset Performances

[48] Zernike moments
Classification
of mammographic
mass lesions

Local dataset
Precision: 80%
Recall: 20%

[41]
Spiculation Index,
Fractional Concavity,
Compactness

Mass Classification MIAS
Area under ROC: 0.82
Accuracy: 80%

[42]
Average Gradient
and Shape Based Feature

Pectoral Muscle
Detection

MIAS
a local database

False Positives (FP)
and False Negatives (FN):
FP on MIAS 4.22%,
FN on MIAS 3.93%;

[49]
Shape features
and Haralick features.

Microcalcification
classification Nijmegen Database

Area under ROC:
Shape Features 0.82;
Haralick Features 0.72

[50]
Swarm optimisation
(PSO) algorithm
and k-nearest classifier

Microcalcification
cluster detection

MIAS
and a local dataset
from the Bronson
Methodist hospital

Accuracy:
96% on MIAS,
94% on BMH

[51]
Texture and
Morphological Features Mass Classification local database Area under ROC:

0.91 ± 0.02
[40] Morphological Features Mass Detection DDSM Sensitivity: 92%

[52]
Geostatistical and concave
geometry (Alpha Shapes) Mass Detection MIAS and DDSM

Detection rate:
97.30% on MIAS
and 91.63% on DDSM

[53]
Co-occurrence matrices,
wavelet and ridgelet
transforms

Mass Classification Local Database AUC = 0.90

[58] Local Binary Pattern
Breast Mass
Recognition MIAS

Sensitivity 99.65%
Specificity 99.24%

[54]
Local texture feature
and KL Transform

Enhancing texture
irregularities Inbreast

True Positive 96%
False Positive 65%
False Negative 4%

[59]
GLCM and
GLRLM features Mass Classification DDSM Accuracy 93.6%

[43]
Pixel intensity
and Morphological
Features

Nipple detection
144 Mammograms
(Local Dataset)

Detection
Rate 97.92%

Table 3. Methods based on low-level image features (b).

Reference Technique Task Performed Dataset Performances

[55] Texture Feature
and Lattice Points

Mammographic
Percent Density Local Database Area under Curve:

0.60–0.74

[60] local patterns Mass Classification INBreast and MIAS
Accuracy:
82.50% on INBreat
80.30% on MIAS

[61] morphological
Top-Hat transform

mass and
microcalcification
detection

MIAS
Sensitivity
and Specificity:
99.02% 99.94%

[62] Texture Features
analysis with GPU

Texture analysis
in mammograms DDSM and MIAS CPU and GPU time

on each picture

[56] GLCM features and
optical density features Mass Detection DDSM Sensitivity 99%

[57] Density Slicing and
Texture Flow-Field Analysis Mass Detection MIAS Area under Curve: 0.79
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Table 3. Cont.

Reference Technique Task Performed Dataset Performances

[63]
Mixture of Gaussian
distribution for texture
analysis in mammograms

Architectural Distortion
Detection
in Mammograms

MIAS and DDSM

MIAS Sensitivity 85.5%
Specificity 81.0%
DDSM Sensitivity 89.2%
Specificity 86.7%

[70]
FC-VGG16 + SIFT,
SURF, ORB, BRISK,
and KAZE

Mass Classification MIAS

SIFT + FC
MobileNetV2
Specificity 100%;
Sensitivity 100%;

[67]
SIFT features, Vocabulary
Tree and Contextual
Information

Mass Classification
Local dataset
of 11553 ROIs
from Mammograms

Accuracy 90.8%

[68] SIFT features
Segmentation of
Microcalcifications MIAS -

[71]
Scale-Invariant Feature
and K-means clustering

ROI (Region of Interest)
detection
in mammograms

4 mammograms
from MIAS -

[72]
Local Descriptors
and (pLSA)

Parenchymal Tissue
Classification MIAS and DDSM

Accuracy on
MIAS 95.42%;
DDSM 84.75%

[73]
SIFT, LBP and Texton
Histograms and SVM

Breast Density
Classification MIAS Accuracy 93%

[74]
Bag of Features (BoF)
and SVM Mass Classification DDSM

Sensitivity 100%
Specificity 99.24%

[69]
Histogram Specification
and SURF features Mass Detection MIAS Sensitivity 0.89

[75] Optimised SURF Mass Classification MIAS and DDSM
MIAS Accuracy 92.30%
DDSM Accuracy 96.87%

[76]
LBP plus classifiers
(KNN, SVM, Gp, AB)

Abnormality
Classification DDSM

Precision 94.60%
Recall 95%

4.2. Feature Engineering

Feature engineering allows formalising meaningful features from data. Machine learn-
ing models generally use these features for a variety of tasks. This technique transforms raw
data into features that better represent the target to be learned. It features in the pipeline
of many machine learning methods. That being said, feature engineering is specific to a
problem and is error-prone. Moreover, finally crafted features are limited by user creativity.
The manual feature engineering approach aims to create or build features one at a time
with the help of domain knowledge as depicted in Figure 6.

Figure 6. Manual feature engineering process: Features are crafted one at a time using domain knowledge by understanding
underlying data.
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The logic for crafting features is problem dependent and needs to change for every
new application and underlying dataset. Feature engineering comprises various represen-
tative tasks, such as feature transformation, feature generation and extraction and feature
selection. Feature engineering can be applied to all types of data and is frequently used
with images and text. Chandakkar et al. [77] discussed various feature engineering aspects
for image data, including texture, shape, colour features, etc. Some methods relying on
these features are described in Section 4.1. In manual feature engineering, well-defined
characteristics, such as texture, shape, and other low-level image features are constructed
from input images to define imaging expression [78,79]. Though earlier researchers have
used manually crafted features for various tasks, it is not always easy and possible to
transform the medical imaging domain to precise scientific descriptors for manual feature
engineering. This task becomes even more challenging when the field of application is not
adequately understood [80].

When compared to deep learning, feature engineering needs pre-established descrip-
tors or features of images or data. As far as it concerns medical images, this task is much
more constrained because understanding this domain is mainly nonfigurative and difficult
to define and set out with accurate scientific descriptors. With massive training data,
deep learning automatically acquires inherent imaging features and uses these features to
represent the outcome. Studies [80–83] show that feature extraction with the help of deep
learning approaches presents better results as compared to pre-established descriptors
in varieties of the application domain. An end-to-end deep learning model proposed by
Arefan et al. [80] focuses on predicting short-term breast cancer risk using mammogram
images. The authors used GoogleNet with the LDA model to extract deep features. As
deep learning is considered a black box system, feature interpretation is not a straightfor-
ward process. Authors have used feature activation maps to highlight the essential and
related regions in the images concerning the specific prediction tasks. Dhungel et al. [84]
developed a method to learn the mammogram features automatically. Authors have used
two-step training; pre-training based on the learning of a regressor that estimates the large
set of handcrafted features that follow a fine-tuning stage that learns the classification of
breast masses. It was shown in the study that the proposed method performs well when
comparing to machine learning models with manually crafted features. Arora et al. [85]
proposed a method for automatic classification of mammograms using ’deep features’.
Features extraction and classification is carried out with deep ensemble learning and neural
network classifier. The features that the ensemble model extracts are then optimised into
a feature vector. Further, these features are classified with the help of neural network
classifiers. The proposed model achieved an accuracy of 88%.

