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Abstract: Moth-flame optimization (MFO) is a prominent problem solver with a simple structure that
is widely used to solve different optimization problems. However, MFO and its variants inherently
suffer from poor population diversity, leading to premature convergence to local optima and losses
in the quality of its solutions. To overcome these limitations, an enhanced moth-flame optimization
algorithm named MFO-SFR was developed to solve global optimization problems. The MFO-SFR
algorithm introduces an effective stagnation finding and replacing (SFR) strategy to effectively
maintain population diversity throughout the optimization process. The SFR strategy can find
stagnant solutions using a distance-based technique and replaces them with a selected solution from
the archive constructed from the previous solutions. The effectiveness of the proposed MFO-SFR
algorithm was extensively assessed in 30 and 50 dimensions using the CEC 2018 benchmark functions,
which simulated unimodal, multimodal, hybrid, and composition problems. Then, the obtained
results were compared with two sets of competitors. In the first comparative set, the MFO algorithm
and its well-known variants, specifically LMFO, WCMFO, CMFO, ODSFMFO, SMFO, and WMFO,
were considered. Five state-of-the-art metaheuristic algorithms, including PSO, KH, GWO, CSA, and
HOA, were considered in the second comparative set. The results were then statistically analyzed
through the Friedman test. Ultimately, the capacity of the proposed algorithm to solve mechanical
engineering problems was evaluated with two problems from the latest CEC 2020 test-suite. The
experimental results and statistical analysis confirmed that the proposed MFO-SFR algorithm was
superior to the MFO variants and state-of-the-art metaheuristic algorithms for solving complex global
optimization problems, with 91.38% effectiveness.

Keywords: global optimization problems; metaheuristic algorithms; moth-flame optimization;
premature convergence; population diversity

MSC: 68T20

1. Introduction

Global optimization problems are complex and characterized by various properties,
for instance, they can be non-linear, non-separable, symmetric, asymmetrical, smooth with
narrow ridges, unimodal, and multimodal, and can involve non-differentiable functions
and high dimensionality [1,2]. These properties create challenges for existing optimization
algorithms, and finding the global optimum is one of the long-standing goals in this
area of study. To overcome such challenges, a series of metaheuristic algorithms have
been introduced using various innovative approaches. Metaheuristic algorithms have
exhibited impressive performance in exploring the problem space and approximating the
promising regions in reasonable timeframes. They have been widely improved upon and
adapted to solve optimization problems in diverse fields such as computer science [3,4],
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engineering [5,6], and medicine [7–9]. Metaheuristic algorithms can be classified into two
groups: single-solution-based and population-based algorithms [10,11]. Single-solution-
based metaheuristic algorithms are more oriented towards exploitation searches and they
manipulate a single solution during the optimization process, which increases its potential
to easily become stuck in local optima [12]. To solve this challenge, population-based
metaheuristic algorithms were developed to be more exploration-oriented and to share
the information in order to promote significant diversification in the search space [13,14].
Based on the source of inspiration, these algorithms can be classified as evolutionary-based,
physics-based, human-based, and swarm intelligence-based algorithms [15,16].

Evolutionary-based algorithms involve a heuristic approach inspired by the biolog-
ical evolution of species, such as animals, insects, and plants in nature [17,18]. Some
prominent optimizers in this group are genetic algorithms [19], differential evolution [20],
and the evolution strategy [21]. Physics-based algorithms are defined based on the main
concepts of mathematics and physics, such as quantum physics [22–24], gravity [25,26],
and optics [27], with the aim of performing a meaningful search in the problem space.
Human-based algorithms simulate various human activities in order to generate innovative
solutions in solving optimization problems. The imperialist competitive algorithm [28],
the harmony search algorithm [29], teaching learning-based optimization [30], brain storm
optimization (BSO) [31], the soccer league competition algorithm [32], the volleyball pre-
mier league algorithm [33], poor and rich optimization (PRO) [34], and past present future
(PPF) [35] are some of the state-of-the-art optimizers in this group. Swarm intelligence-
based optimization algorithms originated from the collective and self-organized behavior
of unsophisticated agents such as insects, terrestrial, fish, and birds [36,37]. Ant colony
optimization [38] and particle swarm optimization [39] were the most successful swarm
intelligence-based optimization algorithms proposed in the 1990s. From the 21st century
onwards, some new algorithms have been put forward in this group, such as artificial bee
colony (ABC) [40], cuckoo search (CS) [41], the whale optimization algorithm (WOA) [42],
elephant herding optimization (EHO) [43], moth-flame optimization (MFO) [44], the
horse herd optimization algorithm (HOA) [45], the quantum-based avian navigation opti-
mizer algorithm (QANA) [46], the African vultures optimization algorithm [47], farmland
fertility [48], dwarf mongoose optimization (DMO) [49], the starling murmuration opti-
mizer (SMO) [50], and the artificial gorilla troops optimizer [51].

Most population-based metaheuristic algorithms lack mechanisms that can maintain
population diversity and the imbalance between search strategies and premature conver-
gence problems. Hence, many effective mechanisms have been proposed to alleviate the
weaknesses of these algorithms [52,53]. The artificial bee colony algorithm (ABC) is a
prominent population-based metaheuristic algorithm that suffers from poor local search
performance. Hence, Zhu et al. [54] proposed the Gbest-guided ABC (GABC) algorithm to
incorporate information on the global best solution into the search strategy in order to im-
prove the ability to exploit the algorithm. Other algorithms that have achieved significant
performance improvements in terms of their local search ability are the quick artificial bee
colony (qABC), best-so-far ABC [55], and grey artificial bee colony (GABC) algorithms [56].
Nadimi-Shahraki et al. [57] introduced a diversity-maintained multi-trial vector-differential
evolution algorithm to increase population diversity and suspend the risk of premature
convergence during the evolutionary process.

The moth-flame optimization (MFO) algorithm was inspired by the navigation be-
havior of moths toward a light source in nature and is used to solve global optimization
problems. The MFO algorithm benefits from having a straightforward structure and a
small number of control parameters, which increases its versatility. However, the MFO
algorithm suffers from problems related to low population diversity [58], which leads it to
become stuck in unpromising regions and to achieve low-quality solutions. Many MFO
variants have been developed by introducing and hybridizing different search strategies and
operators to overcome such challenges. Kaur et al. [59] proposed an enhanced moth flame
optimization (E-MFO) method to solve global optimization problems. The E-MFO algorithm
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applied a Cauchy distribution function and the influence of the best flame parameter to
enhance its exploration and exploitation capabilities, respectively. Moreover, an adaptive
step size and division of iterations were proposed to balance search strategies. Li et al. [60]
presented the Lévy-flight moth-flame optimization (LMFO) algorithm to prevent premature
convergence into local optima and enable a trade-off between the algorithm’s exploration
and exploitation abilities during the search process. Khalilpourazari et al. [61] introduced
the WCMFO algorithm, which is a hybridized form of two algorithms, the water cycle
and moth-flame optimization algorithms, to increase the exploitation ability of MFO and
the exploration ability of the water cycle algorithm. To cope with the weaknesses of MFO,
Hongwei et al. [62] proposed chaos-enhanced moth-flame optimization (CMFO) using ten
chaotic maps. The chaotic maps are applied in population initialization, boundary handling,
and the tuning of the distance parameter. Other variants of MFO are sine-cosine moth-flame
optimization (SMFO) [63], combining MFO with Gaussian, Cauchy, and Lévy mutations
(LGCMFO) [64], the enhancement of the local search mechanism based on shuffled frog
leaping and a death mechanism with MFO (ODSFMFO) [65], and the chaotic local search
and Gaussian mutation-enhanced MFO (CLSGMFO) approach [66].

Although the mentioned MFO variants have attained effective modifications in per-
formance, they may still suffer from poor population diversity, which leads to premature
convergence to local optima and a decrease in the quality of the algorithms’ solutions when
tackling complex optimization problems. Moreover, due to the approximate nature of
metaheuristic algorithms, there is always an opportunity for improvement in their search
strategies. Therefore, this study was devoted to proposing an enhanced moth-flame opti-
mization algorithm named MFO-SFR with the aim of solving global optimization problems.
The proposed MFO-SFR algorithm is equipped with an effective stagnation finding and
replacing (SFR) strategy to establish diversity throughout the search process and overcome
the drawbacks of previous MFO approaches. Moreover, the boundary handling of the MFO
algorithm is rectified by generating new random solutions in the range of the problem
space. Overall, the main contributions of this study can be summarized as follows.

• We propose the MFO-SFR algorithm, boosting the performance and enriching the
diversity of the canonical MFO;

• We introduce an effective stagnation finding and replacing (SFR) strategy to boost the
performance of the search process; and

• We introduce an archive to incorporate the representative and the global best flames
throughout the search process in order to enrich the diversity.

The performance of the proposed MFO-SFR algorithm was assessed with the CEC
2018 test functions [67] in 30 and 50 dimensions. Then, the MFO-SFR algorithm was
compared with two sets of MFO variants and well-known optimizers. In the first set of
contender algorithms, the canonical MFO [44] and its variants— Lévy-flight moth-flame
optimization LMFO [60], an efficient hybrid algorithm based on the water cycle and moth-
flame algorithms (WCMFO) [61], chaos-enhanced moth-flame optimization (CMFO) [62],
death mechanism-based moth–flame optimization (ODSFMFO) [65], the synthesis of the
moth-flame optimizer with sine cosine mechanisms (SMFO) [63], and the hybrid of whale
and moth-flame optimization (WMFO) [68]—were selected. In the second set, the particle
swarm optimization (PSO) [39], krill herd (KH) [69], grey wolf optimization (GWO) [70], the
crow search algorithm (CSA) [71], and the horse herd optimization algorithm (HOA) [45]
were considered. Furthermore, the results obtained using the proposed and contender
algorithms were statistically analyzed using the Friedman test. Ultimately, two well-known
mechanical engineering problems from the CEC 2020 test suite [72] were considered to
assess the applicability of MFO-SFR in solving real-world optimization problems. The
experimental results indicated that the proposed MFO-SFR algorithm boosted the per-
formance of the canonical MFO by using an effective stagnation finding and replacing
(SFR) strategy and an archive construction mechanism. Moreover, the statistical analysis
revealed that the performance of the proposed MFO-SFR algorithm was superior to that of
the contender algorithms.
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The structure of the paper is as follows. Section 2 contains a review of related literature.
Section 3 presents the MFO algorithm. In Section 4, the proposed MFO-SFR algorithm
is explained in detail. Section 5 thoroughly evaluates the MFO-SFR’s performance in
addressing CEC 2018 benchmark test functions. Section 6 evaluates the applicability of the
proposed MFO-SFR using two real-world mechanical engineering problems from the latest
CEC 2020 test suite. Finally, Section 6 summarizes the results and outlines possible future
directions of research.

2. Related Works

MFO variants used to solve different optimization problems are reviewed in this
section.

