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Abstract: The accurate evaluation of shifts in vegetation phenology is essential for understanding
of vegetation responses to climate change. Remote-sensing vegetation index (VI) products with
multi-day scales have been widely used for phenology trend estimation. VI composites should be
interpolated into a daily scale for extracting phenological metrics, which may not fully capture daily
vegetation growth, and how this process affects phenology trend estimation remains unclear. In
this study, we chose 120 sites over four vegetation types in the mid-high latitudes of the northern
hemisphere, and then a Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A4 daily
surface reflectance data was used to generate a daily normalized difference vegetation index (NDVI)
dataset in addition to an 8-day and a 16-day NDVI composite datasets from 2001 to 2019. Five
different time interpolation methods (piecewise logistic function, asymmetric Gaussian function,
polynomial curve function, linear interpolation, and spline interpolation) and three phenology
extraction methods were applied to extract data from the start of the growing season and the end
of the growing season. We compared the trends estimated from daily NDVI data with those from
NDVI composites among (1) different interpolation methods; (2) different vegetation types; and
(3) different combinations of time interpolation methods and phenology extraction methods. We
also analyzed the differences between the trends estimated from the 8-day and 16-day composite
datasets. Our results indicated that none of the interpolation methods had significant effects on trend
estimation over all sites, but the discrepancies caused by time interpolation could not be ignored.
Among vegetation types with apparent seasonal changes such as deciduous broadleaf forest, time
interpolation had significant effects on phenology trend estimation but almost had no significant
effects among vegetation types with weak seasonal changes such as evergreen needleleaf forests. In
addition, trends that were estimated based on the same interpolation method but different extraction
methods were not consistent in showing significant (insignificant) differences, implying that the
selection of extraction methods also affected trend estimation. Compared with other vegetation
types, there were generally fewer discrepancies between trends estimated from the 8-day and 16-day
dataset in evergreen needleleaf forest and open shrubland, which indicated that the dataset with a
lower temporal resolution (16-day) can be applied. These findings could be conducive for analyzing
the uncertainties of monitoring vegetation phenology changes.
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1. Introduction

The vegetation phenology refers to the physiological and reproductive phenomenon
of vegetation in an annual cycle, which is a robust and sensitive indicator of climate
change [1–4]. Shifts in vegetation phenology can regulate interactions between vegetation
and climate change by influencing the structure and functions of the terrestrial ecosys-
tem [5–7]. The availability of accurate vegetation phenology shifts has significant impli-
cations for promoting the understanding of vegetation responses to climate change [8]
and improving terrestrial ecosystem process models [9] and prediction skills in crop yield
production [10].

