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Gherghina

Received: 8 December 2021

Accepted: 15 March 2022

Published: 23 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

Non-Parametric Statistic for Testing Cumulative Abnormal
Stock Returns
Seppo Pynnonen

Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, FI-65101 Vaasa, Finland;
sjp@uwasa.fi; Tel.:+358-21-449-8311

Abstract: Due to the non-normality of stock returns, nonparametric rank tests are gaining accceptance
relative to parametric tests in financial economics event studies. In rank tests, financial assets’ multiple
day cumulative abnormal returns (CARs) are replaced by cumulated ranks. This paper proposes
modifications to the existing approaches to improve robustness to cross-sectional correlation of
returns arising from calendar time overlapping event windows. Simulations show that the proposed
rank test is well specified in testing CARs and is robust towards both complete and partial overlapping
event windows.
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1. Introduction

Efficient markets has been and still is a cornerstone of asset pricing theory. Empirical
work in this regard is largely concerned with the adjustment of security prices to relevant
information. Fama (1970, 1991) refine relevant information into three hierarchical subsets
of weak form, semi-strong form, and strong form Fama (1970), or equivalently, return
predictability, event studies, and private information Fama (1991). Event studies investigate
the effect of unexpected economic events on asset prices. Therefore, event studies can
give the most direct evidence on market efficiency (c.f. Fama 1991, p. 1577). For this
purpose, asset price data available from financial markets can be used with appropriate
statistical testing methodology, reliability of which is central in inferences. In order to foster
this, the current paper aims to fill the gap in existing (non-parametric) statistical testing
by proposing non-parametric rank tests that are robust to cross-sectional dependency of
asset returns in more general circumstances than the existing ones. Otherwise, refer to
(Campbell et al. 1997, chp. 4) as an excellent introduction to event studies and related
statistical methods.

Regarding methodology, standardizing returns by their respective standard devia-
tions homogenizes data and has proven to improve testing performance. Because of this
improvement, standardized return based tests by Patell (1976) and Boehmer et al. (1991)
(BMP) have gained popularity over conventional non-standardized tests in testing event
effects on mean security price performance. Harrington and Shrider (2007) found that
in a short-horizon testing of abnormal returns (i.e., systematic deviation from expected
behavior), one should always use methods that are robust to cross-sectional variation in the
true abnormal returns.1 They found that BMP is a good candidate for robust, parametric
tests in conventional event studies.2

A major problem in statistical tests of returns is that the returns are not normally
distributed (Fama 1976). Not surprisingly, non-parametric rank tests introduced by Corrado
(1989, 2011); Corrado and Zivney (1992); Campbell and Wasley (1993) and Kolari and
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Pynnonen (2011), among others, dominate parametric tests both in terms of better size
and power (e.g., see Campbell and Wasley 1993; Corrado 1989; Corrado and Zivney 1992;
Kolari and Pynnonen 2011; Kolari and Pynnönen 2010; Luoma 2011). Furthermore, rank
tests by Corrado and Zivney (1992) and Kolari and Pynnonen (2011) that utilize event
period re-standardized returns have proven to be robust to event-induced volatility (Kolari
and Pynnonen (2011); Kolari and Pynnönen (2010)), cross-correlation due to event day
clusterings (Kolari and Pynnönen 2010), and autocorrelation (Kolari and Pynnonen 2011).
These studies are consistent with the view stated in the epilogue of Lehmann (2006): “Rank
tests apply often to relatively simple solutions, such as one-, two-, and s-sample problems,
and testing for independence and randomness, but for these situations they are often the
method of choice”. (Lehmann 2006, p. v). In addition, the results of rank tests are invariant
to monotone transformations of the underlying returns; that is, whether the returns are
defined as simple, continuously compounded log returns.

