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Abstract: Semi-natural grasslands contribute highly to biodiversity and other ecosystem services,
but they are at risk by the spread of invasive plant species, which alter their habitat structure.
Large area grassland monitoring can be a powerful tool to manage invaded ecosystems. Therefore,
WorldView-3 multispectral sensor data was utilized to train multiple machine learning algorithms in
an automatic machine learning workflow called ‘H2O AutoML’ to detect L. polyphyllus in a nature
protection grassland ecosystem. Different degree of L. polyphyllus cover was collected on 3 × 3 m2

reference plots, and multispectral bands, indices, and texture features were used in a feature selection
process to identify the most promising classification model and machine learning algorithm based on
mean per class error, log loss, and AUC metrics. The best performance was achieved with a binary
classification of lupin-free vs. fully invaded 3 × 3 m2 plot classification with a set of 7 features out
of 763. The findings reveal that L. polyphyllus detection from WorldView-3 sensor data is limited
to large dominant spots and not recommendable for lower plant coverage, especially single plant
detection. Further research is needed to clarify if different phenological stages of L. polyphyllus as
well as time series increase classification performance.

Keywords: invasive species; WorldView-3; grassland; machine learning; feature selection

1. Introduction

Extensive grasslands, especially at nature conservation sites, are important habitats
for multiple endangered species [1]. Thereby, they have a key role in supporting biodi-
versity, [2]. Besides biodiversity, there are many other valuable ecosystem services, which
are provided by extensive grasslands, such as soil carbon storage, forage production for
ruminants, and reduction of soil erosion [3]. Extensive grasslands are valuable culturally
grown landscapes with increasing significance for species to adapt to the effects of climate
change and human activities [4]. Therefore, it should be one of our main goals to preserve
such refugium, because changing climate will increase the challenges for species, which
are adapted to specific habitat structures and climate conditions, while at the same time,
habitats matching species requirements will become rare.

One threat to grassland ecosystems is the spread of invasive species. Until today, there
is no saturation in the accumulation of new appearing alien species [5]. If an invasive
species has superior competition advantages, it can rapidly become a dominant species
in a habitat, which can be vulnerable to such a degree, that species composition changes
drastically and the profile and performance will change in recipient ecosystems, shifting
the balance between services and disservices [6].

One invasive species on the list of the 150 most widespread alien plants is Lupinus
polyphyllus [7]. Originated in pacific north America, it has spread over northern and
central Europe [8,9]. L. polyphyllus is a perennial legume that has often been introduced to
new areas for the purpose of erosion reduction, e.g., in connection with road constructions
or to increase the nitrogen pool at agricultural sites [10,11].
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For effective management, the distribution strategies of L. polyphyllus have been
studied and multiple expansion paths for seeds of L. polyphyllus have been identified [12].
From natural distribution and from multiple anthropogenic vectors, management strategies
can be formulated to reduce seed transmission to new sites. As it is very difficult to renature
already invaded areas [13] and because of the danger of reinvasion, management should be
as effective as possible. Therefore, long-term management, supported by highly accurate
monitoring is of great need to detect the actual spread and identify a threat in vulnerable
areas with high ecosystem value. Management strategies have to be validated on their
potential to evaluate the effectiveness of management measures.

Remote sensing methods are an attractive tool for monitoring grassland ecosystems.
Optical sensors can collect electromagnetic radiation reflected from the area of interest and
its unique spectral reflectance pattern can be interpreted by machine learning algorithms to
inform on physiological plant properties as well as distinguish between different species.
For example, Ref. [14] used WorldView-3 satellite products to extract tree crowns in semi-
arid parklands, while [15] classified dominant tree species in urban areas to estimate carbon
stock and [16] focused on weed detection.

However, challenges rise by the similarities of invading and native species characteristics.
For mapping invasive species like L. polyphyllus, timing is important [17]. Plants must

be distinguishable through phenologically prominent features like the blossoming stage or
at the end of the season after grassland was cut, and regrowth of the invasive species is
advanced in height and less senescent compared to its surrounding species.

Traditional cover estimation methods are using human expert knowledge to estimate
species cover in the field or use digitizing methods and image data from aerial flights.
As digitizing is highly time consuming, interpolation methods are used as well. One
way to eliminate the uncertainty of interpolation methods is the use of the computational
classification of invasive species by extracting different features from sensor data to train
classification models and predict species cover. Training samples thereby represent areas
covered by the invasive species (one-class classification (e.g., [18,19])) or additional classes
that belong to other species or surface types (e.g., multiclass classification [20])). Further,
samples with different percentages of invasive species cover can be collected to increase
the degree of detail. The use of sensor-based species detection can reduce working load
and increase the precision in cover estimation, especially in large areas.

Mapping efforts of L. polyphyllus in the Rhön UNESCO Biosphere Reserve were carried
out on a large area in the region ‘Leitgraben’ (407 ha) by visual inspection of experts at
ground level and aerial imagery [21] as well as on small areas by unmanned aerial vehicles
(UAV) equipped with multiple sensors and computer-based image analysis [22]. While
the acquisition of species cover from human observations at the ground is highly time
consuming, UAV-based approaches have their limit in spatial cover due to limited battery
capacity. Additionally, drones are a potential disturbance to wildlife fauna [23] through
flight noise and the confusion of certain drone types (especially fixed wing drones) with
predator birds [24]. Even though, the impact of UAVs on wildlife species is uncertain and
often not confirmed [25,26], wildlife species living in habitats mostly unaffected by human
activities have to be considered as increasingly sensitive to disturbances through UAVs.
Aerial flight missions, on the other hand, tend to be difficult to plan for a specific day time
and season and often exceed the costs of UAV-based missions.

To cover large areas and still use the advantages of accurate spatial image analysis,
compared to interpolation methods, satellite data may be used instead. By this, the
disadvantages for wildlife disturbance are eliminated, however, limitations by satellites
may arise from weather conditions (especially clouds) and a reduced spatial resolution
compared to UAV-based data acquisition. Compared to large species (trees and bushes),
smaller herbaceous species in grassland environments are much more challenging to detect.
A comparison by [17] of UAV and satellite images stated that sufficiency is dependent
on demands deriving from monitoring aims itself (flexibility, spatial resolution, spectral
resolution) but as well by sensor’s and platform’s characteristics (financial costs of imagery,
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weather constraints, legal constraints). Thereby, limits of satellites have been formulated at
spatial resolution as well as for acquiring highly dense time series.

Nevertheless, monitoring large areas in Rhön UNESCO Biosphere Reserve with the
necessity to reduce the impact on wildlife species leads to the subject of identifying the
potential and possible ways of detecting L. polyphyllus from satellite data.

The overall aims of this study were:

• Identifying the most promising classification algorithm detecting L. polyphyllus abun-
dance from WorldView-3 satellite data

• Comparing classification performance of different numbers of cover classes with
variable degrees of L. polyphyllus cover

• Evaluating classification performance with different feature selection steps as
model input.