Shifts in vegetation phenology across regional and global scales were frequently
derived by using vegetation indices (VIs) from satellite remote sensing data at various
spatial and temporal resolutions [11–19]. The accuracy of phenology trend estimation
can be influenced by multiple variables such as geographical regions [20–22], vegetation
types [23–25], and vegetation indexes [26–28] but mostly depends on the selection of
remote sensing products, denoising methods, phenology extraction methods, and the
different combinations of these factors [20,29]. Previous studies indicated discrepancies
between phenology trends estimated by different remote sensing products [30–35]. For
example, Peng et al. [36] investigated the shifts of spring green-up onset dates in six
regularly updated land surface phenology products from Moderate Resolution Imaging
Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR).
Similar interannual shifts of green-up onset dates among all products only occurred in
local regions while discrepancies were distributed across the contiguous United States. In
Western Arctic Russia, the start of growing season (SOS) and the end of growing season
(EOS) during 2000–2010 based on MODIS and SPOT-Vegetation datasets showed similar
trends, but all were significantly different from the trend based on AVHRR data [37]. In
addition, Zeng et al. [38] estimated the SOS trend over the northern high-latitude region
and noticed that SOS continuously advanced from 2000 to 2010 by using MODIS data, but
no advancing trends were shown in the AVHRR Global Inventory Modeling and Mapping
Studies (GIMMS) time series. Such patterns have also been documented in Tibetan alpine
grassland, where MODIS Normalized Difference Vegetation Index (NDVI) data captured
the advancement of SOS throughout 2000–2014, but a delaying trend of the GIMMS
NDVI estimated SOS was observed [39]. Discrepancies between phenology trends based
on different denoising methods or extraction methods varied in research areas, research
periods, and vegetation types [40–43]. For example, Zhu et al. [8] applied several commonly
utilized vegetation phenology extraction methods on MOD09A1 (8-day) and MOD13A2
(16-day) datasets and found no significant differences between SOS or EOS trends derived
from asymmetric Gaussian function, double logistic function, and the piecewise logistic
function method. White et al. [20] compared 10 extraction methods for estimating the
shifts in the start-of-spring dates based on the GIMMS NDVI dataset in North America; the
results strongly suggested either no or very geographically limited trends towards earlier
spring arrival. Wu et al. [19] applied six phenology extraction methods including the first-
order, second-order, and third-order derivative; amplitude threshold; relative changing
rate; and curvature change rate for deriving SOS and EOS from AVHRR. In the northern
hemisphere, the SOS trends retrieved vary across methods from 1982 to 2018, while only
the EOS trend estimated by the relative changing rate method was significantly advanced.
In the southern hemisphere, EOS based on all methods demonstrated insignificant trends.
Compared with denoising methods or extraction methods, the selection of datasets might
be of a higher priority in vegetation dynamics monitoring [8,33].

Atmosphere conditions, such as cloud, dust, and other aerosols, can adversely affect
the quality of satellite remote sensing VI data. To this regard, the maximum value compos-
ite method [44] was mostly used [45–49] and composited VI time-series data by retaining
the maximum NDVI within a specific interval of days. Current VI composite products
such as 15-day GIMMS NDVI 3 g data; MODIS 8-day (MOD09A1), 16-day (MOD13Q1),
and 30-day (MOD13A3) data; and 10-day SPOT VGT S10 data were widely applied among
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regional [32,50,51] and global scales [12,52]. VI composite products should be interpolated
into daily scales for extracting phenological metrics (i.e., SOS and EOS). However, the
process of time interpolation may not fully capture real daily vegetation growth, especially
during greening and senescence stages (where the curve is changing fast) [53], which may
further affect the estimation of phenology trends. Current time interpolation methods
include linear interpolation [54], cubic spline interpolation [55], and curve-fitting methods.
Curve fitting methods smooth the noise while fitting the curve into a continuous daily scale
line, including asymmetric Gaussian function fitting [56], fast Fourier transform [20], and
double logistic function fitting [57], but these methods were mostly applied as denoising
measures in previous studies [20,56,58,59]. For investigating the effects of data temporal
resolution on phenology extraction and trend estimation, some studies compared phenol-
ogy metrics or trends derived from daily NDVI data to those derived from multi-day NDVI
composites [25,27,60]. However, the different performances of multi-day NDVI composites
compared with daily NDVI data are directly caused by the process of time interpolation,
and how this process affects phenology trend estimation remains unclear.

In this study, we used MCD43A4 daily surface reflectance data to construct a single-
year daily (reference) NDVI dataset denoised by the Savitzky–Golay filter, and then single-
year 8-day and single-year 16-day NDVI composite datasets were further generated. Four
typical vegetation types, five time-interpolation methods, and three phenology extraction
methods were chosen for estimating phenology trends. The main goals are to compre-
hensively investigate the effects of time interpolation on phenology trend estimation in
the mid-high latitudes of the northern hemisphere from 2001 to 2019 among (1) different
interpolation methods; (2) different vegetation types; and (3) different combinations of
time interpolation methods and phenology extraction methods. In addition, we also ana-
lyzed the differences between the trends estimated from the 8-day and 16-day composite
data, which would provide instructions on selecting relatively coarse temporal resolution
(i.e., 16 day) data for phenology dynamics monitoring, as they are easier for collecting
and storing.