Existing rank based tests, however, are not robust to cross-sectional correlation if
the event days are partially overlapping in calendar time. This partial clustering occurs
when events are in calendar time scattered within an event window more or less randomly
rather than clustered on the same calendar day (i.e., complete clustering as in Kolari and
Pynnönen 2010). Figure 1 illustrates the various degrees of clustering in terms of three
stocks. Panel A depict the non-clustered case, Panel B the partial clustering, and Panel C
the complete clustering. In the complete clustering the event days are the same in calendar
time, while in the partial clustering the event days may or may not be the same in calendar
time but the event windows are more or less overlapping. In the non-clustered case the
event windows are completely separate in calendar time. In this case all event effects can
be investigated utilizing cross-sectional independence assumption of returns. In complete
clustering cross-sectional correlation of returns must be fully accounted for. In the partial
case the correlation can bias the results depending on the degree of overlapping. For
example in the case of Panel C if the interest is only on the event day effect, as all the
event days are different, there is no biasing effect by the correlation. On the other hand, if
cumulative return effect over the whole event window is of interest, correlation of returns
on the overlapping affects the joint behavior of the cumulative returns.

Panel A: Non−clustered Event Windows
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Jaffe (1974) is probably the first paper in event study testing to address the potential
biasing effect of cross-sectional correlation due to clustered events. Table 2 of Kolari and
Pynnönen (2010) explicitly addresses the issue by showing that already a virtually trivial
cross-sectional correlation, such as 0.05, can severely bias testing for event effects towards
material over-rejection. The present paper seeks to fill this gap of accounting for cross-
sectional correlation in non-parametric even study testing also with partially clustered
event days.

The paper is organized as follows. Section 2 reviews some related key literature.
Section 3 defines the main concepts and derives some distributional properties of rank
statistics. Section 4 introduces the new transformed rank test. Section 5 reports simulation
results, and Section 6 concludes.

2. Review of Related Literature

Patell and BMP parametric tests are straightforward tests of cumulative abnormal
returns (CARs) over multiple day windows. With the correction suggested by Kolari and
Pynnönen (2010), these tests are useful in the case of completely clustered event days, and
with the correction suggested by Kolari et al. (2018) when event days are either completely
or partially clustered. By construction, the Corrado (1989) non-parametric rank test applies
for testing single day event returns. Testing for CARs with the same logic implies the need
of defining multiple-day returns that match the number of days in the CARs, (see (Corrado
1989, p. 395); (Campbell and Wasley 1993, footnote 4)). In practice this approach is carried
out by dividing the estimation period and event period into intervals matching the number
of days in the CAR. Unfortunately, this procedure is not useful for a number of reasons.
Foremost among these is that it does not necessarily lead to a unique testing procedure.
In addition, the abnormal return model should be re-estimated for each multiple-day CAR
definition. Furthermore, for a fixed estimation period, as the number of days accumulated
in a CAR increases, the number of multiple-day estimation period observations reduces
quickly impractically low and thus would weaken the abnormal return model estimation
(c.f., Kolari and Pynnönen 2010). Kolari and Pynnonen (2011) solve these issues in their
generalized rank test approach.

On the other hand, Campbell and Wasley (1993) recommend using the Corrado (1989)
rank test to test cumulative abnormal returns by simply accumulating the respective ranks
to constitute cumulative ranks (see also Hagnäs and Pynnonen 2014). This practice is
adopted in the Eventusr software Cowan (2007) and is probably, for the time being, the
most popular procedure for multiple day applications of rank tests. An advantage is that
this proceure implicitly accounts the cross-sectional correlation in the case of the complete
clustering.

In spite of these attractive properties, the cumulative ranks test does not account for
cross-sectional correlation due to calendar time partially overlapping event windows, i.e.,
the case of partial clustering. As referred above, even a small (positive) correlation biases
the standard errors downwards leading to over-rejection of the null hypothesis of no event
effect. Contributing to the event study literature, this paper proposes an adjustment for the
standard errors that corrects the bias in non-parametric testing.

3. Distributional Properties of Ranks

We begin by fixing some notations and an underlying assumption to facilitate our
theoretical discussion.

Assumption 1. Stock returns rit for firm i are weak white noise continuous random variables and
are cross-sectionally independent over non-overlapping calendar days, or,

E[rit] = µi for all t
var[rit] = σ2

i for all t
cov[rit, riu] = 0 for all t 6= u

rit and rju are independent whenever i 6= j and t 6= u.

(1)
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It is a stylized fact that the variances of the returns are time varying and that there
is mild autocorrelation. The time varying volatility problem can be partially captured in
terms of GARCH-modeling. However, typical GARCH-processes satisfy Assumption 1.