2. Materials and Methods
2.1. Study Area

The Rhön UNESCO Biosphere Reserve is a 243.323 ha wide mountain region in central
Germany in 600 to 950 m a.s.l. (Figure 1). Its core zone is characterized by extensively
managed grasslands, mainly used as meadows and pastures. This special landscape
provides a habitat for multiple endangered plant and animal species. The management
strategy of large parts of the grasslands was optimized for the breeding behavior of Lyrurus
tetrix. Therefore, these meadows were not mown in the early summer, which, among other
things, supported the spread of L. polyphyllus in the region.
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L. polyphyllus was introduced to this area in the 1930s, as a soil cover for spruce planta-
tions and to stabilize verges [27]. Due to the abandonment of the non-profitable meadows,
L. Polyphyllus also spread in these grasslands, and from the mid-1990s, monitoring and
management efforts have been carried out to control the species. Between 1996 and 2016,
in parts of the Rhön UNESCO Biosphere Reserve (‘Leitgraben’), the spread of L. polyphyllus
has doubled in terms of ground cover, both in open grassland areas as well as in areas
which are difficult to manage, such as the margins of roads and near cairns build from
stones removed from the grassland by farmers [21].

Its dominant stands have changed the habitat in such a way that ground breeding birds
(e.g., Lyrurus tetrix and Crex crex) have lost breeding refugium and others their food supply.
At the same time, the dominance of L. polyphyllus reduced the floral biodiversity, because
species with smaller habitus are disadvantaged against the tall growth of L. polyphyllus
single stands and especially large patches. Additionally, L. polyphyllus can transport
nutrients from deeper soil levels upwards to the nutrient poor upper levels. The plant’s
ability to fix atmospheric N can lead to higher nitrogen pools, which can lead to modified
edaphic conditions, resulting in a loss of biodiversity [28].

2.2. Overview

Therefore, an eight-band multispectral WorldView-3 satellite image was acquired,
and multiple machine learning (ML) methods have been trained and tested on their
ability to classify L. polyphyllus at different degrees of ground cover. ML approaches
have shown good capabilities to classify invasive species [29,30]. Additional feature
selection procedures proved successful to decrease model complexity and increase model
performance [16,31].

2.3. Satellite Data Acquisition

Satellite data was acquired from WorldView-3, a multi-payload, high-resolution satel-
lite. It provides a spatial resolution of 31 cm for the panchromatic band, and 1.24 m for
multispectral bands (Table 1). The image was taken on 6 August 2020 at 13:44 and covered
a 100 km2 area along the core zone of the Rhön UNESCO Biosphere Reserve, where the
ground sampling took place (~50◦28′07.6′ ′ N and 10◦02′03.8′ ′ E). Late summer was chosen
for monitoring because at this time almost every meadow was mown, which commonly
happens only once in the year, mostly in July. In August, L. polyphyllus has already regrown,
while the surrounding grassland vegetation was still at almost cutting height (cf. Figure 2).

Table 1. The bands of WorldView-3 used in this study. NIR: Near infrared.

Band Wavelength (nm)

anchromatic 450–800
Coastal 400–450

Blue 450–510
Green 510–580
Yellow 585–625

Red 630–690
Red Edge 705–745

NIR1 770–895
NIR2 860–1040
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Figure 2. Regrowth of L. polyphyllus after mowing on extensive grasslands at the Rhön UNESCO Biosphere Reserve in early
September 2020.

2.4. Reference Ground Sampling

From 1st to 4th of September 2020, ground truth data were collected in the study
area. Therefore, 3 × 3 m2 flexible frames were used (Figure 2), which have been divided
into 16 equal squares (4 × 4 matrix with 0.75 m length). These frames were randomly
distributed within the grasslands with a different ground cover of L. polyphyllus. For each
sample, it was assessed how many of the 16 equal squares were at least partly covered
with L. polyphyllus plants. A total of 219 3 × 3 m2 ground truth plots were set up for RS
data analysis visually by experts in the field with different degrees of lupine contribution
(Lupine cover classes from 0–16 which equals 0–100% with 6.25% cover steps). Each sample
plot was documented with an RGB handheld camera image, taken from one side of the
plot at a ca. 2 m distance. All four corners of each plot were measured with an RTK GNSS
with a horizontal accuracy of 2 cm [32].

2.5. Pre-Processing of Satellite Data

Pre-processing steps were done in QGIS (v. 3.14.16). Calculations of TOAradiance
(Equation (1)) and TOAreflectance (Equation (2)) (TOA: top of atmosphere) were made with
the inbuild field calculator. Information on satellite and flight-specific parameters was
given by the satellite data provider.

Lλ = gainλ × DNλ + biasλ (1)

Lλ = Top of atmosphere radiance (spectral radiance at sensor) [W m−2 µm−1 sr−1)]
gainλ = Band-specific scaling factor [(W m−2 µm−1 sr−1)/DN]
DNλ = calibrated pixel value [DN]
biasλ = (upscaling factor/effective bandwidth) + OFFSET [W m−2 µm−1 sr−1]
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ρλ =
(Lλ × d2 × π)

(Eexo × cosθ)
(2)

ρλ = Top of atmosphere reflectance (spectral reflectance at sensor) [unitless]
d = Distance Earth-Sun [au]
Eexo = Exo-atmospheric radiance [W m−2 µm−1]
θ = Solar zenith angle [◦]

After these radiometric corrections, georeferencing was accomplished with coordi-
nates collected with RTK GNSS (Leica Geosystems GmbH, Germany) at distinctive points
(such as road marks and crossroads) in the study area.

2.6. Feature Creation

The panchromatic band and all eight spectral bands were used as features themself,
as well as the Normalised Difference Spectral Indices (NDSI) calculated for each combi-
nation of multispectral bands (Equation (3)), resulting in additional 28 indices. Further,
Haralick texture features [33] were calculated for panchromatic and multispectral bands
with HaralickTextureExtraction plugin of Orfeo Toolbox library (OTB, open-source [34]) ac-
cessed from QGIS. Simple texture set selection was chosen as shown in Table 2, and image
minimum and image maximum were adjusted for each band separately, depending on
band intensity values. Expert knowledge was used to manually select all other preferences
(computation step, radius, offset, histogram number of bins) to fit the purpose of generating
distinguishable texture features (Table A1, Appendix A).

NDSI =
(Ri − Rj)

(Ri + Rj)
(3)

• R = Spectral reflectance
• i = Wavelength [nm]
• j = Wavelength [nm]

Table 2. Haralick texture features computed over sliding windows with user defined radius. g(i,j) is the element in cell i, j of
a normalized Grey Level Co-occurrence Matrix (GLCM).

