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Abstract: This paper proposes a novel non-isolated high voltage gain dc–dc converter with a boost2

(B2) technique. The derived single-switch hybrid voltage-lift topology generates a higher voltage
conversion ratio with less component counts than traditional voltage-lift converters. Furthermore,
to show its superiority, the proposed topology is compared with other recent non-isolated dc–dc
converters in terms of the number of power components such as inductors, capacitors, diodes, and
switches. Moreover, the voltage stress across the power switch is less than the output voltage, which
results in using low-rated components and reducing the converter cost. The steady-state analysis
of the proposed topology is carried out with the operating modes in continuous and discontinuous
conduction modes. The critical inductance for the proposed converter is derived for design consider-
ations. Compared to the other traditional step-up converters, the stresses across the power diodes
are highly reduced. The analysis related to the addition of an expander cell with the topology is
performed concerning boundary conditions. An efficiency model with loss calculation is presented.
Furthermore, the reliability analysis is performed with the military handbook to determine the
failure rate of the converter’s components. Finally, the simulation and 50 W prototype model for
experimental validation prove the strength of the proposed topology.

Keywords: dc–dc converter; high gain; hybrid; switched inductor; voltage-lift; voltage stress

1. Introduction

Nowadays, energy sources such as Photovoltaic (PV) and fuel cells have attracted
research attention due to the depletion of fossil fuels. The usage of a grid-connected PV
system, standalone residential PV system, electric vehicle, LED lighting systems, etc., are
increasing. The main limitation in many renewable energy sources is the low output voltage
and, therefore, there is a need for the power converter to increase the gain [1,2]. Due to
this low voltage, the high gain dc–dc converter is a primary component in the Microgrid
system, depicted in Figure 1. It is mainly required to boost the low PV source and battery
voltage (12–48 V) to the required voltage level to invert it into AC and feed it into the grid
system [3,4]. In this regard, a highly efficient and reliable power converter is essential to
integrate a sustainable source into the electric grid [5]. The several different types of PV
panels in series or parallel are not the innovative solution to boost the voltage to the required
load level. Hence, a front-end high gain dc–dc converter plays a vital role in reducing the
cost incurred in adding more PV panels [6]. The DC microgrid has more advantages, such
as enhanced power quality and supply security [7,8]. Additionally, the energy storage
system is gaining popularity in DC microgrid systems due to the intermittent nature of
sustainable energy sources [9].
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less converters [11]. DC‒DC converters with transformers are primarily employed for in-
terfacing the renewable energy sources. By increasing the turns ratio of the transformer, 
the voltage gain of the converters increases. However, unfortunately, the weight of the 
converter increases with a decrease in efficiency and the pulsed current produced in the 
converters with the transformer reduces the lifetime of the PV and occupies more space. 
The non-isolated converters such as conventional boost dc‒dc converters have high cur-
rent ripples and conduction losses with high conversion ratios [12]. An interleaved struc-
ture can reduce the input current ripple and can be employed to increase the power level. 
The voltage multiplier cells coupled inductor and switched passive components are 
added to boost the gain in dc‒dc converters [13]. However, these methods increase the 
number of passive components and switches. The most commonly used method in non-
isolated converters to boost the gain is the voltage-lift method [14]. In 2018, a non-isolated 
dc converter was proposed with a voltage-lift technique with a component count of nine 
[15]. However, the voltage gain is boosted only three for D = 0.5. In [16–20], a high gain 
topology is derived with very high component counts such as 14 and 18. Various high 
gain concepts are proposed in the literature [20–31]. In these topologies, the voltage gain 
is expandable by adding more inductors, increasing the converter’s size and complexity. 
Based on the literature, the main limitations in the existing topologies are pulsed input 
current, more component count, leakage inductance, more voltage, and current stresses 
across switches and diodes, voltage spikes, etc. [32–34]. More switches and passive com-
ponents increase the bulkiness of the converter and the complexity [35–48]. All these is-
sues are considered for which a new dc‒dc converter without a transformer is proposed 
by integrating the switched inductor and voltage-lift cell into a common branch to obtain 
a Hybrid Switched Inductor based Voltage-Lift (HSIVL) converter. The proposed con-
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ii. Less number of passive components, which reduces the volume of the converter. 