2. Data and Methods
2.1. Study Area and Sites

We selected the mid-latitude and high-latitude area as our study region because the
vegetation seasonal changes here are evident (noticeable amplitudes in NDVI curves), ren-
dering extracting accurate phenological metrics possible [18]. In addition, NDVI datasets
here are least contaminated by solar zenith angle effects [50,61]. Four typical widely dis-
tributed vegetation types (deciduous broadleaf forest (DBF), evergreen needleleaf forest
(ENF), grassland (GRA), and open shrubland (OSH)) in the mid-high latitudes of the
northern hemisphere (23.5◦–70◦N) were chosen as the study area (Figure 1). Vegetations
around long-running experiment sites are usually well protected; thus, we selected sites
with long-term (at least 10 years) observations from Fluxnet (https://fluxnet.fluxdata.
org/sites/site-list-and-pages/, accessed on 20 March 2020; https://ameriflux.lbl.gov/,
accessed on 23 March 2020; http://www.europe-fluxdata.eu/, accessed on 23 March 2020)
and Phenocam (https://phenocam.sr.unh.edu/, accessed on 5 April 2020).

First, we filtered sites with the MCD12Q1 Land Cover Type product. If the vegetation
type marked at each site was the same as the type in all 3 × 3 pixels (1500 m × 1500 m at
500 m resolution) centered on the site location, then the site was retained; otherwise, it was
removed [62]. Second, in order to eliminate the influence of bare soil, sparse vegetation,
and artificial vegetation (such as crops) on VI curves, sites meeting the following criteria
in all years (2001–2019) were selected for further analysis [33,50,63–65]: (1) the mean
NDVI during June–September should be higher than 0.10; (2) the annual maximum NDVI
should occur during July–September; (3) the mean NDVI during July–September should be
1.2 times higher than the mean NDVI during November–March; and (4) the NDVI curve
has a single growth cycle annually. Finally, according to the central limit theorem [66], data
statistics will be close to normally distributed if the sample size is greater than or equal

https://fluxnet.fluxdata.org/sites/site-list-and-pages/
https://fluxnet.fluxdata.org/sites/site-list-and-pages/
https://ameriflux.lbl.gov/
http://www.europe-fluxdata.eu/
https://phenocam.sr.unh.edu/
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to 30. For each vegetation type, 30 sites meeting all criteria above were selected from higher
to lower latitudes, which were 72 Fluxnet sites and 48 Phenocam sites in total (Figure 1).
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Figure 1. Sites and the distribution of vegetation types. DBF, ENF, GRA, and OSH are deciduous broadleaf forest, evergreen
needleleaf forest, grassland, and open shrubland, respectively.

Figure 2 showed the typical NDVI curve of each vegetation type from the represen-
tative Fluxnet sites. The curve of DBF has the most apparent seasonal change (seasonal
change is defined by the amplitude of the NDVI curve in Bradley et al. [67]). The curves
of GRA and OSH have relatively weaker seasonal changes, and the curve of ENF has the
weakest seasonal change.
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Figure 2. Typical NDVI curves of four vegetation types in the study area. DBF, ENF, GRA, and OSH are deciduous broadleaf
forest, evergreen needleleaf forest, grassland, and open shrubland, respectively; data of (a–d) are from Fluxnet sites CA-TP3,
CZ-BK1, US-Wkg, and US-IB2, respectively; all curves are denoised by the Savitzky–Golay filtering method.

2.2. Data and Pre-Processing

MODIS provided an 8-day surface reflectance data (MOD09A1) and a 16-day NDVI
composite (MOD13A1) data with the same georeference and spatial resolution (500 m)
as the MCD43A4 product. However, there exist discrepancies in data generation. In
MOD09A1, the selection of pixels within the 8-day composite period is based on the mini-
mum channel 3 (blue) value, while MOD13A1 chooses the highest NDVI value within two
8-day composite periods. In addition, the deviations appear in data gap filling. MOD13A1
uses the climate modeling grid (CMG) average vegetation index product database for gap
filling, which cannot be applied to the MOD09A1 NBAR dataset. All these discrepancies
may increase bias during data pre-processing. Therefore, we chose to construct the daily
NDVI data and NDVI composites based on the daily surface reflectance data MCD43A4.

