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Abstract: This work proposes a framework to solve demand-side management (DSM) problem
by systematically scheduling energy consumption using flat pricing scheme (FPS) in smart grid
(SG). The framework includes microgrid with renewable energy sources (solar and wind), energy
storage systems, electric vehicles (EVs), and building appliances like time flexible, power flexible, and
base/critical appliances. For the proposed framework, we develop an ant colony optimization (ACO)
algorithm, which efficiently schedules smart appliances, and EVs batteries charging/discharging
with microgrid and without (W/O) microgrid under FPS to minimize energy cost, carbon emission,
and peak to average ratio (PAR). An integrated technique of enhanced differential evolution (EDE)
algorithm and artificial neural network (ANN) is devised to predict solar irradiance and wind speed
for accurate microgrid energy estimation. To endorse the applicability of the proposed framework,
simulations are conducted. Moreover, the proposed framework based on the ACO algorithm is
compared to mixed-integer linear programming (MILP) and W/O scheduling energy management
frameworks in terms of energy cost, carbon emission, and PAR. The developed ACO algorithm
reduces energy cost, PAR, and carbon emission by 23.69%, 26.20%, and 15.35% in scenario I, and
25.09%, 31.45%, and 18.50% in scenario II, respectively, as compared to W/O scheduling case. The
results affirm the applicability of the proposed framework in aspects of the desired objectives.

Keywords: scheduling; energy forecasting; artificial neural network; energy management; microgrid
generation; EVs; batteries

1. Introduction

Due to the exponential rise in population and economic growth, the dependence on
electricity rises, causing hike in the energy consumption. On the record, energy sector’s
electricity demand has been increased to 45%, and residential and commercial sector’s
electricity demand will rise to 30% in 2025 [1]. The traditional power grid is inefficient in
meeting this rising energy demand due to the outdated infrastructure, lacking bi-directional
communication and power flow and a demand response (DR) program. Thus, a power
grid emerged with advanced/modern infrastructure as a solution, namely smart grid (SG),
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which is a combination of the conventional grid and information and communication
technology (ICT). The SG with modern infrastructure accommodates renewable and hybrid
generation with controlled two-way power and communication flow to actively involve
consumers in the DR program to meet this rising electricity demand of residential build-
ings [2]. Besides, to meet this increasing electricity demand with least carbon emissions,
the use of Renewable Energy Sources (RESs) emerged as a solution [3]. However, RESs have
intermittent and stochastic nature depending on weather conditions. To solve this problem
effectively, a reliable, precise, and accurate forecasting model is needed for estimating the
generation of RESs [4].

The SG DR program persuades consumers to take part in the energy market via
Advanced Metering Infrastructure (AMI) to cope with the rising electricity demand with
available power generation. The DR program is of two types: price-based DR and incentive-
based DR. The first type of DR is related to indirect load control, where consumers manage
their load in response to the DR scheme issued by the utility. In contrast, the other type of
DR is related to direct load control, where control is with the utility company to manage the
consumer’s load with in-advance short notice [5]. Since buildings’ electricity consumption
is more than 80%, which is a significant portion of net energy consumption; hence, the first
program is more suitable, where both consumers and utility actively participate to produce
optimal power usage schedule of buildings, which is beneficial for both the parties [6].

On this note, more research work in the literature has been conducted to solve build-
ings’ energy management problem via scheduling building appliances using price-based
DR programs through mathematical, stochastic, and control techniques. For instance,
in [7], authors proposed the MILP technique for effective energy management to save
electricity cost, reduce PAR, and schedule smart appliances and electric vehicles (EVs)
charging/discharging. Authors in [8] formulated the unit commitment problem and devel-
oped Mixed-Integer Non-Linear Programming (MINLP) technique to solve the formulated
problem. However, the diesel generator is used, releasing carbon footprint to the environ-
ment and is not a vital solution. Likewise, stochastic optimization techniques are developed
to solve building’s energy management problem [9]. For example, in [10], the authors
developed a framework where RESs are integrated with buildings for Demand-Side Man-
agement (DSM). The developed framework is based on stochastic optimization to solve
problems of DSM to achieve minimum energy cost, energy consumption, and user discom-
fort. However, PAR is not considered, which is closely related to energy cost minimization.
Similarly, control techniques are used to solve buildings’ energy management problem.
For instance, super twisting sliding mode controller is developed to solve the energy bal-
ancing problem in SG [11]. However, key objectives like energy cost, user comfort, carbon
emission, and PAR are not catered. The complete literature review is conducted in Section 2.

The discussed models are remarkable contributions to solve the DSM problem of
buildings integrated with RESs. However, these models have several demerits. For example,
mathematical technique-based models cannot handle nonlinear and stochastic effects,
load scheduling in unfeasible hours, and dimensionality problem. Also, mathematical
techniques have high complexity and spend more time in reaching the optimal solution.
Likewise, stochastic technique-based models have premature convergence problems that
lose population diversity, parameters adjustment, and termination criteria. In addition,
the mentioned works either considered energy cost or PAR or carbon emission. The above
works do not address all objectives simultaneously. Hence, a model is required which
solves the intermittency problem of RESs and the DSM problem of buildings integrated
with RESs.

With this motivation, in this work, a forecasting model based on Enhanced Differential
Evolution (EDE) and Artificial Neural Network (ANN), namely, ANN-EDE, is introduced
for accurate microgrid energy generation estimation to solve the intermittency problem
of RESs. Then, we develop an Ant Colony Optimization (ACO) algorithm for the pro-
posed framework to solve the DSM problem using FPS by minimizing energy cost, peak
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energy consumption, and carbon emission. The novelty and contributions of this work are
as follows:

• A framework is developed considering FPS to schedule residential building appliances
and charging/discharging of EVs/batteries for solving the DSM problem optimally.