iii. Low voltage stress, which reduces the conduction loss and cost of the converter. 
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For a standalone application, the battery is needed to provide an uninterruptable
power supply to the loads in this mode. Due to the variation of the PV source, maximum
power point tracking (MPPT) is essential for PV powered applications. For MPPT tracking,
a battery backup is needed. From Figure 1, high step-up dc–dc converters are required with
a high voltage gain, efficiency, and power density for the distributed power generation
system [10]. DC–DC converters are categorized into the transformer and transformer
less converters [11]. DC–DC converters with transformers are primarily employed for
interfacing the renewable energy sources. By increasing the turns ratio of the transformer,
the voltage gain of the converters increases. However, unfortunately, the weight of the
converter increases with a decrease in efficiency and the pulsed current produced in the
converters with the transformer reduces the lifetime of the PV and occupies more space.
The non-isolated converters such as conventional boost dc–dc converters have high current
ripples and conduction losses with high conversion ratios [12]. An interleaved structure
can reduce the input current ripple and can be employed to increase the power level. The
voltage multiplier cells coupled inductor and switched passive components are added
to boost the gain in dc–dc converters [13]. However, these methods increase the number
of passive components and switches. The most commonly used method in non-isolated
converters to boost the gain is the voltage-lift method [14]. In 2018, a non-isolated dc
converter was proposed with a voltage-lift technique with a component count of nine [15].
However, the voltage gain is boosted only three for D = 0.5. In [16–20], a high gain topology
is derived with very high component counts such as 14 and 18. Various high gain concepts
are proposed in the literature [20–31]. In these topologies, the voltage gain is expandable
by adding more inductors, increasing the converter’s size and complexity. Based on the
literature, the main limitations in the existing topologies are pulsed input current, more
component count, leakage inductance, more voltage, and current stresses across switches
and diodes, voltage spikes, etc. [32–34]. More switches and passive components increase
the bulkiness of the converter and the complexity [35–48]. All these issues are considered
for which a new dc–dc converter without a transformer is proposed by integrating the
switched inductor and voltage-lift cell into a common branch to obtain a Hybrid Switched
Inductor based Voltage-Lift (HSIVL) converter. The proposed converter has the following
advantages and is also listed as shown in Table 1:

i. Single switch converter with reduced complexity for controller design.
ii. Less number of passive components, which reduces the volume of the converter.
iii. Low voltage stress, which reduces the conduction loss and cost of the converter.
iv. Output diode voltage stress is less than the output voltage, which minimizes

the cost.
v. Efficiency is higher due to fewer component counts.

The derivation of the proposed topology is discussed in Section 2.1. Section 2.2
presents the operating principle of the derived topology. The steady-state analysis of the
proposed converter in both continuous and discontinuous conduction modes are dealt with
in Sections 3.1 and 3.2, respectively. The detailed analysis of the converter with a critical
inductance analysis is depicted in Section 4. The power loss analysis of the converter
is elaborated in Section 5. The dynamic behavior of the derived topology is analyzed
by obtaining a frequency response plot and the inference from the study is presented
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in Section 6. The reliability study is performed and the failure rate of the component is
analyzed in Section 7. Section 8 presents the comparative study of the suggested topology
with the similar topology reported in the literature. The simulation and experimental
study are performed and the results are discussed in Section 9. Section 10 summarizes
the inferences and discusses the future scope. Finally, the paper is concluded with the
research findings.

Table 1. Comparison of proposed converter with the literature.

Ref
Number of Components

Remarks

Proposed
topology

• One switch is required with two capacitors
• Total component is less
• Higher voltage gain
• Switch voltage stress reduced

Super-lift
[18]

• One switch is required with one capacitor
• Total component is less
• Higher voltage gain is less than the proposed topology
• Switch voltage stress is higher than the proposed topology

Active–passive SL [19]

• Switch count is high
• Total component is high
• Higher voltage gain is less than the proposed topology
• Switch voltage stress is higher than the proposed topology

AH-SLC
[20]

• It uses two switches and four diodes. Further the capacitor
count is high for lower voltage gain

• High voltage stress and no possible to expand the structure

2. Proposed High Voltage DC–DC Converter
2.1. Description of Proposed HSIVL Topology

Figure 1 presents three dc–dc converter topologies. The Switched Inductor (SI) cell
in Figure 2a is combined with the Voltage-Lift (VL) cell in Figure 2b to derive a Hybrid
Switched Inductor-based Voltage-Lift (HSIVL) converter, which is illustrated in Figure 2c.
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Figure 2. DC–DC converter topologies (a) Super-lift boost converter (b) Elementary Luo converter
(c) Hybrid switched inductor-based voltage-lift converter.