Firstly, we chose daily surface reflectance data for red and near-infrared ranges from
MCD43A4 product with 500 m spatial resolution during 2001–2019 (https://modis.ornl.
gov/globalsubset/, accessed on 20 March 2020). Surface reflectance data was then pre-
processed in the following four steps to obtain single-year daily NDVI data and finally
generated single-year 8-day and single-year 16-day composite data.

https://modis.ornl.gov/globalsubset/
https://modis.ornl.gov/globalsubset/
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(1) Calculating daily NDVI during 2001–2019

Daily NDVI from 2001 to 2019 was calculated by the mean nadir BRDF (bidirec-
tional reflectance distribution function) adjusted reflectance (NBAR) values taken over
3 × 3 pixels in each site (Equation (1)). The days with unqualified data (labeled in “F”)
were skipped from the calculation:

NDVI =
RNIR − RRed
RNIR + RRed

(1)

where RNIR is the mean of 3 × 3 pixels of near-infrared band surface reflectance; and RRed
is the mean of 3 × 3 pixels of red band surface reflectance.

(2) Constructing single-year daily NDVI data

For the missing daily NDVI values caused by NBAR data loss among a few sites (data
labeled in “F”), a linear interpolation method was applied by using NDVI values of the
same day in the nearest years (before and after) to fill up. If there were no qualified NDVI
values among the nearest years, the multi-year (2001–2019) mean NDVI value of this day
was then used for filling up the missing value.

(3) Denoising single-year daily NDVI data

Savitzky–Golay filter [68] is a simplified least squares fit convolution that can be
applied for smoothing VI curves of a set of consecutive values [58]. The filter was
proved to perform well by minimizing noises (e.g., cloud-contaminated NDVI values)
effectively [69,70]. It was chosen to smooth the daily NDVI data in our study (equation
and parameters are shown in Table 1).

Table 1. Data preprocessing methods and parameter settings.

Method Equation Parameter

Savitzky-Golay filter Y∗j = ∑i=m
i=−m CiYj+i/N

Y * is the resultant NDVI value; Y is the original
NDVI value; j is the running index of the original

ordinate data; m is the half-width of the smoothing
window (filter); Ci is the coefficient for the ith NDVI

value of the filter; N is the amount of convoluting
integers; the half-width of the smoothing window is
set to 1/4 of the year length (90 days); the smoothing

polynomial degree is set to 4 [58].

Maximum value composite ynew = MAX(y1 + y2 + . . . + yn)
ynew is the resultant NDVI value; yn is the original

NDVI value; n is the days for compositing.

(4) Constructing single-year composite NDVI data

The maximum value composite method [44] was chosen to generate single-year 8-day
and single-year 16-day composite data (Equation and parameters are shown in Table 1).

2.3. Methods
2.3.1. Time Interpolation

Five commonly used functions were chosen for interpolating the 8-day and 16-day
composite data (equations and parameters were shown in Table 2): (1) piecewise logistic
function fitting (PL). PL fits NDVI curve to a logistic function of time with no requirements
of data pre-smoothing or threshold defining [71]. The function for NDVI data with a single
growth cycle is shown in Table 2. (2) asymmetric Gaussian function fitting (AG). AG based
on nonlinear least squares fits to the NDVI curves [56]. It is especially suited for describing
the shape of the scaled VI curves in overlapping intervals around maxima and minima.
(3) polynomial curve function fitting (PCF). PCF uses the least-square regression to analyze
the relationship between NDVI data and the corresponding Julian day [50]. It effectively
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smooths the curve noises, and the degree of polynomial function is flexible according to
the shape of the NDVI curve. (4) linear interpolation (Linear). Linear interpolation starts at
the beginning of the NDVI (start point) curve and linearly constructs the missing value
with the current start point and the next nearest point [54]. The function (Table 2) can
also be understood as a weighted average. (5) cubic spline interpolation (Spline). Spline
interpolates the data with piecewise cubic polynomials, and it allows the NDVI curve
to pass through two specified endpoints with specified derivatives at each endpoint [55].
Spline is popularly used as it reduces both computational requirements and numerical
instabilities arising with higher degree curves.