• The ANN-EDE prediction model is developed to estimate microgrid energy generation.
• The ACO algorithm is developed for the proposed framework for power usage and

EVs/batteries charging/discharging scheduling using FPS in the presence of user
constraints, priority, and utility energy constraints.

• The proposed framework is evaluated by comparing it with MILP based framework
and without (W/O) scheduling case in terms of energy cost, carbon emission, and PAR
for two scenarios: with microgrid and W/O microgrid.

The rest of this work is organized as follows: The related work is presented in Section 2.
The proposed optimal DSM framework is discussed in Section 3. Mathematical modeling
and problem formulation is presented in Section 4. Performance evaluation (results and
discussion) is demonstrated in Section 5. Finally, this work is concluded in Section 6.

2. Related Work

Before we discuss DSM, price, load, and generation forecasting, some recent work on
forecasting is conducted in [12,13]. Various optimization techniques have been developed
to solve energy management problems for minimizing energy cost, peak energy consump-
tion, and carbon emission in the literature. In the subsequent subsections, some existing
promising techniques like mathematical, stochastic, and control are discussed in detail.

2.1. Mathematical Techniques

Authors in [14–29] developed mathematical techniques to solve energy management
problem in SG. In [7], Mixed Integer Linear Programming (MILP) is developed to solve en-
ergy management problem for PAR and cost minimization. A game theory model is utilized
in [30] to schedule appliances for DSM subjected to energy cost and PAR minimization.
However, an important objective is user comfort level, which is not considered. The authors
in [31] adopted MILP technique to schedule EVs and load in residential areas for DSM.
Authors proposed a novel energy management strategy to operate consumers in various
operation modes considering RESs and Energy Storage Systems (ESSs) in smart homes
in [32]. The purpose is to achieve objectives like energy cost, peak energy consumption,
and pollution emission minimization. In [33], authors developed Power Management
Strategies (PMS) and power grand composite curves technique to adjust RESs integrated
SGs operation in response to consumers’ load demand. Prosumers based Energy Man-
agement and Sharing (PEMS) system is introduced in [34] to evaluate and interpret the
role of prosumers in future SGs. The prosumers-centred approach enhances the reliability
and sustainability of future SGs. A novel MILP paradigm is introduced in [35] to perform
optimal load, renewable energy generation, and resource management scheduling. The pur-
pose is to ensure reliable and sustainable provisioning of energy subjected to maintaining
user comfort.

2.2. Stochastic Techniques

Stochastic techniques have emerged in the literature to address the limitations of math-
ematical methods [36–43]. For example, in [44], non-sorting Genetic Algorithm (GA) based
controller is introduced for optimal energy management in smart homes with primary
objectives like carbon emissions, energy cost, and peak energy consumption minimization.
Likewise, in [45], authors proposed a novel stochastic algorithm to shift load to the bat-
tery in peak hours and to the grid in off-peak hours to ensure energy cost minimization.
A cascaded technique of GA and MILP is introduced in [46] to solve the economic dis-
patch problem. Authors in [47] developed an energy management scheme where mutation
operator of GA and key steps of ACO are integrated to avoid premature convergence at
local optima and obtain the global optimal solution to minimize PAR and energy cost.
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Similarly, in [48], authors developed an optimal scheduling scheme for home appliances’
power usage pattern management to mitigate PAR and alleviate appliances’ waiting time.
However, carbon emission and energy cost minimization is ignored. Authors in [49] intro-
duced Firefly Algorithm (FA) to solve the appliances’ power usage scheduling problem
of smart homes using Critical Peak Pricing (CPP) and Real Time Pricing (RTP) schemes.
The objectives are achieved at the cost of compromised user comfort. In [50], the authors
introduced Grey Wolf Accretive Satisfaction Algorithm for DSM to ensure the lowest en-
ergy cost and highest user comfort. A Candidate Solution Updating Algorithm (CSUA) is
introduced in [48]. The purpose is to minimize PAR and appliance waiting time subjected
to the desired user comfort level. In [51], authors developed a mechanism that handles
uncertainties in consumer behavior and optimally schedules consumers’ power usage
patterns. In [52], authors developed an online energy management method to cater energy
crisis issues in the SG via power usage scheduling. The authors in [53] developed IoT based
energy management system for smart communities. The developed model is validated via
hardware and software results. In [54], authors developed a hybrid pricing model of RTP
signal and Inclined Block Rate (IBR) signal to solve rebound peaks problem via scheduling
power usage pattern in smart home for minimizing energy cost and PAR. The authors devel-
oped Aquifer Thermal Energy Storage (ATES) approach to minimize energy usage during
on-peak hours. The work in [55] proposed cloud and edge computing-based hierarchical
framework with distributed architecture to solve energy management problem intelligently.
Besides, the developed model also includes real-time communications, collecting informa-
tion, processing, monitoring, and controlling in households and power grid levels. Results
illustrate that the developed model is superior than the other models in aspects of energy
management. In [56], authors provide a game-theoretical energy management strategy
that schedules the entire electricity consumption of Thermostatically Controlled Load
(TCL) consumers. In [57], authors employed heuristic optimization approaches like GA,
PSO, and ACO algorithms to schedule power usage patterns in the presence of RESs and
ESSs. The authors in [58] proposed an energy management framework with distributed
ESSs for users’ energy cost and discomfort minimization. The work in [59] developed an
optimization-based scheduling framework to adapt power usage patterns of consumers
under demand utility and RESs using RTP signal. The purpose is to minimize energy cost,
peak energy consumption, and carbon emissions to resolve the rebound peaks problem.
The work in [60] introduced a multi-domain communication network with extensible mes-
sage presence protocol and IEC-61850 framework for meaningful communication between
SGs and virtual power plants. In [61], the authors proposed a privacy-preserving model
where each node utilizes a dataset for state changes and broadcasts a noisy version. Results
show that both the proposed algorithms protect and ensure users’ privacy. Nevertheless,
end solution optimality and convergence is retained. In [62], authors analyzed the impact of
ESSs on the functioning of power systems using a multi-objective cuckoo search algorithm.
The Stackelberg game-theoretic framework is introduced in [63] to examine interactions
between generators and microgrids for the purpose of maximizing payoffs. The authors
in [64] presented a novel technique to fully utilize distributed energy resources using
ANN. In [65], authors developed a methodology using Markov Decision Process (MDP) for
power usage scheduling in SG for energy expenditure minimization. The authors in [66]
conducted a study on reactive and active power flow regulation in islanded distributed
microgrids. In [67,68], authors employed an optimum DR to Plugin Hybrid Electric Vehi-
cles (PHEVs) aggregated at parking stations for contributing as ESSs and supplying in the
power grid to obtain energy balancing equilibrium.