The gain of the super-lift boost converter is (1 + D/(1 − D) and the gain of elementary
Luo converter is (2 − D/(1 − D). The voltage conversion ratio of both the converters
depicted in Figure 2a,b is less than the proposed topology. The switch voltage stress of the
super-lift boost converter is equal to the output voltage. The extendable capability is not
possible in an elementary Luo converter. The special features of the suggested topology by
the integration of the topologies are in Figure 2a,b.
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• The voltage gain is high compared to super-lift boost and elementary Luo converter.
• The switch voltage stress is not equal to the output voltage, which reduces the Rds

(on) and increases the efficiency of the converter.
• Extension of the voltage gain is feasible without increasing the power switch count.

2.2. Modes and Operating Principle of the HSIVL Topology
2.2.1. Mode I

When the switch is conducting, the diodes D2, D3, and D4 will be forward biased and
due to the topology, switched inductors will be connected in parallel. The inductors L1 and
L2 will be charged simultaneously along with the capacitor to the full supply voltage. At
the same time, diodes D1 and D0 will be reverse biased and C0 will be supplying the load
Considering Kirchhoff’s Voltage Law in Figure 3a, the inductor voltage is obtained as:

VL1 = VL2 = VC = Vg (1)

IC =
Ig

3
(2)
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Figure 3. Operating modes (a) Mode I, (b) Mode II, (c) DCM, (d,e) Inductor waveform at CCM
and DCM.

2.2.2. Mode II

When the switch is in the non-conducting state, diodes D1 and D0 will be forward
biased and, due to this, the switched inductors will be connected in series. The energy
stored in inductors L1 and L2 will be discharged along with the capacitor C to the load
and charge capacitor C0. At the same time, diodes D2, D3, and D4 will be reverse biased.
Figure 4a,b depict the key waveforms of the HSIVL converter. Similar to the ON condition
(Mode I), the inductor voltage is acquired from Figure 3b.

VL1 = VL2 = VC =
Vg −Vo

3
(3)

IC = IL1 = IL2 = Ig (4)
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2.2.3. Mode III

When the switches and diodes are not conducting, it will lead to a discontinuous mode
of operation. This mode might occur due to large current ripple at light load conditions.

The capacitor CO alone supplies the load and starts discharging. The voltage gain
of the converter in this mode not only depends on the duty cycle, but also becomes
load dependent.

3. Steady-State Analysis
3.1. Continuous Conduction Mode

The voltage balance law is applied to Equations (1) and (3) and the following relation-
ship is obtained: ∫ DT

0
Vgdt +

∫ T

DT

Vg −VO

3
dt (5)

By simplifying (5), the voltage conversion ratio is determined as:

GV−CCM =
VO
Vg

=
1 + 2D
1− D

(6)

The general voltage gain expression for the derived topology with N, which is the
number of expander cells:

GV−CCM =
VO
Vg

=
1 + 2ND

1− D
(7)

The ampere second balance law is applied to Equations (2) and (4) and the following
relationship is obtained:

IL1(avg) = IL2(avg) =
IOGV−CCM

1 + 2D
(8)

The sensitivity of the output voltage with respect to duty cycle is:

S =
dVO
dD

=
Vg

[1− D]2
(9)
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The value of sensitivity is just similar to the conventional boost converter. The sensi-
tivity, S, remains the same for N number of expander cells. The output-power capability of
the proposed topology is:

CP =
PO

VSW ISW
=

1− D
3D

(10)

If D increases, the output-power capability, Cp starts to decrease.

3.2. Stress across the Semiconductor Devices

From the steady-state analysis, the stresses across all the components of the derived
topology with average and Root Mean Square (RMS) currents of the semiconductor devices
are obtained and listed below.