Table 2. Time interpolation methods and parameter settings.

Method Equation Parameter

Piecewise logistic function fitting (PL) y(t) = c
1+ea+bt + d

y(t) is the resultant NDVI value at time t; t is the Julian
days; a and b are fitting parameters; c is the amplitude of

the NDVI curve; d is the minimum NDVI value [71].

Asymmetric Gaussian function fitting (AG)
y(t) = wNDVI + (mNDVI− wNDVI)× g(t)

(t; a1, a2 · · · a5) =

 exp
[
−
(

t−a1
a2

)a3
]
, if t > a1

exp
[
−
(

a1−t
a4

)a5
]
, if t < a1

y(t) is the resultant NDVI value at time t; g(t) is the
original NDVI value; wNDVI and mNDVI are the

minimum and maximum NDVI value of the fitting part;
a1 is the position of the maximum or minimum value

with respect to time t; a2 (a4) and a3 (a5) are the width and
flatness of the right (left) half of the function [56].

Polynomial curve fitting (PCF) y(t) = α0 + α1 × t1 + α2 × t2 + α3 × t3 + · · ·
+αn × tn

y(t) is the resultant NDVI value at time t; t is the Julian
days; α0-αn are fitting parameters; n is the degree of
smoothing polynomial; the smoothing polynomial

degree is set to 6 [50].

Linear interpolation (Linear) y(t) = t−t1
t0−t1

y0 +
t−t0

t1−t0
y1

y(t) is the resultant NDVI value at time t; t0 and t1 are the
nearest day of year (DOY) of the missing value; y0 and y1
are the nearest NDVI of the missing value; t is the DOY

of the interpolating point between t0 and t1.

Cubic spline interpolation (Spline) yi(t) = ai + bi(t− ti) + ci(t− ti)
2 + di(t− ti)

3

yi(t) is the resultant NDVI value at time t in the ith
period; t is the interpolating point between ti and ti+1; a-d
are function parameters decided by the DOY and NDVI

matrix calculation results in the ith period and the
(I + 1) th period.

2.3.2. Phenology Extraction

For extracting phenological metrics, we chose three commonly used extraction meth-
ods (equations and parameters are shown in Table 3): (1) dynamic threshold (DT) method.
In DT method, SOS and EOS are defined as the point in time at which the NDVI value
increases and decreases to a specific level of seasonal amplitude [56]. Here, we defined the
level percentage as 10%, 20%, and 30%, respectively [1,72,73]. (2) maximum rate of change
(MRC) method. MRC defines the timing of the greatest NDVI change as the maximum
(the left part of the curve, from the starting point to the peak) and minimum (the right part
of the curve, from the peak to the ending point) values of NDVI ratio to determine the
onset dates of the start and end of a growing season [50]. (3) change rate of the curvature
(RCC) method. RCC defines the onset of senescence and dormancy dates as the point in
time at which the rate of change in curvature in the NDVI curve exhibits local minimum or
maximum values [71].
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Table 3. Phenology extraction methods and parameter settings.

Method Equation Parameter

Dynamic threshold (DT) thd =
NDVI(t)−NDVImin
NDVImax−NDVImin

NDVI(t) is the original NDVI value at time t;
NDVImax is the maximum value of the entire curve;

NDVImin is the minimum value of the left/right
curve (divided by the maximum NDVI); thd is the

output ratio, ranging from 0–1 [56].

Maximum rate of change (MRC) NDVIratio(t) =
NDVI(t+1)−NDVI(t)

NDVI(t)

NDVI(t) is the original NDVI value at time t;
NDVI (t+1) is the original NDVI value at time

t+1; NDVIratio(t) is the NDVI ratio at time t [50].