4.3. Machine Learning

In this section, several machine learning methods for classification and detection of
suspicious regions are encompassed (see Table 4. In greater detail, methods relying on
artificial neural networks, clustering techniques and classifiers such as SVM are tackled in
the following subsections.

4.3.1. Artificial Neural Networks

The artificial neural network (ANN) is simply a computing system inspired by the
biological neural network [86]. ANN works similarly to the biological neural networks of
the human brain but does not resemble the same. The basic structure of ANN is depicted
in Figure 7.

The functioning of ANN consists of two main steps: forward pass and backpropa-
gation. During forwarding pass, feature values (Xi) are multiplied by weights (Wi), and
the activation function is applied to each neuron. That generates a weighted output F(Xi).
The next layer ingests F(Xi), and the process repeats till the output layer is reached. A
typical ANN architecture can have one input layer, multiple hidden layers, and one output
layer. Artificial neural networks are trained using backpropagation, which relies on the
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previous layer feedback. Finally, in the output layer, ground truth data are compared with
the output generated by ANN. The loss function is responsible for determining the gap
between results and labelled data. For updating weights, this loss is then transmitted to
the network during the next iteration [87]. ANNs are among the most commonly used
AI approaches for building CADe systems for mammogram analysis. It can be applied in
different ways to mammograms; first, as a feature extractor and, second, as a classifier to
directly classify the region of interest (ROI) of an input mammogram [88].

Figure 7. Basic structure of ANN. ANNs are generally defined as having three different layers; an input layer, hidden layer,
and output layer. The input layer reads in data values from the user. There can be multiple hidden layers where actual
learning takes place, and finally there is an output layer which presents the final result of the ANN.

Artificial Neural Networks for Mammogram Analysis

In this subsection, ANN methods for detecting suspicious regions in mammograms
are described. Wu et al. [89] inspected the potentiality of ANN as a decision-making tool to
assist radiologist on mammogram analysis. In greater detail, the authors trained a three-
layer feedforward neural network to analyse mammograms, using hand-labelled features
by expert radiologists. Forty-three features allowed to reach 0.95 for the area under the ROC
curve on lesion classification. An ANN-based system to analyse interpreted radiographic
features from mammograms was proposed by Fogel et al. [90]. The model was trained
with evolutionary programming to indicate the presence of malignancies. For suspicious
masses, the model returned average area under ROC values of 0.91 with a specificity of 62%
and sensitivity of 95%. Halkiotis et al. [91] proposed a model to detect clustered microcalci-
fication using mathematical morphology and ANN. Morphological operators remove noise
and regional maxima. The authors reviewed two models based on ANN; a two-layer MLP
(multi-layer perceptron) and radial basis function neural networks (RBFNN) with variable
hidden layers. With 10-hidden nodes, MLP could score a 94.7% positive detection rate and
0.27% false positives per image. Ayer et al. [92] presented an overview of ANN in mam-
mography interpretation and diagnostic decision making and showed several limitations of
existing ANN-based systems for detection and diagnosis. Quintanilla-Domínguez et al. [93]
tackled the detection of microcalcifications using adaptive histogram equalisations and a
self-organising map (SOM). Computer simulations confirmed the model’s capability and
effectiveness to detect microcalcifications from mammograms. Papadopoulos et al. [94]
proposed an approach for detecting and characterising microcalcification clusters from
digitised mammograms. The method consists of three stages; cluster detection, feature
extraction and classification that provides the final characterisation. The classification stage
rule-based classifier, such as ANN and SVM, were evaluated using ROC analysis. The use
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of extra features extracted from the mammogram itself or collected from patient data could
help the diagnostic process. García-Manso et al. [95] developed a system to detect and
classify masses from mammograms. In this method, Independent Component Analysis
(ICA) method is used to extract blind features, and neural networks run the classification
process. Experimental results showed that the employment of heterogeneous datasets
takes to variation in performance. Hupse et al. [96] developed an ANN-based CAD system
to detect abnormal mass and architectural distortions from mammograms. The authors
compared the results of human readers and the CAD system. The performance of the
CAD system was close to that of certified experts in the field. One more CAD system for
mammographic image feature analysis and screening is proposed by Tan et al. [97]. The
system relies on ANN to predict the probability of a mammogram being positive. The
authors used a ten-fold cross-validation method to test the performance of the system. The
computed area under the ROC curve equalled 0.779 ± 0.025. Mahersia et al. [98] introduced
a mass detection technique based on three steps: enhancement, characterisation and classifi-
cation. The enhancement step helps to analyse breast texture. A Gaussian density function
is used in the wavelet domain to segment the breast mass during the characterisation step.
Last, a comparative classification method uses backpropagation networks and adaptive
network-based fuzzy inference system (ANFIS) techniques.

4.3.2. Clustering Techniques

Image segmentation is an essential task allowing the extraction of objects and their
boundaries in a given picture. It is safe to say that segmentation plays such a fundamental
role in medical image analysis. A properly segmented region helps practitioners retrieve
vital information for the detection of diseases and may help them in surgical planning [99].
Clustering techniques are somewhat similar to classifier methods, except they do not
use training data; hence they are called unsupervised methods. These methods iterate
segmented images and characterize each class with properties to compensate lack of
training data. K-means clustering relies on a simple algorithm, and it is moderately less
computationally expensive. It is well suited to mammogram images because most breast
regions can be clustered using pixel intensity values [100]. K-means algorithm partitions
the dataset into k different clusters that are non-overlapping, and each data point fits into
one cluster. Data points are assigned to clusters so that the total sum of the squared distance
between the data points and the cluster’s centroid (mean of all data point of that cluster) is
minimal. This approach helps to solve the expectation-maximization, where step E assigns
the data points to the nearest cluster, and step M is to find clusters’ centroids. The objective
function is as follows:

J =
m

∑
i=1

K

∑
k=1

wik || xi − µk ||2 (1)

where wik = 1 for data point xi if it belongs to cluster k; Otherwise, wik = 0 and µk is the
centroid of xi’s cluster