The maximum voltage stress across the switch is not equal to the output voltage and it
is expressed as:

VSW(max) =
VO(2GV + 1)

3GV
(11)

The RMS current through the switch is determined as:

ISW(RMS) = IOGV
√

D (12)

Similarly, the diodes voltage and currents are determined as:

VD1(max) = VD2(max) = VD3(max) = VD4(max) =
VO
GV

; VDO(max) =
3VgD
1− D

(13)

ID1(RMS) = IDO(RMS) =
IOGV

√
1− D

1 + 2D
(14)

ID2(RMS) = ID3(RMS) =
IOGV

√
D

1 + 2D
(15)

3.3. Stress across the Passive Components across the Semiconductor Devices

The voltage across the capacitors (C and Co) and current through the inductors (L1
and L2) are acquired and presented for the design of the passive components.

VC(max) =
VO
GV

(16)

IL1(RMS) = IL2(RMS) =
IOGV

1 + 2D
(17)

ICO(RMS) = IO

√
GV D

1 + 2D
(18)

Switchs (9)–(16) are used to find the ratings of semiconductor devices and passive
components.

The design guidelines for the components are presented in the later section.
The switch and output diode voltage stress depend on three parameters: input voltage,

duty cycle, and the number of expander cells, N. To find the greater influencing factor on
the switch, a graph is plotted in Figure 5. It is observed from the figure that the switch
voltage stress is directly proportional to the input voltage and expander cell and both these
factors are great at influencing compared to the duty cycle. The output diode, Do, has the
similar voltage stress as the switch and it is equal to VO − Vg. Hence, this analysis will help
in the selection of the number of expander cells and input voltage. To find the impact of
expander cells on the voltage stress on the component, the stress on the switch and diodes
are tabulated for various numbers of expander cells (1, 2, . . . , N) and presented in Table 2.
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Table 2. Correlations for 1, 2, . . . , N expander cell configuration.

Number of
Expander Cell Voltage Gain Voltage Stress

on Switch

Voltage Stress
on Output

Diode

Voltage Stress
on Other
Diodes
(D1–D4)

1 1+2D
(1−D)

3DVg

(1−D)

Vg
2 1+4D

(1−D)
5DVg

(1−D)

3 1+6D
(1−D)

7DVg

(1−D)

4 1+8D
(1−D)

9DVg

(1−D)

N 1+2ND
(1−D)

Vg D(1+2N)
(1−D)

N

Figure 2c depicts the operating mode of HSIVL converter in DCM. Using Figure 2d,
the average value of inductor (L1) current in DCM is obtained by the Volt-second bal-
ance principle.

〈VL1(t)〉 = D1Vg + D2

(
Vg −VO

3

)
+ D3(0) = 0 (19)

Simplifying (19), the output voltage in DCM condition is determined as:

VO =

[
1 +

3D1

D2

]
Vg (20)

The diode (D1) current is identical to the inductor (L1) current during the non-
conducting state of switch S. The dc component of diode (D1) current is:

〈iD1(t)〉 =
1

TS

∫ TS

0
iL1−PeakD2TSdt (21)

It is observed that in the second interval, the dc component of the inductor (L1) current
is equal to the dc component of the diode (D1) current. Therefore:

VO
RO(1− D1)

=
VgD1D2TS

2L1
(22)
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To eliminate D2, (22) is simplified to be:

D2 =
3D1Vg

VO −Vg
(23)

Using Equation (23) in (20), the following quadratic expression is obtained.

VO
2 −VgVO −

3Vg
2D1

2(1− D1)

KL1
= 0 (24)

Solving the above equation, the voltage conversion ratio of the HSIVL converter in
DCM is acquired as:

VO
Vg

= GV−DCM(D1, KL1)= 1±

√
1+ 12D1

2(1−D1)
KL1

2
(25)

where KL1 = 2L1
ROTS

.
Equation (25) presents the voltage conversion ratio of the HSIVL converter in DCM.