Change rate of curvature (RCC) NDVI(t) = y(t)′′

(1+y(t)′2)
3/2

NDVI(t) is the rate of change of curve at time t;
y(t)′ and y(t)” are the first and the second

derivative of curve at time t [71].

2.3.3. Phenology Trend Estimation

Extreme values caused by weather and human interference could affect phenology
trend estimation; thus, outliers of extracted phenological metrics were removed in each
site based on the 30-day rule proposed by Schaber and Badeck [74]. The NDVI values were
considered as outliers if the estimated residuals of the linear regression model were larger
than or equal to 30 days (Equation (2)), i.e., where |eij| ≥ 30:

xij = m + ai + bj + eij (2)

where xij is the NDVI data of year i on site j; m is a general mean (usually set to zero for
finding a well-defined solution); ai is the effect of year i (2001–2019); and bj is the effect of
site j (j = 1, . . . , 120).

Then, the trend was calculated by linear regression (Equation (3)):

y = ax + b (3)

where y is SOS or EOS for 2001–2019; x is the year for 2001–2019; b is the intercept; and a is
the SOS or EOS trend for 2001–2019.

2.3.4. Statistical Analysis

The paired sample t-test was used to test if there existed statistically significant
differences between each of the two experimental results (Table 4). A Kolmogorov–Smirnov
(K-S) test was performed in advance to verify that all results obeyed normal distribution
(p values are shown in Table S1). Pairs of experimental results being tested for statistically
significant differences included the following: (1) phenology trends from the daily NDVI
data and NDVI composites (8-day and 16-day) among five different interpolation methods;
(2) phenology trends from the daily NDVI data and NDVI composites (8-day and 16-day)
among different combinations of five interpolation methods and three extraction methods
(the amount of the combinations is 50 in total for each vegetation type in SOS (EOS) trend
estimation); and (3) phenology trends from the 8-day NDVI composite data and 16-day
NDVI composite data. The level of p < 0.05 indicated significant difference.

Table 4. Statistically significant differences between different experiment results.

Number Temporal Resolution Time Interpolation Methods Phenology Extraction Methods

(1) 1 d vs. 8 d, 1 d vs. 16 d PL, AG, PCF, Linear, Spline Mean of DT, MRC, and RCC

(2) 1 d vs. 8 d, 1 d vs. 16 d PL, AG, PCF, Linear, Spline DT, MRC, RCC

(3) 8 d vs. 16 d PL, AG, PCF, Linear, Spline Mean of DT, MRC, and RCC

PL, AG, PCF, Linear, and Spline are piecewise logistic function fitting, asymmetric Gaussian function fitting, polynomial curve fitting,
linear interpolation, and cubic spline interpolation, respectively; DT, MRC, and RCC are dynamic threshold, maximum rate of change, and
change rate of curvature, respectively; the experiment results of bold variables are tested by the paired sample t-test.
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3. Results
3.1. Comparisons between Trends from Daily NDVI Data and NDVI Composites Based on
Different Time Interpolation Methods