Clustering Techniques for Mammogram Analysis

A segmentation model was proposed by Kamil and Salih [101] to determine the bound-
aries of the tumour. The model builds on two algorithms based on clustering methods,
such as K-means and fuzzy C-means. The authors employed a lazy snapping algorithm
to improve model performances. After testing the model on the MIAS dataset, accuracy
rates of 91.18% and 94.12% were achieved by K-means and fuzzy c-means algorithm,
respectively. Ketabi et al. [102] presented a model to detect breast masses. It consists of
the combination of three different approaches: clustering, texture analysis and support
vector machine. Using data cleansing and greyscale enhancement, ROIs are detected
and then segmented using spectral clustering. Features such as shape and probabilities
are extracted from these segmented sections. For feature selection, the authors opted for
genetic algorithms (GA). Finally, for the classification process, linear kernel was used. On
the DDSM dataset, the classification accuracy obtained by the classification model is 90%.
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The segmentation of a region of interest from the image background is quite a complex task.
The resulting segmented areas are generally pretty noisy. Kumar et al. [103] handled this
issue by proposing a fuzzy c-means based model and incorporating similar superpixels
and spatial information. Features of breast tissues such as the size of mass and size of breast
ingested the model. The highest accuracy rate obtained was 84.32%. Hybridization of fuzzy
c-means algorithm was proposed in [104]. Chowdhary and Acharjya et al. [104] addressed
the co-presence of coincident clusters in the same mammogram with a possibilistic and
intuitionistic fuzzy c-means.

4.3.3. Support Vector Machine (SVM)

In 1992, Boser et al. [105] presented a supervised algorithm for classification that
successively evolved into the well-known support vector machines (SVMs) [106]. The
key innovations of SVMs were the use of convex optimization, statistical learning theory,
and kernel functions. The SVM method has been widely adopted in biomedical image
analyses. Fixed-size region of interest (ROI) patches are extracted from mammogram
images; then, patches are usually pre-processed for enhancement purposes. Afterwards, a
feature extraction step is necessary to ingest SVM to train a model for classification. This
entire process is presented in Figure 8.

Figure 8. Mammogram image analysis by SVM. Input to the model is the mammogram image.
Fixed-size region of interest (ROI) patches are extracted from mammogram images; pre-processing is
done on extracted patches to improve the quality. Afterwards, a feature extraction step is needed to
ingest SVM to train a model for classification of patches as benign or malignant.

The main idea of this approach is to find a line called hyperplane in N dimensions,
which classifies the input data samples. A hyperplane is an (N − 1)-dimensional subspace
for an N-dimensional space. Mathematically, the hyperplane is defined as follows:

w1x1 + w2x2 + · · ·+ wdxd + β0 = 0, (2)

Here, d is the number of features, xd and wd are dth feature and weights, respectively.
β0 is bias.

The main challenge of this approach is to find a plane called the maximum margin
plane, which is necessary for accurate result prediction and generalised classifier. There
is always an adjustment between correct classification and a large margin. If the margin
is maximised to obtain better quality results, support vectors (data points closer to the
plane) may be considered members of the other class. On the other way round, the
margin could be narrow if we want an exact classification, which can lead to an improper
or lower accuracy level of the model [107]. SVMs are widely adopted techniques for
classification and regression task. SVM achieves very high accuracy rates when the data
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are linearly separable. For nonlinear data, kernel functions remodel nonlinear data to
a high dimensional space; afterwards, SVM ingests the remodelled data. Varieties of
kernel functions, such as linear, nonlinear, polynomial, and sigmoid are available for the
purpose. When using SVM, the selection of kernel function and its parameters is a crucial
challenge [108].

SVM for Mammogram Analysis

In this subsection, SVM-based techniques for mammogram analysis are described.
Liu et al. [109] proposed the integration of possibilistic fuzzy C-means (PFCM) clustering
and a weighted SVM to detect clusters of microcalcification regions. Suspicious regions
are extracted using the region growing method and active contour segmentation. For
each of these regions, texture and geometry features are obtained. For every sample,
weights are calculated according to possibilities and typical values from the PFCM and
the available ground truth. Suspicious regions of microcalcification are classified using
weighted nonlinear SVM. This method was examined over around 410 images and com-
pared with unweighted SVM. The performance of the model was evaluated based on
ROC and FROC curve. The proposed approach could get better results as compared to
standard SVM. A team of researcher presented a method in [110] for detecting masses from
mammograms. Thresholding, correlation function and SVM tackled the detection process.
Pre-processing increased the image contrast using a low pass filter. Wavelet transform with
a linear function was used to enhance an image. The authors performed segmentation
using thresholding. The post-processing step consisted of shape descriptors and SVM.
Finally, SVM was again used for the classification process. Ancy and Nair [111] proposed
a technique to detect breast cancer from mammograms using a gray level co-occurrence
matrix (GLCM)–based SVM. After preprocessing a single view mammogram, ROI seg-
mentation and GLCM feature extraction followed the classification process. This method
was evaluated using two mammogram datasets named MIAS and University of South
Florida Digital Mammography (USFDM). Qayyum and Basit [112] offered a model of
breast cancer detection consisting of three main steps such as breast region segmentation
(Otsus algorithm), pectoral muscle removal (using canny edge detection) and classification
of normal and abnormal tissues (using SVM). Gray level co-occurrence matrices (GLCM)
were used for feature extraction. The model was evaluated on the MIAS dataset. Re-
sults compared to previously proposed methods showed the reliability of the method of
Qayyum et al. A CAD to detect suspicious areas in mammograms and classify them as
benign or malignant was proposed by Sharma and Khanna [113]. The preprocessing step
fulfilled the background breast region separation. Zernike moments of different orders
described fixed-size (128 × 128) patches extracted from input mammograms as feature
vectors. SVM eventually classified the extract ROI patches that. The experimental result
showed better results obtained with order 20 Zernike moments and an SVM. To detect
mammogram image features, Vijayarajeswari et al. [114] used Hough transform, and these
features are used as an input to the SVM classifier. This model achieved an accuracy of 94%,
which was very good when compared to the accuracy obtained by the LDA classifier (86%).
Findings from various articles based on Machine Learning approaches for breast cancer
diagnosis are summarised in Table 4. Some techniques are also compared in Figure 9 Due
to the heterogeneity of datasets and metrics reported in the reference articles, only the
accuracy rates of machine learning and deep learning over DDSM and MIAS are plotted in
Figure 9.
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Table 4. Machine learning approaches for breast cancer diagnosis from mammograms.

Reference Technique Task Performed Dataset Model Performace

[101] Clustering Mass Segmentation MIAS K-means: 91.18%
Fuzzy c-means: 94.12%

[102] Clustering Mass Detection DDSM Accuracy: 90%

[103] Clustering Suspicious Lesion
Segmentation MIAS Accuracy: 84.32%

[109] SVM Microcalcification
Detection InBreast

ROC: 0.8676
Sensitivity: 92%
FPR: 2.3 clusters/image

[110] SVM Mass Detection,
Mass Classification DDSM

Sensitivity: 92.31%
Specificity: 82.2%
Accuracy: 83.53%
ROC: 0.8033.