To analyze the voltage, gain in DCM, a plot is drawn for various values of KL1. It is noted
from Figure 6 that the voltage gain decreases with the increase in the value of KL1.
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4. Discussion

The design of inductors and capacitors are critical in predicting the performance of
the converter, voltage, and current ripples, compactness, losses, filter size, and efficiency.
The topology proposed is designed for a normal condition as well as for a worst condition
case where the converter can be operated without crossing the limitations. The inductor
value is selected based on the desired current ripple and the capacitor values are based on
the desired voltage ripple. The average inductor current is larger than the ripples in the
inductor (L1) current and then the converter operates in CCM.

IL1> ∆iL (26)

By substituting the value of the average inductor current and the ripple current in
Equation (26), it provides:

V0

R0(1− D)
>

VO(1− D)D
2(1 + 2D) fsL1

(27)

Solving the above expression to derive the value of inductor will provide:

2L1 fs

Ro
>

D
GV2 (28)
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L1, L2 >
R0(1− D)2D
2(1 + 2D) fs

(29)

where Kcric(L1)(D) = D(1−D)
GV

KL1 > Kcric(L1)(D) . . . . . . . . . . . . CCM (30)

Kcric(L1) depends on duty cycle and decides the transition from CCM to DCM mode.
Figure 7 illustrates the operation of HSIVL converter concerning critical inductance, which
is the boundary between the continuous and discontinuous region. KL1 is used to verify
the operation of the converter in continuous or discontinuous modes.
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The output current at the boundary condition of CCM and DCM is provided as:

IOB =
VOD(1− D)2

2 fsL(1 + 2D)2 (31)

Figure 7b presents the normalized load current at the boundary between CCM and
DCM for N = 1, 2, and 3. From this graph, it is observed that the CCM region can be
extended with the increase in the number of expander cell, N.

5. Efficiency Analysis

For efficiency analysis, the ripples of inductors and capacitors are neglected for the
HSIVL converter. All through this derivation, the MOSFET drain-source resistance is taken
as RS, the forward voltage and forward resistance of the diodes are considered as RD and VD,
respectively. The DC resistances of the inductors are taken as RL. Similarly, the Equivalent
Series Resistance (ESR) of capacitors C and CO are assumed to be RC and RCO, respectively.

The equivalent circuit for the HSIVL converter is presented in Figure 8a to carry out
efficiency analysis.
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The parameters chosen to calculate the efficiency of the HSIVL converter are Vg = 12 V,
VO = 48 V, fS = 10 kHz, D = 0.5, RO = 50 Ω, RS = 9 mΩ, VD = 0.42 V, RD = 2.1 mΩ,
RL = 4.5 mΩ, and RC = RCO = 12 mΩ. Table 3 presents the loss equations of all the compo-
nents in the converter. Figure 8b summarizes the losses distribution in various components
of the proposed HSIVL converter. The conversion efficiency is 95.8% at 50 W.

Table 3. Power loss equations of the proposed topology.

Parameters Power Loss Equations

Inductor loss, PL 2
{

IOGV
1+2D

}2
RL

Capacitor loss, PC IO
2
{

GV D
1+2D RCO +

(4D2(D−1)+1)2

(1−D)2 RC

}
Diode Loss, PD IOVD

{
3GV D
1+2D + 1

}
+ IO

2RD

{
1

1−D + 3GV
2

(1+2D)2

}
Switch Loss, PSW IO

2GV
2DRS +

fS IO
2

((
tr + t f

)
GV D

(
VO −Vg

))
6. Dynamic Analysis of the Converter

In this section, the dynamic characteristics of the proposed topology are studied with
the derivation of the input to output and control to output transfer function. The converter
is modeled with state-space modeling technique and the following transfer functions
are obtained.

In this dynamic analysis, the inductor (L1, L2, and C) are parallelly charged in ON
mode and discharged serially in the subsequent mode. Hence, all these passive components
are considered as single component, L. The proposed topology is reduced to a two-order
system due to this assumption.