Trends estimated from NDVI composites were slightly different from the reference
(daily) trend, but none of the interpolation methods had significant effects on trend esti-
mation (Figure 3). The mean SOS trend of daily NDVI data was 0.07 d/year, for which
its delaying rate was lower than all mean SOS trends from 8-day NDVI composite data
(Figure 3a), and the SOS trends were 0.09 d/year (PL), 0.12 d/year (AG), 0.09 d/year (PCF
and Linear), and 0.08 d/year (Spline), respectively. For 16-day NDVI composite data, the
delaying rate of mean SOS trends based on AG (0.09 d/year) was higher than the daily
SOS trend, but the SOS trends based on PL (0.04 d/year) and PCF (0.02 d/year) were lower.
Linear (−0.06 d/year) and Spline (−0.08 d/year) yielded advanced mean SOS trends. For
EOS trend estimation, minor differences existed between trends from NDVI composites
and the daily NDVI data. The mean EOS trend of daily NDVI data was 0.03 d/year, and
the advanced EOS trends were estimated based on Linear from 8-day NDVI composite
data (−0.01 d/year), 16-day composite data (−0.05 d/year), and Spline from 16-day NDVI
composite data (−0.01 d/year). (Figure 3b). Other trends all showed slightly delayed
trends, which were 0.05 d/year (PL and AG), 0.10 d/year (PCF), and 0.01 d/year (Spline)
from 8-day NDVI composite data, respectively. For 16-day NDVI composite data, the
delaying rate of mean EOS trends were 0.02 d/year (PL), 0.08 d/year (AG), and 0.05 d/year
(PCF), respectively.
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Figure 3. Comparisons between phenology trends from daily NDVI data and NDVI composites based on different time
interpolation methods over all sites. (a) SOS trends comparisons, and (b) EOS trends comparisons. Phenology trends of
daily NDVI data are unfilled, and phenology trends of NDVI composites are filled in colors; the bottom and top areas of
boxes are the 25th and 75th percentiles; the lines through the boxes are the medians; the boxes designate the mean value;
the diamonds beyond the ends of the whiskers are outliers; SOS and EOS are the start of growing season and the end of
growing season; DBF, ENF, GRA, and OSH are deciduous broadleaf forest, evergreen needleleaf forest, grassland, and
open shrubland, respectively; PL, AG, PCF, Linear, and Spline are piecewise logistic function fitting, asymmetric Gaussian
function fitting, polynomial curve fitting, linear interpolation, and cubic spline interpolation, respectively.

3.2. Comparisons between Trends from Daily NDVI Data and NDVI Composites among Different
Vegetation Types

For vegetations with apparent seasonal changes such as DBF, almost all time interpola-
tion methods had significant effects on trend estimation (Figure 4a,e). For vegetations with
weak seasonal changes such as ENF, almost no time interpolation methods had significant
effects on trend estimation (Figure 4b,f). In DBF, there were significant differences between
mean SOS trends estimated based on all interpolation methods and the mean SOS trend
based on daily NDVI data (0.51 d/year) (Figure 4a). With the exception of the mean
EOS trend (0.11 d/year) based on Spline from 8-day NDVI composite data, there were
significant differences between the rest of mean EOS trends from NDVI composites and
the mean EOS trend from daily NDVI data (0.40 d/year) (Figure 4e). In ENF, there was
significant difference only between the mean SOS trend based on AG from 8-day NDVI
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composite data (0.30 d/year) and the mean SOS trend from daily NDVI data (0.04 d/year)
(Figure 4b). In GRA, the mean EOS trends based on AG from 8-day NDVI composite data
(0.29 d/year) and 16-day NDVI composite data (0.25 d/year) were all significantly different
from the mean EOS trend from daily NDVI data (−0.07 d/year) (Figure 4g). In OSH, the
mean SOS trends based on AG, PCF, and Linear from 8-day NDVI composite data were
0.05 d/year, −0.03 d/year, and −0.04 d/year, respectively; the SOS trends based on AG
from 16-day NDVI composite data were 0.18 d/year, which were all significantly different
from the mean trend from daily NDVI data (−0.17 d/year) (Figure 4d). The EOS trend
based on PL from 8-day NDVI composite data (0.22 d/year) was significantly different
from the mean EOS trend from daily NDVI data (−0.05 d/year) (Figure 4h).
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Figure 4. Comparisons between phenology trends from daily NDVI data and NDVI composites based on different time
interpolation methods among different vegetation types. (a) SOS trends comparisons in DBF, (b) SOS trends comparisons in
ENF, (c) SOS trends comparisons in GRA, (d) SOS trends comparisons in OSH, (e) EOS trends comparisons in DBF, (f) EOS
trends comparisons in ENF, (g) EOS trends comparisons in GRA, and (h) EOS trends comparisons in OSH. Phenology
trends of daily NDVI data are unfilled, and phenology trends of NDVI composites are filled in colors; the bottom and top
areas of boxes are the 25th and 75th percentiles; the lines through the boxes are the medians; the boxes designate the mean
value; the diamonds beyond the ends of the whiskers are outliers; SOS and EOS are the start of growing season and the end
of growing season; DBF, ENF, GRA, and OSH are deciduous broadleaf forest, evergreen needleleaf forest, grassland, and
open shrubland, respectively; PL, AG, PCF, Linear, and Spline are piecewise logistic function fitting, asymmetric Gaussian
function fitting, polynomial curve fitting, linear interpolation, and cubic spline interpolation, respectively; * below the box
indicates that there is significant difference (p < 0.05) between the phenology trend of the daily NDVI data and the trend
estimated based on this time interpolation method.