Li et al. [60] boosted the performance of the canonical MFO by using the Lévy-flight
strategy. Nadimi-Shahraki et al. [73] proved that the canonical MFO suffers from premature
convergence, low population diversity, and an imbalance between search strategies in
solving global optimization problems. Therefore, they proposed an improved moth-flame
optimization (I-MFO) algorithm to cope with the abovementioned deficiencies. The I-MFO
algorithm is equipped with the adapted wandering-around search strategy to maintain
population diversity and escape from local optima. The chaos-enhanced MFO (CMFO) [62]
algorithm was proposed to improve the performance of the MFO algorithm by incorporat-
ing chaos maps into population initialization, boundary handling, and parameter tuning.
Pelusi et al. [74] proposed the improved moth-flame optimization (IMFO) algorithm using
a hybrid phase, a dynamic crossover mechanism, and a fitness-dependent weight factor.
The hybrid phase achieved a good trade-off between the exploration and exploitation
phases, the dynamic crossover mechanism enhanced the population diversity, and the
fitness-dependent weight factor improved the exploitation phase.

Xu et al. [64] proposed a series of MFO variants by combining the standard MFO
algorithm with Gaussian mutation, Cauchy mutation, and Lévy mutation. Gaussian
mutation was employed to improve its neighborhood-informed capability, Cauchy mu-
tation was used to enhance its global exploration ability, and the Lévy mutation was
employed to increase the randomness in the search process. Li et al. [65] proposed the
ODSFMFO algorithm, which consists of an improved flame generation mechanism based
on opposition-based learning and the differential evolution algorithm, an enhanced local
search mechanism based on the shuffled frog leaping algorithm and a death mechanism.
This algorithm maintained the quality of the population through opposition-based learning,
population diversity using the differential evolution algorithm, the global search ability
through the use of the shuffled frog leaping algorithm, and provided an escape from lo-
cal optima via the use of the death mechanism. Nadimi-Shahraki et al. [75] proposed a
migration-based moth–flame optimization (M-MFO) algorithm with a random migration
operator, a guided migration operator, and a guiding archive to alleviate the low population
diversity and poor exploration ability of MFO.

Ma et al. [76] developed an improved moth-flame optimization algorithm to pre-
vent premature convergence to local minima. This algorithm uses the inertia weight of
diversity feedback control to strike a balance between search strategies and maintain
population diversity. Moreover, the mutation probability was added to improve the
optimization performance. To enhance the diversity in the position of flames and the
search strategy used for moths, Zhao et al. [77] developed an improved MFO (IMFO) algo-
rithm. In this algorithm, the flames are generated through orthogonal opposition-based
learning, and their positions are updated using a linear search and a mutation operator.
Sapre et al. [78] introduced an opposition-based moth flame optimization method with
Cauchy mutation and evolutionary boundary constraint handling (OMFO) to bypass the lo-
cal optima and accelerate the convergence speed towards promising areas. Sahoo et al. [79]
proposed a modified dynamic-opposite-learning-based MFO algorithm named m-MFO,
using a modified dynamic-opposite learning strategy to enrich the performance of MFO
in solving optimization problems. Other MFO variants include the double-evolutionary
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learning MFO algorithm (DELMFO) [80], the improved moth-flame optimization algorithm
(IMFO) [81], the hybrid MFO and hill climbing (MFOHC) method [82], an enhanced MFO
algorithm integrated with orthogonal learning and the Broyden–Fletcher–Goldfarb–Shanno
(BFGSOLMFO) method [83], and quantum-behaved simulated annealing algorithm-based
moth-flame optimization (QSMFO) [84].

Due to the simple structure of MFO and its low number of control parameters, it has
great potential to solve real-world applications. However, the canonical MFO critically
suffers from local optimum trapping and premature convergence during the optimization
process, which results in low-quality solutions [85–87]. Therefore, many improved and hy-
brid variants have been developed to overcome these challenges. Sayed et al. [88] presented
the SA-MFO algorithm, a hybrid of the MFO approach and the simulated annealing (SA)
algorithm, to escape from local optima using SA and accelerate the search process using
MFO. Many researchers have applied the MFO algorithm to solve the optimal power flow
(OPF) problem [89–91]. An effective hybridization of the whale optimization algorithm and
a modified moth-flame optimization algorithm named WMFO [68] was proposed to solve
diverse scales of the OPF problem. Sahoo et al. [92] proposed a hybrid MFO and butterfly
optimization algorithm (h-MFOBOA) to overcome shortcomings such as a slow convergence
speed and poor exploitation ability in both optimizers. Sattar Khan et al. [93] adapted the
MFO algorithm for an integrated power plant system containing stochastic wind. MFO
has been applied to the solution of problems related to fuel cells in a renewable active
distribution network [94], the identification of parameters for photovoltaic modules [95],
and fuel consumption in variable-cycle engines [96], with promising results.

3. Moth-Flame Optimization (MFO) Algorithm

Nocturnal moths use celestial light sources to navigate over long distances accurately.
They fly in a straight line with a constant angle toward the Moon or stars, and this behavior
is called transverse orientation. However, when a moth flies toward a nearby artificial
light, it thinks it is a star or the Moon. Therefore, the moth continually changes its flight
angle to keep going in a straight line toward the light, resulting in a spiral motion around
the artificial light. In 2015, this behavior was mathematically modeled in the moth-flame
optimization algorithm [44] developed by Mirjalili to solve the global optimization problem,
described in detail as follows.

In this approach to solving the optimization problem, the positions of moths evolve
during predefined iterations. In the first iteration, moths are randomly distributed in the
problem space using Equation (1), where Xid denotes the dth dimension of the ith moth
position and the parameters Ubd and Lbd are the upper and lower boundaries for the dth
dimension, respectively.

Xid = randi,d × (Ubd − Lbd) + Lbd, 1 ≤ d ≤ D (1)

For the rest of the iterations, their new positions are updated based on the position
of the flame. Therefore, the flame number (R) is computed using Equation (2), where the
parameters N and MaxIterations denote the number of moths and the maximum number
of iterations, respectively. Then, the positions of the flames are determined based on the
stepwise procedure denoted in Table 1.

R = round
(

N − t× N − 1
MaxIterations

)
(2)

Ultimately, for the flame number (R), each moth can update its position using the
two different trials denoted in Equation (3), where Xi (t + 1) is the new position of the ith
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moth, Di
′(t) is computed using Equation (4), b is the constant value, k is calculated using

Equations (5) and (6), and Fi (t) denotes the ith flame.

RXi(t + 1) =


Di
′(t)× ebk × cos(2πk) + Fi(t) i ≤ R

Di
′′ (t)× ebk × cos(2πk) + FR(t) i > R

(3)

Di
′(t)=|Fi(t)− Xi(t)| (4)

k = (a− 1)× rand(0, 1) + 1 (5)

a = −1 + t×
(

−1
MaxIterations

)
(6)

In the second trial (when i > R), the parameter Di
′′ (t) is computed using Equation (7),

and FR (t) is the current position of the Rth flame.

Di
′(t) =

∣∣FR(t)−Xi(t)| (7)

Table 1. Flame construction procedure.

Input: X: the positions of moths, Fit: the fitness values of moths, F: the position of the flame, and
OF: the fitness values of flames.

Flame construction in the first iteration when t = 1.
1. Sort the vector Fit in ascending order and extract the sorted index in {j1, j2, . . . , jN}.
2. Construct the flame matrix F (t) = {F1 ← Xj1, F2 ← Xj2, . . . , FN ← XjN}.
Flame construction for the rest iteration when t > 1.
1. Construct matrix dualPop by combining matrices F(t) and X (t − 1).
2. Construct vector dualFit by combining vectors OF(t) and Fit (t − 1).
3. Sort the vector dualFit in ascending order and extract the sorted index in {j1, j2, . . . , j2N}.
4. Construct the flame matrix F (t) = {F1 ← Xj1, F2 ← Xj2, . . . , FN ← XjN}.

4. The Proposed MFO-SFR Algorithm

According to the literature, the canonical MFO lacks an efficient operator to maintain
population diversity. The search process may be biased by the best solutions obtained
in each iteration [97]. This deficiency leads to premature convergence into unpromising
regions, local optimum stagnation, and a decrease in the solution quality when solving
complex problems. Hence, in this study, we were motivated to propose an enhanced moth-
flame optimization algorithm named MFO-SFR to effectively maintain population diversity
and mitigate the deficiencies mentioned above by introducing an effective stagnation
finding and replacing (SFR) strategy.

Stagnation finding and replacing (SFR) strategy: Suppose that the matrix
X (t) = {X1D (t), . . . , XiD (t), . . . , XND (t)} denotes a moth population in the current it-
eration t in a D-dimensional search space. Each vector XiD (t) denotes the position of the
ith moth in the problem space. The matrix X (t) is initialized for the first iteration using a
uniform random distribution. For the rest of the iterations (when t ≥ 2), the new positions
of the moths are determined using Equation (8), where Dα

i (t) and Dβ
i (t) are the main ele-

ments of the SFR strategy, which is computed using Equations (9) and (10), respectively. A
constant b expresses the shape of the logarithmic spiral, and τ is a random number between
the intervals −1 and 1. Fj(t) and FR(t) are the positions of the jth flame and the Rth flame
such that the parameter R is computed using Equation (2). In Equation (9), vector Mi(t) is
determined using Definition 1. To find the stagnant solutions, the mean of the distance or
ϕi is calculated using Equation (11), where Xiq is the qth dimension of the ith moth. Fjq is the
qth dimension of the jth flame in which the index j is determined by Equation (12), which
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sorts the results obtained from Equation (11) in descending order to obtain the indexes,
then applies them as flame indexes in Equation (10).

Xi(t + 1) =


Dα

i (t)× ebτ × cos(2πt) + Fj(t) i f i ≤ R(t)

Dβ
i (t)× ebτ × cos(2πt) + FR(t) else

(8)

Dα
i (t) =

∣∣Fj(t)−Mi(t)
∣∣ (9)

Dβ
i (t) =

{ ∣∣Fj(t)− Xi(t)
∣∣ ϕi > 0

Selecting a random position from the Arc ϕi = 0
(10)

{ϕ1, . . . , ϕi, . . . , ϕN} ← ϕi =
1
D
×

D

∑
q=1

∣∣Fjq(t)− Xiq(t)
∣∣ (11)

{
ϕ1, . . . , ϕj, . . . , ϕN

}
← Sort(ϕ1, . . . , ϕi, . . . , ϕN) (12)

Definition 1. (Archive construction): The main idea behind archive construction is to enrich the
population diversity by preserving the generated representative flame and boost the convergence of
solutions toward promising areas by preserving the best solutions in each iteration. To construct
the archive Arc, consider the matrix M = {M1, . . . , Mi, . . . , Mκ} as the memory of the Arc with
predefined κ. Each Mi = [mi1, mi2, . . . , miD] denotes this memory’s vector position, which is
generated using Algorithm 1. First, dualPop and dualFit are created based on the flame construction
process described in Table 1. Then, the representative flame (RF) with the average of flames’ positions
is computed using Equation (13), where C is the total number of considered moths and Fid denotes
the dth dimension of the ith flame. Finally, the global best flame and RF position are archived as two
new entries in the memory M. In regard to inserting these new entries; they are randomly replaced
with two existing entries if the memory is full.