Texture Feature Equations (from [35]) Explanation (from [33,36])

Energy ∑
i,j

g(i, j)2 Local steadiness of the grey level

Entropy ∑
i,j

g(i, j) log2 g(i, j) Randomness or degree of disorder

Correlation ∑
i,j

(i−µ)(j−µ)g(i,j)
σ2 Linear dependency of grey level values in the GLCM

Inverse Difference Moment ∑
i,j

1
1+(i−j)2 g(i, j) Local homogeneity

Inertia ∑
i,j
(i− j)22g(i, j) Local contrast or amount of variations

Cluster Shade ∑
i,j
((i− µ) + (j− µ))3g(i, j) Skewness of the GLCM

Cluster Prominence ∑
i,j
((i− µ) + (j− µ)4)g(i, j) Asymmetry of the GLCM

Haralick Correlation ∑i,j(i,j)g(i,j)−µ2
t

σ2
t

Probability of two pixels with similar grey level

From reference ground samples, plot corner coordinates were used to cut out each
reference plot for each feature raster. As multiple pixels were located in a raster cut
out, different metrics (average, standard deviation, minimum, maximum, 25% percentile,
50% percentile, 75% percentile) were used to calculate a value for each feature. In total,
763 features were created.
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2.7. Feature Selection

To gain a higher model simplicity the total set of 763 features was reduced using the
function VSURF (Variable Selection Using Random Forest) from R-package VSURF [37].
This method was chosen because it proved suitable both for binary outcomes (which was
one of our classification scenarios—cf. Figure 3) and for datasets with many predictors [38].
In the first (thresholding) step of VSURF, irrelevant features were eliminated. A random for-
est with 50 runs was used to rank all features according to their importance measure (gain).
A threshold was computed depending on the standard deviation of feature importance
since irrelevant features have smaller standard deviations compared to features with high
importance. The second (‘interpretation’) step reduced the feature set in nested random
forest models (25 runs), starting with only the most important feature and finally selecting
the feature set from the model with an out-of-bag error smaller than the minimal out-of-bag
error augmented by its standard deviation. Selection from this step still contains features
with redundancy for interpretation purposes. The third (‘prediction’) step was a forward
selection procedure based on the previously selected feature set. Here, an additional feature
was only added if the out-of-bag error significantly decreased compared to the average
variation obtained by adding a noise feature [37].
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2.8. Model Development

For model development, three different feature sets were used. The set with all
763 features, the one obtained by the VSURF ‘interpretation step’ and the one from VSURF
‘prediction step’. The sets were assigned to three different classification scenarios: A 17-
class scenario, which included all documented data classes as described before (chap.
2.4. Reference ground sampling), a 5-class scenario, which aggregated the intermediate
classes to nearly equal size in terms of the number of samples (cf. Figure A1), and a binary
classification scenario which exclusively contained sample plots with 100% coverage of
L. polyphyllus and those sample plots which were entirely free of L. polyphyllus. Therefore,
the binary classification scenario only contained 82 of 219 samples.

Overall, 9 different modeling approaches were conducted (3 classification scenarios
with three different feature sets each as input). Multiple machine learning algorithms were
applied through the AutoML algorithm [39] from R-package H2O ([40] v. 3.32.0.4). H2O
is a machine learning and predictive analysis platform that is written in Java and has an
application programming interface that can be used by web interface, Phyton as well as
R binding. AutoML can be used as an automatic machine learning workflow, including
training and tuning of different supervised machine learning algorithms (DRF: Distributed
Random Forest, XRT: Extremely Randomized Trees, GLM: Generalised Linear Model, GBM:
Gradient Boosting Machine, deep learning, and stacked ensembles (cf. Table A2)). AutoML
trains specific algorithms in the following order: A fixed grid of GLMs, a default DRF, five
pre-specified GBMs, a near-default Deep Neural Net, an XRT, a random grid of GBMs, and
a random grid of Deep Neural Nets. The number of models that are trained is eventually
limited to a pre-defined training time. Additionally, and independent of time limitation,
two stacked ensemble models are built, one (SEfamily) using only the best performing
model of each algorithm family (DL, GBM, GLM, XRT, DRF) and one (SEall) combining all
trained models.

Preferences of the AutoML function were kept similar for all classification scenarios
and feature sets. Time limitation for the training process was limited to 600 s for each
AutoML-run. A leader board, ranking all algorithms of a run depending on the mean per
class error for multinominal classification and AUC (area under the receiver operating
characteristic curve) for binary classification of a 5-fold cross-validation was created.

Mean per class error =
1
C

C

∑
i=1

class errori (4)

class error = 1−
(

correctly classi f ied instances
∑ classi f ied instances

)
(5)

LoglossBinary =
1
N

N

∑
i=1

wi(yi ln(pi) + (1− pi) ln(1− pi)) (6)

LoglossMulticlass =
1
N

N

∑
i=1

C

∑
j=1

wi
(
yi,j ln

(
pi,j

))
(7)

N is the total number of observations of the corresponding data frame.
w is the per observations user-defined weight (defaults is 1).
C is the total number of classes (C = 2 for binary classification).
p is the predicted value (uncalibrated probability) assigned to a given observation.
y is the actual target value.
On a test dataset of 20% randomly picked samples, that represents a proportional

split for each class, and which were not included in the training process, the validation
measures mean per class error (Equations (4) and (5)) and Log loss (Equations (6) and (7))
were calculated and leaders inside each classification scenario were compared (all feature vs.
VSURF ‘interpretation step’ vs. VSURF ‘prediction step’). Additionally, the best-performing
algorithm was compared among the three different classification scenarios.
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2.9. Model Interpretation

To get a better understanding of the underlying information of the prediction model,
the contribution of each feature to the model was investigated. Feature importance was
calculated for the best-performing model of the most promising AutoML run. Each algo-
rithm family (DL, GBM, GLM, XRT, DRF) uses specific variable importance calculation
(e.g., for deep learning it uses the Gedeon method [41]), which is executed with function
h2o.varimp from the H2O package. The different calculation procedures are listed in the
algorithm table (Table A2).

2.10. Final Validation of Best Model Approach

The best performing AutoML run (among all feature sets and classification scenar-
ios) was inspected for its best models of each algorithm family (DL, GBM, GLM, XRT,
DRF) and for the stacking ensemble model which was built by these five models. Each
model was implemented in a loop of 100 training and testing steps, each built with a
different combination of training and test samples. This was done to investigate the median
prediction performance among all 100 runs to decrease the prediction outcome bias of a
single test set that could be highly over-optimistic or over-pessimistic. Additionally, the
range in prediction performance was used as an indicator for model stability. Median
AUC (area under the ROC curve (receiver operating characteristic)) and median Log loss
(Equations (6) and (7)) of each 100 model runs were compared to identify the best overall
classification model for L. polyphyllus. Further, those median model’s ROC curves were
compared to investigate their performance when the threshold for class probability is
varied along the area of conflict between a high true positive rate (Equation (8)) and a low
false positive rate (Equation (9)).

True positive rate (recall) =
true positive

true positive + f alse negative
(8)

False positive =
f alse positive instances

f lase positive + true negative
(9)

False negative rate =
f alse negative

f alse negative + true positive
(10)

Precision =
true positive

true positive + f alse positive
(11)

F1 = 2
(
(precision)(recall)
precision + recall

)
(12)

F2 = 5
(
(precision)(recall)
4 precision + recall

)
(13)

F0.5 = 1.25
(

(precision)(recall)
0.25 precision + recall

)
(14)

2.11. Binarization Threshold

Classifications with different binarization thresholds were performed additionally
with the best performing AutoML algorithm. Therefore, samples were divided into binary
classes by a threshold of L. polyphyllus coverage. As the sampling plots have been divided
into 16 subplots, the same number of threshold values could be realized (in steps of
6.25% L. polyphyllus coverage). Classification performance was compared in terms of
mean AUC after a loop of 100 training and testing steps, as described in the previous
validation procedure. The threshold of the best performing model was identified to assess
the minimum L. polyphyllus coverage necessary for ML-based identification of L. polyphyllus
in practice.