2.3. Control Techniques

Control techniques emerged as a novel solution to solve problems accompanied by
stochastic methods [69–77]. For example, in [78], the authors presented a method for power
usage scheduling in SG using Model Predictive Control (MPC). The framework considered
RESs, ESSs, and smart loads for optimal distributed DSM. The authors in [79] proposed
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a model for energy optimization of solid oxide fuel cell, PV system, nickel-metal-hybrid
battery, and load. An integrated Proportional-Integral (PI) and Adaptive Neuro-Fuzzy
Inference System (ANFIS) model was used for balancing demand with supply. In [80],
authors presented a grid-connected scheduling framework using Distributed MPC (DMPC)
to optimize the results. The DMPC results obtained from real-time hardware are same like
Centralized MPC (CMPC) results. In contrast, the computational speed of DMPC is faster
than CMPC. The work in [81] proposed a hybrid prediction model of ensemble learning
network and MPC to forecast interrupted/non-interrupted data for microgrids based en-
ergy management. The authors in [82] developed a coordinated MPC model that considers
RESs variations and meteorological circumstances while scheduling charging/discharging
of batteries and load in microgrids. In [83], dynamic scheduling framework is introduced
for grid-connected microgrid operation optimization. Smart metering system and MPC
collect energy consumption data of users and pricing signals utility. In this work, which is
the continuation of the previous work in [84], a joint scheduling of load (power flexible,
time flexible, and base appliances) and energy storage (ESS and EVs) using FPS is exploited
for a smart home to achieve objectives such as energy cost, carbon emission, and PAR
minimization. A brief comparison of the existing work compared to the proposed model is
summarized in Table 1.

The above-discussed techniques from mathematical, stochastic, and control models
effectively perform DSM; however, some models are suitable only for specific objectives,
constraints, and scenarios. All objectives and scenarios are not considered simultaneously.
On this note, this work presents an ACO algorithm based optimal energy management
framework to solve DSM problem via power usage scheduling using FPS in smart grid.

Table 1. Summary of related work in aspects of objectives, sources, algorithms, and storage systems,
where RESs is Renewable Energy Sources, ESSs is Energy Storage Systems, CG is Commercial Grid,
and MGT is Micro Gas Turbine.

Ref. Generation Sources Storage Systems Objectives Techniques

[7] RESs+CG ESSs+MGT PAR and energy cost MILP
[8] RESs+CG ESSs Energy cost and complexity MINLP
[9] RESs+CG ESSs Energy cost and user discomfort MILP
[10] RESs+CG ESSs Energy cost ACO, GA, and Knapsack
[30] RESs+CG ESSs Energy cost and PAR Game theory
[31] RESs+CG ESSs Energy cost MILP
[32] RESs+CG ESSs Energy cost MILP
[33] RESs+CG ESSs Energy balancing PGCC, MILP
[34] RESs+CG ESSs Energy fluctuations PEMS, MILP
[35] RESs+CG ESSs Bill savings MILP
[44] RESs+CG ESSs Carbon emission and energy cost GA
[45] RESs+CG ESSs Energy cost and user comfort Controllers
[46] RESs+CG ESSs Economic dispatch, PAR and energy cost GA and MILP
[47] RESs+CG ESSs Premature convergence, PAR and energy cost ACO
[48] RESs+CG ESSs PAR and delay time CSUA
[49] RESs+CG ESSs Energy cost FA
[50] RESs+CG ESSs Energy cost and user discomfort GWASA
[51] RESs+CG ESSs Optimal scheduling DR
[52] RESs+CG ESSs Cost, comfort, and delay time DES
[53] RESs+CG ESSs Energy cost IoT-based system
[54] RESs+CG ESSs Cost and PAR ATES
[55] RESs+CG ESSs Energy cost Hierarchical architecture
[56] RESs+CG ESSs Scheduling GTDSM
[57] RESs+CG ESSs Energy cost and PAR GA, PSO, and ACO
[58] RESs+CG ESSs Energy cost and User discomfort DES
[59] RESs+CG ESSs Energy cost and PAR HGACO
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Table 1. Cont.