[111] SVM Tumor Detection USFDM,
MIAS

Precision:0.98
Sensitivity: 0.73
Specificity: 0.99
Accuracy: 0.81
Score: 0.758

[112] SVM Segmentation,
Classification MIAS Accuracy: 96.55%

[113] SVM Abnormality Detection IRMA,
DDSM

IRMA: Sensitivity: 99%
Specificity: 99%
DDSM: Sensitivity: 97%
Specificity: 96%

[114] SVM Mammogram Classification MIAS Accuracy: 94%

[89] ANN Lesion Classification Mammography
Atlas ROC: 0.95

[90] ANN Mammogram Feature Analysis Private
ROC: 0.91
Specificity: 62%
Sensitivity: 95%.

[91] MLP, RBFNN Microcalcification Detection MIAS Positive detection rate: 94.7%
False positives per image: 0.2%

[94] SVM, ANN Microcalcification
Characterization MIAS

SVM: Original feature set, Az: 0.81
Enhanced feature set, Az: 0.80
ANN: Original feature set, Az : 0.73
Enhanced feature set, Az: 0.78

[95] ANN Detect and Classify Masses DDSM AUC = 0.925

[96] ANN Detection of Mass and
Architectural Distortion Private TPF: 0.620

[97] ANN Detection of Breast Cancer Private AUC = 0.779 ± 0.025
[98] ANN Mass Detection MIAS Recognition Rate = 97.08%

Pros and Cons of Machine Learning Approaches

The previous sections encompassed several machine learning methods, such as clus-
tering, ANN and SVM, accomplishing computer vision tasks over mammograms. Here
pros and limitations of those techniques are stressed out to enrich the narrative with some
considerations and experimental details. Models’ performances are reported in Table 4
according to tasks performed, techniques adopted, and datasets used. For example, the
methods of Kamil et al. [101] and Kumar et al. [103] proved the highest accuracy rates,
respectively, with 94.12% and 90% over MIAS and DDSM among the clustering-based
methods. The ANN-based method proposed by Fogel et al. [90] reached a high sensitivity
rate of 95% on a private dataset. At the same time, specificity is lower by 33%, show-
ing a not negligible number of false positives. Conversely, the ANN-based methods by
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García-Manso et al. [95], and Mahersia et al. [98] achieved, respectively, 0.925 in AUC
on DDSM and ranked the highest recognition rate of 97.08% on MIAS. Overall, the best
performances over IRMA and DDSM datasets are shown by SVM in the method proposed
by Sharma and Khanna [113]. They obtained, respectively, 99% of sensitivity and specificity
on IRMA, and 97% sensitivity and 96% specificity on DDSM. Qayyum and Basit [112]
reached 96.55% accuracy in both segmentation and classification of suspicious regions over
MIAS. Overall, supervised machine learning approaches such as SVM and ANN outrank
clustering techniques in the detection of suspicious areas on mammograms, even though
the fuzzy c-means–based method by Kumar et al. [103] achieves up to 94.12% accuracy
on MIAS.

4.4. Deep Learning Approaches
4.4.1. Supervised Deep Learning

Other than conventional machine learning approaches, newer AI approaches called
deep learning (DL) [13] are playing a critical role in the progress of many scientific fields.
Unlike the more traditional machine learning techniques, DL architectures are fed with
raw data and automatically build those data representations necessary for detection or
classification. Deep learning architectures consist of several simple but non-linear modules,
which process the representation at different levels, spanning from the raw input to in-
creasingly higher representation layers. Deep learning methods, figuratively speaking, are
like complex algebraic circuits whose connections can be fine-tuned. The word deep takes
after the many layers characterising architectures. Deep also means that computations
across the whole architecture pipeline have many steps. Deep learning is currently the
most widely used approach for visual object recognition, machine translation, speech
recognition, speech synthesis, and image synthesis. Over the last decades, AI researchers
extended pre-existing architectures and proposed some new ones. Fully convolutional
networks (FCN), region-based CNN (R-CNN), faster R-CNN, and mask R-CNN, ResNet,
inception, VGGNet, feature pyramid networks, cascade R-CNN and libra R-CNN are just
some of the most popular architectures adopted for classification and detection tasks. This
section discusses deep learning–based approaches for the detection of suspicious regions
in mammograms. Table 5 summarises articles based on both supervised and unsupervised
deep learning approaches for breast cancer diagnosis.

Fully Convolutional Network (FCN)

FCN was proposed in [115] is characterised with exclusively locally connected layers
like convolutional, pooling and upsampling across encoder and decoder branch. By
avoiding dense layers, this network reduces the number of parameters making training
faster. FCN also includes downsampling (encoder) and upsampling (decoder) path for
extracting and interpreting an image and localisation context, respectively. This network
can work with input images of any size and returns output with equal input dimensions.
The network also adopts the concept of skip connection to recover the loss of fine-grained
spatial information during the downsampling path.
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Table 5. Deep learning approaches for breast cancer diagnosis.

Reference Technique Task Performed Dataset Model Performace

[116] FCN Breast Density Estimation Private
Pearson’s rho values:
CC View: 0.81
MLO View: 0.79

[117] FCN Mass Segmentation DDSM, INBreast

DDSM:
Dice similarity coefficient: 0.915 ± 0.031
Hausdorff distance: 6.257 ± 3.380
INBreast:
Dice similarity coefficient: 0.918 ± 0.038
Hausdorff distance: 2.572 ± 0.956

[118] FC-Densenet Tumor Segmentation Private
Dice Index: 0.7697
Pixel Accuracy: 0.7983
Intersection Over Union: 0.6041

[119] Unet Mass and Calcification
Detection CBIS-DDSM, INBreast MassDice score: 67.3%

Sensitivity: 70.3%

[120] Attention Dense—Unet Mass Segmetation DDSM

F1 Score: 82.24 ± 0.06
Sensitivity: 77.89 ± 0.08
Specificity: 84.69 ± 0.09
Accuracy: 78.38 ± 0.04

[121] Dense-Unet Calcification Detection CBIS-DDSM

Accuracy: 91.47%
Sensitivity: 91.22%
Specificity: 92.01%
F1 Score: 92.19%

[122] CSA Block,
Cascade RCNN Mass Detection Private, CBIS-DDSM Average precision: 0.822

Average recall: 0.949

[123] Faster RCNN Mass Detection INBreast, Private TPR—0.88
FPs/I—0.85

[124] Faster RCNN Mass Detection OMI, INBreast

TPR at FPI:
OMI-H: 0.93 at 0.78 OMI-H
OMI-G: 0.91 ± 0.06 at 1.70
Inbreast:
0.92 ± 0.08 at 0.30
0.85 ± 0.08 at 1.0
0.95 ± 0.03 at 1.14