Remote Sens. 2021, 13, 4333 10 of 21

2.12. Prediction Map

At last, the whole reference dataset was used as training input in the model with tuning
parameters set according to the best performing model from AutoML run (Table A3) to
create a prediction map of L. polyphyllus abundance for the target zone ‘Leitgraben’. To this
end, the ‘h2o.predict’ function was used for calculating class probabilities (for classification),
which can be labeled by a threshold that fits best the purpose of the prediction. Because
missing a Lupine spot is much worse than a false alarm, the threshold that defines where to
split the probabilistic classification value for assigning a predicted sample to a class should
be oriented at a low false negative rate (Equation (10)). One way is to add a factor to the
F1-score (Equation (12)), which is the harmonic mean of precision (Equation (11)) and recall
(Equation (8)). The weighted F2-score (Equation (13)) penalizes more for false negative than
false positive by adding a positive factor of 2 to the importance of recall, while the F0.5-score
(Equation (14)) gives more weight to precision than to recall.

For this purpose, we identified the threshold value that gives a maximum performance
of F0.5-score and F2-score to compare their outcome of L. polyphyllus prediction maps.

3. Results
3.1. AutoML Model Comparison

AutoML was used to compare the three different classification scenarios and to identify
the most promising VSURF feature selection set. Among all nine AutoML runs, the 2-class
scenario with VSURF ‘interpretation step’ as well as VSURF ‘prediction step’ feature set
resulted in a gradient boosting machine algorithm as the leader model. All other leaders
were deep learning algorithms. The overall best performing AutoML run was the binary
GBM prediction model of Lupin vs. no-Lupin plots from VSURF ‘interpretation-step’
features. The mean per class error of 0.31 showed the second-lowest classification error
after the 2-class scenario with all features but with a log loss of 0.75 the highest confidence
in class assignment. In the 5-class scenario, the best leader model was a deep learning
model built from VSURF ‘prediction step’. However, the mean per class error, as well as log
loss, increased to 0.74 and 10.02 respectively. The leader from 17-class scenario performed
worst (Table 3).

Table 3. Leaders of all AutoML model runs validated on an external 20% test data set. Grey row shows the overall best
model from all classification scenarios and feature sets.

Leader Algorithm Classes Feature Selection Features (n) Mean per Class Error Log Loss

Gradient Boosting Machine 2 VSURF prediction 5 0.37 0.78

Gradient Boosting Machine 2 VSURF
interpretation 7 0.31 0.75

Deep Learning 2 All features 763 0.25 7.04

Deep learning 5 VSURF prediction 11 0.76 8.04

DeepLearning 5 VSURF
interpretation 15 0.74 10.02

DeepLearning 5 All features 763 0.84 20.62

DeepLearning 17 VSURF prediction 5 0.94 12.45

DeepLearning 17 VSURF
interpretation 27 0.90 13.18

DeepLearning 17 All features 763 0.94 18.11

3.2. Best AutoML Model

From all nine AutoML approaches Gradient Boosting Machine in combination with
binary classification scenario with seven features performed most promising, resulting
in a relatively low mean per class error along with a low Log loss. The confusion matrix
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(on 20% external test set) revealed a higher class error in the reference ‘Not Lupin’ class
compared to reference ‘Lupin’ class (Table 4). The best model was built from a GBM with
tuning parameters, as shown in Table A3.

Table 4. Confusion Matrix of best model (GBM: Gradient Boosting Machine) from binary classification
with 7 variables on external 20% test data set. UA: User Accuracy, PA: Producer Accuracy.

Pred. Not Lupin Pred. Lupin PA (%) Class Error

Obs. Not Lupin 4 4 50 0.5
Obs. Lupin 1 8 88.89 0.11

UA (%) 80 66.67

For the best model, the feature set was reduced to six Haralick texture features and one
NDSI (p75_BLUGRE) calculated from the blue and green band. GBM variable importance,
defined as the difference in squared error before and after a split using a particular feature,
ranked all Haralick texture features before the NDSI feature (Figure 4).
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3.3. Validation with 100 Repetitions

After the best AutoML run was identified, tuning parameters of the best models of
each algorithm family were extracted from AutoML run to set up an additional validation
step. Each model was trained and tested 100 times. Median AUC and Log loss for each
algorithm was compared. GBM, the best model from AutoML run was among the other
algorithms with a median AUC of 0.77. Median AUC and Log loss were generally similar
for all algorithms, only DL with a high variation in Log loss and a lower median AUC,
performed worse. XRT achieved the lowest variation in log loss values (Figure 5).

The SEfamily model was built from best-trained base learners (DRF, XRT, GLM, GBM,
DL) for training a second-level “metalearner” based on a GLM algorithm. According to the
feature importance of the metalearner, SEfamily model had the highest contribution from
DL, followed by GBM, DRF, XRT, and GLM (Figure 6). The importance ranking is based on
a standardized coefficient, which is the predictor weight of the standardized data.
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From 100 model runs within each algorithm family, the model with median AUC
was used to illustrate ROC (receiver operating characteristic) curve. It showed that no
algorithm was superior to others. SE and GLM were slightly superior at low false positive
rates. A true positive rate (all Lupine samples detected) of 1 was achieved by the XRT
model with a false positive rate (misclassified non-lupine samples) of 0.375 (Figure 7).

From 16 Binarization thresholds, a split at 62.5% L. polyphyllus coverage achieved
the highest median AUC of 0.74 (Figure 8). All models performed worse compared
to the binary model build only from samples with 0 and 100% L. polyphyllus coverage
(cf. Figure 5). There was no clear trend in model performance along the threshold gradient
of L. polyphyllus coverage.
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4. Discussion
4.1. Identifying the Most Promising Classification Algorithm Detecting L. polyphyllus Abundance
from WorldView-3 Satellite Data

Our best binary classification showed slightly lower performance compared to other
studies using WorldView-3 images to classify invasive plant species. [16] achieved accu-
racies between 76.6 and 91.2% with an XGBoost algorithm, depending on feature input
(spectral and/or textural information), which is close to the accuracy of the GBM algorithm
(from median AUC of 100 model runs) in the present study (77%).

It was expected that a stacked ensemble model would be top of the leader board, as a
stack of complementary algorithms should increase the prediction performance compared
to a single algorithm [42]. Instead, SEfamily model was on rank three after two GBM-based
classifier variants (Figure A2). A single ML algorithm outperforming a stacked ensemble
in remote sensing applications is not unusual and SE models should be built from carefully
selected base classifiers [43]. Considering, that the SEfamily model was built from the best
model of each algorithm family and that the most important algorithm inside the SEfamily
was the DL model (Figure 6), which had the by far worst Log loss variation compared to
all other algorithms in the 100-model run (Figure 5), the SEfamily model may have been
limited by this and by a lower contribution of the outperforming GBM. Validation with
100 model runs revealed a high range in performance for all algorithms, which indicates a
certain risk when dealing with a limited amount of sampling data. The goal should be to
increase sampling size to further calibrate the prediction model.