Let ARit = rit −E[rit] denote the abnormal return of security i on day t, and following
commonly used notations (e.g., Brown and Warner 1985, p. 6), let day t = 0 indicate the
event day. Days from t = T0 + 1 to t = T1 represent the estimation period relative to the
event day, and days from t = T1 + 1 to t = T2 represent the event window. The cumulative
abnormal return (CAR) from τ1 to τ2 with T1 < τ1 ≤ τ2 ≤ T2, is defined as

CARi(τ1, τ2) =
τ2

∑
t=τ1

ARit. (2)

The time period from τ1 to τ2 is called in the following as a CAR window or CAR period.
Standardized abnormal returns are defined as

SARit =
ARit
SARi

, (3)

where

SARi =

√√√√ 1
T1 − T0 − 1

T1

∑
t=T0+1

AR2
it. (4)

Furthermore, for the purpose of accounting the possible event induced volatility, the re-
standardized abnormal returns are defined as in Boehmer et al. (1991) (see also, Corrado
and Zivney 1992), or

SAR′it =

{
SARit/SSARt , T1 < t ≤ T2

SARit, otherwise,
(5)

where

SSARt =

√
1

n− 1

n

∑
i=1

(SARit − SARt)2 (6)

is the time t cross-sectional standard deviation of SARit, SARt =
1
n ∑n

i=1 SARit, and n is the
number of stocks in the portfolio. In addition, let Kit denote the rank numbers of abnormal
returns, where Kit ∈ {1, . . . , T}, t = T0 + 1, . . . , T2, T = T2 − T0, and i = 1, . . . , n.

If the available observations in the estimation period vary from one series to another,
it is convenient to use standardized ranks with zero mean and unit variance. To do this, we
compile the known results of rank statistics (e.g., Lehmann 2006, Appendix, Section 1) as
described below.

Result 1. Let Kit denote the rank numbers as defined above, then

E[Kit] = (T + 1)/2 (7)

var[Kit] = (T2 − 1)/12 (8)

cov[Kis, Kit] = −(T + 1)/12, (s 6= t). (9)

Definition 1. Standardized ranks are defined as

Uit =
Kit − 1

2 (T + 1)√
(T2 − 1)/12

. (10)

(c.f., Hagnäs and Pynnonen 2014).
By Result 1, we obtain:
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Result 2.

E[Uit] = 0 (11)

var[Uit] = 1 (12)

cov[Uis, Uit] = −1/(T − 1). (13)

Next, we define cumulative standardized ranks for individual stocks.

Definition 2. The cumulative standardized ranks of a stock i over the event days window form τ1
to τ2 are defined as

Ui(τ1, τ2) =
τ2

∑
t=τ1

Uit, (14)

where T1 < τ1 ≤ τ2 ≤ T2.

From Result 2 and utilizing the variance-of-the-sum formula, var[Ui(τ1, τ2)] = ∑τ2
t=τ1

var[Uit] + ∑s 6=t cov[Uis, Uit], we obtain:

Result 3.

E[Ui(τ1, τ2)] = 0 (15)

var[Ui(τ1, τ2)] =
τ(T − τ)

T − 1
, (16)

where i = 1, . . . , n, T1 < τ1 ≤ τ2 ≤ T2, and τ = τ2 − τ1 + 1.

Rather than investigating individual (cumulative) returns, the practice in event studies
is to aggregate individual returns into equally-weighted portfolios such that:

Definition 3. The average cumulative standardized ranks are defined as the equally weighted
portfolio of individual cumulative standardized ranks defined in (14), i.e.,

Ū(τ1, τ2) =
1
n

n

∑
i=1

Ui(τ1, τ2) =
τ2

∑
t=τ1

Ūt, (17)

where T1 < τ1 ≤ τ2 ≤ T2 and

Ūt =
1
n

n

∑
i=1

Uit (18)

is the time t average of standardized ranks.

The expected value of Ū(τ1, τ2) is the same as that of the cumulative ranks of individual
securities, or

E[Ū(τ1, τ2)] =
1
n

n

∑
i=1

E[Ui(τ1, τ2)] = 0.