Ref. Generation Sources Storage Systems Objectives Techniques

[60] RESs+CG ESSs VPP management XMPP based IEC 61850 communication
[61] RESs+CG ESSs Charging/Discharging scheduling Privacy-preserving
[62] RESs+CG ESSs DSM CSA
[63] RESs+CG ESSs Maximizing payoffs Stackelberg game theory
[64] RESs+CG ESSs Energy resources optimization ANN
[65] RESs+CG ESSs Energy cost MDP
[66] RESs+CG ESSs Reactive power flow control PCC
[67] RESs+CG ESSs Energy balancing a Stochastic optimization
[78] RESs+CG ESSs Energy cost MPC
[79] RESs+CG ESSs Energy cost PI and ANFIS
[80] RESs+CG ESSs Energy cost DMPC
[81] RESs+CG ESSs Energy cost MPC
[82] RESs+CG ESSs Green house gases MPC
[83] RESs+CG ESSs Energy savings MPC

3. Proposed Optimal Demand-Side Management Framework

The proposed optimal DSM framework comprises an energy management system
(EMS), microgrid, and graphical user interface (GUI). The EMS consists of energy manage-
ment center (EMC), advanced metering infrastructure (AMI), home appliances, and home
gateway (HG). The AMI of EMS acts as a central nervous system enabling two-way com-
munication between the utility and consumers to collect and transmit power usage data to
utility and send demand response (DR) signal from utility to EMC in real-time. The EMC is
embedded in HG that receives DR signal via HG to create power usage schedule as per the
priority and constraints of users and utility. The home is considered to have three types of
smart appliances: time flexible appliances like dishwasher, cloth dryer, and EVs; power
flexible appliances like AC, heater, and refrigerator; and critical/base appliances. These
smart appliances interact directly with EMC via wireless communication links like Z-wave,
ZigBee, and Wifi. However, there is a limitation that smart appliances do not interact with
each other. The EMC schedule operation of all appliances is based on DR signal, consumers,
and utility constraints. The microgrid part of the developed framework consists of WT, PV
panels, EVs, batteries, and MGT. The microgrid generation is stochastic in nature due to
its dependence on changing weather conditions. Thus, ANN-EDE model is developed for
prediction and estimation of microgrid generation profile. The GUI part either has IDD
or remote devices like mobile or laptop, which is used to monitor and control the whole
process of EMS power usage scheduling. The developed DSM framework is shown in
Figure 1. The detailed description of the developed framework is as follows:

Figure 1. Developed framework for optimal DSM in SG.
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3.1. Prediction Model for Microgrid Generation Estimation

This section presents ANN-EDE prediction model that estimates microgrid generation
by forecasting solar irradiance and wind speed, as shown in Figure 2. Similarly, some
hybrid models are used for load prediction in literature [85,86]. The developed prediction
framework has forecasting and optimization modules. The forecaster module uses ANN
for prediction of wind speed and solar irradiance for accurate microgrid energy generation
estimation based on history data received as input. The ANN layers like input, hidden,
and output having artificial neurons are activated via sigmoidal activation function [84] to
generate output. These layers are connected in feed-forward fashion, where the preceding
layer gets input from earlier layers. The sigmoidal activation function is defined as follows
in Equation (1) [84]:

f (S, b) =
1

1 + e−β(S−b)
(1)

where S represents input signal with selected attributes, parameter β determines the
steepness of sigmoidal function, and b shows bias value. The ANN forecaster employed
multivariate autoregressive rule to learn from history data to predict wind speed and solar
irradiance for accurate energy estimation [84]. The prediction model is shown as first
block in Figure 2. The history data is adopted from [84]. The history data is divided into
training and testing sets of 80% and 20%, respectively. The training set trains the model
to forecast solar irradinace and wind speed, and the testing set validates the model by
comparing obtained results with ground truth observations. The MAPE error is employed
as a performance metric mathematically defined as follows in Equation (2) [84]:

MAPE(i) =
1
n

m

∑
j=1

∣∣∣ pa(i, j)− p f (i, j)
∣∣∣

pa(i, j)
(2)

where pa(i, j) represents real and p f (i, j) shows predicted solar irradiation and wind speed.
m is the number of days. Levenburg Marquart algorithm tunes control parameters until
the error reaches the lowest value. The predicted solar irradiation and wind speed ANN is
given as input to EDE based optimizer for further error minimization. In the optimization
module, the error is further minimized using the EDE algorithm depicted in Figure 2.
The EDE algorithm is selected due to the following merits: computational efficiency, fast
convergence rate, and resolving premature convergence issues. The EDE algorithm opti-
mizes control parameters of ANN for accurate wind speed and solar irradiance prediction
to estimate microgrid energy generation.

3.2. Smart Home Appliances

The smart appliances A are classified as time flexible AT
a , power-adjustable AP

a ,
and base AC

a . Sa
t = {1, 0}, and Xa

t = (ra
t , wa

t ) are defined as appliance status, and po-
sition indicators, respectively, where ra

t and wa
t represents the appliance’s remaining hours,

and waiting hours, respectively. Complete set of smart appliances is defined as follows:

A =
{

AT
a , AP

a , AC
a

}
(3)

where A shows a set of smart appliances having three types of appliances. Detailed
discussion on each class is as follows:

1. Power adjustable appliances are also known as power regulating appliances having
flexible power regulation between maximum and minimum power to participate in
the DR program to achieve desired objectives. During peak hours, such appliances
operate with maximum power and work with minimum power during off-peak hours
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to minimize energy cost, PAR, and carbon emission. The current status and status at
the next hour are defined as:

XN
t = (To

P, β− α + To
P + 1) (4)

XP
t+1 =


rP

t , 0, Pmin p
r ifSt= 1,rP

t ≥ 1
rP

t , 0, Pmax p
r ifSt= 1,rP

t ≥ 1
0, 0 otherwise

(5)

where XP
t and XP

t+1 denote current status and status at the next hour, respectively.
To

P represents the length of operation hours, α represents operation starting hour,
and β represents operation ending hour. Pmin p

r and Pmax p
r represent minimum and

maximum power, respectively.
2. Time adjustable appliances have flexible operating time and fixed rated power. Time

flexible appliances are classified into two types: non-interruptible ANI
T and interrupt-

ible AI
T , which are defined as follows:

AT
a =

{
AI

T , ANI
T

}
(6)

• Interruptible appliances AI
T are also known as deferrable appliances that can

tolerate interruption, advance, and delay in operation even during running time.
The current status and status at the next hour are modeled as follows:

X I
t = (To

I , β− α + To
I + 1) (7)

X I
t+1 =

{
rI

t , wI
t − 1, PI

r ifSt= 0,wI
t ≥ 1

rI
t − 1, wI

t PI
r ifSt= 1,rI

t ≥ 1
(8)

where X I
t and X I

t+1 represent current status and status at the next hour, respec-
tively, To

I shows the length of operation hours.
• Non-interruptible appliances ANI

T can tolerate delay/advance before the oper-
ation starts and cannot tolerate interruption during work. Current status and
status at the next hour are defined as:

XN
t = (To

N , β− α + To
N + 1) (9)

XN
t+1 =

{
rN

t , wN
t − 1, PNI

r ifSt= 0,wN
t ≥ 1

rN
t − 1, 0 , PNI

r ifSt= 1,rN
t ≥ 1

(10)

where XN
t and XN

t+1 shows current status and status at the next hour, respectively,
To

N shows the length of operation hours.

3. Critical appliances work on fixed power without interruption and cannot tolerate
delay or advance in operation.

Constraints and parameters of smart appliances are presented in Table 2.
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Figure 2. Developed optimal DSM framework working flow chart.
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Table 2. Smart appliances control parameters like duration, operation time interval, priority, etc.

Type Device Time (hours) Rated Power
(kW) Start Time End Time Priority

Time flexible
appliances 4

Interruptible time
flexible

appliances
Washing machine 6 3.0 9:00 am 3:00 pm

Tumble dryer 4 3.3 4:00 pm 8:00 pm
Dishwasher 2 2.5 10:00 pm 12:00 am

Non-
interruptible time

flexible
appliances

3

Vacuum cleaner 2 1.5 10:00 am 12:00 pm
Water heater 3 1.8 5:00 am 8:00 am

Power flexible
appliances 2

Refrigerator 24 0.5–1.5 8:00 am 8:00 am
Airconditioner 24 0.8–1.8 8:00 am 8:00 am

Water dispenser 24 0.5–2.0 8:00 am 8:00 am

Base appliances 1

Microwave oven 2 1.2 2:00 pm 4:00 pm
2 1.9 8:00 am 1:00 am

Electric kettle 2 1.9 4:00 pm 6:00 pm
2 1.9 8:00 pm 10:00 pm
2 1.2 7:00 am 9:00 am

Electric toaster 2 1.2 1:00 pm 3:00 pm
2 1.2 8:00 pm 10:00 pm

3.3. Microgrid

A microgrid has solar PV and WT for electricity generation. Microgrid’s net electricity
generation is mathematically modeled in Equation (11).

E(t) = ∑
mεM

εm(t) (11)

where εm shows single RES electricity generation, the net energy generation of microgrid
during 24 h is as modeled as follows:

E(t) =
T

∑
t=1

∑
mεM

εm(t) (12)

3.3.1. Wind Energy Generation System

WT generates energy at output based on wind speed, which is defined in Equation (13)
as follows:

Pwt(t) = 1/2× Cp × (λ)× ρ× A× (Vt
wt)3 (13)

where Pwt, A, Vt
wt, and ρ, represent WT energy, turbine blades area, wind speed, and air

density, respectively. The relation between electricity generation and wind speed is depicted
in Figure 3. The ANN-EDE forecasts wind speed for accurate energy estimation [87],
which is shown in Figure 2. The wind energy system speed constraints are modeled in
Equations (14)–(16).
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Figure 3. WT electricity generation with rated, cut-in, and cut-out speed.

Vcut−in ≤ Vwt(t) ≤ Vcut−out (14)

0 = Vwt(t) ≥ Vcut−out, ∀tεT (15)

0 = Vwt(t) ≤ Vcut−in, ∀tεT (16)

3.3.2. Solar PV Energy Generation System

The ANN-EDE model forecasts solar irradiance for accurate energy estimation [87],
which is shown in Figure 2. Solar PV system generates electricity from the sun depending
upon forecasted solar irradiation, and ambient temperature, defined as follows [88]:

Pt
pv = ηpv × Apv × Irr(t)× (1− 0.005(Temp(t)− 25)) (17)

where Pt
pv is electrical energy generation, Apv is area of solar panel, ηpv is efficiency of

solar panel, Irr(t) is solar irradiance, and Temp(t) is ambient temperature. The i-v curve
with Maximum Power Point Tracking (MPPT) is shown in Figure 4 that assures PV cell
optimal performance.
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Figure 4. Solar cell I-V curve.
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4. Energy Management Problem Formulations

The energy management problem stated in this work is formulated as a minimization
problem with objective functions like carbon emission, energy cost, and PAR. The complete
modeling and formulation is as follows:

4.1. Objective Function

The objective function of the proposed model is based on energy cost, PAR, and carbon
emission, which is modeled as a minimization problem depicted in Equation (18).

mini
T

∑
t=1

(
(Et + ESSt + EVt + MGTt)
×(EPt + µt + Yt)

)
(18)

This work aims to schedule appliances and EVs/batteries charging/discharging for en-
ergy cost EPt, PAR µt, and carbon emission Yt minimization subjected to the following
constraints (19)–(43).