RFd(t) =
1
C

C

∑
i=1

Fid(t) (13)

In addition, MFO-SFR checks the feasibility of the position of the new moths to return
those that have violated the problem space boundaries by generating random positions in
the range of the problem space.

Algorithm 1. The pseudocode of the archive construction process.

Input: C: Number of considered flames, and κ: the maximum size of the archive Arc.
Output: Returns the archive Arc.
1. begin
2. dualPop and dualFit are created based on flame construction defined in Table 1.
3. FitBest = Ascending order of the vector dualFit and selecting the best N values.
4. PopBest = The corresponding positions of vector FitBest.
5. Computing RF using Equation (13) for C number of considered flames.
6. If the current memory size < κ−1.
7. Inserting RF and the global best flame into the Arc.
8. else
9. Replacing RF and the global best flame with two existing memory entries.
10. end if
11. end

Complexity Analysis

Regarding the pseudocode of MFO-SFR shown in Algorithm 2, the MFO-SFR algo-
rithm consists of six distinct phases: initialization, flame construction, archive construction,
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movement, correcting the violated positions, and updating the positions. In the initializa-
tion phase, N moths are randomly distributed in a D-dimensional search space with an
O(ND) computational complexity. In the flame construction phase, flames are constructed
differently with the computational complexity of O(N2), considering the worst case for
the quicksort algorithm. The computational complexity of the archive construction phase
using Algorithm 1 is O(N2 + ND), because lines 2−4 have the complexity of O(N2) with
respect to the original paper’s definition of MFO, and Equation (13) has O(ND) in the worst
case. The cost of the movement phase is O(ND), using either Equations (8) and (9) when
i ≤ R or using Equations (8) and (10) when i > R. Then, the feasibility of the new posi-
tions is checked to correct the violated positions with the computational complexity of
O(ND). Finally, the updating phase is performed with O(ND) computational complex-
ity. Therefore, considering T iterations, the computational complexity of MFO-SFR is
O(ND + N2 + T(2N2 + 4ND) or O(TN2 + TND). In the same fashion, the space complexity
is O(N + ND + κ), considering that the memory is reusable and the size of the memory is κ.
Thus, the space complexity of MFO-SFR is O(ND + D2log N).

Algorithm 2. The pseudocode of the proposed MFO-SFR algorithm.

Input: N: Number of moths, MaxIterations: Maximum iterations, and D: Dimension size.
Output: Returns the position of the global best flame and its fitness value.
1. Begin
2. Initiating matrix X (t) using a uniform random distribution in the D-dimensional search space.
3. Computing the fitness value of X (t) and storing them in vector OX (t).
4. Constructing the flame fitness value OF by ascending order of the vector OM (t).
5. Constructing the flame positions F based on their obtained vector OF.
6. While t ≤MaxIterations
7. Updating F and OF by the best N moths from F and current X.
8. Computing the flame number R using Equation (2).
9. Archiving using Algorithm 1.
10. For i = 1: N
11. If i ≤ R
12. Computing the distance between flame Fi (t) and Mi (t) using Equation (9).
13. Updating the position of Xi (t) using Equation (8).
14. else
15. Computing the distance using Equation (10).
16. Updating the position of Xi (t) using Equation (8).
17. End if
18. Checking the feasibility and correcting the new position.
19. Computing the fitness value of the new position.
20. End for
21. Updating the global best flame.
22. End while

5. Evaluation of the Proposed MFO-SFR Algorithm

In this section we present our evaluation of the performance of the proposed MFO-
SFR algorithm in solving global optimization problems from the CEC 2018 benchmark
test suite [67]. This test suite is suitable for evaluating the proposed algorithm in terms
of its local optimum avoidance ability and the diversity of solutions as it consists of
29 test functions with different characteristics, such as unimodal, multimodal, and hy-
brid functions, as well as compositions with various dimensions (D), specifically, 30 and
50 dimensions. Moreover, in this section, we also present two separate sets of experiments
conducted to extensively assess and compare the performance of the proposed MFO-SFR
algorithm with several well-known optimization methods. The proposed algorithm was
compared to the original MFO and its variants in the first set, and then, in the second exper-
imental set, it was compared to other prominent and recent optimizers. In both experiment
sets, all comparative algorithms’ control parameter values were adjusted to match those in
their original articles, as depicted in Table 2. All of the algorithms were executed 20 times
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on a laptop with an Intel Core i7-10750H CPU (2.60 GHz), 24 GB of memory, and MATLAB
R2022a with a maximum of (D × 104)/N iterations, where D represents the dimension size
of the problem and N is the population size, which was set to 100 in this study.

Table 2. Parameter values for the optimization algorithms.

Alg. Parameter Settings

MFO b = 1, a decreased linearly from −1 to −2.
LMFO β = 1.5, µ and v are normal distributions, Г is the gamma function.

WCMFO The number of rivers and seas = 4.
CMFO b = 1, a decreased linearly from −1 to −2, chaotic map = Singer.

ODSFMFO m = 6, pc = 0.5, γ = 5, α = 1, l = 10, b = 1, β = 1.5.
SMFO r4 = random number between the interval (0, 1).
WMFO α decreased linearly from 2 to 0, b = 1.

PSO c1 = c2 = 2, vmax = 6, w = 0.9.
KH Vf = 0.02, Dmax = 0.005, Nmax = 0.01, Sr = 0.

GWO The parameter a decreased linearly from 2 to 0.
CSA AP = 0.1, fl = 2.

HOA w = 1, δD = 0.02, δI = 0.02, gδ = 1.5, hβ = 0.9, hγ = 0.5, sβ = 0.2, sγ = 0.1, iγ = 0.3,
dα = 0.5, dβ = 0.2, dγ = 0.1, rδ = 0.1, rγ = 0.05

MFO-SFR b = 1, a decreased linearly from −1 to −2, κ = round (D2 × (log N)), C = N/5.

To investigate the impact of the archive introduced in Equation (10), a numerical
pretest was performed on the canonical MFO algorithm using the CEC 2018 benchmark
test suite on dimension 30. In this pre-test percentage of situations when the parameter
ϕi was equal to zero is computed and reported in Table A1 of Appendix A. The results
reported in Table A1 in Appendix A showed that for some test functions, especially hybrid
and composition ones, the percentage of stagnant solutions was high enough to affect the
quality of the generated solutions.

5.1. Comparing the Proposed MFO-SFR Algorithm with MFO Variants

In this set of experiments, we compared the proposed MFO-SFR algorithm with
moth-flame optimization (MFO) [44] and its variants, including LMFO [60], WCMFO [61],
CMFO [62], ODSFMFO [65], SMFO [63], and WMFO [68]. Table 3 compares the results of the
proposed MFO-SFR algorithm with those of MFO and its variants in solving the CEC 2018
test functions with 30 dimensions. The results acquired from the unimodal test functions F1
and F3 demonstrated that MFO-SFR had an acceptable exploitation potential compared to
the other algorithms. The results from multimodal test functions F4–F10 indicated that the
proposed algorithm was able to efficiently search the problem space and find the unvisited
areas by maintaining its population diversity throughout the optimization process. The
overall results of the hybrid and composition functions F11–F30 confirmed that MFO-SFR
avoided local optimum solutions by striking a balance between exploration and exploitation
abilities. Moreover, the final rows of Tables 3 and 4 reveal that according to the Friedman
test [98], the proposed MFO-SFR algorithm ranked first among the algorithms, including
MFO and the other investigated variants.

Table 3. Comparison of MFO-SFR with MFO variants for CEC 2018 test functions with D = 30.

F. Metrics MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

F1
Avg 6.278 × 109 2.544 × 107 1.317 × 104 1.078 × 108 6.016 × 106 3.119 × 1010 3.822 × 103 1.791 × 103

Min 1.027 × 109 1.899 × 107 1.924 × 103 3.760 × 106 9.949 × 105 1.734 × 1010 1.013 × 102 1.017 × 102

F3
Avg 9.453 × 104 3.473 × 103 1.541 × 103 5.059 × 104 3.050 × 104 8.300 × 104 3.909 × 102 1.312 × 104

Min 1.203 × 104 1.499 × 103 3.111 × 102 2.945 × 104 1.631 × 104 7.186 × 104 3.007 × 102 7.513 × 103

F4
Avg 8.558 × 102 4.919 × 102 4.846 × 102 6.960 × 102 5.356 × 102 5.612 × 103 4.810 × 102 4.914 × 102

Min 4.991 × 102 4.742 × 102 4.009 × 102 5.139 × 102 4.985 × 102 2.322 × 103 4.249 × 102 4.700 × 102
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Table 3. Cont.

F. Metrics MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

F5
Avg 6.740 × 102 6.300 × 102 6.721 × 102 6.073 × 102 5.506 × 102 8.725 × 102 6.739 × 102 5.227 × 102

Min 6.114 × 102 5.816 × 102 6.126 × 102 5.736 × 102 5.270 × 102 8.105 × 102 6.234 × 102 5.109 × 102

F6
Avg 6.260 × 102 6.030 × 102 6.236 × 102 6.189 × 102 6.037 × 102 6.814 × 102 6.366 × 102 6.000 × 102

Min 6.113 × 102 6.018 × 102 6.137 × 102 6.086 × 102 6.010 × 102 6.571 × 102 6.143 × 102 6.000 × 102

F7
Avg 1.007 × 103 8.716 × 102 9.050 × 102 9.430 × 102 8.099 × 102 1.359 × 103 1.056 × 103 7.669 × 102

Min 8.538 × 102 8.311 × 102 8.045 × 102 8.684 × 102 7.824 × 102 1.198 × 103 9.248 × 102 7.460 × 102

F8
Avg 9.895 × 102 9.375 × 102 9.839 × 102 9.097 × 102 8.528 × 102 1.093 × 103 9.539 × 102 8.209 × 102

Min 9.126 × 102 8.978 × 102 9.344 × 102 8.645 × 102 8.343 × 102 1.052 × 103 8.547 × 102 8.090 × 102

F9
Avg 6.219 × 103 9.256 × 102 8.623 × 103 2.331 × 103 1.118 × 103 9.431 × 103 4.543 × 103 9.038 × 102

Min 3.323 × 103 9.074 × 102 5.118 × 103 1.476 × 103 9.647 × 102 7.359 × 103 1.675 × 103 9.005 × 102

F10
Avg 5.259 × 103 4.240 × 103 4.848 × 103 5.005 × 103 4.332 × 103 8.272 × 103 5.192 × 103 4.062 × 103

Min 4.231 × 103 3.205 × 103 4.003 × 103 4.204 × 103 3.570 × 103 7.449 × 103 3.759 × 103 2.461 × 103