If the event days are not clustered the cross-sectional correlations of the return series are
zero (or at least negligible). Under the cross-sectional independence and by Equation (16),
the variance of Ū(τ1, τ2) is

σ2
τ = var[Ū(τ1, τ2)] =

τ(T − τ)

(T − 1)n
. (19)
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Then by the central limit theorem

Z =

(
(T − 1)n
τ(T − τ)

) 1
2
Ū(τ1, τ2) ∼ N(0, 1) as n→ ∞. (20)

The situation is more complicated if the event days are partially overlapping in
calendar time which implies cross-sectional correlation. Recalling that the variances of
Ui(τ1, τ2) given in Equation (16) are constants (independent of i), we can write the cross-
sectional covariance of Ui(τ1, τ2) and Uj(τ1, τ2) as

cov
[
Ui(τ1, τ2), Uj(τ1, τ2)

]
=

τ(T − τ)

T − 1
ρij(τ1, τ2), (21)

where ρij(τ1, τ2) is the cross-sectional correlation of Ui(τ1, τ2), and Uj(τ1, τ2), i, j = 1, . . . , n.
Utilizing this result and the variance-of-the-sum formula, the variance of Ū(τ1, τ2) in (17)
becomes:

Result 4.

var[Ū(τ1, τ2)] =
1
n2

n

∑
i=1

var[Ui(τ1, τ2)] +
1
n2

n

∑
i=1

n

∑
j 6=i

cov
[
Ui(τ1, τ2), Uj(τ1, τ2)

]
=

τ(T − τ)

(T − 1)n
(1 + (n− 1)ρ̄n(τ1, τ2)), (22)

where

ρ̄n(τ1, τ2) =
1

n(n− 1)

n

∑
i=1

n

∑
j=1
j 6=i

ρij(τ1, τ2) (23)

is the average cross-sectional correlation of cumulated ranks.

Cross-sectional dependence affects the asymptotic distribution of the statistic in Equa-
tion (20). However, as discussed in (Lehmann 1999, Scttion 2.8), it is frequently true that
the asymptotic normality holds provided that the average correlation, ρ̄n(τ1, τ2), tends to
zero rapidly enough such that

1
n

n

∑
i 6=j

ρij(τ1, τ2) = (n− 1)ρ̄n(τ1, τ2)→ γ as n→ ∞, (24)

where γ is some finite constant. Under this condition the limiting distribution of Z-statistic
in (20) becomes N(0, 1 + γ).

Otherwise, from practical point of view, the crucial result of Formula (22) is that
the only unknown parameter to be estimated is the average cross-sectional correlation
ρ̄n(τ1, τ2). Hagnäs and Pynnonen (2014) discuss approaches to account implicitly for this
average correlation in cumulated ranks tests when all events share the same calendar day,
i.e., the case of complete clustering. These implicit approaches, however, do not work in
the case of partial clustering. Therefore, by utilizing the procedure developed in Kolari et al.
(2018), this paper proposes a method to estimate explicitly the cross-sectional correlation,
ρ̄n(τ1, τ2), and thereby solve the cross-sectional correlation problem in the case of the partial
clustering.

4. Correlation Robust Test for Cumulated Ranks

Following Kolari et al. (2018), let τij, 0 ≤ τij ≤ τ denote the number of calendar
days stocks i and j share in common within the event windows. By independence in
Assumption 1, the correlation, cor

[
Uiu, Ujv

]
, of the standardized ranks Uiu and Ujv is zero
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whenever the underlying calendar days of the relative event days, u and v, differ and can
be non-zero when the calendar days are the same. Denoting these non-zero correlations
(which are also covariances) by ρij, we get

cov
[
Ui(τ1, τ2), Uj(τ1, τ2)

]
=

τ2

∑
u=τ1

τ2

∑
v=τ1

cor
[
Uiu, Ujv

]
= τijρij.

Combining this with (21), we obtain

ρij(τ1, τ2) =

(
T − 1
T − τ

)
τij

τ
ρij. (25)

We can assume that the overlapping window lengths, τij, and the cross-sectional
correlations, ρij, are not dependent on each other so that ∑i 6=j τijρij = n(n− 1)τ̄ρ̄, where τ̄
is the average number of overlapping calendar days, and ρ̄ is the average cross-sectional
correlation of Ui and Uj.3 Consequently, we can rewrite (22) as

var[Ū(τ1, τ2)] =
τ(T − τ)

(T − 1)n
(1 + (n− 1)δρ̄), (26)

where δ = τ̄(T − 1)/(τ(T − τ)) adjusts the average correlation by the fraction of overlap-
ping calendar days within the event window.