E(t) = Ppv(t) + Pwt(t), (19)

AT
a + AT

a + AC
a =

(
E(t) + ESS(t) + EVs(t)
+MGT(t) + Φ(t)

)
(20)

n

∑
a=1

η = LOT(a), (21)

n

∑
a=1

α ≤ η ≤ β, (22)

Φt ≤ KI, (23)

Vcut−in ≤ V(t)wt ≤ Vcut−out, ∀ t ε T, (24)

0 < Irr(t) < kc, ∀ t ε T, (25)

0 < ESSmin < ESSmax, ∀ t ε T, (26)

EVse
min ≤ ρEVse

a + EVe ≤ EVse
max (27)

where Equation (19) shows the overall contribution of microgrid generation to the overall
electricity generation. PV contributes 20%, WT contributes 30%, and utility contributes 50%.
Equation (20) ensures that appliances are optimally scheduled, and Equation (21) represents
the total operation time slots of appliances. Constraint (22) represents ON/OFF appliances
status. Equation (23) represents hourly imported energy. Equation (24) shows hourly wind
energy generation with cut-in and cut-out speeds. Equation (25) shows solar irradiance.
The Equation (26) shows charging levels like maximum and minimum. Equation (43)
shows energy consumption of EVs considering arrival and departure time.

4.1.1. Energy Cost

Energy cost using FPS per hour W/O considering microgrid is modeled as follows:

ζ(t) = (ΓAT
a
(t) + ΓAP

a
(t) + ΓAC

a
(t))× EP(t) (28)

where ΓAT
a
(t), ΓAP

a
(t), and ΓAC

a
(t) are per hour energy consumption of time flexible appli-

ances, power flexible appliances, and critical/base appliances, respectively. The net energy
cost per day is shown by Equation (29).

ζ(T) =
T

∑
t=1

(ΓAT
a
(t) + ΓAP

a
(t) + ΓAC

a
(t))× EP(t) (29)
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The imported energy considering microgrid including ESSs, EVs, and MGT is ex-
pressed in Equation (30).

Φ(t) =

(
(ΓAT

a
(t) + ΓAP

a
(t) + ΓAC

a
(t))− (E(t)+

EVs.αEVs(t) + ESS.αESS(t) + MGT.αMGT(t))

)
(30)

Φ(t) =

{
Φ(t) i f Φ(t) > 0,

0 otherwise
(31)

Per hour and per day energy cost is defined in Equations (32) and (33), respectively.

δ(t) = (Φ(t)× EP(t)) (32)

δ(t) =
T

∑
t=1

(Φ(t)× EP(t)) (33)

4.1.2. PAR

PAR minimization is one of our objectives, which is beneficial for utility grid and
consumers because it leads toward cost minimization for both bodies. PAR minimization
objective is catered W/O and with microgrid, which is mathematically modeled as follows:

Lavg =
1
T ∑

tεT
Lt (34)

Lmax = ∑
tεT

max Lt (35)

µ =
Lmax

Lavg
(36)

where Equations (34)–(36) represent average energy consumption, peak energy consump-
tion, and PAR, respectively.

4.1.3. Carbon Emission

Carbon emission minimization is one of our objectives that highly contribute to
a sustainable, neat, and clean environment. Existing literature used diesel generators
as backup, which release more carbon emission and cause global warming. Thus, we
employed MGT with RESs in a microgrid instead of a diesel generator as a backup to
ensure carbon emission minimization to participate in a clean and green environment.
Carbon emission is mathematically modeled as follows:

Y =
avg EP

ε × ς × = (37)

where in Equation (37) symbols like avg EP, ε, ς, and =, average energy price, energy price
per kWh, emission factor, and hours, respectively.

4.2. MGT

MGT is utilized as a shiftable energy generation source with generation capacities
from 15–300 kW. MGT produces low cost energy than diesel generator because diesel is
more expensive than natural gas. The MGTs have significant impact on carbon emission
reduction. It is imperative to remember that MGT has two binary states: ON and OFF; it
generates 2 kW power when switched on and otherwise generates 0 kW.
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4.3. Energy Storage Devices

This work considers two types of energy storage devices: batteries (ESSs) and EVs.
Both types are discussed in detail as follows:

4.3.1. ESSs

ESSs are batteries that convert various energy sources to electrical energy and deliver
electrical power whenever required. The smart home has ESSs with storage capacity of
3 kWh as catered in [89], and has minimum and maximum charging/discharging levels
defined in [88]. Complete modeling is defined as follows:

SE(t) = SE(t− 1) + k.ηESSs.ESch(t)− k.ESdis(t)/ηESSs (38)

ES(t)ch ≤ ESmax (39)

ES(t)dis ≥ ESmin (40)

ESSs(t)ch < ESSupl (41)

αe(t) =


1 i f ESSs is ch arg ing,

−1 i f ESSs is disch arg ing,

0 i f ESSs is idle.

(42)

where SE denotes stored energy (Ah) at time duration t, ηESSs represents ESSs energy
efficiency, ESch(t) and ESdis(t) represents charging/discharging status per hour modeled
in Equation (42).

4.3.2. EVs

This work employs EVs as a storage device to increase savings and minimize energy
costs. EVs can be used for both storage and driving, which is modeled in Equation (43).

EVe =
te
d

∑
t=te

d

(ψe(t)× αe(t)) (43)

The developed model is implemented in MATLAB, and obtained results are discussed
in the subsequent section.

5. Performance Evaluation: Results and Discussions

The developed model is implemented in MATLAB 2018b installed on Intel Core i5
laptop with 8 GB of RAM and 2.4 GHz processor. Results obtained from experiments of the
proposed and existing models are evaluated in aspects of objectives like energy cost, carbon
emission, PAR, and user discomfort minimization for two scenarios: energy management
via scheduling W/O considering microgrid, and energy management via scheduling with
microgrid. Furthermore, smart appliances are divided into three groups, and complete
description of appliances are depicted in Table 2. The ACO based EMC creates operation
schedule of appliances for day-ahead time horizon using FPS, shown in Figure 5, which
reduces energy cost, PAR, and carbon emission. The detailed description of each scenario
is given as follows:
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Figure 5. Utility advertised flat pricing scheme.