[125] RCNN Architecturak Distrotion
Detection DDSM Sensitivity and specificity: 80%

FPI: 0.46, TPR: 83%

[126] Faster RCNN Mass Detection DDSM Average Precision:
Inception ResNet V2: 0.85

[127] Mask RCNN-FPN
Multi Detection and
Segmentation of Breast
Lesions

DDSM, INBreast Overall Accuracy: 91%

[128] Faster RCNN Mass Detection Private AUC: 0.96

[129] Faster RCNN Detection and Classification of
Mammogram Lesions INBreast AUC: 85%

[130] GAN, ResNet Data Augmentation,
Mammogram Classification DDSM AUC: 0.896

[131] GAN, U-Net Data Augmentation,
Classification OMID AUC: 0.846

[132] GAN Mass Image Synthesis DDSM, Private AUC DDSM: 0.172 Private: 0.144
[133] CycleGAN Mass Image Synthesis BCDR, INBreast -
[134] GAN Mammogram Synthesis Private -
[135] Sparse Autoencoder Breast Density Segmentation Private PMD scores on AUC: 0.59
[136] Sparse Autoencoder Breast Asymmetry Analysis Private Sensitivity: 0.97
[137] Denoising Autoencoders Breast Density Scoring Private AUC: 0.68
[138] Stacked Autoencoders Mammogram Classification MIAS 98.50%

[139] Sparse Autoencoder,
ML classifiers Mass Classification MIAS Accuracy by Random forest: 98.89%

[140] Autoencoder Mammography Classification INBreast, IRMA Accuracy: 98.45%

FCN for Mammogram Segmentation

FCN is mainly employed for semantic segmentation and widely adopted by the re-
search community for breast cancer diagnosis and segmentation. Lee and Nishikawa [116]
presented a fully automated deep learning–based system to estimate breast density from
mammograms. A fully convolutional network is used for the segmentation of breast and
dense fibroglandular areas. The model results are compared with the state-of-the-art al-
gorithm called the laboratory for individualised breast radio density assessment (LIBRA).
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Breast percentage density (PD) and dense area fraction are estimated by the model cor-
related with the Breast Imaging Reporting and Database System (BI-RADS) assessment
strategy. The proposed model also showed notable results to separate each BI-RADS breast
density class where LIBRA failed. A multichannel and multiscale fully convolutional
network for mammogram mass segmentation was proposed by Xu [117]. Preprocessing
was carried out to reduce the influence of nearby structures that are negligible. Multi-
scale features are learnt from various resolution levels for obtaining smooth boundary and
global mass localisation. The model was evaluated and compared on two publicly available
datasets: DDSM and INBreast. Indexes such as the Dice similarity coefficient and Hausdorff
distance revealed the method’s performance. Values obtained for these measures were
0.915 ± 0.031 and 6.257 ± 3.380 on DDSM and 0.918 ± 0.038 and 2.572 ± 0.956 on INbreast,
respectively. Hai et al. [118] set up an end-to-end fully convolutional network to segment
breast tumour. Hai et al. [118] addressed diversity in shape and size of abnormal tumours
by introducing multiscale image information into the fully convolutional dense network.
The utilisation of a weighted-loss function tackled the problem of a not well-balanced class
image number. The absence of preprocessing and post-process steps makes the system
lighter weight. A method to detect abnormalities like mass and calcification was proposed
by Sathyan [119]. These abnormalities are segmented using a fully convolutional architec-
ture called Unet [141]. This model for mass segmentation and calcification segmentation is
trained on the CBIS-DDSM and INBreast datasets, respectively. A fully automated deep
learning–based method was proposed by Li et al. [120] using densely connected U-Net
along with attention gates (AGs). The system includes an encoder–decoder pair. U-Net
consists of an encoder (densely connected convolutional network) and a decoder branch
(an attention gate in this case). Performance parameters, such as sensitivity, specificity,
Fi-score, etc., allowed the authors to evaluate and compare their method to state-of-the-art
methods. AlGhamdi et al. [121] developed a model to detect breast arterial calcifications
using U-Net with dense connectivity. This model allows the reuse of computation that is
already done and improves the gradient flow, leading to better model accuracy.

Region Based Neural Networks

The latest research emphasises improvements in feature extraction, feature selection
and feature classification capabilities of CNNs. CNN instances, such as RCNN, Fast RCNN
and Faster RCNN lay on the so-called region proposals. Region proposals are tiny image
regions containing objects of interest (the object of interest depends on the application
domain). It helps to predict probable object positions from the image. The selective search
approach is commonly used to generate region proposals. This section provides insight
into such region-based networks.

Region Based Convolutional Neural Networks (R-CNN)

R-CNN was proposed by Girshick et al. [142] in 2013. It builds on a selective search
approach used to generate thousands of region proposals. Selective search is a greedy
method combining small segmented regions for generating region proposals. A CNN
ingests 2000 region proposals for computing features ingested by SVM to classify the object
of interest. However, RCNN presents some limitations.

• The approach is not suitable for real-time applications because of its computational cost.
• Selective search approach is not flexible; no learning takes place in it.
• Training happens in three phases; CNN fine-tuning, SVM training and bounding box

regressor on thousands of candidate proposals.
• For all region proposals, it is necessary to save feature maps that need a large amount

of memory space during training.

Fast RCNN

Girshick [143] designed fast RCNN to solve the computational load of RCNN architec-
tures and detect the object of interest (suspicious regions in mammograms). In Fast R-CNN,
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selective search generates 2000 region proposals from the input image as in R-CNN. All the
region proposals, alongside the input image, are then passed onto a CNN for generating
feature maps. For each of these region proposals, the region of interest pooling layer
extracts fixed-size feature vectors. Layers of softmax and bounding box regressor ingest the
extracted feature vectors for the classification of region proposals. Fast R-CNN is based on
pre-trained networks (trained on ImageNet dataset, such as the VGG-16 network) with 5 to
13 convolutional layers and five max-pooling layers. A summary of the overall architecture
is given below:

• The CNN architecture takes image (size = 224× 224× 3 for VGG-16) and its region
proposal and outputs the convolution feature map (size = 14× 14× 512 for VGG-16).

• Last pooling layer (layer before fully connected layer) is replaced with a region of
interest pooling layer.

• Final fully connected layer and softmax layer are replaced by twin softmax layers and
a bounding box regressor.

Improveed R-CNN: All 2000 candidate region proposals do not need to pass into CNN
architecture; convolution operation is performed only once per image to generate a feature
map. The entire network is combined and trained together hence decreasing the need for
additional disk memory during training.