It is notable that, even though the average cross-sectional correlation, ρ̄, in Equa-
tion (26) is based on n(n − 1)/2 correlations, it can be computed without estimating
individual correlations by utilizing the method introduced by Edgerton and Toops (1928).
Instead of n(n− 1)/2 individual correlations, it turns out that one needs to compute only
n + 1 variances, which is a computational problem of order n viz-a-viz of order n2 with av-
eraging the correlations. To illustrate the idea, consider n random variables xj, j = 1, . . . , n
and define the standardized variables zj = xj/σj. Next let z̄ = ∑j zj/n denote the average
of the variables. Then because var

[
zj
]
= 1 and cov

[
zj, zk

]
= cor

[
zj, zk

]
= ρjk, variance of z̄

becomes σ2
z̄ = var[z̄] = (1 + (n− 1)ρ̄)/n, we obtain

ρ̄ = (nσ2
z̄ − 1)/(n− 1). (27)

Hence, to estimate the average cross-sectional correlation, all we need are estimates of n
standard deviations of the x-variables and the variance of z̄. Finally, for large n, Equa-
tion (27) shows that ρ̄ ≈ σ2

z̄ .
Because in our case the calendar days of different stocks are only partially overlapping,

we estimate the variance of the average utilizing the clustering robust estimation technique
(e.g., see Cameron et al. 2011) suggested in Kolari et al. (2018).

Following Kolari et al. (2018), denote the calendar days of the returns in the combined
estimation and event window as t = 1, . . . , L, which implies that L becomes the number of
clusters equaling the number of separate calendar days on which returns are available in
the combined estimation and event windows. Let nt denote the number of stocks having
returns on calendar day t and define

Ut =
nt

∑
k=1

Ukt. (28)

Then

U2
t =

nt

∑
k=1

U2
kt +

nt

∑
i 6=j

UitUjt, (29)

so that
nt

∑
i 6=j

UitUjt = U2
t −

nt

∑
k=1

U2
kt. (30)
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Summing these up over the calendar days in the combined estimation and event window,
we have

L

∑
t=1

nt

∑
i 6=j

UitUjt =
L

∑
t=1

U2
t −

L

∑
t=1

nt

∑
k=1

U2
kt. (31)

Taking the average, we get an estimator for the average correlation

ˆ̄ρ =
1
M

L

∑
t=1

nt

∑
i 6=j

UitUjt, (32)

where

M =
L

∑
t=1

nt(nt − 1) (33)

is the number of the cross-product terms. It is notable that days for which there is available
only one return drop automatically out (if nt = 1 for all t, then ˆ̄ρ = 0). The potentially
tedious computation over all cross-products can be materially simplified by utilizing the
right-hand- side of Equation (31). By Result 2 the variances of standardized ranks are all
equal to one and means equal zero. Therefore, arranging the terms of the rightmost sum of
Equation (31) to correspond to variance representations, the (double) sum becomes equal
to ∑L

t=1 nt, i.e., the total number of observations.4 Thus, the only component we need to
compute is the first sum of squares on the right-hand-side of (31). Therefore, similar to
the illustration of computing the average correlation above, the computational effort of
computing the average correlation is again of order n (rather than n2). Finally, we get:

Result 5. A computationally efficient form of the average correlation in (32) is

ˆ̄ρ =
N
M

(s2
U − 1), (34)

where N = ∑L
t=1 nt is the total number of returns, M is given by (33), and

s2
U =

1
N

L

∑
t=1

U2
t (35)

with Ut given in Equation (28). Variance, s2
U , is a clustering robust variance estimator of standard-

ized ranks in the presence of intra-cluster correlation (cf. e.g., Cameron et al. 2011).

As noted earlier, ˆ̄ρ = 0 if all nt = 1.
Given the estimator of the average cross-sectional correlation, ρ̄, we can define an

appropriate cross-sectional correlation robust test for the null hypothesis of zero cumulative
abnormal returns

H0 : µ(τ1, τ2) = E[CAR(τ1, τ2)] = 0. (36)

The test can be defined in terms of the cumulated ranks using the z-ratio

zτ =
Ū(τ1, τ2)

στ

√
1 + (n− 1)δ ˆ̄ρ

, (37)

where στ is the square root of Equation (19), i.e., the variance

σ2
τ =

τ(T − τ)

(T − 1)n

of Ū(τ1, τ2) for completely non-overlapping event windows in calendar time [i.e., when
ρ̄ = 0 in Equation (26)], and τ = τ2 − τ1 + 1 is the length of the window of cumulated
abnormal returns.
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In event studies, the combined length, T, of the estimation and event period remains
fixed, while the number of event firms, n, defines the sample size, thereby being the
dimension increased when dealing with the asymptotic distribution of associated test
statistics.