5.1. Scenario I: Energy Management via Scheduling W/O Considering Microgrid

This section discusses the simulation results of developed ACO compared to existing
models for power usage scheduling W/O considering the microgrid. Figure 6 shows
that the developed algorithm schedules the load during low price hours as per the FPS
W/O considering the microgrid. Figure 6 illustrates that energy consumption is maximum
without implementing our developed model because energy is purchased and used during
high price hours that lead to peaks creation in demand. Numerical results are listed
in Table 3.

Table 3. Overall evaluation of the developed ACO algorithm compared to MILP and W/O scheduling
case in aspects of carbon emission, energy cost, and PAR.

Scenarios Models Carbon Emission
(%) Energy Cost (%) PAR (%)

Scenario-I: W/O
microgrid

MILP 7.28 15.66 17.2
ACO 15.35 23.69 26.20

Scenario-I: With
microgrid

MILP 10.20 17.13 11.29
ACO 18.5 25.09 31.45
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Figure 6. Energy consumption evaluation W/O considering microgrid.
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The per hour energy cost profile of the discussed energy consumption is shown in
Figure 7. Figure 7 demonstrates that consumers pay the least bill with our proposed model
than unscheduled and MILP based scheduling cases. Our developed model optimally
schedules appliances during off-peak hours, and eventually, consumers pay the minimum
cost and enjoy savings in the utility bill.
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Figure 7. Energy cost evaluation W/O considering microgrid.

Figure 8 illustrates per day energy cost evaluation of the developed model compared
to MILP and W/O scheduling case. It is obvious from the figure that our model reduced
a significant cost compared to unscheduled and MILP based cost. Thus, the developed
model outperforms existing models in aspects of energy cost minimization, and achieved
cost reduction of 23.69%. Numerical results are listed in Table 3.
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Figure 8. Energy cost per day evaluation.

Figure 9 shows PAR minimization evaluation of the developed ACO, MILP, and W/O
scheduling case. It is evident that the developed ACO algorithm has the lowest PAR
compared to MILP and W/O scheduling case. The reduction achieved is 26.20%. Numerical
results are listed in Table 3.



Processes 2022, 10, 1214 17 of 27

0

0.5

1

1.5

P
A

R

Unscheduled W/O microgrid

ACO W/O microgrid

MILP W/O microgrid

Figure 9. PAR minimization evaluation W/O considering microgrid.

The comparative analysis of carbon emission minimization (ACO, MILP, and unsched-
uled) is depicted in Figure 10. The developed ACO algorithm emits less carbon than MILP
and W/O scheduling case. The maximum carbon emission recorded during hours 19–23 is
149 pounds for the W/O scheduling case. In contrast, the MILP model emits maximum
carbon of 147 pounds during the same hours. The developed ACO algorithm emits maxi-
mum carbon of 140 pounds during the same hours, which is minimum per hour carbon
emission than MILP and W/O scheduling case. Numerical results are listed in Table 3.
Thus, the ACO algorithm outperforms MILP and W/O scheduling case in carbon emission
minimization.
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Figure 10. Comparative evaluation of carbon emission minimization.

5.2. Scenario II: Energy Management via Scheduling Considering Microgrid

Extensive simulations are conducted considering microgrids to solve energy manage-
ment problem via scheduling based on developed ACO and MILP. The microgrid includes
RESs (PV and WT) with ESSs and EVs. The microgrid employs the ANN-EDE model to
estimate electricity generation by accurately forecasting wind speed and solar irradiance,
which is illustrated in Figure 11. Thus, ANN-EDE based prediction is accurate, having low
MAPE and closely following the target observation of wind speed and solar irradiance,
leading towards accurate microgrid energy generation estimation. The ANN-EDE results
in terms of MAPE error are listed in Table 4. This estimated electricity generation is utilized
in the developed framework for energy management.
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Table 4. Evaluation results of ANN-EDE and ANN prediction models in aspects of MAPE.

Forecasting Profile Models MAPE

Solar irradiance ANN-EDE 0.4942
ANN 2.6540

Wind speed ANN-EDE 0.5082
ANN 2.5350

Microgrid energy generation (PV and WT) is shown in Figure 12. Energy generation
from PV energy system during daytime is high because solar irradiation is high and low at
night due to lower solar irradiation. For more in-depth understanding, interested readers
are referred to read [88]. The energy generation from WT depends on wind speed; when
wind speed is high within the cut-out threshold speed, the generation from wind energy is
maximum. A detailed discussion on this topic is available in [87].

Charging/discharging behavior of EVs with microgrid is depicted in Figure 13. It is
clear that EVs are charging during the time horizon when microgrid generation is high and
discharging during the time horizon when microgrid generation is low. In the first hour,
EVs have complete charging, and during 11–15 h, EVs have medium charging. During these
hours, EVs can serve the load.
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Figure 11. Wind speed and solar irradiance prediction using developed ANN-EDE model for
microgrid energy generation estimation. (a) Wind speed forecasting. (b) Solar irradiance forecasting.
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Figure 12. Microgird including PV and WT energy generation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hours)

-1

0

1

2

3

4

5

E
n

e
rg

y
 g

e
n

e
ra

ti
o

n
 (

k
W

h
)

Charging/discharging

Microgrid generation

Figure 13. Charging/discharging behavior of EVs with microgrid generation.

The contribution of EVs and ESSs in serving the load is depicted in Figure 14. The por-
tion of the load that is served (operated) with EVs and ESSs results in low carbon emission,
energy cost, and PAR compared to the portion which utility companies serve. Thus, when
EVs and ESSs have significant charging, then there is no need for the consumers to import
electricity in the following conditions: during peak hours, and when renewable generation
is minimum. EVs and ESSs will serve the load to reduce carbon emission, energy cost,
and PAR during such a situation.
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Figure 14. Contribution of EVs and ESSs in serving load.