As missing areas with L. polyphyllus abundance are worse than a false alarm, the
threshold that defines were to split the probabilistic classification value for assigning a
predicted sample to a class, should be oriented at a low missing rate. However, interpreting
the results from the prediction map (Figure 9), the threshold for maximum F2-score is
unfavorable, and a threshold from maximum F0.5-score seems more reasonable from expert
knowledge of the invasion status of ‘Leitgraben’. This reveals the importance of ground
truth knowledge and sensitivity for the decision of adequate thresholds of probabilistic
classification models. Compared to the classification of invasive hogweed based on Pleiades
1B satellite data from [17], with a producer accuracy (PA) of 86% and a user accuracy (UA)
of 94%, our GBM model (which had the highest median AUC) showed a somewhat higher
PA of 89% and lower UA of 73%. Morphological differences between hogweed and
L. polyphyllus, especially the plant and leaf size, could affect the performance of species
identification. Further, the selection of samples for the non-target class is important as
we have only chosen areas covered by grassland while [17] merged multiple different
cover types to one ‘background’ cover class, increasing the difference between target and
non-target class in terms of spectral and textural signatures. Hereby, we applied a less
optimistic methodology that clearly reveals the challenges of identifying invasive species
in ecosystems where invader and native vegetation show similarities in their spectral
signatures and could thereby formulate the need for action in the development of RS-based
large area species detection. Further, we could show that the final ML approach should
be selected depending on the specific management aims. Therefore, ROC-curves seem
appropriate to compare different ML approaches for operational tasks.

4.2. Comparing Classification Performance with Different Numbers of Classes and Variable
L. polyphyllus Cover

We could reveal the limitations of WorldView-3 multispectral data as a proxy for
the detection of L. polyphyllus deriving performance measures from prediction models
trained and validated for different resolutions of L. polyphyllus abundance. The binary
classification was the only potentially useful approach compared to 5-class and 17-class
scenarios. L. polyphyllus patches are therefore only detectable by WorldView-3 image-
based classification models when they cover at least a 3 × 3 m ground surface. This is
critical, as for management strategies, solitarily growing Lupin stands have been identified
as the most important drivers of L. polyphyllus spread and invasion into new areas [27].
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To reduce the lack of spatial resolution, aerial imagery, fixed wing drones, or drones
with long-lasting batteries, flying at higher altitudes around 100 m AGL could be used
instead. This would increase the spatial resolution to roughly 1–10 cm, and besides
pixel-based approaches, additional approaches like Object Based Image Analysis could
be considered [22], especially when high-resolution RGB imagery is available. However,
this may increase the working load significantly and may lead to conflicts with nature
protection aims such as the prevention of disturbance of wildlife animals. The validation
of multiple binary classifications with different binarization thresholds showed no clear
trend at which degree of L. polyphyllus cover a classification is most promising.
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4.3. Comparing Classification Performance with Different Feature Selection Steps as Model Input

VSURF feature selection excluded most of the spectral raw data as well as NDSIs,
which is not in line with results by Shendryk et al. (2020) where NDSI and single spectral
bands were the most important features. In their study, only one texture feature was of
any importance (‘Inverse Difference’), which was not selected in our study. Nevertheless,
multispectral sensor information cannot be underestimated, as for the important texture
features, NIR1 and NIR2 were the underlying spectral bands. NIR and red bands were the
origins for the most important texture feature both in satellite-based [44] and UAV-based
studies [36]. This indicates that the generalization of our findings across different invasive
species is limited, instead, individual models need to be calibrated on individual feature
sets. To increase the classification performance, texture feature extraction from NIR bands
could be tuned to overcome the lack of spatial resolution.

4.4. General Concerns

We have chosen August for data acquisition to have notable regrowth of L. polyphyllus,
while the surrounding grassland vegetation was still at almost stubble height from the
previous cut. Therefore, L. polyphyllus is distinguishable from grassland vegetation on aerial
imagery at this time in the year. Due to the lower resolution of our satellite data, a preponed
monitoring alternative could also increase the classification performance of our models.
At the end of June, when mowing is still restricted by nature protection constraints, and
L. polyphyllus is in full blossom, spectral signatures of L. polyphyllus could be complemented
by the prominent violet flower spikes. However, training prediction models based on
blossoming plants only may lead to models that may miss many plants, as the phenological
stage of individual plants is not always synchronous. Furthermore, other species with the
same blossom color (e.g., Geranium sylvaticum) may complicate the model training process.
It has to be stated that the time gap between satellite data acquisition (6 August 2020)
and collection of reference ground data (1–4 September 2020) may have contributed to the
fuzziness of models. Lowering the delay between both data acquisitions is important to
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disprove a significant regrowth until the event of ground reference data collection. Utilizing
UAV-based semi-automatic reference data acquisition for training spacious satellite images
(upscaling) could be an additional add-on to save the time of fieldwork and to create much
more reference data of invasive species with high accuracy [19]. Further, the combination
of different sensor data e.g., hyperspectral and LiDAR data [45] or optical and ultrasonic
data, which has proven its potential for grassland quality parameters [46,47], could lead to
higher classification results. A compromise in spatial and spectral resolution could also be
derived from airborne hyperspectral [18,45] data.

5. Conclusions

As binary classification was the only potentially usable approach compared to 5-class
and 17-class scenarios, L. polyphyllus patches are only detectable by WorldView-3 data,
when they cover at least 3 × 3 m2 ground surface. We have to consider WorldView-3 data
as very limited to L. polyphyllus detection in the late summer season.

If UAV-based missions are impossible due to nature conservation restriction, a future
aim could be to train a WorldView-3 based classification model using times series [48,49] or
collecting data in early summer at the peak of L. polyphyllus blossoming phenological stage.

We could show limitations for satellite-based species-detection in highly heteroge-
nous grassland ecosystems and conclude that further sensor data fusion is necessary to
compensate for similarities between target species and background as well as limits of the
satellite’s spatial resolution.