Faster R-CNN

Although Fast R-CNN achieved some improvements compared to R-CNN, it still
suffers from a high computational cost that discourages its employment for real-time
applications. The leading cause of the computational load finds its roots in the selective
search algorithm. Ren et al. [144] designed Faster R-CNN attempts to overcome the
mentioned issue building on two networks: Region Proposal Network (RPN) and Object
Detection Network. The backbone of this architecture is a CNN which is common between
object detection network and region proposal network. The authors of Faster R-CNN
experimented with ZFNet and VGG-16 as the architecture’s backbone. The feature map
produced by the backbone layer inputs the region proposal network to build anchors
generated by sliding window convolution. The detection network of Faster R-CNN works
similarly to Fast R-CNN. An ROI pooling layer is introduced to extract fixed-size region
proposals. Twin softmax classifier and bounding box regressor are used for predicting and
detecting objects of interest.

Region Based Neural Networks for Mammogram Analysis

Ribli [129] proposed a Faster R-CNN-based CAD system to detect and classify mam-
mogram lesions. The method is compared to state-of-the-art techniques in the domain
on the INBreast dataset. This model achieved second place in the DREAM Challenge
for Digital Mammography, with an AUC value of 0.85. Authors also have made source
code available to https://github.com/riblidezso/frcnn_cad (accessed on 1 June 2021).
Xiao et al. [122] focused their efforts on making effective interlayer features and support-
ing improvements on detection capability. The authors used a novel attention module
called CSABlock of the cascade R-CNN model. An adaptive pre-training strategy added
to improve the detection capability further. A method for bilateral mass detection was
performed by Zhang [123] using two different approaches such as supervised learning
and Siamese-Faster-RCNN. To find regions of interest, authors have used morphological
features and threshold segmentation. A network of supervised learning retrieves spatial
transformation between the bilateral areas of the breast. Once these regions are registered,
Faster RCNN performs mass detection. Preliminary results showed that bilateral analysis
performs well for mass detection on single mammograms.

An automated method for mass detection in breast mammogram was developed by
Agarwal et al. [124]. The technique relies on a Faster R-CNN model. Agarwal et al. first
benchmarked their method on the OPTIMAM Mammography Image Database (OMID).
When compared to the state-of-the-art techniques, their approach showed higher accuracy

https://github.com/riblidezso/frcnn_cad
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rates. Architectural distortion is one of the possible pre-malignant indications of breast
cancer that can be missed out due to oversight errors. Ben-Ari et al. [125] developed a
model to detect architectural distortion with an R-CNN based model. The method is
tested on the DDSM mammogram dataset compared with another region-based network
called faster RCNN and other previous work. A faster RCNN–based method to locate and
classify breast lesions was presented by Zhang et al. [126], where mages are preprocessed
to obtain better quality results. These images are then passed to five different feature
extractors. These five models are used to see the difference in the Faster RCNN for the
classification process. Finally, the regional suggestion network (RPN) is used to obtain
detected regions. The results of simulations have proved that Inception ResNet V2 gives
better performance as a feature extractor than the rest four models. Detecting multiple
lesions contained in single mammograms is still an open issue. Most of the current literature
consists of methods dealing with detections of single abnormalities in mammograms.
Bhatti et al. [127] presented in dealt with multiple detection and segmentation of lesions for
precise diagnosis. A ROI-based CNN called mask RCNN along with the feature pyramid
network was used by the researchers. Bhatti et al. [127] extracted semantic features of an
image on different resolution scales with the feature pyramid network (FPN). This model
was trained and tested on two public datasets and achieved an overall accuracy rate of
91% when compared to other detection and segmentation architectures. Fan et al. [128]
developed a computer-aided detection system for breast mass detection. It relies on Faster
RCNN, and the experiments were conducted on a private mammogram dataset. The input
images were taken using digital breast tomosynthesis (DBT). Authors have proposed CNN
architecture with a region proposal network called RPN. This network generates region
proposals in bounding boxes and a likelihood score of mass for each input slice. A free-
response receiver operating characteristics (FROC) curve evaluates model performances.

4.4.2. Unsupervised Deep Learning

Supervised Deep Learning approaches use previously labelled images to train models
for classification and detection purposes. Among the many DL architectures, deep convolu-
tional neural networks are heavily reliant on a high number of images to avoid the so-called
overfitting during training steps [145]. The biomedical imaging domain lacks publicly
available datasets containing manually labelled images. As described by Samala et al. [146],
Data Augmentation and transfer learning techniques allow for overcoming the limitations
mentioned above. The employment of pre-trained DL networks and their fine-tuning over
a new application domain (mammogram images in our case) with the Transfer Learning
paradigms are pretty standard for detecting suspicious regions in mammograms. Unsu-
pervised deep learning approaches build on a training set of unlabelled images. The first
objective is to learn new data representations, for example, by detecting a feature that
makes it easier to extract some regions from images. The second is to learn a generative
model as a probability distribution [145].

Autoencoders

Autoencoder is an unsupervised approach based on artificial neural networks. It
learns how to compress and encode input data and, then, it rebuilds the data back from
those encoded. Due to its design, it often reduces the data dimensionality while ignoring
data noise. According to Baldi [15], autoencoders help to optimise lower-dimensional
encoding by reducing the rebuilding error. Out of various forms of this approach, stacked
autoencoders (SAEs) are used mainly for end-to-end learning to extract deep features from
an image and segmentation. Stacked autoencoders can extract illustrative hidden patterns
from the input image. This network addresses the problem of high variation in breast mass
appearance or mass shape. (Stacked denoise autoencoder) SDAE-based models can reduce
the inaccuracy of systems based on image processing being a noise-tolerant technique [147].
Kallenberg et al. [135] proposed a method to learn feature hierarchy from unlabelled data.
This model is a convolutional sparse autoencoder (CSAE), a sparse autoencoder within
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the CNN structure. The main objective of this model is to segment breast density and
obtain a risk score by acquiring features from unlabeled data. Afterwards, Kallengberg et al.
trained a classifier to map those features to the labels of attention. The results showed that
the density score has a robust connection with manual ones and that the method can be
applied to any other segmentation task. For breast cancer detection, radiologists prefer to
use both MLO and CC views to check the presence of lesions in mammograms. In 2016,
Yang et al. [136] introduced a method based on sparse autoencoder to perform asymmetry
analysis employing bilateral mammograms. The authors ran preprocessing steps on both
the image sides and flipped the other side of the image in the same direction with the
reference image. A shape context-based region matching method retrieved corresponding
areas in images. Finally, the authors calculated similarities between the reconstructed
vector and contralateral feature vector and got favourable results. This model produces a
reconstruction vector by taking one side of bilateral regions as input. Finally, the similarity
is calculated between the output regions of the model and matching input regions. A
method to automatically generate feature sets from unlabelled and labelled data was pre-
sented by Petersen et al. [137]. It is an unsupervised approach called denoising autoencoder
that accomplishes the contextual segmentation of an image. This method scores the density
of breast of around 85 mammograms. It was shown that the proposed score correlates
well with techniques of manual scoring, such as BI-RADS and Cumulus. An unsuper-
vised deep learning-based technique was used by Selvathi and Poornila [138]. Stacked
autoencoder and softmax classifier were combined together to form a deep network in
this work. Four hidden layer autoencoders are used in the model. Mammograms are first
preprocessed to remove artefacts and background noise to make the deep learning model
more effective. After segmenting the region of interest, a deep network is used to detect
cancer and calculate the density score. The model was tested on the MIAS dataset and
achieved an accuracy rate of 98.5%. An integrated system with sparse autoencoder (SAE)
and ML classifiers, such as decision tree, KNN, SVM and random forest, was developed by
Selvathi and Poornila [139]. The SAE learns representations of features from images and
classifiers cascaded with SAE and classification based on extracted features. The authors
presented a comparative analysis of all these classifiers and showed that random forest
gives the highest accuracy for the classification process. For mammography classification,
a method for reducing and transforming features was presented by Taghanaki et al. [140].
Non-linear multi-objective autoencoders are used to change and reduce the total number of
features to minimise feature reconstruction and classification errors. This method achieved
a classification accuracy rate of 98.45%.