F11
Avg 3.967 × 103 1.314 × 103 1.363 × 103 1.985 × 103 1.284 × 103 5.799 × 103 1.248 × 103 1.143 × 103

Min 1.370 × 103 1.180 × 103 1.252 × 103 1.206 × 103 1.204 × 103 2.547 × 103 1.170 × 103 1.107 × 103

F12
Avg 9.043 × 107 5.251 × 106 1.416 × 106 2.113 × 107 2.157 × 106 4.342 × 109 1.014 × 105 1.508 × 105

Min 7.305 × 104 1.578 × 106 3.718 × 104 7.171 × 105 2.328 × 105 2.607 × 109 6.932 × 103 2.035 × 104

F13
Avg 4.593 × 106 4.072 × 105 9.457 × 104 9.006 × 103 1.184 × 104 7.405 × 108 6.660 × 103 6.405 × 103

Min 1.003 × 104 1.634 × 105 1.150 × 104 2.446 × 103 1.596 × 103 1.145 × 108 1.400 × 103 1.690 × 103

F14
Avg 6.942 × 104 2.500 × 104 1.872 × 104 3.941 × 104 5.651 × 104 1.715 × 106 1.406 × 104 8.200 × 103

Min 5.450 × 103 2.821 × 103 4.075 × 103 6.379 × 103 4.686 × 103 7.879 × 104 3.027 × 103 2.021 × 103

F15
Avg 3.090 × 104 8.218 × 104 3.207 × 104 5.756 × 103 5.070 × 103 4.161 × 107 1.157 × 104 5.614 × 103

Min 5.117 × 103 4.614 × 104 2.547 × 103 1.707 × 103 1.703 × 103 1.868 × 106 1.609 × 103 1.515 × 103

F16
Avg 2.956 × 103 2.564 × 103 2.867 × 103 2.709 × 103 2.366 × 103 4.223 × 103 2.662 × 103 1.855 × 103

Min 2.398 × 103 2.101 × 103 2.267 × 103 2.241 × 103 1.965 × 103 3.565 × 103 2.068 × 103 1.617 × 103

F17
Avg 2.349 × 103 2.192 × 103 2.315 × 103 2.056 × 103 1.985 × 103 2.788 × 103 2.234 × 103 1.745 × 103

Min 1.975 × 103 1.925 × 103 1.942 × 103 1.818 × 103 1.764 × 103 2.359 × 103 1.958 × 103 1.727 × 103

F18
Avg 2.830 × 106 2.674 × 105 1.804 × 105 7.780 × 105 8.975 × 105 5.330 × 107 8.188 × 104 1.493 × 105

Min 7.725 × 104 3.452 × 104 4.774 × 104 7.998 × 104 9.364 × 104 2.825 × 106 6.883 × 103 4.305 × 104

F19
Avg 4.261 × 106 7.040 × 104 3.083 × 104 2.505 × 104 7.822 × 103 7.588 × 107 1.560 × 104 6.534 × 103

Min 1.293 × 104 3.487 × 104 2.168 × 103 3.280 × 103 1.968 × 103 5.192 × 106 2.310 × 103 1.910 × 103

F20
Avg 2.537 × 103 2.398 × 103 2.528 × 103 2.402 × 103 2.287 × 103 2.837 × 103 2.690 × 103 2.091 × 103

Min 2.215 × 103 2.117 × 103 2.103 × 103 2.185 × 103 2.053 × 103 2.454 × 103 2.294 × 103 2.004 × 103

F21
Avg 2.472 × 103 2.439 × 103 2.485 × 103 2.384 × 103 2.351 × 103 2.630 × 103 2.462 × 103 2.321 × 103

Min 2.420 × 103 2.378 × 103 2.430 × 103 2.338 × 103 2.331 × 103 2.363 × 103 2.389 × 103 2.312 × 103

F22
Avg 6.353 × 103 4.878 × 103 6.611 × 103 2.380 × 103 2.319 × 103 8.681 × 103 5.292 × 103 2.300 × 103

Min 3.223 × 103 2.325 × 103 5.330 × 103 2.319 × 103 2.305 × 103 5.677 × 103 2.300 × 103 2.300 × 103

F23
Avg 2.811 × 103 2.754 × 103 2.796 × 103 2.797 × 103 2.722 × 103 3.273 × 103 2.861 × 103 2.671 × 103

Min 2.740 × 103 2.724 × 103 2.749 × 103 2.734 × 103 2.697 × 103 3.027 × 103 2.763 × 103 2.654 × 103

F24
Avg 2.979 × 103 2.924 × 103 2.972 × 103 2.948 × 103 2.872 × 103 3.482 × 103 3.003 × 103 2.844 × 103

Min 2.926 × 103 2.888 × 103 2.927 × 103 2.887 × 103 2.848 × 103 3.217 × 103 2.912 × 103 2.828 × 103

F25
Avg 3.181 × 103 2.888 × 103 2.894 × 103 3.011 × 103 2.925 × 103 3.972 × 103 2.900 × 103 2.887 × 103

Min 2.895 × 103 2.885 × 103 2.884 × 103 2.935 × 103 2.890 × 103 3.467 × 103 2.884 × 103 2.887 × 103

F26
Avg 5.650 × 103 4.854 × 103 5.538 × 103 4.465 × 103 4.415 × 103 9.093 × 103 5.841 × 103 3.903 × 103

Min 4.921 × 103 4.504 × 103 5.074 × 103 3.113 × 103 2.876 × 103 5.057 × 103 4.741 × 103 3.739 × 103

F27
Avg 3.233 × 103 3.223 × 103 3.229 × 103 3.285 × 103 3.244 × 103 3.754 × 103 3.276 × 103 3.219 × 103

Min 3.206 × 103 3.194 × 103 3.204 × 103 3.238 × 103 3.218 × 103 3.538 × 103 3.220 × 103 3.208 × 103

F28
Avg 3.756 × 103 3.270 × 103 3.192 × 103 3.376 × 103 3.294 × 103 5.462 × 103 3.199 × 103 3.216 × 103

Min 3.263 × 103 3.211 × 103 3.100 × 103 3.265 × 103 3.271 × 103 4.419 × 103 3.122 × 103 3.196 × 103
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Table 3. Cont.

F. Metrics MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

F29
Avg 4.014 × 103 3.764 × 103 3.949 × 103 4.040 × 103 3.691 × 103 5.639 × 103 4.068 × 103 3.414 × 103

Min 3.499 × 103 3.410 × 103 3.574 × 103 3.629 × 103 3.475 × 103 4.728 × 103 3.545 × 103 3.323 × 103

F30
Avg 2.524 × 105 1.426 × 105 3.318 × 104 7.742 × 105 1.803 × 104 2.326 × 108 1.079 × 104 7.835 × 103

Min 7.219 × 103 6.606 × 104 1.642 × 104 5.609 × 104 7.769 × 103 2.468 × 107 5.674 × 103 6.362 × 103

Average rank 6.06 3.95 4.51 4.57 3.28 7.91 4.18 1.55

Total rank 7 3 5 6 2 8 4 1

Table 4. Comparison of MFO-SFR with MFO variants for CEC 2018 test functions with D = 50.

F. Metrics MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

F1
Avg 3.036 × 1010 1.091 × 108 6.099 × 104 1.323 × 109 2.624 × 108 7.209 × 1010 4.264 × 103 3.463 × 104

Min 7.064 × 103 8.074 × 107 8.054 × 102 1.287 × 108 3.470 × 107 5.140 × 1010 1.054 × 102 9.385 ×3

F3
Avg 1.540 × 105 3.139 × 104 1.413 × 104 1.004 × 105 9.325 × 104 1.770 × 105 9.948 × 102 5.495 × 104

Min 1.176 × 104 1.960 × 104 2.418 × 103 7.381 × 104 6.538 × 104 1.457 × 105 3.217 × 102 4.223 × 104

F4
Avg 4.178 × 103 5.786 × 102 5.431 × 102 1.182 × 103 7.401 × 102 1.835 × 104 5.385 × 102 5.867 × 102

Min 1.187 × 103 5.296 × 102 4.286 × 102 5.419 × 102 6.608 × 102 1.005 × 104 4.961 × 102 5.196 × 102

F5
Avg 9.086 × 102 8.080 × 102 9.240 × 102 8.065 × 102 6.269 × 102 1.125 × 103 8.608 × 102 5.624 × 102

Min 7.996 × 102 7.226 × 102 7.743 × 102 6.742 × 102 5.862 × 102 1.032 × 103 7.209 × 102 5.318 × 102

F6
Avg 6.455 × 102 6.078 × 102 6.395 × 102 6.356 × 102 6.075 × 102 6.888 × 102 6.513 × 102 6.001 × 102

Min 6.270 × 102 6.035 × 102 6.165 × 102 6.239 × 102 6.041 × 102 6.780 × 102 6.291 × 102 6.000 × 102

F7
Avg 1.728 × 103 1.081 × 103 1.139 × 103 1.207 × 103 9.855 × 102 1.937 × 103 1.461 × 103 8.682 × 102

Min 1.119 × 103 1.011 × 103 1.023 × 103 1.031 × 103 8.795 × 102 1.769 × 103 1.204 × 103 8.099 × 102

F8
Avg 1.217 × 103 1.107 × 103 1.213 × 103 1.055 × 103 9.213 × 102 1.406 × 103 1.131 × 103 8.610 × 102

Min 1.050 × 103 1.021 × 103 1.096 × 103 9.983 × 102 8.625 × 102 1.315 × 103 1.021 × 103 8.318 × 102

F9
Avg 1.651 × 104 1.737 × 103 2.097 × 104 6.212 × 103 1.717 × 103 3.051 × 104 1.190 × 104 9.243 × 102

Min 8.748 × 103 9.529 × 102 1.190 × 104 3.607 × 103 1.299 × 103 1.925 × 104 5.498 × 103 9.066 × 102

F10
Avg 8.426 × 103 7.527 × 103 7.974 × 103 7.980 × 103 7.490 × 103 1.387 × 104 7.755 × 103 6.534 × 103

Min 6.288 × 103 6.340 × 103 6.303 × 103 6.040 × 103 5.766 × 103 1.198 × 104 6.397 × 103 5.135 × 103

F11
Avg 5.571 × 103 1.594 × 103 1.469 × 103 2.114 × 103 1.865 × 103 1.495 × 104 1.299 × 103 1.259 × 103

Min 1.574 × 103 1.439 × 103 1.291 × 103 1.417 × 103 1.394 × 103 8.985 × 103 1.200 × 103 1.146 × 103

F12
Avg 2.581 × 109 4.574 × 107 6.833 × 106 1.705 × 108 1.999 × 107 3.109 × 1010 5.722 × 105 1.873 × 106

Min 6.409 × 107 2.731 × 107 1.384 × 106 1.878 × 106 7.129 × 106 1.600 × 1010 1.341 × 105 1.078 × 106