Applicability is a crucial aspect in grassland monitoring to serve on strategic, tactic,
and operational levels. To live up to the high expectations of RS-based monitoring tools,
continuous development of RS methods under field conditions is inevitable.
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8 DRF_1_AutoML_20210529_134248 0.794981060606061 0.532260297354364 0.840323666467553 0.213068181818182 0.42097287662643 0.177218162855132
9 GBM_grid__1_AutoML_20210529_134248_model_1 0.792140151515151 0.541496610009862 0.833147595857633 0.263257575757576 0.424962988736924 0.180593541796219
10 DeepLearning_grid__1_AutoML_20210529_134248_model_6 0.788825757575758 0.565944277276615 0.834673961561651 0.214488636363636 0.429584747367384 0.184543055170699
11 GBM_4_AutoML_20210529_134248 0.783143939393939 0.550293938265989 0.833160805671985 0.246685606060606 0.428921687469211 0.183973813981435
12 DeepLearning_grid__2_AutoML_20210529_134248_model_2 0.783143939393939 2.48783312036969 0.827978487292217 0.34280303030303 0.516246779338817 0.266510737177702
13 GBM_3_AutoML_20210529_134248 0.783143939393939 0.546883190436215 0.81581580109039 0.326231060606061 0.427695150729585 0.182923141957602
14 GLM_1_AutoML_20210529_134248 0.78219696969697 0.556554124249043 0.837264225469436 0.309659090909091 0.437547718968158 0.191448006374238
15 GBM_grid__1_AutoML_20210529_134248_model_6 0.779356060606061 0.553532710399784 0.738277464291604 0.229640151515152 0.424703701731177 0.180373234264165
16 DeepLearning_grid__1_AutoML_20210529_134248_model_4 0.779356060606061 0.611742843178789 0.840558821811871 0.229166666666667 0.434941602064611 0.18917419720653
17 XRT_1_AutoML_20210529_134248 0.776041666666667 0.533689190740662 0.834272204540911 0.310132575757576 0.431453987511235 0.186152543339345
18 GBM_grid__1_AutoML_20210529_134248_model_8 0.774621212121212 0.602451643972044 0.810113173128389 0.260890151515151 0.446718210353432 0.199557159461373
19 GBM_grid__1_AutoML_20210529_134248_model_19 0.773200757575758 0.544485762902127 0.749600561040661 0.198390151515152 0.421674101188626 0.177809047613236
20 DeepLearning_grid__3_AutoML_20210529_134248_model_2 0.771780303030303 2.01359162344289 0.819143037357952 0.34280303030303 0.537612412659418 0.289027106245481
21 GBM_grid__1_AutoML_20210529_134248_model_2 0.770833333333333 0.605953881933845 0.791790047613688 0.32717803030303 0.451765821107442 0.204092357120882
22 DeepLearning_grid__3_AutoML_20210529_134248_model_5 0.769886363636364 2.50877519075676 0.818301684409969 0.326231060606061 0.541881880300945 0.293635972198487
23 GBM_2_AutoML_20210529_134248 0.769886363636364 0.568664758121421 0.823205392976803 0.244791666666667 0.435845671429224 0.189961449303591
24 DeepLearning_1_AutoML_20210529_134248 0.765151515151515 0.7101203615285 0.800238162289226 0.310606060606061 0.482335589767213 0.232647621156085
25 GBM_grid__1_AutoML_20210529_134248_model_14 0.760416666666667 0.590918062852343 0.814264885645434 0.214015151515152 0.443912273055023 0.197058106168878
26 GBM_1_AutoML_20210529_134248 0.760416666666667 0.659639668773223 0.805681786778038 0.357481060606061 0.455224856520445 0.20722966999406
27 DeepLearning_grid__1_AutoML_20210529_134248_model_8 0.757575757575758 0.987195695325077 0.802432482032229 0.341856060606061 0.508658541506614 0.258733511847636
28 DeepLearning_grid__3_AutoML_20210529_134248_model_4 0.755681818181818 2.84600177076749 0.796961799784655 0.260890151515151 0.65415620320433 0.427920338190704
29 DeepLearning_grid__3_AutoML_20210529_134248_model_3 0.753787878787879 1.7218698582151 0.810680670175021 0.228693181818182 0.480338155982018 0.230724744092205
30 DeepLearning_grid__1_AutoML_20210529_134248_model_15 0.75094696969697 0.738741010088494 0.812911118969349 0.229640151515152 0.458150896493507 0.209902243957804
31 DeepLearning_grid__1_AutoML_20210529_134248_model_2 0.747159090909091 2.29280614918945 0.8070849410336 0.261363636363636 0.601990141631626 0.362392130621666
32 DeepLearning_grid__1_AutoML_20210529_134248_model_12 0.744318181818182 0.958290593735264 0.809080280336882 0.259943181818182 0.468627541108451 0.219611772285352
33 DeepLearning_grid__2_AutoML_20210529_134248_model_3 0.743844696969697 1.93648391341622 0.800977488361905 0.309659090909091 0.538953231899951 0.290470586175403
34 StackedEnsemble_AllModels_AutoML_20210529_134248 0.743371212121212 0.560087449326155 0.816752548765264 0.260890151515151 0.437821527958312 0.191687690343751
35 DeepLearning_grid__3_AutoML_20210529_134248_model_1 0.743371212121212 1.09293303249071 0.769016906281594 0.325284090909091 0.511844896425352 0.261985197996679
36 DeepLearning_grid__1_AutoML_20210529_134248_model_13 0.743371212121212 0.820114586926311 0.806616385431539 0.260416666666667 0.473304979031604 0.224017603176107
37 DeepLearning_grid__2_AutoML_20210529_134248_model_5 0.734848484848485 2.41481979285954 0.791695695745304 0.325757575757576 0.553010699370978 0.305820833618778
38 DeepLearning_grid__1_AutoML_20210529_134248_model_1 0.734848484848485 0.881132827081142 0.806297927200362 0.246685606060606 0.476890185709964 0.227424249226484
39 DeepLearning_grid__1_AutoML_20210529_134248_model_14 0.730113636363636 1.53845520228221 0.810886400791788 0.275568181818182 0.519612364895652 0.269997009752453
40 DeepLearning_grid__2_AutoML_20210529_134248_model_7 0.727272727272727 1.35766476713482 0.797679048739365 0.275568181818182 0.520718379651245 0.271147630906618
41 DeepLearning_grid__3_AutoML_20210529_134248_model_6 0.724431818181818 1.20729569412571 0.764537494371596 0.293560606060606 0.55213806112587 0.304856438543835
42 DeepLearning_grid__1_AutoML_20210529_134248_model_7 0.722537878787879 1.66895040231966 0.816160934270468 0.229640151515152 0.49291904802993 0.242969187910732
43 DeepLearning_grid__2_AutoML_20210529_134248_model_8 0.715909090909091 2.5164578782402 0.718286009536221 0.326231060606061 0.631558780853055 0.398866493672597
44 DeepLearning_grid__1_AutoML_20210529_134248_model_9 0.711174242424242 0.680287746205898 0.752538620389156 0.276988636363636 0.481637706665093 0.23197488048161
45 DeepLearning_grid__2_AutoML_20210529_134248_model_6 0.707386363636364 0.784462494921323 0.794513409170944 0.356060606060606 0.48226332277729 0.232577912496193
46 DeepLearning_grid__1_AutoML_20210529_134248_model_5 0.704545454545455 2.57921884909461 0.743044000608016 0.308238636363636 0.524746173761233 0.275358546877055
47 DeepLearning_grid__1_AutoML_20210529_134248_model_11 0.702651515151515 0.651063860146908 0.773982541540948 0.324337121212121 0.476755572799011 0.227295876194913
48 DeepLearning_grid__1_AutoML_20210529_134248_model_3 0.685606060606061 1.50492724196659 0.739444890661828 0.357954545454545 0.579074959350338 0.335327808546596
49 DeepLearning_grid__3_AutoML_20210529_134248_model_8 0.682765151515151 2.89154125277215 0.722482668014048 0.356060606060606 0.607441495001763 0.368985169849977
50 DeepLearning_grid__2_AutoML_20210529_134248_model_4 0.681818181818182 1.21779622324665 0.755563823417821 0.404829545454545 0.561921524451952 0.315755799642405
51 DeepLearning_grid__1_AutoML_20210529_134248_model_10 0.678977272727273 1.28245297975787 0.726209006693324 0.404829545454545 0.549615359711134 0.3020770436304
52 DeepLearning_grid__3_AutoML_20210529_134248_model_7 0.604166666666667 5.04850309097739 0.718272216748013 0.5 0.642675949244449 0.413032375737254