Given that the condition in Equation (24) holds for ˆ̄ρ, the null distribution of zτ is
asymptotically normal with zero mean and unit variance.

Kolari and Pynnonen (2011) propose replacing the cumulative ranks in Definition 2
by a single rank number which is based on standardized cumulative abnormal returns
(SCARs)

SCARi(τ1, τ2) =
CARi(τ1, τ2)

SCARi(τ1,τ2)
(38)

in which SCARi(τ1,τ2)
is the standard deviation of CARi(τ1, τ2) (for details, see Kolari and

Pynnonen 2011). Their approach again accounts implicitly for cross-sectional correlation
due to completely overlapping event days. Here, we extend the approach to cover the
partial overlapping case. Rather than using the scaled ranks defined in Kolari and Pyn-
nonen (2011), we use the standardized ranks of Definition 1. Subsequently, denoting the
standardized rank of SCARi(τ1, τ2) by Ui0, we can base the rank test for testing the null
hypothesis of zero cumulative abnormal returns in Equation (36) on the average ranks

Ū0 =
1
n

n

∑
i=1

Ui0. (39)

If the event periods are completely non-overlapping, Ui0s are independent with zero
mean and unit variance (see Definition 1), in which case the null distribution of Ū0 has
zero mean and variance 1/n. However, if the event days are partially overlapping, the
components of Ū0 absorb the cross-sectional correlation over the CAR-window. The
correlation that inflates the variance is inherited from the cross-sectional correlations of
SCARis. Kolari et al. (2018) show that the variance inflation factor is of the form (1 + (n−
1)νρ̄) as in Equation (26) with the exception that δ is replaced by ν = τ̄/τ, the ratio of the
average number of overlapping calendar days within the CAR-window to the window
length. With this correction the variance of Ū0 becomes var[Ū0] = (1 + (n − 1)νρ̄)/n.
We can estimate the average cross-sectional correlation, ρ̄, as in Equation (32) utilizing
only the estimation period in computing s2

U . For this approach, the standardized ranks in
Definition 1 are redefined for the estimation period abnormal returns. Alternatively one
can estimate the cross-sectional correlation exactly as in Result 5. Both approaches will
produce essentially the same result in most cases. With the estimated average correlation,
we get a cross-sectional correlation robust generalized rank test statistic

zτ,grank =

√
n Ū0√

1 + (n− 1)ν ˆ̄ρ
, (40)

where ν = τ̄/τ. Again, given that the condition in Equation (24) holds for ˆ̄ρ, the null
distribution of zτ,grank is asymptotically normal with zero mean and unit variance.

5. Simulation Results

We generate artificial returns utilizing the Fama and French (2015) five-factor model
(FF5),

(rit − r f )t = αi + βi,mkt(rm − r f )t + βi,smbSMBt + βi,hmlHMLt + βi,rmwRMWt + βi,cmwCMWt + εit, (41)

where rm − r f is the market excess return over the risk-free rate r f , SMB, HML, RMW, and
CMW are common market factors proposed by Fama and French. We utilize daily data
from 2 January 1990 through 30 October 2020 (7770 daily returns) to generate 20,000 initial
daily return series for this sample period. The regression coefficients for each stock are
generated from multivariate normal distribution with mean vector (0, 1, 0.5, 0.5, 0.5, 0.5)
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and covariance matrix σ2
i (X′X)−1, in which σ2

i is the variance of the error term ε. The stock
specific σ2

i values are generated by drawing σis, the standard deviations, independently
from a uniform distribution U(1, 3). This corresponds to a range of annual volatilities
roughly from 10 percent to 48 percent. The (X′X) matrix is the cross-product matrix of the
Fama-French 5-factor regression model.5 The (7770) error terms εit for stock i is generated
independently from the normal distribution N(0, σ2

i ).
In the simulations we define the abnormal returns with respect to the market model as

ARit = (ri − r f )t − (α̂i + β̂i(rm − r f )t), (42)

where α̂i and β̂i are ordinary least squares (OLS) estimates. Therefore, missing common
factors introduce cross-sectional correlation between the abnormal returns. The event
period is ±10 trading days around the event day t = 0, and the estimation period consists
of 250 days prior the event periods, i.e., relative days −260, . . . ,−11.