F13
Avg 2.561 × 108 2.672 × 106 9.255 × 104 1.340 × 105 1.729 × 104 1.251 × 1010 8.898 × 103 5.362 × 103

Min 1.454 × 105 1.614 × 106 3.011 × 104 5.781 × 103 9.648 × 103 1.435 × 109 2.611 × 103 1.749 × 103

F14
Avg 9.567 × 105 1.375 × 105 6.855 × 104 1.073 × 105 4.132 × 105 2.622 × 107 3.670 × 104 4.016 × 104

Min 1.246 × 104 3.771 × 104 2.161 × 104 9.772 × 103 7.234 × 104 8.185 × 105 1.148 × 104 1.202 × 104

F15
Avg 1.078 × 107 5.308 × 105 6.616 × 104 8.967 × 103 6.016 × 103 1.341 × 109 7.075 × 103 2.964 × 103

Min 4.298 × 104 3.335 × 105 1.422 × 104 1.884 × 103 2.543 × 103 1.237 × 108 1.943 × 103 1.534 × 103

F16
Avg 4.104 × 103 3.570 × 103 3.769 × 103 3.335 × 103 2.915 × 103 6.808 × 103 3.575 × 103 2.614 × 103

Min 3.133 × 103 2.836 × 103 2.788 × 103 2.616 × 103 2.404 × 103 5.302 × 103 2.509 × 103 2.148 × 103

F17
Avg 3.846 × 103 3.218 × 103 3.787 × 103 3.151 × 103 2.690 × 103 4.919 × 103 3.478 × 103 2.474 × 103

Min 3.034 × 103 2.568 × 103 3.044 × 103 2.615 × 103 2.084 × 103 3.399 × 103 2.827 × 103 2.018 × 103

F18
Avg 4.168 × 106 1.053 × 106 3.688 × 105 2.670 × 106 1.816 × 106 5.905 × 107 1.937 × 105 1.247 × 106

Min 1.543 × 105 2.843 × 105 1.381 × 105 2.302 × 105 1.304 × 105 5.306 × 106 3.375 × 104 1.067 × 105

F19
Avg 2.346 × 106 2.754 × 105 2.368 × 104 6.213 × 104 1.682 × 104 9.590 × 108 1.541 × 104 1.276 × 104

Min 5.030 × 103 1.841 × 105 2.700 × 103 5.247 × 103 2.057 × 103 2.437 × 107 2.172 × 103 2.447 × 103

F20
Avg 3.529 × 103 2.999 × 103 3.311 × 103 3.108 × 103 2.830 × 103 3.923 × 103 3.317 × 103 2.485 × 103

Min 3.116 × 103 2.429 × 103 2.655 × 103 2.572 × 103 2.495 × 103 3.475 × 103 2.534 × 103 2.081 × 103
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Table 4. Cont.

F. Metrics MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

F21
Avg 2.682 × 103 2.604 × 103 2.720 × 103 2.503 × 103 2.408 × 103 3.071 × 103 2.635 × 103 2.360 × 103

Min 2.575 × 103 2.528 × 103 2.590 × 103 2.445 × 103 2.379 × 103 2.938 × 103 2.518 × 103 2.335 × 103

F22
Avg 1.028 × 104 9.106 × 103 9.780 × 103 7.972 × 103 5.227 × 103 1.605 × 104 9.538 × 103 8.339 × 103

Min 8.688 × 103 7.734 × 103 8.346 × 103 2.497 × 103 2.436 × 103 1.474 × 104 8.203 × 103 6.317 × 103

F23
Avg 3.133 × 103 3.009 × 103 3.095 × 103 3.137 × 103 2.888 × 103 3.969 × 103 3.183 × 103 2.793 × 103

Min 3.013 × 103 2.945 × 103 2.974 × 103 2.979 × 103 2.822 × 103 3.594 × 103 3.056 × 103 2.761 × 103

F24
Avg 3.197 × 103 3.135 × 103 3.224 × 103 3.217 × 103 3.030 × 103 4.292 × 103 3.274 × 103 2.970 × 103

Min 3.098 × 103 3.071 × 103 3.101 × 103 3.098 × 103 2.978 × 103 3.875 × 103 3.095 × 103 2.931 × 103

F25
Avg 5.123 × 103 3.062 × 103 3.048 × 103 3.889 × 103 3.242 × 103 1.069 × 104 3.061 × 103 3.070 × 103

Min 3.031 × 103 2.994 × 103 2.964 × 103 3.242 × 103 3.176 × 103 7.290 × 103 3.021 × 103 2.985 × 103

F26
Avg 8.137 × 103 6.855 × 103 8.205 × 103 8.456 × 103 5.513 × 103 1.577 × 104 8.342 × 103 4.406 × 103

Min 6.910 × 103 6.234 × 103 7.239 × 103 5.759 × 103 4.905 × 103 1.445 × 104 2.900 × 103 4.051 × 103

F27
Avg 3.538 × 103 3.403 × 103 3.489 × 103 4.237 × 103 3.525 × 103 5.612 × 103 3.759 × 103 3.307 × 103

Min 3.407 × 103 3.297 × 103 3.361 × 103 3.897 × 103 3.448 × 103 4.453 × 103 3.460 × 103 3.266 × 103

F28
Avg 7.554 × 103 3.555 × 103 3.296 × 103 4.481 × 103 3.749 × 103 9.637 × 103 3.300 × 103 3.378 × 103

Min 4.720 × 103 3.268 × 103 3.259 × 103 3.882 × 103 3.472 × 103 8.008 × 103 3.259 × 103 3.310 × 103

F29
Avg 5.133 × 103 4.380 × 103 4.681 × 103 5.199 × 103 4.191 × 103 1.608 × 104 4.870 × 103 3.545 × 103

Min 4.271 × 103 3.944 × 103 3.587 × 103 4.366 × 103 3.748 × 103 8.290 × 103 4.292 × 103 3.289 × 103

F30
Avg 2.924 × 107 5.428 × 106 2.810 × 106 2.564 × 107 1.768 × 106 2.271 × 109 1.204 × 106 1.144 × 106

Min 2.389 × 106 3.442 × 106 1.262 × 106 8.984 × 106 9.999 × 105 2.782 × 108 6.441 × 105 9.567 × 105

Average rank 6.29 3.82 4.25 4.78 3.34 7.93 3.79 1.79

Total rank 7 3 5 6 2 8 4 1

Table 4 presents the average and minimum fitness values obtained from the proposed
MFO-SFR algorithms, MFO, and its six variants in solving the CEC 2018 benchmark test
functions with 50 dimensions. Overall, the results showed that the proposed MFO-SFR
algorithm provided competitive results for most test functions, and it ranked first according
to the Friedman test results, which are reported in the final row of the table. Additionally,
an exploratory data analysis is depicted in Figure 1 to show the ranking of algorithms for
each function. Overall, it can be seen that the proposed MFO-SFR algorithm surrounds
the center of the radar chart for most test functions in 30 and 50 dimensions. For instance,
for F1, the proposed MFO-SFR algorithm was ranked first in 30 dimensions and third in
50 dimensions, whereas WMFO and the canonical MFO algorithms were ranked second
and seventh for 30 and 50 dimensions, respectively. For F12, it can be seen that MFO-SFR
was ranked second, MFO was ranked seventh, and WMFO was ranked first for 30 dimen-
sions, and these three algorithms were ranked second, seventh, and first, respectively, for
50 dimensions. For F27, MFO-SFR and WMFO were ranked first and sixth in both 30 and
50 dimensions, whereas the canonical MFO algorithm was ranked fourth in 30 dimensions
and fifth in 50 dimensions.

The convergence comparison of the proposed MFO-SFR algorithm and the other stud-
ied algorithms is shown in Figure 2. For F1 in 30 dimensions, it can be seen that although
MFO-SFR exhibited prolonged convergence, it provided the best solution compared to the
other algorithms. In 50 dimensions, however, it ranked second after WMFO. For multi-
modal functions F5 and F7, the convergence trend of MFO-SFR continued up to the final
iterations, whereas most of the competitors were flattened in local optimum zones. As evi-
dence of the adequate balance between exploration and exploitation, for hybrid functions
F10 and F16, MFO-SFR exhibited sharp movements in the first half of the iterations and
relatively modest fluctuations in the second half. Ultimately, for composition test functions
F21, F26, and F30, MFO-SFR exhibited a gradual trend toward the optimum solutions after
beginning its convergence with a sharply descending slope. This behavior indicates the
capacity of MFO-SFR to bypass the local optimum and avoid premature convergence.
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50 dimensions.
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5.2. Comparing the Proposed MFO-SFR Algorithm with Other Well-Known
Optimization Algorithms

The second set of experiments, we compared the performance of the proposed MFO-
SFR algorithm with the well-known representative metaheuristic algorithms presented
in the literature, including particle swarm optimization (PSO) [39], krill herd (KH) [69],
grey wolf optimization (GWO) [70], the crow search algorithm (CSA) [71], and the horse
herd optimization algorithm (HOA) [45]. The algorithms’ source codes were gathered from
publicly available resources, and their parameter values were the same ones considered
in the original papers, as reported in Table 2. Tables 5 and 6 compare the average and
minimum fitness values produced by the proposed MFO-SFR algorithm and the other
algorithms for 30 and 50 dimensions. The results of the test functions F1 and F3–F10 for both
numbers of dimensions demonstrated that MFO-SFR exhibited impressive exploitation
and exploration capabilities and generated better solutions while dealing with unimodal
and multimodal tests. The results of test functions F11–F30 demonstrated that the MFO-
SFR avoided local optimum trapping and balanced the trade-off between exploration and
exploitation abilities. Furthermore, the final two rows present the results of the Friedman
test for each algorithm, in which MFO-SFR ranked first among the comparative algorithms
for both 30 and 50 dimensions.

Table 5. Comparison of MFO-SFR with well-known algorithms for CEC 2018 test functions with
D = 30.