Generative Adversarial Networks (GAN)

Goodfellow et al. [148] proposed GANs (Generative Adversarial Networks) in 2014.
The researchers widely adopt generative networks for data augmentation and sample gen-
eration [149]. Hussain et al. [150] examined GANs for data augmentation and generated
mammogram datasets. The architecture of GAN consists of two networks: generator and
discriminator. The generator helps to synthesize good quality images, and these images
try to deceive the discriminator model trained on ground truth data. There are multiple
variants of GAN. Figure 10 presents the basic architecture of GAN for generating and
validating synthetic images. A GAN variant was proposed by Radford et al. [151]. The
authors added batch normalization and discarded hidden layers that are fully connected.
Singh et al. [152] proposed conditional generative adversarial network (cGAN) to segment
mass from mammograms’ regions of interest. This model learns to represent masses for
the creation of binary masks. The discriminative model discriminates masses from binary
masks. The proposed model can also classify detected masses into four different categories:
round, oval, lobular, and irregular. Class conditional GAN was proposed by Wu et al. [130]
to achieve contextual in-filling to synthesize lesions onto the original input mammogram.
The authors showed that GAN generates good quality synthetic images. Data scarcity and
class asymmetrical distribution are two significant challenges in the biomedical imaging
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domain. Wu et al. [131] proposed a data augmentation method relying on a U-Net based
model. They used semi-supervised learning and self-attention components to synthesize
lesions onto healthy mammogram patches and to remove lesions from patches where they
were present. Another similar method for the generation of different images of masses
and using contextual infilling was presented by Shen et al. [132]. The method pairs fea-
ture descriptors from actual suspicious regions and the matching binary masks so the
generator can extract matching shape, context details and boundaries. Experiments were
conducted on DDSM and private datasets. The results show a 5.03% of improvement
in detection rates when using the augmented dataset over original mass images. Korki-
nof et al. [134] proposed a method using progressively trained GAN to generate realistic
and high-resolution synthetic mammograms. The model can generate high resolutions
images, namely 1280 × 1024 pixels, which is the highest resolution achieved for medical
image synthesis. Types of failures in the image generations are also reported in the paper.
A system to insert and remove malignant features on mammograms was proposed by
Becker et al. [133]. In their work, Becker et al. further determined whether human expert
readers can easily understand whether the images were AI-generated. The system’s perfor-
mance was evaluated and compared with three experts in the field to rate abnormality and
the probability of an image being modified. However, the proposed solution represents a
substantial trade-off between high-quality image generation and percentages of artefacts
in themselves. The code and toy dataset has also been made available by the author at
github.com/BreastGAN/experiment1 (accessed on 1 June 2021).
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Figure 10. Architecture of GAN. The GAN comprises two networks: generator and discriminator. Generator synthetically
generates images by adding noise, this is an unsupervised task. Discriminator tries to find whether images generated by
the generator are real or fake as a supervised task. Both these networks compete against each other and gradually learn to
produce better results.

4.4.3. Pros and Cons of Deep Learning Approaches

This subsection outlines some considerations about the pros and cons of supervised
deep learning techniques such as FCNs and region-based neural networks and unsuper-
vised deep learning methods, such as GANs and autoencoders. In Table 5, the methods
mentioned above are listed according to techniques, tasks, datasets and performance met-
rics. AlGhamdi et al. [121] showed remarkably high accuracy, specificity and sensitivity
rates, respectively, 91.47%, 92.01% and 91.22%, on DDSM in calcification detection with
Dense-Unet FCN. Conversely, Unet in calcification detection achieved only 70.3% sensitiv-
ity on DDSM. Among FCN-based methods, the technique of Xu et al. [117] proved to have
remarkably high inference knowledge capabilities scoring 0.91 dice similarity coefficient on
two different datasets (DDSM, INBreast) in mass segmentation. Bhatti et al. [127] showed
reasonably accurate performances of the Mask RCNN-FPN method on DDSM and INBreast
in detection and segmentation of breast lesions (91% accuracy). Overall, both FCNs and
RCNNs reach high accuracy rates in the detection and segmentation of masses. Being
them supervised deep learning approaches, they go through a training step that plays a
critical role in their performances. Concerning the unsupervised deep learning approaches,
the performance of autoencoders and GANs is mainly benchmarked here against some
particular tasks, such as mammogram image synthesis, mass detection, mass segmentation.
Furthermore, some of them are paired with FCNs or classifiers to accomplish some specific
tasks. The methods of We et al. [130,131] rely on GAN to perform data augmentation;
then, the data are ingested by ResNet and Unet for classification. In both cases, the com-
bination of the two techniques showed accurate performances on DDSM (0.896 in AUC)
and OMID (0.846 in AUC). Korkinof et al. [134] opted for GAN to generate mammogram
images, but they did not provide benchmarks for comparisons to other state-of-the-art
techniques. The same consideration goes for CycleGAN, adopted by Becker et al. [133]
for mammogram synthesis. Sparse autoencoders are used by Yang et al. [136] to analyse
breast asymmetries (sensitivity 97%) on a local dataset. However, they did not account for
specificity and false positives rates. On the other hand, sparse autoencoders are noticed
to lack accuracy in breast density analysis. In greater detail, Kallenberg et al. [135] scored
0.59 on AUC; Petersen et al. used denoised sparse autoencoders, obtaining 0.62 AUC on
a private set of data. The autoencoder-based methods by Selvathi and Poornila [138,139]
and Taghanaki et al. [140] performed remarkably well in mammogram classification. For
example, Selvathi and Poornila [138] achieved 98.50% accuracy on MIAS using stacked
autoencoders. Furthermore, they improved by 0.39% when they combined sparse au-
toencoders and random forest [139] and ran it over MIAS. Taghanaki et al. [140] reached
98.45% accuracy on two different datasets, INBreast and IRMA, using a multi-objective
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optimisation of deep auto-encoder networks. The autoencoder optimises mean squared re-
construction error (MRE) and mean classification error (MCE). It appears to be a significant
step forward in developing AI methods without the training step needed.