In forthcoming experiments we focus on the effect of cross-sectional correlation on
the size of the test. Other issues, such as event induced volatility are well documented
for example by Kolari and Pynnonen (2011); Kolari and Pynnönen (2010). Utilizing the
base design initiated by Brown and Warner (1985), we generate 1000 samples of randomly
selected 50 stocks (the returns of which are generated by the FF5 model in Equation (41))
with four over-lapping event days scenarios. In the first case of non-overlapping event days,
the returns are cross-sectionally independent. In the second case of completely overlapping
events, all firms share the same event day (calendar time), and in the third and fourth
scenarios the event days are randomly scattered across 5 and 10 concecutive calendar days,
i.e., one and two weeks of trading days, respectively.

We report two-tailed rejection rates for the null hypothesis of no event-effect across
different event windows of±1,±2,±5, and±10 around the event day, i.e., window lengths
τ = 1, 3, 5, 10, and 21 days. In addition to statistic zτ in Equation (37) we report results for
the more traditional rank based test proposed by (Campbell and Wasley 1993, p. 85):

zcw =
∑τ2

t=τ1
k̄t√

τsk̄
, (43)

where
k̄t =

1
n ∑

i=1
(Kit −E[Kit]) (44)

with E[Kit] = (T + 1)/2 and

s2
k̄ =

1
T

T2

∑
t=T0+1

k̄2
t . (45)

Furthermore, we report results for traditional parametric (cross-sectional correlation
non-robust) t-statistics popular in event studies (e.g., see (Campbell et al. 1997, chp. 4)),

tτ =
CAR(τ1, τ2)

s.e(CAR)
, (46)

where CAR(τ1, τ2) is the sample average of CARi(τ1, τ2) defined in (2), and s.e.(CAR) is
the related standard error. Under independence, the null distribution of tτ is asymptotically
standard normal.

Table 1 summarizes the test statistics and their major features.
Table 2 reports the simulation results of the two-tailed rejection rates of the null

hypothesis of no abnormal return at the 5% nominal rejection rate. The results are clear-cut.
Panel A of the table reports the non-overlapping case with zero cross-sectional correlation.
As expected, all statistics reject close to the nominal rate. Panel B reports results of complete
overlapping. That is, all events share the same calendar day; hence, returns are prone
to cross-sectional correlation. The new zτ , zτ,grank, and the more traditional cumulative
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ranks statistic, zcw, that account for cross-sectional correlation, reject reasonably close to the
nominal rate up to event windows ±5 and exhibit some over-rejection on the longest event
window ±10, i.e., 21 days. Not surprisingly, the parametric, non-cross-correlation robust
statistic, tτ , incrementally over-rejects as event windows increase in length. Panel C reports
partial overlapping with events clustered randomly within 5 trading days (about a week).
For event day testing also the a priori non-robust statistics perform well by rejecting at the
nominal rate. However, they start to incrementally over-reject as the event window grows
longer. The a priori partial overlapping robust statistics, zτ and zτ,grtank, reject close to the
nominal rate up to the event window lengths of 5 days and over-reject to some extent for
the longest event windows of 11 and 21 days, albeit far less than the non-robust statistics of
zcw and tτ . The results are pretty much similar with the decreased overlapping in Panel D.
Thus, we conclude that accounting for cross-sectional correlation is crucial to avoid biased
inferences in statistical testing, not only due to complete overlapping of event windows,
but also for partially overlapping cases. Regarding the latter, this paper has introduced two
new test statistics that account for these cases.

Table 1. Test statistics and their key features.