The derived input to output transfer function is expressed as:

ṼO(s)

Ṽg(s)
=

RO(1 + 2D)(1− D)

3LCOROs2 + 3Ls + (1− D)2RO
(32)

The control to output transfer function is obtained as:

ṼO(s)

d̃(s)
=

[
(1 + 2D)(1− D)Vg − 3LIOs

]
(RO/(1− D))

3LCOROs2 + 3Ls + (1− D)2RO
(33)
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From (32) and (33), the frequency response plot is acquired using the same specifi-
cations used for simulation and experimental study. After substituting the values of the
element, the following expressions are obtained:

ṼO(s)

Ṽg(s)
=

217.5
2.6e−6s2 + 3e−4s + 21.75

(34)

ṼO(s)

d̃(s)
=

2088− 0.03966s
2.6e−6s2 + 3e−4s + 21.75

(35)

The frequency response plots of (29) and (30) are obtained and presented in Figure 9a–d.
From these figures, it is noted that the derived topology is a non-minimum phase system
because the zero lie in the right half of the s-plane. However, in the case of the control
to output transfer function, the poles lie in the jÑ axis of the s-plane. Hence, the system
may fall under marginally stable. These observations recommend designing a controller
for the converter to handle the perturbation in input and output voltage condition. The
above section explains the dynamic study of the HSIVL converter. The additional feature
of the converter with respect to the dynamic analysis is the derivation of the extendable
topology’s transfer function since the topology is considered with equal inductance and
also the voltage across the inductors and capacitors are assumed to be equal for the analysis.
In this regard, it will be easier in designing the passive components of the converter and
also the controller design.
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7. Reliability Analysis
7.1. Factors Affecting the Converter’s Lifetime

More than 80% of the system cost is spent on the converter if a failure occurs. Therefore,
estimating the reliability of the converter is requisite before the installation of the system.
This section introduces the role and impact of various components of the system in the
reliability study. This provides a deep insight into the parameters involved in the reliability
estimation of the system. The reliability, as mentioned earlier, revolves around the failure
rate of the different components in the converter circuit provided in Figure 10a,b. The
power semiconductor devices and its failure rate play a vital role and have a greater impact
on the system’s entire reliability depending majorly on the converter reliability. This, in
turn, depends on the components connected. Therefore, the calculation of the component’s
failure rate and the converter’s reliability is the main objective of this section.
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The study carried out on the reliability predetermines the lifetime of the system using
the equations as presented in (36)–(45).

Switch:
λSW = λB ∗ πT ∗ πA ∗ πS ∗ πQ ∗ πE (36)

Tj = Tc + θjcPSW (37)
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πT = e
−1925( 1

Tj +278−
1

298 ) (38)

λSW = 1.38e

−1925( 1

318+25.7( D2

(1−D)2
(

0.093(1+2D)4

(1−D)2
+ 1

61.7 ))
− 1

298 )

(39)

Diode:
λD = λB ∗ πT ∗ πA ∗ πS ∗ πQ ∗ πE (40)

πT = e
−3091( 1

Tj +273−
1

298 ) (41)

λD = 0.0147e−3091( 1
98+PD

− 1
298 ) (42)

PD =
1 + 2D
1− D

((
1 + 2.5D

1− D

)
11.4 +

(
4− D
1− D

)
1.14

(
1 + 2D
1− D

))
(43)

Inductor:

λL = 0.0014e

(
298 + 0.08 (1+2D)2

(1−D)4

)
409

(44)

Capacitor:
λC = 0.028 ∗ 10−6 hours (45)

7.2. Impact of Failure Rate of Switch and Diode

The impact of varying the duty cycle on the failure rate of the switch and diode is
shown in the graph below. The optimum selection and operation of the duty cycle are vital
in deciding the lifetime of the power semiconductor devices, as shown in Figure 11a,b. The
failure rate switch and diode characteristics are plotted for various values of duty cycle.
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The analysis shows that the failure rate of the power switch in the converter has
the highest rate of failure compared to the other components in the circuit. Therefore, to
achieve better reliability, the failure rate of the switch must be reduced. The failure rate
of the switch depends on the power loss in the switch, voltage, and current stress across
the switch. Selecting the proper rating of the switch can avoid the losses and derating of
the converter. This also reduces the failure rate of the switch. Thus, this section provides
information about the reliability analysis of the converter and its importance. Further
investigation and necessary actions to be performed to improve reliability are the future
scopes of this study.

8. Comparative Analysis

The comparative analysis of the key performance metric parameters considered in
the proposed converter and the existing converters are listed in Table 4. It is seen that the
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proposed converter has fewer component counts and switch voltage stress compared to
super lift converter [18] and AH-SLC [20]. As the voltage gain increases, the number of
inductors required in the proposed converter is half of that required for converters in [10,11]
as shown in Figure 12a.

