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Abstract: OCBIL theory addresses the ecology, evolution, and conservation of biodiversity and
cultural diversity on old climatically buffered infertile landscapes, which are especially prominent in
southwest Australia and the Greater Cape Region of South Africa. Here, as a contribution to general
theory on endemism, a few case studies are briefly discussed to ascertain the relevance of hypotheses
in OCBIL theory to understanding narrow endemism in Mediterranean climate regions. Two new
conservation management hypotheses are also introduced—minimising disturbance of OCBILS
and conserving cross-culturally to achieve best outcomes. Case studies of endemics in southwest
Australia (e.g., Eucalyptus caesia, Anigozanthos, Cephalotaceae, Daspypogonaceae) and South Africa
(Moraea, Conophytum) and more limited evidence for the Mediterranean Region conform to OCBIL
theory predictions. Narrow endemics, concentrated in OCBILs, have diverse origins that embrace
major hypotheses of OCBIL theory such as prolonged persistence and diversification in refugia,
limited dispersal, coping with inbreeding in small disjunct population systems (the James Effect),
special adaptations to nutrient-deficient soils, and special vulnerabilities (e.g., to soil disturbance
and removal). Minimising disturbance to OCBILs is recommended as the primary conservation
strategy. OCBIL theory has a potentially significant role to play in advancing understanding of
narrow endemism of plants in Mediterranean climate regions and elsewhere.

Keywords: ancient landscapes; climatically buffered; infertile soils; Southwest Australian Florisitc
Region; Greater Cape Floristic Region; speciation; extinction

1. Introduction

Exceptional narrow endemism has long been recognised as a feature of Mediterranean
climate regions. As of yet, a general theory on endemism has largely remained elusive.
Attempts to explain it have usually focused on single-factor hypotheses. Narrow endemism
is attributed to soil mosaics, pollination systems, or altitudinal variation for example. Yet,
each factor invoked as being the primary cause is easily challenged through identification
of exceptions. It has become clear that more than single causes are needed to be invoked to
derive satisfactory explanatory hypotheses.

After decades of investigation of patterns of endemism in the Southwest Australian
Floristic Region (SWAFR sensu [1,2]) it was realised that three factors in combination
appear critical to understanding narrow endemism—landscape age, minimised disturbance
regimes (especially climatic buffering due to prolonged oceanic proximity), and infertile
soils (especially those low in P). This was published in the progressive development
of the OCBIL theory [3–6], which addresses the ecology, evolution, and conservation
of biodiversity and cultural diversity on old climatically buffered infertile landscapes
(OCBILs). The opposite of OCBILs are YODFELs [3], or young often disturbed fertile
landscapes, usually lowlands adjacent rivers, lakes, or coastlines, but also plains enriched
by volcanic eruptions, glaciation and dust storms, and steep mountain slopes. YODFELs
are more abundant worldwide than OCBILs, especially in the Northern Hemisphere where
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most biologists live and work. OCBILs are predominantly though not exclusively found in
the Southern Hemisphere and have not enjoyed detailed scientific scrutiny until relatively
recently. Consequently, much has to be learnt about the relevance and applicability of
OCBIL theory to conserving biodiversity at global scale.

Three regions were selected in the initial OCBIL paper [3] to illustrate aspects of
the theory—the SWAFR; the Greater Cape Floristic Region of South Africa [7]; and the
Pantepui of equatorial Venezuela, Brazil, and the Guianas [8]. Currently, it is recognised
that OCBILs are found in half of the world’s 36 Global Biodiversity Hotspots [5]. The theory
has been independently examined and found to be heuristic in a number of new regions,
exceptionally so, for example, with campo rupestre altitudinal grassland in eastern South
America [9].

The unifying framework of OCBIL theory centred around old, climatically buffered,
and infertile landscapes has been challenged, particularly early in the exploration of OCBIL
theory [10]. However, subsequent reviews and new evidence have upheld the foundational
tenets of OCBIL theory [5,6,11]. Yet, at such an early stage, there are clear biases in OCBIL
regions examined and hypotheses tested [11]. More work on the general applicability of
OCBIL theory is needed.