Net energy demand and imported/purchased energy from the utility with and W/O
EVs discharging abilities are depicted in Figure 15. It is evident from the results that the
developed model significantly reduced the import of energy in peak hours. Furthermore,
consumers import minimum energy when utilizing EVs for discharging. On the other side,
consumers import more energy when EVs are not fully charged and cannot discharge.
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Figure 15. Imported/purchased energy with and W/O EVs discharging.

The diesel generator, when used with microgrid as a backup, releases a lot of carbon
into the environment, which highly contributes to pollution. Thus, adopting a diesel
generator as a back source is not a vital solution. On this note, MGT with microgrid is used
as a backup source, which highly contributes to reducing carbon emission, leading to a
clean environment. The obtained results of carbon emission reduction when MGT is used
as backup sources with microgrid are shown in Figure 16. Thus, the use of MGT results in
reduction of 25% carbon compared to a diesel generator.
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Figure 16. Carbon emission reduction using MGT/diesel generator with microgrid as a backup source.

The users’ energy consumption considering microgrid is shown in Figure 17. It
is evident from the figure that in W/O scheduling case, the consumers operate mainly
appliances in peak hours, which creates high peaks in the demand curve at 1 and 21 h.
Similarly, when users schedule appliances with MILP, peaks in energy consumption are
significantly reduced compared to the W/O scheduling case. However, ACO algorithm
based energy consumption has no peaks compared to MILP and W/O scheduling case.
Thus, the developed ACO algorithm based schedule has a smooth demand curve compared
to MILP and W/O scheduling case.
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Figure 17. Users’ energy consumption considering microgrid.

Energy cost evaluation considering microgrid using ACO, MILP, and W/O scheduling
case is depicted in Figure 18. In the W/O scheduling case, the maximum energy cost is
85 cents at hour 1, MILP has 49.5 cents at hour 1, and the developed ACO algorithm is
41.5 cents at hour 2. Thus per hour energy cost of W/O scheduling case for 24 h time
horizon is high compared to MILP and ACO. Thus, developed ACO outperforms MILP
and W/O scheduling case in aspects of per hour energy cost minimization. Likewise, net
energy cost minimization evaluation is illustrated in Figure 19. The net energy cost W/O
scheduling for 24 h is 251 cents compared to MILP and developed ACO algorithm, which is
208, and 188 cents, respectively. The energy cost minimization results prove that the ACO
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algorithm is more promising than MILP and W/O scheduling case. Thus, the developed
ACO based algorithm is more effective in energy cost minimization (both per hour and net)
than MILP and W/O scheduling case.
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Figure 18. Per hour energy cost minimization evaluation considering microgrid.
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Figure 19. Net Energy cost minimization evaluation considering microgrid.

The PAR minimization evaluation with microgrid based on MILP, ACO, and W/O
scheduling case, is shown in Figure 20. The developed ACO algorithm has maximum PAR
reduction compared to MILP and W/O scheduling case. The MILP and developed ACO
algorithm reduced PAR by 12.5% and 25%, compared to W/O scheduling case, respectively.
The ACO algorithm optimally scheduled appliances in low price hours and thus achieved
maximum PAR reduction. This PAR reduction is beneficial for both consumers and utility.
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Figure 20. PAR minimization evaluation considering microgrid.

Carbon emission minimization evaluation considering microgrid is depicted in
Figure 21. The developed ACO algorithm and MILP result in low carbon emissions
than the W/O scheduling case. Carbon emission considering microgrid W/O scheduling
is 140 pounds during hours 19-23, which is maximum compared to MILP and developed
ACO algorithm. On the other hand, carbon emission considering microgrid with MILP is
121 pounds, which is moderate carbon emission compared to ACO and W/O scheduling
case. Likewise, the developed ACO algorithm has 102 pounds during hours 19–23, the
which is less than MLIP and W/O scheduling case. Similarly, behavior is observed for
the rest of the hours. The developed ACO and MILP reduced carbon emission by 18.5%
and 10.20%, respectively, compared to W/O scheduling case. Results illustrate that the
developed ACO algorithm has significantly reduced carbon emissions than MILP and W/O
scheduling case.
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Figure 21. Carbon emission minimization evaluation considering microgird.

Overall evaluation results of the developed ACO algorithm compared to MILP and
W/O scheduling case in aspects of carbon emission, energy cost, and PAR minimization
are listed in Table 3. Thus, the above results and discussion conclude that the developed
model outperforms existing MILP model and W/O scheduling case in terms of carbon
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emission, PAR, and energy cost minimization for the two scenarios of with and W/O
considering microgrid.

6. Conclusions

This paper proposed and developed a framework to solve the DSM problem with
and W/O grid-connected SG. For the proposed framework, we developed ACO algorithm
to schedule appliances and charging/discharging behavior of EVs/batteries using FPS.
The ANN-EDE prediction model is developed to forecast solar irradiance and wind speed
for accurate microgrid energy generation estimation to solve DSM problem optimally.
The developed framework aims to minimize PAR, energy cost, and carbon emissions by
balancing demand and generation. The proposed framework is evaluated by comparing
it with MILP and W/O scheduling case. The ACO algorithm reduced energy cost, PAR,
and carbon emission by 23.69%, 26.20%, and 15.35% in scenario I, and 25.09%, 31.45%,
and 18.50% in scenario II, respectively, as compared to W/O scheduling case. Results
show that the developed ACO algorithm outperformed MILP and W/O scheduling case in
aspects of the desired objectives and is beneficial for both utility and consumers.
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