Table 4. Comparison of HSIVL converter with few high gain converters in the literature.

Ref
Number of Components

Voltage Gain Switch Voltage
Stress

Voltage Gain
ExpansionDiode Switch Capacitor Inductor

Proposed topology 2 + 3N 1 2 1 + N 1+2ND
1−D VO −Vg Yes

Super-lift 1 + 3N 1 1 1 + N 1+ND
1−D VO Yes

Active–passive SL 2N N + 2 1 2 + N 1+(1+N)D
1−D

VO
1+2D Yes

AH-SLC 4 2 1 3 1+2D
1−D

1+2GV Vg
3

No

PSL converter 4 1 1 2 1+D
1−D VO Yes

Modified SL Boost 3 2 1 2 1+D
1−D

VO
2 Yes

Hybrid SL 4 2 1 3 1+2D
1−D

VO
3GV

(2 + GV) Yes

Active SL 2 2 2 2 2
1−D

VO
2 Yes
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The switch voltage stress in the proposed converter is only 50% of the converter in [19]
and 75% as the converter in [20], which is revealed in Figure 10b. Moreover, the proposed
topology has a scope for voltage gain expansion, which is not possible in the converter
provided in [20]. For voltage gain > 5, the HSIVL converter has a lower increase in the
number of inductors compared to the converters [18,19] used for the comparison. The
proposed converter is not compared with converter [20] for the number of inductors due to
the fixed number of inductors in that converter [20]. Furthermore, the proposed converter
is also compared with other performance metrics such as the voltage gain and switch
voltage stress. Similarly, the HSIVL converter has lower voltage stress for higher voltage
gain compared to other converters in the literature where the voltage stress is equal to the
output voltage. Moreover, the firm features of the HSIVL converter are highlighted by
further comparing with the converters presented in [21–23]. All the topologies considered
for comparison have component counts more or less similar to the proposed topology. The
gain is observed to be similar to the converters considered [21–23] for study.

Several topologies are derived with extendable form either in increasing the turns ratio
of the coupled inductor in the converter [35] and adding N number of voltage multiplier
cells [36]. In [36], the voltage gain of the converter is (N + 1)D/(1 − D) with the component
count of 11, whereas the proposed topology presents the voltage gain of (1 + 2ND)/(1 − D).
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From this comparison, it is observed for N = 1 and D = 0.5 that the proposed HSIVL topology
provides the gain twice that of the converter in [36] with a lower component count.

9. Simulation and Experimental Results

This section discusses the simulation results followed by hardware results. The
derived topology is simulated in MATLAB-Simulink software and the results are presented
in Figure 13a,b. Figure 13a depicts the output voltage, switch voltage, diode voltage, and
capacitor voltage waveforms of the HSIVL converter. The current through the components
of the converter is illustrated in Figure 13b. The proposed converter specifications for
simulation are chosen as: Vg = 12 V, VO = 66 V, D = 0.5, fS = 50 kHz, L1 = L2 = 50 µH,
RO = 87 Ω, C = 100 µF, and CO = 100 µF. The illustrated simulated waveform shows an
output voltage of 65.5 V for an input voltage of 12 V. Finally, it is validated by testing the
prototype in the laboratory. The switch voltage waveform shows that the switch stress is
less than the output voltage. The switch and capacitor current with a high value of ESR to
reduce the impulse is presented in Figure 13c. The suitability of the converter for higher
voltage is depicted in Figure 13d with 48 V input voltage, 832 V output voltage, D = 0.7,
and the number of expander cells N = 3. Finally, the transient response of the converter
is observed by performing step changes in the input port and the results are depicted in
Figure 13e.
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A 50 W prototype circuit with the specifications mentioned in Table 5 is implemented to
validate the theoretical analysis of the derived converter and it is presented in Figure 14a–h.
Figure 14a,b show the input and output voltage for a duty cycle of 0.6. Figure 14c,d depict
the gate pulse and switch voltage of the HSIVL converter. It is observed that the maximum
switch voltage is (2VO + Vg)/3.