As of yet, a review of Ocbil theory as a unifying framework for investigating narrow
endemism in Mediterranean climate regions has not been undertaken. Here, I aim to do
so briefly, first summarising the framework of hypotheses for OCBIL theory and then
highlighting a few case studies from Mediterranean climate regions (MCRs) to stimulate
further research on this promising corpus of theory.

2. Hypotheses of OCBIL Theory

As of this paper, 12 ecological, evolutionary, and cultural/anthropological hypotheses
and another 12 management hypotheses (including two newly proposed herein) provide a
predictive and testable body of knowledge within OCBIL theory (Figure 1). Each hypothesis
is explored and explained elsewhere [3–6] with relevant citations, as space does not allow
for anything but preliminary mention herein. However, it is important to note that a new
contribution in Figure 1 is the addition of two management hypotheses not mentioned
by [6].

These two new management hypotheses are minimise human disturbance, and con-
serve cross-culturally. The additional hypotheses have emerged from ongoing research,
especially cross-cultural research on landscape management with First Nations people
(e.g., Lullfitz et al. 2021; Merningar Bardok Elder Lynette Knapp, pers. comm.). Our
research, and that of many other ethnographic researchers, have found that First Nations
revere sacred uplands. This reverence ensures conservation of OCBILs as minimal human
disturbance is often practised on them. The prolonged relative stability of OCBIL habitats
necessitates this minimising human disturbance for biodiversity conservation. Thus, con-
serving cross-culturally is promising to offer profound new perspectives in conservation
biology [12,13]- that may well halt and possible reverse the ongoing decline of biodiversity.
For example, the world view articulated by SWAFR Elder Lynette Knapp [11] clearly di-
vided landscapes into kaat (upland hills and mountains) and beeliar (freshwater streams and
lakes). This fundamental division was recognised culturally in diverse ways, ensuring that
human disturbance was concentrated in the lowland beeliar (YODFELs) and avoided in the
upland kaat (OCBILs). Application of this world view has undoubtedly played a significant
role in the conservation of narrow endemics and threatened species in the SWAFR.

Increased local endemism is featured in Figure 1 and its causes are highlighted in
other OCBIL hypotheses including reduced dispersability, common rarity, accentuated
persistance of old lineages, the James Effect, semiarid speciation cradles, reduced hybridis-
ation, and nutritional and other specialisation. This diversity of proposed causes of local
endemism is embraced in OCBIL theory.
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Figure 1. OCBIL theory in overview (modified from [6]), according to the foundational attributes
that define OCBILs—old landscapes that are climatically buffered with reduced disturbance levels,
and characterised by infertile (P-deficient) soils. There are 12 predictive ecological, evolutionary, and
cultural hypotheses and 12 conservation management hypotheses that combined provide a testable
foundation for OCBIL theory.

3. Mediterranean Climate Regions and OCBILs

Two of the five Mediterranean Climate Regions (MCRs) have long been recognised
as containing old climatically buffered infertile landscapes—the Southwest Australian
Floristic Region [1,2] and the Greater Cape Floristic Region of South Africa [7]. These
ancient southern hemisphere regions exhibit pronounced geological, topographic, and
relative climatic stability [14]. Until recently, the other three MCRs have escaped detailed
examination from the perspective of OCBIL theory. However, recent scrutiny has led some
authors to suggest that OCBILs may indeed exist in parts of California and Spain [11]. Very
preliminary investigations also suggest that the Valdivian rainforest of Chile’s coastal range
may also harbour OCBILs (Hopper, unpubl.). Further work is needed to verify or refute
these suggestions. For the purposes of this review, I will focus on the SWAFR and GCFR,
and briefly on the Mediterranean Floristic Region hereon.