Figure A1. Number of samples for each class. 2-class scenario only used class 0 and 16, while 17 class scenario used all
classes. 5 class scenario divided samples as colour coded.
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rank model_id auc logloss aucpr mean_per_class_error rmse mse
1 GBM_grid__1_AutoML_20210529_134248_model_13 0.825757575757576 0.506142158284823 0.853001183383475 0.247159090909091 0.416934648967487 0.173834501509641
2 GBM_grid__1_AutoML_20210529_134248_model_18 0.808238636363636 0.519614534904401 0.848098626968939 0.183238636363636 0.41419876780383 0.171560619250211
3 StackedEnsemble_BestOfFamily_AutoML_20210529_134248 0.806818181818182 0.520882144124661 0.864383909984425 0.214488636363636 0.41596856975776 0.173029851026317
4 GBM_grid__1_AutoML_20210529_134248_model_15 0.805871212121212 0.573453813694809 0.840523556471551 0.231534090909091 0.440466265437332 0.19401053098831
5 GBM_grid__1_AutoML_20210529_134248_model_9 0.805871212121212 0.515381835671591 0.844761532981319 0.214962121212121 0.418520506780122 0.17515941459549
6 GBM_grid__1_AutoML_20210529_134248_model_11 0.805871212121212 0.535859624130962 0.828389655127183 0.295454545454545 0.425829856697685 0.181331066855171
7 DeepLearning_grid__2_AutoML_20210529_134248_model_1 0.795454545454545 1.62071577485887 0.840602660914553 0.231060606060606 0.513326352944948 0.263503944627762
8 DRF_1_AutoML_20210529_134248 0.794981060606061 0.532260297354364 0.840323666467553 0.213068181818182 0.42097287662643 0.177218162855132
9 GBM_grid__1_AutoML_20210529_134248_model_1 0.792140151515151 0.541496610009862 0.833147595857633 0.263257575757576 0.424962988736924 0.180593541796219
10 DeepLearning_grid__1_AutoML_20210529_134248_model_6 0.788825757575758 0.565944277276615 0.834673961561651 0.214488636363636 0.429584747367384 0.184543055170699
11 GBM_4_AutoML_20210529_134248 0.783143939393939 0.550293938265989 0.833160805671985 0.246685606060606 0.428921687469211 0.183973813981435
12 DeepLearning_grid__2_AutoML_20210529_134248_model_2 0.783143939393939 2.48783312036969 0.827978487292217 0.34280303030303 0.516246779338817 0.266510737177702
13 GBM_3_AutoML_20210529_134248 0.783143939393939 0.546883190436215 0.81581580109039 0.326231060606061 0.427695150729585 0.182923141957602
14 GLM_1_AutoML_20210529_134248 0.78219696969697 0.556554124249043 0.837264225469436 0.309659090909091 0.437547718968158 0.191448006374238
15 GBM_grid__1_AutoML_20210529_134248_model_6 0.779356060606061 0.553532710399784 0.738277464291604 0.229640151515152 0.424703701731177 0.180373234264165
16 DeepLearning_grid__1_AutoML_20210529_134248_model_4 0.779356060606061 0.611742843178789 0.840558821811871 0.229166666666667 0.434941602064611 0.18917419720653
17 XRT_1_AutoML_20210529_134248 0.776041666666667 0.533689190740662 0.834272204540911 0.310132575757576 0.431453987511235 0.186152543339345
18 GBM_grid__1_AutoML_20210529_134248_model_8 0.774621212121212 0.602451643972044 0.810113173128389 0.260890151515151 0.446718210353432 0.199557159461373
19 GBM_grid__1_AutoML_20210529_134248_model_19 0.773200757575758 0.544485762902127 0.749600561040661 0.198390151515152 0.421674101188626 0.177809047613236
20 DeepLearning_grid__3_AutoML_20210529_134248_model_2 0.771780303030303 2.01359162344289 0.819143037357952 0.34280303030303 0.537612412659418 0.289027106245481
21 GBM_grid__1_AutoML_20210529_134248_model_2 0.770833333333333 0.605953881933845 0.791790047613688 0.32717803030303 0.451765821107442 0.204092357120882
22 DeepLearning_grid__3_AutoML_20210529_134248_model_5 0.769886363636364 2.50877519075676 0.818301684409969 0.326231060606061 0.541881880300945 0.293635972198487
23 GBM_2_AutoML_20210529_134248 0.769886363636364 0.568664758121421 0.823205392976803 0.244791666666667 0.435845671429224 0.189961449303591
24 DeepLearning_1_AutoML_20210529_134248 0.765151515151515 0.7101203615285 0.800238162289226 0.310606060606061 0.482335589767213 0.232647621156085
25 GBM_grid__1_AutoML_20210529_134248_model_14 0.760416666666667 0.590918062852343 0.814264885645434 0.214015151515152 0.443912273055023 0.197058106168878
26 GBM_1_AutoML_20210529_134248 0.760416666666667 0.659639668773223 0.805681786778038 0.357481060606061 0.455224856520445 0.20722966999406
27 DeepLearning_grid__1_AutoML_20210529_134248_model_8 0.757575757575758 0.987195695325077 0.802432482032229 0.341856060606061 0.508658541506614 0.258733511847636
28 DeepLearning_grid__3_AutoML_20210529_134248_model_4 0.755681818181818 2.84600177076749 0.796961799784655 0.260890151515151 0.65415620320433 0.427920338190704
29 DeepLearning_grid__3_AutoML_20210529_134248_model_3 0.753787878787879 1.7218698582151 0.810680670175021 0.228693181818182 0.480338155982018 0.230724744092205
30 DeepLearning_grid__1_AutoML_20210529_134248_model_15 0.75094696969697 0.738741010088494 0.812911118969349 0.229640151515152 0.458150896493507 0.209902243957804
31 DeepLearning_grid__1_AutoML_20210529_134248_model_2 0.747159090909091 2.29280614918945 0.8070849410336 0.261363636363636 0.601990141631626 0.362392130621666
32 DeepLearning_grid__1_AutoML_20210529_134248_model_12 0.744318181818182 0.958290593735264 0.809080280336882 0.259943181818182 0.468627541108451 0.219611772285352
33 DeepLearning_grid__2_AutoML_20210529_134248_model_3 0.743844696969697 1.93648391341622 0.800977488361905 0.309659090909091 0.538953231899951 0.290470586175403
34 StackedEnsemble_AllModels_AutoML_20210529_134248 0.743371212121212 0.560087449326155 0.816752548765264 0.260890151515151 0.437821527958312 0.191687690343751
35 DeepLearning_grid__3_AutoML_20210529_134248_model_1 0.743371212121212 1.09293303249071 0.769016906281594 0.325284090909091 0.511844896425352 0.261985197996679
36 DeepLearning_grid__1_AutoML_20210529_134248_model_13 0.743371212121212 0.820114586926311 0.806616385431539 0.260416666666667 0.473304979031604 0.224017603176107
37 DeepLearning_grid__2_AutoML_20210529_134248_model_5 0.734848484848485 2.41481979285954 0.791695695745304 0.325757575757576 0.553010699370978 0.305820833618778
38 DeepLearning_grid__1_AutoML_20210529_134248_model_1 0.734848484848485 0.881132827081142 0.806297927200362 0.246685606060606 0.476890185709964 0.227424249226484
39 DeepLearning_grid__1_AutoML_20210529_134248_model_14 0.730113636363636 1.53845520228221 0.810886400791788 0.275568181818182 0.519612364895652 0.269997009752453
40 DeepLearning_grid__2_AutoML_20210529_134248_model_7 0.727272727272727 1.35766476713482 0.797679048739365 0.275568181818182 0.520718379651245 0.271147630906618
41 DeepLearning_grid__3_AutoML_20210529_134248_model_6 0.724431818181818 1.20729569412571 0.764537494371596 0.293560606060606 0.55213806112587 0.304856438543835
42 DeepLearning_grid__1_AutoML_20210529_134248_model_7 0.722537878787879 1.66895040231966 0.816160934270468 0.229640151515152 0.49291904802993 0.242969187910732
43 DeepLearning_grid__2_AutoML_20210529_134248_model_8 0.715909090909091 2.5164578782402 0.718286009536221 0.326231060606061 0.631558780853055 0.398866493672597
44 DeepLearning_grid__1_AutoML_20210529_134248_model_9 0.711174242424242 0.680287746205898 0.752538620389156 0.276988636363636 0.481637706665093 0.23197488048161
45 DeepLearning_grid__2_AutoML_20210529_134248_model_6 0.707386363636364 0.784462494921323 0.794513409170944 0.356060606060606 0.48226332277729 0.232577912496193
46 DeepLearning_grid__1_AutoML_20210529_134248_model_5 0.704545454545455 2.57921884909461 0.743044000608016 0.308238636363636 0.524746173761233 0.275358546877055
47 DeepLearning_grid__1_AutoML_20210529_134248_model_11 0.702651515151515 0.651063860146908 0.773982541540948 0.324337121212121 0.476755572799011 0.227295876194913
48 DeepLearning_grid__1_AutoML_20210529_134248_model_3 0.685606060606061 1.50492724196659 0.739444890661828 0.357954545454545 0.579074959350338 0.335327808546596
49 DeepLearning_grid__3_AutoML_20210529_134248_model_8 0.682765151515151 2.89154125277215 0.722482668014048 0.356060606060606 0.607441495001763 0.368985169849977
50 DeepLearning_grid__2_AutoML_20210529_134248_model_4 0.681818181818182 1.21779622324665 0.755563823417821 0.404829545454545 0.561921524451952 0.315755799642405
51 DeepLearning_grid__1_AutoML_20210529_134248_model_10 0.678977272727273 1.28245297975787 0.726209006693324 0.404829545454545 0.549615359711134 0.3020770436304
52 DeepLearning_grid__3_AutoML_20210529_134248_model_7 0.604166666666667 5.04850309097739 0.718272216748013 0.5 0.642675949244449 0.413032375737254