Robustness Due to

Event Correlation Caused by

Statistic Type Volatility Complete Ovrlp Partial Ovrlp

zτ = Ū(τ1 ,τ2)

στ

√
1+(n−1)δ ˆ̄ρ

, Equation (37) non-parametric yes yes yes

zτ,grank =
√

n Ū0√
1+(n−1)ν ˆ̄ρ

, Equation (40) non-parametric yes yes yes

zcw =
∑

τ2
t=τ1

k̄t

τsk̄
, Equation (43) non-parametric no yes no

tτ = CAR(τ1 ,τ2)
s.e(CAR) , Equation (46) parametric yes no no

Table 2. Rejection rates of the null hypothesis of no event effect at the nominal 5% level when the
events are no-overlapping, partially overlapping, and completely overlapping.

CAR Window Length

1 3 5 11 21
Event Day (−1,+1) (−2,+2) (−5,+5) (−10,+10)

Panel A: Non-clustered events

zτ 0.048 0.054 0.050 0.052 0.064
zτ,grank 0.048 0.052 0.053 0.058 0.053
zcw 0.052 0.050 0.051 0.052 0.063
tτ 0.045 0.035 0.049 0.052 0.048

Panel B: Events clustered on the same trading day

zτ 0.059 0.051 0.059 0.064 0.072
zτ,grank 0.064 0.055 0.065 0.067 0.082
zcw 0.059 0.052 0.061 0.064 0.075
tτ 0.087 0.091 0.096 0.085 0.110

Panel C: Events clustered on 5 consecutive trading days

zτ 0.056 0.055 0.059 0.086 0.076
zτ,grank 0.056 0.057 0.066 0.083 0.075
zcw 0.050 0.075 0.093 0.127 0.129
tτ 0.045 0.063 0.077 0.112 0.102

Panel D: Events clustered on 10 consecutive trading days

zτ 0.056 0.055 0.059 0.086 0.076
zτ,grank 0.064 0.046 0.064 0.065 0.082
zcw 0.059 0.062 0.091 0.116 0.133
tτ 0.065 0.057 0.056 0.089 0.105
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6. Summary and Conclusions

This paper proposed two variants of a new non-parametric rank based test statistic for
testing cumulative abnormal returns in short-run event studies. The statistics are robust
to event-induced volatility and cross-sectional correlation due to complete or partially
overlapping event windows. This latter source of cross-sectional correlation is not taken
into account by the existing non-parametric test statistics. Simulation results indicate that,
unlike typically utilized test statistics, the proposed statistics reject the null hypothesis
of no event effect close to the nominal significant level in the partially overlapping case.
We conclude that accounting cross-sectional correlation is crucial to avoid biased inferences,
not only due to complete overlapping of event windows but also for partial overlapping
cases. The non-parametric test statistics proposed in this paper serve this purpose. A major
limitation of utilizing non-parametric tests in financial economics is that they seem to
play mainly side roles. For example, (Campbell et al. 1997, Sction 4.7) note that non-
parametric tests are typically used in conjunction with parametric tests to check robustness
of conclusions based on parametric tests. Even so, it should be noted that robustness checks
are incrementally demanded in modern empirical financial research. Non-parametric
methods can be the tools of choice in completing the task.
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Notes
1 For discussion of true abnormal returns, see Harrington and Shrider (2007).
2 We define conventional event studies as those focusing only on mean stock price effects. Other types of event studies include (for

example) the examination of return variance effects (Beaver (1968); Patell (1976)), trading volume (Beaver (1968); Cambell and
Wasley (1996)), accounting performance (Barber and Lyon (1997)), and earnings management procedures (Dechow et al. (1995);
Kothari et al. (2005)).

3 The equation follows by setting ∑(x− x̄)(y− ȳ) = ∑ xy− nx̄ȳ to zero, so that ∑ xy = nx̄ȳ.
4 That is,

L

∑
t=1

nt

∑
k=1

U2
kt =

L1

∑
t=t1

U2
1t +

L2

∑
t=t2

U2
2t + · · ·+

Ln

∑
t=tn

U2
nt =

n

∑
i=1

Li

∑
t=ti

U2
it,

where ti, ti + 1, . . . , Li indicate observations on stock i with Ti = Li − ti + 1, the number of observations. By Result 2 var[Uit] = 1,
so that ∑Li

t=ti
U2

it = Ti. Hence, ∑L
t=1 ∑nt

k=1 U2
kt = ∑n

i=1 Ti = N = ∑L
t=1 nt.

5 Factor returns have been downloaded from the French data library. http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html, accessed on 15 November 2021.
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