4. Narrow Endemism, OCBILs, and the Southwest Australian Floristic Region

Extensive research on rare and threatened species in the SWAFR has now been under-
taken for half a century. A noteworthy outcome of early biogeographical survey established
that some 64% of well-documented local endemics of conservation interest are confined to
upland OCBILs in the region, notably hills of granite, quartzite, and ironstone, as well as
upland sandplain (kwongkan in the local Noongar dialects) in the broad subdued valleys of
the wheatbelt and adjacent Great Western Woodlands region (Figure 2; [6,15]).
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Figure 2. The sister species Anigozanthos yorlining Hopper ms and A. gabrielae Domin: (a) distribu-
tions in the context of floristic provinces and regions and districts from Gioia and Hopper (2017);
(b–d) A. yorlining at granite OCBIL Mt Arid; (e–g) A. gabrielae plains adjacent Stirling Range OCBIL
quartzites. Photos S.D. Hopper.

Many of the attributes predicted for OCBIL species are evident in SWAFR narrow
endemics. Gravity dispersed seed is seen in a high proportion of the flora with no obvious
means of attracting animals nor the wind as active dispersal agents [3]. This fundamental
feature of OCBIL endemics leads to predictions of common rarity and high levels of popula-
tion divergence on the insular upland habitats the endemics commonly occupy. This is seen
in Eucalyptus caesia (Figure 3), an endemic of central wheatbelt granite inselbergs, where
even populations as close together as 7 km display exceptional genetic divergence [16–19].
It is even more pronounced in Banksia seminuda subsp. remanens on inselbergs of the south
coast, displaying much higher divergence over its 40 km geographical range on OCBILs
compared with B. seminuda subsp. seminuda distributed along younger fertile landscapes
of river systems over 400 km ([20]; Figure 3). Moreover, these local endemics display
accentuated persistence; old clonal individuals of slow woody growth; the James Effect
including purging of deleterious genes in small populations and adaptation to mobile bird
pollinators; and nutritional specialisations such as mycorrhizal associations, strong lateral
root development in cracks in granite, and cluster root for mining low P levels (refs in
above reviews).

Molecular phylogenetic studies have proven vital to establishing that accentuated
persistence of old endemic lineages is evident in the SWAFR flora, e.g., Cephalotaceae [21]
and Dasypogonales/Dasypogonaceae [22].
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Figure 3. Two examples of narrow endemics from the SWAFR whose biological attributes and granite
outcrop habitats occupied meet those predicted by OCBIL theory. Left: Eucalyptus caesia (Myrtaceae)
and right: Banksia seminuda subsp. remanens (Proteaceae). Photos S.D. Hopper, Keith Lightbody (top
left), and Tim Robins (bottom right).

5. Narrow Endemism, OCBILs, and the Greater Cape Floristic Region

The Greater Cape is renowned for its high levels of endemism at approximately
70%. There are many genera that have speciated prolifically, especially among geophytes
and the succulent semi-arid dwelling mesembs (Figure 4). Although few authors have
specifically investigated GCFR genera from an OCBIL perspective, ample evidence exists
where molecular phylogenetics and chromosomal studies have been undertaken. Limited
dispersal capabilities are evident, and a bewildering array of highly localised endemics
occur in geophyte and/or succulent genera such as Moraea (Iridaceae) and Conophytum,
respectively, from Namaqualand.

Abundant evidence of such genera with predicted attributes of OCBIL species (Figure 1)
is seen on careful examination of the published literature [3,5]. In the widespread Moraea
fugax, for example [23], an exceptional diversity in chromosome number was documented
in a dysploid descending series (n = 10, 9, 8, 7, 6, and 5). Goldblatt [23] (p. 149) proposed
that this chromosomal diversity ‘probably has promoted population differentiation in
the species by restricting hybridisation and consequent recombination in forms that have
differentiated cytologically’. In the context of OCBIL theory, this is a spectacular example of
the James Effect, conserving heterozygosity in the face of inbreeding due to small disjunct
population structures. It also exemplifies predictions of the reduced hybridisation/hybrid
speciation hypothesis, due to the accumulation of genetic differences that form reproductive
barriers to hybridisation over prolonged periods of isolation on OCBILs.
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Figure 4. Two examples of genera rich in narrow endemics from the GCFR Moraea fugax (Iridaceae,
left column; white flower is of M. filicaulis, regarded earlier as a subspecies of M. fugax) and Cono-
phytum from semiarid succulent karoo in Namaqualand (Aizoaceae).—C. subfenestratum (top right),
C. kamiesbergense (middle right), C. pellucidum (bottom right). Photos S.D. Hopper.