F. Metrics PSO KH GWO CSA HOA MFO-SFR

F1
Avg 5.907 × 1010 1.963 × 104 1.145 × 109 3.246 × 1010 3.003 × 109 1.791 × 103

Min 3.270 × 1010 7.354 × 103 1.583 × 108 2.130 × 1010 2.203 × 109 1.017 × 102

F3
Avg 1.308 × 105 4.403 × 104 2.987 × 104 9.600 × 104 3.075 × 104 1.312 × 104

Min 1.039 × 105 2.051 × 104 1.476 × 104 5.473 × 104 2.032 × 104 7.513 × 103

F4
Avg 1.183 × 104 4.965 × 102 5.369 × 102 5.726 × 103 1.047 × 103 4.914 × 102

Min 7.302 × 103 4.041 × 102 4.933 × 102 3.185 × 103 8.889 × 102 4.700 × 102

F5
Avg 9.635 × 102 6.454 × 102 5.950 × 102 8.509 × 102 7.938 × 102 5.227 × 102

Min 8.845 × 102 6.115 × 102 5.511 × 102 8.017 × 102 7.612 × 102 5.109 × 102

F6
Avg 6.921 × 102 6.418 × 102 6.047 × 102 6.683 × 102 6.605 × 102 6.000 × 102

Min 6.828 × 102 6.303 × 102 6.009 × 102 6.554 × 102 6.496 × 102 6.000 × 102

F7
Avg 2.511 × 103 8.400 × 102 8.512 × 102 1.730 × 103 1.029 × 103 7.669 × 102

Min 2.201 × 103 7.960 × 102 7.932 × 102 1.552 × 103 9.979 × 102 7.460 × 102

F8
Avg 1.220 × 103 9.054 × 102 8.709 × 102 1.134 × 103 1.061 × 103 8.209 × 102

Min 1.163 × 103 8.647 × 102 8.450 × 102 1.105 × 103 1.041 × 103 8.090 × 102

F9
Avg 1.735 × 104 3.138 × 103 1.360 × 103 1.040 × 104 4.292 × 103 9.038 × 102

Min 1.271 × 104 2.368 × 103 9.830 × 102 7.223 × 103 2.668 × 103 9.005 × 102

F10
Avg 8.218 × 103 4.797 × 103 3.874 × 103 8.279 × 103 8.340 × 103 4.062 × 103

Min 7.661 × 103 3.165 × 103 3.030 × 103 7.738 × 103 7.745 × 103 2.461 × 103

F11
Avg 1.018 × 104 1.711 × 103 1.408 × 103 4.700 × 103 1.797 × 103 1.143 × 103

Min 7.488 × 103 1.304 × 103 1.236 × 103 3.395 × 103 1.699 × 103 1.107 × 103

F12
Avg 6.824 × 109 2.220 × 106 3.441 × 107 2.979 × 109 3.763 × 108 1.508 × 105

Min 3.870 × 109 7.468 × 105 2.122 × 106 1.516 × 109 2.821 × 108 2.035 × 104

F13
Avg 3.156 × 109 3.457 × 104 1.505 × 106 9.478 × 108 1.051 × 108 6.405 × 103

Min 5.760 × 108 1.430 × 104 4.674 × 104 5.211 × 108 3.296 × 107 1.690 × 103

F14
Avg 7.227 × 105 2.910 × 105 1.926 × 105 4.342 × 105 1.340 × 105 8.200 × 103

Min 1.041 × 105 1.873 × 104 2.446 × 104 1.482 × 105 5.216 × 104 2.021 × 103

F15
Avg 2.025 × 108 1.788 × 104 1.956 × 105 7.286 × 107 3.143 × 107 5.614 × 103

Min 1.064 × 107 9.433 × 103 1.435 × 104 2.378 × 107 8.141 × 106 1.515 × 103
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Table 5. Cont.

F. Metrics PSO KH GWO CSA HOA MFO-SFR

F16
Avg 4.452 × 103 2.884 × 103 2.385 × 103 3.989 × 103 3.786 × 103 1.855 × 103

Min 3.827 × 103 2.377 × 103 1.949 × 103 3.147 × 103 3.419 × 103 1.617 × 103

F17
Avg 3.298 × 103 2.277 × 103 1.943 × 103 2.628 × 103 2.361 × 103 1.745 × 103

Min 2.755 × 103 1.804 × 103 1.778 × 103 2.256 × 103 2.102 × 103 1.727 × 103

F18
Avg 6.473 × 106 4.258 × 105 8.049 × 105 7.890 × 106 1.212 × 106 1.493 × 105

Min 6.593 × 105 4.192 × 104 6.880 × 104 2.022 × 106 4.281 × 105 4.305 × 104

F19
Avg 2.509 × 108 9.593 × 104 7.374 × 105 1.358 × 108 4.426 × 107 6.534 × 103

Min 3.341 × 107 1.081 × 104 3.279 × 103 6.263 × 107 1.774 × 107 1.910 × 103

F20
Avg 2.847 × 103 2.624 × 103 2.362 × 103 2.759 × 103 2.681 × 103 2.091 × 103

Min 2.574 × 103 2.303 × 103 2.146 × 103 2.476 × 103 2.487 × 103 2.004 × 103

F21
Avg 2.707 × 103 2.416 × 103 2.379 × 103 2.625 × 103 2.575 × 103 2.321 × 103

Min 2.615 × 103 2.359 × 103 2.351 × 103 2.587 × 103 2.539 × 103 2.312 × 103

F22
Avg 8.759 × 103 3.018 × 103 4.411 × 103 6.831 × 103 4.513 × 103 2.300 × 103

Min 6.900 × 103 2.300 × 103 2.406 × 103 5.558 × 103 2.705 × 103 2.300 × 103

F23
Avg 3.239 × 103 2.880 × 103 2.729 × 103 3.143 × 103 3.133 × 103 2.671 × 103

Min 3.101 × 103 2.807 × 103 2.678 × 103 3.061 × 103 3.059 × 103 2.654 × 103

F24
Avg 3.539 × 103 3.107 × 103 2.890 × 103 3.319 × 103 3.188 × 103 2.844 × 103

Min 3.253 × 103 2.994 × 103 2.849 × 103 3.206 × 103 3.122 × 103 2.828 × 103

F25
Avg 7.655 × 103 2.911 × 103 2.958 × 103 4.890 × 103 3.137 × 103 2.887 × 103

Min 5.843 × 103 2.887 × 103 2.916 × 103 4.344 × 103 3.069 × 103 2.887 × 103

F26
Avg 8.709 × 103 5.651 × 103 4.483 × 103 8.661 × 103 4.738 × 103 3.903 × 103

Min 6.500 × 103 2.800 × 103 3.473 × 103 7.772 × 103 3.736 × 103 3.739 × 103

F27
Avg 3.827 × 103 3.400 × 103 3.230 × 103 3.690 × 103 3.720 × 103 3.219 × 103

Min 3.591 × 103 3.283 × 103 3.212 × 103 3.537 × 103 3.616 × 103 3.208 × 103

F28
Avg 6.851 × 103 3.228 × 103 3.356 × 103 5.474 × 103 3.519 × 103 3.216 × 103

Min 5.611 × 103 3.198 × 103 3.283 × 103 4.541 × 103 3.468 × 103 3.196 × 103

F29
Avg 5.426 × 103 4.194 × 103 3.642 × 103 5.253 × 103 4.726 × 103 3.414 × 103

Min 4.907 × 103 3.858 × 103 3.439 × 103 4.952 × 103 4.454 × 103 3.323 × 103

F30
Avg 2.946 × 108 1.043 × 106 2.842 × 106 1.084 × 108 2.610 × 107 7.835 × 103

Min 8.913 × 107 8.260 × 104 5.249 × 105 4.274 × 107 1.221 × 107 6.362 × 103

Average rank 5.84 2.68 2.45 5.00 3.93 1.09

Total rank 6 3 2 5 4 1

Table 6. Comparison of MFO-SFR with well-known algorithms for CEC 2018 test functions with
D = 50.

F. Metrics PSO KH GWO CSA HOA MFO-SFR

F1
Avg 1.526 × 1011 1.703 × 105 4.506 × 109 9.609 × 1010 1.149 × 1010 3.463 × 104

Min 8.451 × 1010 1.932 × 104 7.183 × 108 8.123 × 1010 8.346 × 109 9.385 × 103

F3
Avg 2.549 × 105 1.192 × 105 7.730 × 104 2.070 × 105 8.230 × 104 5.495 × 104

Min 1.957 × 105 7.643 × 104 4.662 × 104 1.774 × 105 6.990 × 104 4.223 × 104

F4
Avg 3.307 × 104 5.428 × 102 8.017 × 102 1.712 × 104 2.589 × 103 5.867 × 102

Min 1.811 × 104 4.765 × 102 6.224 × 102 1.286 × 104 2.058 × 103 5.196 × 102

F5
Avg 1.367 × 103 7.662 × 102 6.775 × 102 1.211 × 103 1.047 × 103 5.624 × 102

Min 1.256 × 103 7.090 × 102 6.316 × 102 1.145 × 103 1.011 × 103 5.318 × 102
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Table 6. Cont.

F. Metrics PSO KH GWO CSA HOA MFO-SFR

F6
Avg 7.114 × 102 6.499 × 102 6.112 × 102 6.862 × 102 6.745 × 102 6.001 × 102

Min 6.991 × 102 6.393 × 102 6.075 × 102 6.776 × 102 6.645 × 102 6.000 × 102

F7
Avg 4.585 × 103 1.052 × 103 9.899 × 102 3.206 × 103 1.338 × 103 8.682 × 102

Min 4.142 × 103 9.353 × 102 9.057 × 102 2.735 × 103 1.289 × 103 8.099 × 102

F8
Avg 1.687 × 103 1.059 × 103 9.862 × 102 1.499 × 103 1.354 × 103 8.610 × 102

Min 1.575 × 103 1.033 × 103 9.423 × 102 1.423 × 103 1.283 × 103 8.318 × 102

F9
Avg 5.170 × 104 9.873 × 103 4.844 × 103 3.622 × 104 2.153 × 104 9.243 × 102

Min 3.909 × 104 7.955 × 103 2.552 × 103 3.021 × 104 1.416 × 104 9.066 × 102

F10
Avg 1.441 × 104 7.948 × 103 5.919 × 103 1.429 × 104 1.412 × 104 6.534 × 103

Min 1.356 × 104 6.701 × 103 4.473 × 103 1.342 × 104 1.324 × 104 5.135 × 103

F11
Avg 2.610 × 104 4.813 × 103 2.766 × 103 1.573 × 104 3.782 × 103 1.259 × 103

Min 1.947 × 104 3.034 × 103 1.652 × 103 1.157 × 104 3.239 × 103 1.146 × 103

F12
Avg 4.300 × 1010 1.287 × 107 3.406 × 108 2.210 × 1010 2.417 × 109 1.873 × 106