Figure A2. Leader board from AutoML run with 2-classes and VSURF ‘interpretation step’ ranked by AUC of 5-fold
cross validation.

Table A1. Haralick texture feature preferences.

Band Computation
Step X Radius Y

Radius
X

Offset
Y

Offset
Image

Minimum
Image

Maximum
Histogram
Number
of Bins

Texture
Set

Selection

PAN 1 2 2 1 1 100 362 32 Simple

COASTAL 1 2 2 1 1 0.09 0.131 256 Simple

BLUE 1 2 2 1 1 0.09 0.131 256 simple

GREEN 1 2 2 1 1 0.036 0.118 256 simple

YELLOW 1 2 2 1 1 0.025 0.118 256 simple

RED 1 2 2 1 1 0.018 0.135 256 simple

REDEDGE 1 2 2 1 1 0.024 0.27 256 simple

NIR1 1 2 2 1 1 0.04 0.5 256 simple

NIR2 1 2 2 1 1 0.03 0.42 256 simple
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Table A2. Machine Learning algorithms used by H20.

Abbreviation Name Details Feature Importance Calculation

DRF Distributed Random
Forest

Tree based algorithm with bagging [50].
Bagging has a parallel training stage for

each learner.

Difference in squared error before
and after a split using a particular

feature. Improvements for a feature
are summed up.

XRT Extremely
Randomized Trees

Same as DRF but with computed
thresholds for tree splits. Reduced

variance, increased bias [51].

Difference in squared error before
and after a split using a particular

feature. Improvements for a feature
are summed up.

GLM Generalised Linear
Model

For classification, GLM models the
conditional class probability and uses a

link function (logit for binomial) to relate
the response variable to the generalize
linear model [52].GLM uses elastic net

regularization which is a combination of
the `1 and `2 penalties to

reduce overfitting.

Feature importance is the
standardized coefficient, which is the

predictor weight of the
standardized data

GBM Gradient Boosting

Tree based algorithm with boosting [53].
Boosting has a sequential training stage

for each new learner, taking the previous
classification success into account by

increasing weight for misclassified data.

Difference in squared error before
and after a split using a particular

feature. Improvements for a feature
are summed up.

DL Deep learning
Multi-layer feedforward artificial neural
network (multi-layer perceptron (MLP))

using back-propagation [54].

Feature importance is calculated from
Gedeon method [41] which uses a

weight matrix analysis technique for
determining the behavioural

significance of hidden neurons.

SEfamily

Stacked ensembles
from best model of

each algorithm family

Trained base learners (best DRF, XRT,
GLM, GBM, DL) are used for training a
second level “metalearner” (with GLM).

Feature importance output is the
contribution of each model to the

stacked ensemble and not the
underlying features from each base

model itself.

SEall
Stacked ensembles

from all models

Trained base learners (all DRF, XRT,
GLM, GBM, DL) are used for training a
second level “metalearner” (with GLM).

Feature importance output is the
contribution of each model to the

stacked ensemble and not the
underlying features from each base

model itself.

Table A3. Tuning parameters for GBM: Gradient Boosting Machine in AutoML run. Values of best GBM model are for
2-class scenario with VSURF ‘interpretation step’ feature set.

Paremeter Searchable Values Values of Best GBM Model

col_sample_rate {0.4, 0.7, 1.0} 0.4

col_sample_rate_per_tree {0.4, 0.7, 1.0} 0.4

learn_rate Hard coded: 0.1 0.1

max_depth {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17} 13

min_rows {1, 5, 10, 15, 30, 100} 5

min_split_improvement {1 × 10−4, 1 × 10−5} 1 × 10−4

ntrees Hard coded: 10000 (true value found by early
stopping) 36

sample_rate {0.50, 0.60, 0.70, 0.80, 0.90, 1.00} 1.00
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