In the second example illustrated in Figure 4, Conophytum, perhaps the most spectacu-
lar example of narrow endemism in the GCFR flora, is seen. With more than 108 species
and at least 57 subspecies, Conophytum has an exceptional 28% of all taxa occurring as
single-point endemics [24]. Unlike the dysploidy seen in Moraea fugax, Conophytum dis-
plays exceptional diversity in endopolyploidy. ‘Leaf and flower tissues of Conophytum
are highly polysomatic and ploidy states of 2C–64C were typically observed across the
genus, with some instances of 128C.’ [25]. Essentially, this duplication of whole genomes
observed across 46 of the 108 species of Conophytum has the same effect as dysploidy does
in Moraea fugax. It is another example of the James Effect and of the reduced hybridisation
hypothesis of OCBIL theory. Scarcely investigated in the GCFR, polyploidy at exceptional
infraspecific levels is also seen in Oxalis obtusa [26]. Although much more work is needed
in the GCFR to fully understand the relevance of OCBIL theory, such investigations and
others cited elsewhere [3,4,6] have already confirmed the merits of this body of theory in
helping understand narrow endemism.

Molecular phylogeny has enabled penetrating insights on endemism and accentuated
persistence of old lineages in GCFR taxa such as in Protea, Moraea [27], and Brunniaceae [28].



Plants 2023, 12, 645 7 of 9

6. Narrow Endemism, OCBILs, and the Mediterranean Floristic Region

The extensive literature on evolution of the Mediterranean flora summarised by
Thompson [29] and others reveals that an estimated 60% of the 25,000 Mediterranean
species are endemics, with 37% recorded as local endemics. Some 20% occur in the Baetic-
Rifan Global Biodiversity Hotspot of the western Mediterranean flanking either side of
the Gibralter Strait, and 27% are in the Greek mountains (Figure 5). Dispersal limitation is
evident in Mediterranean cliff endemics (Thompson 2020). The occurrence in Andulusian
Spain of Drosophyllum lusitanicum, the monotypic representative of the Mediterranean
flora’s only endemic plant family, exemplifies the predicted accentuated persistence of
old lineages characteristic of OCBILs (Figures 1 and 5). Indeed, examining and testing
the evolution of endemics in the MFR in the context of OCBIL theory is commended as a
promising line of general research bearing on the theory of endemism and refugia.
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Figure 5. Top: Verbascum peraffine, an example of a Mediterranean local endemic confined to moun-
tains and cliff faces on just two Greek islands (southern Evia and adjacent Andros Island to the south;
photo S.D. Hopper). Bottom: Drosophyllum lusitanicum from southwest Spain, the only plant family
endemic to the Mediterranean Floristic Region (photo John Vaclav).
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7. Conservation Management Predictions of OCBIL Theory

The few examples highlighted above serve to illustrate that OCBIL theory shows
considerable promise in unravelling aspects of local endemism across Mediterranean
Climate Regions. This brief account is intended simply to highlight that potential, as well
as to add two additional biological conservation management hypotheses that have been
derived from recent studies mainly in the SWAFR—minimising human disturbance and
conserving cross-culturally with First Nations Elders. OCBIL theory has matured as a
progressive elaboration of hypotheses that have been published. Given the significant
contributions on OCBILs coming out of eastern montane campos rupestre vegetation in
South America [9], the present paper suggests that Mediterranean Climate Regions of
the world deserve similar attention, particularly in the Mediterranean Region itself, in
California, and in Chile.
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