Min 2.464 × 1010 4.289 × 106 3.715 × 107 1.421 × 1010 1.705 × 109 1.078 × 106

F13
Avg 1.683 × 1010 5.864 × 104 1.026 × 108 6.132 × 109 5.696 × 108 5.362 × 103

Min 5.672 × 109 2.099 × 104 8.150 × 104 3.709 × 109 4.310 × 108 1.749 × 103

F14
Avg 6.142 × 106 5.701 × 105 3.453 × 105 4.140 × 106 8.316 × 105 4.016 × 104

Min 1.659 × 106 1.615 × 105 2.928 × 104 1.829 × 106 2.222 × 105 1.202 × 104

F15
Avg 5.029 × 109 1.956 × 104 4.078 × 106 1.190 × 109 2.294 × 108 2.964 × 103

Min 2.307 × 109 9.499 × 103 2.722 × 104 4.163 × 108 9.908 × 107 1.534 × 103

F16
Avg 7.306 × 103 3.250 × 103 2.896 × 103 6.252 × 103 5.184 × 103 2.614 × 103

Min 6.699 × 103 2.463 × 103 2.326 × 103 5.731 × 103 4.749 × 103 2.148 × 103

F17
Avg 1.334 × 104 3.359 × 103 2.661 × 103 5.190 × 103 3.888 × 103 2.474 × 103

Min 5.938 × 103 2.849 × 103 2.264 × 103 4.547 × 103 3.183 × 103 2.018 × 103

F18
Avg 3.800 × 107 2.330 × 106 3.051 × 106 3.471 × 107 8.478 × 106 1.247 × 106

Min 1.430 × 107 1.131 × 106 3.848 × 105 1.224 × 107 4.500 × 106 1.067 × 105

F19
Avg 2.060 × 109 1.719 × 105 1.231 × 106 5.231 × 108 7.924 × 107 1.276 × 104

Min 6.897 × 108 2.586 × 104 9.261 × 103 2.060 × 108 2.979 × 107 2.447 × 103

F20
Avg 4.010 × 103 3.276 × 103 2.743 × 103 3.903 × 103 3.675 × 103 2.485 × 103

Min 3.712 × 103 2.764 × 103 2.380 × 103 3.680 × 103 3.261 × 103 2.081 × 103

F21
Avg 3.164 × 103 2.556 × 103 2.473 × 103 2.994 × 103 2.850 × 103 2.360 × 103

Min 3.046 × 103 2.455 × 103 2.422 × 103 2.896 × 103 2.767 × 103 2.335 × 103

F22
Avg 1.609 × 104 1.049 × 104 8.211 × 103 1.603 × 104 1.527 × 104 8.339 × 103

Min 1.492 × 104 9.115 × 103 6.990 × 103 1.493 × 104 4.474 × 103 6.317 × 103

F23
Avg 4.077 × 103 3.379 × 103 2.916 × 103 3.777 × 103 3.749 × 103 2.793 × 103

Min 3.763 × 103 3.052 × 103 2.826 × 103 3.595 × 103 3.533 × 103 2.761 × 103

F24
Avg 4.174 × 103 3.643 × 103 3.109 × 103 3.983 × 103 3.744 × 103 2.970 × 103

Min 3.943 × 103 3.406 × 103 2.991 × 103 3.738 × 103 3.597 × 103 2.931 × 103

F25
Avg 2.556 × 104 3.092 × 103 3.355 × 103 1.580 × 104 4.331 × 103 3.070 × 103

Min 1.693 × 104 3.052 × 103 3.146 × 103 1.384 × 104 3.997 × 103 2.985 × 103

F26
Avg 1.697 × 104 9.335 × 103 5.804 × 103 1.506 × 104 5.800 × 103 4.406 × 103

Min 1.280 × 104 3.159 × 103 4.993 × 103 1.326 × 104 5.170 × 103 4.051 × 103

F27
Avg 5.456 × 103 4.354 × 103 3.516 × 103 5.185 × 103 5.049 × 103 3.307 × 103

Min 4.582 × 103 3.985 × 103 3.402 × 103 4.636 × 103 4.657 × 103 3.266 × 103

F28
Avg 1.242 × 104 3.346 × 103 3.927 × 103 1.039 × 104 4.740 × 103 3.378 × 103

Min 9.606 × 103 3.311 × 103 3.545 × 103 8.991 × 103 4.469 × 103 3.310 × 103
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Table 6. Cont.

F. Metrics PSO KH GWO CSA HOA MFO-SFR

F29
Avg 1.018 × 104 5.360 × 103 4.202 × 103 8.981 × 103 6.514 × 103 3.545 × 103

Min 8.653 × 103 4.196 × 103 3.826 × 103 7.451 × 103 6.113 × 103 3.289 × 103

F30
Avg 2.508 × 109 4.241 × 107 7.032 × 107 1.287 × 109 3.337 × 108 1.144 × 106

Min 1.281 × 109 1.429 × 107 3.629 × 107 6.453 × 108 2.374 × 108 9.567 × 105

Average rank 5.93 2.70 2.29 4.98 3.92 1.18

Total rank 6 3 2 5 4 1

The exploratory data analysis shown in Figure 3 was conducted to investigate the
ranking of algorithms for each test function. Overall, it can be noted that the proposed
MFO-SFR algorithm was ranked first among the other compared algorithms for all test
functions, except for F10 in 30 dimensions. For 50 dimensions, it is notable that MFO-SFR
was ranked first for all test functions except for F4, F10, F22, and F28.
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Figure 3. Exploratory data analysis of MFO-SFR and other well-known MFO algorithms on CEC
2018 with 30 and 50 dimensions.

As shown in Figure 4, we analyzed MFO-SFR’s convergence behavior and compared
it with that of the other algorithms. Overall, it can be seen that the proposed MFO-SFR
algorithm was able to converge toward more accurate solutions by avoiding local optimum
solutions and striking a balance between its search abilities. It is also notable that the
proposed MFO-SFR algorithm maintained its solution accuracy by enhancing the number
of dimensions, which demonstrates the scalability of the proposed algorithm.
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Figure 4. Comparison of the convergence behavior of MFO-SFR and well-known algorithms for CEC
2018 test functions with 30 and 50 dimensions.

5.3. Population Diversity Analysis

Maintaining population diversity is essential in metaheuristic algorithms since low
diversity among search agents may cause the algorithm to become stuck at local optimum
areas. In this experiment, the population diversity of MFO-SFR and five representatives
of comparative algorithms was investigated on several CEC 2018 benchmark test suites
with 30 and 50 dimensions. The population diversity curves presented in Figure 5 were
calculated by measuring the moment of inertia (Ic) [99], where Ic denotes the spreading
of each individual from their centroid, which was determined by Equation (14), and
the centroid cj for j = 1, 2, ... D was calculated using Equation (15). Comparing the
population diversity curves with the convergence curves plotted in Figures 2 and 4, it
can be noted that the proposed MFO-SFR algorithm effectively maintained diversification
among solutions until the near-optimal solution was met. This behavior occurred mainly
because of the introduced SFR strategy, which identified stagnant solutions using a distance-
based technique and replaced them with a solution selected from the archive constructed
from the previous solutions. The introduced archive was able to maintain not only the
diversification of solutions by preserving the generated representative flame but also the
convergence of solutions toward promising areas by preserving the best solutions in each
iteration.

Ic =
D

∑
i=1

N

∑
j=1

(
Mij − ci

)2 (14)

ci =
1
N

N

∑
j=1

Mij (15)
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5.4. The Overall Effectiveness of MFO-SFR

The overall effectiveness (OE) achieved by the proposed MFO-SFR algorithm in
solving test functions with 30 and 50 dimensions was computed using Equation (16) and
the results are reported in Tables 7 and 8. OEi indicates the overall effectiveness of the
i-th algorithm, Li is the total number of test functions that the i-th algorithm lost, and TF
is the total number of test functions. Table 7 compares the OE achieved by the proposed
MFO-SFR with the other MFO variants, showing that MFO-SFR attained the highest OE
value, equal to 74.14%. Moreover, Table 8 shows that MFO-SFR achieved a higher OE value
of 91.38% compared to other well-known optimization algorithms.

OEi(%) =
TF− Li

TF
(16)

Table 7. The overall effectiveness of MFO-SFR and MFO variants.

Algorithms 30
(W|T|L)

50
(W|T|L)

Total
(W|T|L) OE

MFO 0|0|29 0|0|29 0|0|58 0%

LMFO 0|0|29 0|0|29 0|0|58 0%

WCMFO 1|0|28 2|0|27 3|0|55 5.17%

CMFO 0|0|29 0|0|29 0|0|58 0%

ODSFMFO 1|0|28 1|0|28 2|0|56 3.45%

SMFO 0|0|29 0|0|29 0|0|58 0%

WMFO 4|0|25 6|0|23 10|0|48 17.24%

MFO-SFR 23|0|6 20|0|9 43|0|15 74.14%
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Table 8. The overall effectiveness of MFO-SFR and contender algorithms.

Algorithms 30
(W|T|L)

50
(W|T|L)

Total
(W|T|L) OE

PSO 0|0|29 0|0|29 0|0|58 0%

KH 0|0|29 2|0|27 2|0|56 3.45%

GWO 1|0|28 2|0|27 3|0|55 5.17%

CSA 0|0|29 0|0|29 0|0|58 0%

HOA 0|0|29 0|0|29 0|0|58 0%

MFO-SFR 28|0|1 25|0|4 53|0|5 91.38%

6. Applicability of MFO-SFR to Solving Mechanical Engineering Problems

There is a growing interest in using optimization algorithms in mechanical and engi-
neering systems to improve performance, cost, and product lifespan [50,100]. Therefore, in
this section we assessed the applicability of MFO-SFR using two challenging real-world
optimization issues from the most recent CEC 2020 test suite [72]. The constraints of the
problems were handled using a death penalty function. The maximum number of iterations
for MFO-SFR and the variants of MFO was (D× 104)/N, where D is the number of decision
variables and N is the number of search agents, which was set to 20.

6.1. Welded Beam Design (WBD) Problem

The WBD [101], stated in Equation (17), is a well-known optimization issue in con-
strained engineering problems. The primary goal of this task, as indicated in Figure 6, is
to minimize the total fabrication cost of a welded beam by determining the best design
parameters for the clamped bar length (l), weld thickness (h), bar thickness (b), and bar
height (t). The results tabulated in Table 9 indicate that the proposed MFO-SFR exhibited
superior performance compared with the other algorithms.

Consider →
x = [x1, x2, x3, x4] = [h, l, t, b], (17)

Min f
(→

x
)
= 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2),

Subject to g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0,

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0,

g3

(→
x
)
= x1 − x4 ≤ 0,

g4

(→
x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0,

g5

(→
x
)
= 0.125− x1 ≤ 0,

g6

(→
x
)
= δ

(→
x
)
− δmax ≤ 0,

g7

(→
x
)
= P− Pc ≤ 0,

Variable range 0.1 ≤ xi ≤ 2, i = 1, 4,
0.1 ≤ xi ≤ 10, i = 2, 3.

where τ
(→

x
)
=
√
(τ′)2 + 2τ′τ′′ x2

2R + (τ′′ )2, τ′ = P√
2x1x2

, τ′′ = MR
J , M = P

(
L + x2

2
)
,

R =

√
x2

2
4 +

( x1+x3
2
)2, J = 2

{√
2x1x2

[
x2

2
12 +

( x1+x3
2
)2
]}

, σ
(→

x
)
= 6PL

x4x2
3
,

δ
(→

x
)
= 6PL3

Ex2
3 x4

, Pc

(→
x
)
=

4.013E

√
x2

3 x6
4

36

Ex2
3 x4

(
1− x3

2L

√
E

4G

)
, P = 6000lb, L = 14in.,

E = 30× 106 psi, G = 12× 106 psi, τmax = 13, 600psi, σmax = 30, 000psi,
δmax = 0.25 in.
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Table 9. Comparison of the results obtained for the welded beam design problem.