It is also noted that the voltages of diodes (D1–D4) and capacitor (C) are equal to the
input voltage. This depicts that the stress on the diodes is much lower and it is independent
of the boosted output voltage; these are illustrated in Figure 14e,g. The output diode
voltage is presented in Figure 14f, which is equal to the difference of output and input
voltage. The inductor voltage is presented in Figure 14h. The photograph of the tested
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hardware is shown in Figure 14i. Finally, the whole setup implemented for validating the
theoretical analysis is presented in Figure 14j.

Table 5. Specification and components for experimental setup.

Components Specifications

Vg (input voltage) 12 V

VO (output voltage) 66 V

PO (power rating) 50 W

Duty cycle, D 0.6

fS (switching frequency) 50 kHz

Inductors (L1 and L2) 100 uH, Torroidal core

Capacitors (C and CO) 100 µF/200 µF, Electrolytic

MOSFET IRF460P

Diode VS-30PT100

Microprocessor dsPIC 30F2010

Driver Circuit TLP250
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Figure 14. Test results. (a) Input voltage, (b) Output voltage, (c) Gate pulse, (d) Switch voltage
stress, (e) Diode (D1–D4) voltage, (f) Output diode Do voltage, (g) Capacitor C voltage, (h) Inductor
voltage (100 µs/div), (i) Photograph of the HSIVL converter tested, and (j) Entire setup implemented
for validation.

The maximum voltage across the diodes (D1, D2, and D3) is equal to the supply voltage,
Vg, which is illustrated in Figure 14c. The voltage across the output diode is similar to the
switch voltage, which is depicted in Figure 9d. It is seen that the inductor currents (IL1, IL2)
are continuous, which are presented in Figure 14e. Table 6 validates the HSIVL converter.
It is observed from Figure 15 that the efficiency of the converter starts to droop when the
output power of the converter increases. Since the component count is less and the switch
voltage stress is Vo–Vg, the efficiency of the converter is observed to be theoretically high.
Figure 15 provides the efficiency curve for various loads that are calculated theoretically.
The efficiency at the rated load is 95.8%, which can be observed from Figure 15. On average,
the HSIVL converter shows 95% efficiency for various output powers.
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Table 6. Comparison between theoretical, simulation, and experimental results.

Parameters Theoretical
(V)

Simulated
Values (V)

Experimental
Values (V)

PO = 50 W, Vg = 12 V, D = 0.6, fs = 50 kHz

Output voltage, VO 66 65.5 65

Switch voltage stress, VSW 48 47.5 46

Diode voltage stress, VD1 12 12 11.5

Diode voltage stress, VDO 54 53.5 52

Efficiency 96.2% 96.0% 95.0%
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10. Conclusions

A novel hybrid power converter structure with a switched inductor and voltage-lift
cell was derived and analyzed. The proposed topology uses lower voltage stress on the
switches and diodes, which further minimizes the cost of the converter confirmed by the
analysis and experimental results. The voltage stress across the output diode in most of
the high gain dc–dc converter is equal to the output voltage. In the derived topology, the
stress across the output diode of the derived topology is the difference of output and input
voltage, which reduces the cost and increases the reliability of the component. According
to the military handbook for reliability prediction, the failure rate of the diode depends
on the voltage stress ratio. Hence, the reduction in maximum voltage stress increases
the maximum time to failure of the component. The switching and conduction losses
are analyzed and it shows that the proposed topology offers low losses due to lower
number of power components. The significant factors affecting the lifetime of the converter
are identified and analyzed. The reliability study helps us to find the optimum value of
the duty cycle with respect to the failure rate of the passive and active components. To
demonstrate the theoretical results, a 50 W prototype has been assembled in the laboratory.
The experimental results have validated and proved that the proposed converter is suitable
for high voltage gain applications such as photovoltaic systems, fuel cell, etc.
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Nomenclature

MPPT Maximum power point tracking
PV Photovoltaic
N Number of expander cells
D Duty cycle
Gv Voltage gain
S Stress ratio
CCM Continuous Conduction Mode
DCM Discontinuous Conduction Mode
λSW Failure rate of the switch
λD Failure rate of the diode
λL Failure rate of the inductor
λC Failure rate of the capacitor
πT Temperature factor
πE Environmental factor
πS Stress factor
πQ Quality factor
πA Application factor
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