5. Discussion

This study surveys several scientific articles on suspicious regions detection in mam-
mograms using a bottom-up approach, spanning low-level image feature-based techniques
to deep learning techniques. One of the main points of this work is to analyse different
approaches under three central perspectives: feature extraction, architectures used, and
datasets employed to carry out experiments to detect and/or classify suspicious regions in
mammograms.

Final Points

• This paper surveys methods and techniques tackling the detection of suspicious
regions in mammograms. The narrative of this work is bottom-up, spanning low-level
image feature-based approaches to deep learning architectures. The paper provides
summaries of different approaches in tables. In Tables 2–5, a thorough description
of features, performed tasks, datasets, performances is given for the aforementioned
methods. Most approaches tackle mass detection and classification, while others
address mammogram enhancement, microcalcification detection, and mammogram
image generation with unsupervised deep learning architectures. Missing rates on
datasets do not allow comparing some methods’ performances. Both MIAS and DDSM
datasets stand out in the tables because their employment is far higher than others.

• Machine learning methods are reliable on most datasets. A method based on textural
and shape features and K-means [45] achieves sensitivity rates higher than 94%
on both datasets; a technique [44] relying on local contour features, 1D signature
contour subsection and SVM shows an accuracy rate of 99.6% on a subset of DDSM.
Elmoufidi et al. [50] obtained 96% of accuracy on MIAS using a swarm optimisation
algorithm for heuristic parameter selection. The method in [40] adopts morphological
features for mass detection in mammograms and achieves 92% of sensitivity, but
no performance metrics are given about false positives. Geostatistical and concave
geometry (alpha shapes) features [52] allow achieving high detection rates on MIAS
(97.30%) and DDSM (91.63%). An LBP (local binary pattern) based method [58] turns
out to be quite reliable for mass classification in MIAS (99.65% sensitivity and 99.24%
specificity). A morphological top-hat transform method [61] is successful in mass and
microcalcification detection on MIAS with around 99% specificity and sensitivity rates
(Table 2). As highlighted in the pros and cons sections, when low-level image feature
descriptors feed into deep neural networks, as in the method by Utomo et al. [70],
they can achieve remarkably well (100% specificity and sensitivity rates) on MIAS.
The same is true for methods relying on BoF (Bag of Features) and SVM, meaning they
are discriminative features for mass classification in mammograms (DDSM). Accuracy
rates are achieved by Deshmuk and Bhosle [75] on MIAS (92.3% accuracy) and DDSM
(96.8% accuracy) by using an optimised SURF descriptor.

• As listed in Table 4, machine learning methods show some remarkable differences
with methods in Tables 2 and 3. Clustering-based methods by Kamil et al. [101] and
Ketabi et al. [102] cannot achieve accuracy rates higher than 94% on MIAS and 90%
on DDSM. Sharma et al. [113] achieved high performances in mass detection and clas-
sification on IRMA (specificity 99% and sensitivity 99%) and DDSM (specificity 96%
and sensitivity 97%) using SVM. The ANN method proposed by Mahersia et al. [98]
achieved an average mass recognition rates of 97.08% on MIAS.

• Deep learning methods (Table 5) raise the bar, exploiting their inference knowl-
edge capabilities on more than a single dataset. The autoencoder-based method
by Taghanaki et al. [140] performed mammography classification with 98.45% accu-
racy on INBreast and IRMA. The methods of Selvathi et al. [138,139] scored around
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99% accuracy on MIAS by leveraging stacked autencoders, and sparse autoencoder
plus random forest.

• Bruno et al. [29] highlighted how convolutional neural networks’ performance could
be affected with noise and bias embedded with training dataset images. The availabil-
ity of larger sized datasets might fully unleash the inference knowledge capabilities
of deep learning architectures. Furthermore, it would enable a training-from-scratch
process for neural networks. Further comparisons could be then carried out with
pre-existing DL models that are fine-tuned over a limited sized mammogram dataset
using transfer learning. It is necessary to highlight that most deep learning methods
in the biomedical imaging field currently adopt the above-mentioned pipeline laying
on data augmentation plus transfer learning, due to the lack of publicly available and
manually annotated datasets.

• The good performances in mammogram synthesis obtained by Becker et al. [133] and
Wu et al. [130,131] open new perspectives to the generation of larger mammogram
datasets.

6. Conclusions

Image processing and artificial intelligence have progressed and expanded signif-
icantly in the medical field, especially diagnostic imaging. These advancements have
greatly influenced computer-aided diagnosis (CAD) systems to detect and/or classify
suspicious regions from mammograms. This study wants to represent a comprehensive
insight into various approaches based on low-level image features, machine learning, and
deep learning by comparing them on publicly available datasets. The performance of
these approaches guides researchers in this domain to select an appropriate method for
their applications. Computational models based on these approaches generally represent
the core of CAD (computer-aided diagnosis) systems, suggesting regions of interests and
leaving last words to medical doctors and practitioners. In this section, concise replies to
the questions raised at the beginning of the paper are provided and described as follows:

(1) Shape-based, texture-based and local keypoint descriptors are the most common
techniques used to extract low-level image features from mammograms;

(2) Machine learning approaches such as SVM, ANN, and various clustering tech-
niques are also quite successful over various medical imaging tasks, especially to
detect/classify abnormality from mammograms;

(3) Both supervised and unsupervised DL approaches have proven to be best for various
mammogram analysis tasks;

(4) As listed in Table 1, researchers in the community of biomedical imaging ran experi-
ments on different publicly available and commonly cited datasets such as SureMaPP,
DDSM, INBreast, BCDR, IRMA, BancoWeb LAPIMO etc. Each dataset features images
with several properties, due to different acquiring device properties.

Much work has already been done for computer-aided breast cancer detection, out of
which few studies are already implemented and transformed into commercial products.
Due to the lack of big sized publicly available datasets with manual annotations, the current
deep learning architectures cannot fully unleash their inference knowledge capabilities
for other tasks, such as object detection, classification and segmentation. Unsupervised
learning techniques, such as GANs and autoencoders, appear to be promising solutions
to fill the dimensionality gap between biomedical imaging and other common computer
vision topics.
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