Algorithms
Optimal Values for Variables Optimum

Costh l t b

MFO 0.20576 3.47017 9.03582 0.20577 1.72499
LMFO 0.20739 3.43588 9.25131 0.20807 1.77799

WCMFO 0.20573 3.47035 9.03670 0.20573 1.72489
CMFO 0.18276 4.49027 8.98308 0.20819 1.82934

ODSFMFO 0.20569 3.47128 9.03662 0.20573 1.72490
SMFO 0.20836 3.46324 8.99144 0.20853 1.74135
WMFO 0.20722 3.45341 8.99834 0.20748 1.73151

MFO-SFR 0.20573 3.47056 9.03662 0.20573 1.72486

6.2. The Four-Stage Gearbox Problem

The design of a four-stage gearbox [102] was the second engineering design optimiza-
tion problem examined in this study. To reduce the weight of the gearbox, the mathematical
model specified in Equation (18) was used, together with 86 non-linear constraints and 22
discrete decision variables. According to the results reported in Table 10, the MFO-SFR
algorithm outperformed the other algorithms in terms of the quality of its solution.

Minimize : F
(−

x
)
=
( π

1000

)
∑4

i=1

bic2
i

(
N2

pi + N2
gi

)
(

Npi + Ngi
)2 , i = (1, 2, 3, 4) (18)

Table 10. Comparison of the results obtained for the four-stage gearbox problem.

Variables MFO LMFO WCMFO CMFO ODSFMFO SMFO WMFO MFO-SFR

x1 21.9311 26.0390 13.2709 14.4470 19.9522 7.4896 11.6081 19.7537
x2 56.2686 59.6014 38.0428 35.9087 42.7879 36.8603 36.5289 51.3053
x3 6.5100 23.4280 47.0038 13.7051 16.7363 9.6905 32.5497 17.3633
x4 21.2349 62.1487 64.7345 27.4891 34.3685 35.0066 48.2554 35.7343
x5 17.8415 41.7704 6.9925 19.5000 15.1662 15.4976 18.6551 17.4063
x6 37.9201 50.8023 16.3730 32.6744 27.1178 36.7195 35.1674 30.5308
x7 23.1300 18.5328 16.3790 13.5190 22.4386 37.1973 15.6177 21.5071
x8 27.5979 49.6525 33.9110 31.5029 56.4417 15.5455 38.4569 44.0394
x9 0.5100 0.9809 0.7443 1.3021 0.9727 2.0702 1.4277 0.8917
x10 3.3914 0.5964 0.8894 2.4919 0.8552 0.7589 1.3920 1.2137
x11 0.5100 0.7173 4.2285 1.4999 1.2069 0.8063 0.9781 0.6197
x12 0.5100 0.5100 1.2452 1.4996 0.9356 1.3444 1.0893 1.1821
x13 7.8792 5.4735 6.3799 3.4649 2.3679 0.9250 1.6757 4.1070
x14 5.9533 4.8956 5.5138 6.4560 5.1076 4.7899 5.7668 6.8698
x15 5.3993 4.9521 5.8834 5.1835 5.0748 0.5867 5.6259 2.6797
x16 6.9070 4.8722 2.7391 5.1577 4.1023 4.6470 5.0989 2.2119
x17 6.7122 4.6078 5.4174 6.4936 5.1441 4.0477 4.6631 4.2234
x18 7.5214 7.5663 8.3727 6.4751 5.1403 3.3638 3.5762 1.5645
x19 4.7338 3.7869 3.5741 4.4972 3.9364 3.6366 3.7593 3.7526
x20 5.3254 4.3966 3.3184 3.4597 4.8508 4.6303 3.5222 5.4510
x21 4.8923 3.3528 5.7764 4.4278 2.8171 2.9203 2.6439 4.0416
x22 5.6086 4.0724 4.8985 4.4763 2.7781 3.9267 5.6805 5.2131

Optimum
Weight 7.2632 × 101 6.6228 × 101 2.1631 × 1012 5.2157 × 101 3.6565 × 101 3.4380 × 1017 2.6870 × 1014 3.6555 × 101
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Subject to:

g1

(−
x
)
=
(

366000
πω1

+
2c1 Np1

Npi+Ng1

)(
(Np1+Ng1)

2

4b1c2
1 Np1

)
− σN JR

0.0167WK0Km
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(−
x
)
=
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366000Ng1
πω1 Np1

+
2c2 Np2

Np2+Ng2

)(
(Np2+Ng2)

2

4b2c2
2 Np2

)
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0.0167WK0Km
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(−
x
)
=
(

366000Ng1 Ng2
πω1 Np1 Np2

+
2c3 Np3

Np3+Ng3

)(
(Np3+Ng3)

2

4b3c2
3 Np3

)
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0.0167WK0Km
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g4

(−
x
)
=
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366000Ng1 Ng2 Ng3
πω1 Np1 Np2 Np3
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2c4 Np4

Np4+Ng4

)(
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4b4c2
4 Np4
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(−
x
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=
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πω1
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−
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σH
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(−
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=
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)
=
(
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+
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)
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√
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1
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√
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1
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+
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(−
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(−
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(−
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(−
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(
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(−
x
)
= −Lmax +

(2+Ngi)c1
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(−
x
)
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)
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(−
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(−
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)
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(−
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)
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(−
x
)
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(−
x
)
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(−
x
)
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g69–72

(−
x
)
= (bi − 8.255)(bi − 5.715)(bi − 12.70)(Ngi + Npi − 1.812ci) ≤ 0

g73–76

(−
x
)
= (bi − 8.255)(bi − 3.175)(bi − 12.70)(−0.945ci + Npi + Ngi) ≤ 0

g77–80

(−
x
)
= (bi − 5.715)(bi − 3.175)(bi − 12.70)(−0.646ci + Npi + Ngi)(−1) ≤ 0

g81–84

(−
x
)
= (bi − 5.715)(bi − 3.175)(bi − 8.255)(Npi + Ngi − 0.504ci) ≤ 0

g85

(−
x
)
= ωmin +

ω1(Np1 Np2 Np3 Np4)
(Ng1 Ng2 Ng3 Ng4)

≤ 0

g86

(−
x
)
=

ω1(Np1 Np2 Np3 Np4)
(Ng1 Ng2 Ng3 Ng4)

−ωmin ≤ 0

(1)

where

−
x =

{
Np1, Ng1, Np2, Ng2 . . . b1, b2 . . . xp1, xg1, xg2 . . . yp1, yg1, yg2 . . . yg4

}
ci =

√(
ygi − ypi

)2
+
(
xgi − xpi

)2, K0 = 1.5, dmin = 25, JR = 0.2, ∅ = 120
◦
, W = 55.9,

KM = 1.6, CRmin = 1.4,
Lmax = 127, Cp = 464, σH = 3290, ωmax = 255, ω1 = 5000, σN = 2090, ωmin = 245.

with bounds:

b1 ∈ {3.175, 12.7, 8.255, 5.715}
yp1, xp1, ygi, xgi ∈ {12.7, 38.1, 25.4, 50.8, 76.2, 63.5, 88.9, 114.3, 101.6}
7 ≤ Ngi, Npi ≤ 76 ∈ integer.

7. Conclusions and Future Works

MFO is a prominent metaheuristic algorithm, inspired by the nighttime convergent
behavior of moths in relation to a light source. A large part of MFO’s popularity in recent
years has been attributed to its straightforward construction. However, due to its rapid
loss of population diversity and inadequate exploration ability, the MFO algorithm often
encounters local optimum entrapment and premature convergence. In this study, an
enhanced moth-flame optimization (MFO-SFR) algorithm was proposed to tackle these
weaknesses. MFO-SFR introduces an effective stagnation finding and replacing (SFR)
strategy to effectively maintain population diversity by finding stagnant solutions using
a distance-based technique and replacing them with a solution selected from the archive
constructed on the basis of previous solutions.

The performance of the proposed MFO-SFR algorithm was evaluated on global op-
timization problems using the CEC 2018 benchmark test suite in two different sets of
experiments. In the first set of experiments, the performance of MFO-SFR was bench-
marked by conducting the CEC 2018 benchmark functions with 30 and 50 dimensions. The
obtained results were compared to those obtained using MFO and its six recent variants,
including Lévy-flight moth-flame optimization (LMFO), an efficient hybrid algorithm based
on the water cycle and moth-flame (WCMFO), chaos-enhanced moth-flame optimization
(CMFO), death mechanism-based moth-flame optimization (ODSFMFO), the synthesis
of the moth-flame optimizer with sine cosine mechanisms (SMFO), and the hybrid of
whale and moth-flame optimization (WMFO). In the second set of experiments, the results
obtained using MFO-SFR were compared with the results of five well-known swarm intelli-
gence algorithms, including particle swarm optimization (PSO), krill herd (KH), the grey
wolf optimizer (GWO), the crow search algorithm (CSA), and the horse herd optimization
algorithm (HOA) in 30 and 50 dimensions. Furthermore, the results of the two sets of ex-
periments were statistically analyzed and ranked based on their average fitness values. To
further analyze the performance of the proposed algorithms, convergence and population
diversity results were plotted and compared with those of the other studied algorithms.
The plotted curves showed that MFO-SFR could avoid premature convergence and local
optimum solutions by maintaining its population diversity throughout the optimization
process. To verify the viability of MFO-SFR in solving real-world optimization problems,
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two well-known mechanical engineering problems from the CEC 2020 dataset were con-
sidered. For future studies, solving the problem of improving the exploitation ability of
MFO-SFR without degrading its exploration ability is a worthwhile direction of research.
Furthermore, the SFR strategy could be considered as a reference in solving the issue of
low population diversity for those metaheuristic algorithms that suffer from this problem.
Moreover, alternative methods to construct an archive, such as history-based methods, as
used in SHADE [103], can be investigated in future studies.
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Appendix A

Table A1 provides the results of the pretest conducted on the canonical MFO in
30 dimensions to investigate the average and maximum percentages of situations when ϕi
was equal to 0.

Table A1. The analysis of situations where ϕi was equal to zero with D = 30.

#F Max
Percentage

Average
Percentage #F Max

Percentage
Average

Percentage #F Max
Percentage

Average
Percentage

F1 2.03 0.40 F12 26.05 3.32 F22 22.13 3.51

F3 0.00 0.00 F13 1.16 0.16 F23 0.12 0.01

F4 0.90 0.13 F14 6.85 0.34 F24 3.41 0.42

F5 0.60 0.16 F15 2.12 0.21 F25 0.27 0.03

F6 0.00 0.00 F16 0.10 0.01 F26 2.53 0.65

F7 4.25 0.34 F17 0.02 0.00 F27 3.40 0.28

F8 14.97 0.84 F18 0.37 0.02 F28 11.15 0.64

F9 0.01 0.00 F19 2.00 0.13 F29 28.22 1.46

F10 12.05 1.22 F20 5.24 0.81 F30 9.30 0.47

F11 1.25 0.31 F21 0.01 0.00
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