3.3. Comparisons between Trends from Daily NDVI Data and NDVI Composites Based on
Different Combinations of Time Interpolation Methods and Phenology Extraction Methods

There were 50 combinations of interpolation methods and extraction methods for
each vegetation type in SOS (EOS) trend estimation, and the number of combinations for
which its trends had significant differences from the trend of daily NDVI data is the largest
in DBF among all vegetation types (Figure 5). In DBF, there were significant differences
between SOS trends from 35 combinations and the daily SOS trend, among 30 of which
included extraction methods of DT 10%, DT 20%, and DT 30% (Figure 5a). Significant
differences were found between the EOS trends from 28 combinations and the daily EOS
trend (Figure 5e). For 16-day NDVI composite data, significant differences were shown
between the daily EOS trend and EOS trends from the combinations of PCF, Linear, Spline,
and all extraction methods but only from the combinations of PCF, Linear, Spline and
DT 10%, DT 20%, and DT 30% for 8-day NDVI composite data. In ENF, SOS trends from
three combinations showed significant differences compared with the daily SOS trend,
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which shared DT 10% as the only extraction method. (Figure 5b). EOS trends from two
combinations of Spline and MRC, AG, and RCC based on 8-day NDVI composite data were
significantly different from the daily EOS trend (Figure 5f). In GRA, the SOS trend from
only one combination was found to have significant difference from the daily SOS trend
(Figure 5c), which was PCF and DT 10% based on 8-day NDVI composite data. Moreover,
there were three EOS trends from only three combinations that were significantly different
from the daily EOS trend, which were all based on 16-day NDVI composite data (Spline
and DT 20%, PL and DT 10%, and AG and MRC, respectively) (Figure 5g). In OSH, SOS
trends from 10 combinations showed significant differences compared with the daily SOS
trend (Figure 5d), while EOS trends from seven combinations were significantly different
from the daily EOS trend (Figure 5h), and no combinations included DT 10%.
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Figure 5. Comparisons between phenology trends from daily NDVI data and NDVI composites based
on combinations of different time interpolation methods and extraction methods. (a) SOS trends
comparisons in DBF, (b) SOS trends comparisons in ENF, (c) SOS trends comparisons in GRA, (d)
SOS trends comparisons in OSH, (e) EOS trends comparisons in DBF, (f) EOS trends comparisons in
ENF, (g) EOS trends comparisons in GRA, and (h) EOS trends comparisons in OSH. SOS and EOS are
the start of growing season and the end of growing season; DBF, ENF, GRA, and OSH are deciduous
broadleaf forest, evergreen needleleaf forest, grassland, and open shrubland, respectively; PL, AG,
PCF, Linear, and Spline are piecewise logistic function fitting, asymmetric Gaussian function fitting,
polynomial curve fitting, linear interpolation, and cubic spline interpolation, respectively; DT, MRC,
and RCC are dynamic threshold, maximum rate of change, and change rate of curvature, respectively;
grey boxes indicate that there are no significant differences (p > 0.05) between phenology trends
from NDVI composites and daily NDVI data; green boxes indicate there are significant differences
(p < 0.05) between phenology trends from NDVI composites and daily NDVI data.
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3.4. Comparisons between Trends from the 8-Day and the 16-Day NDVI Composite Data

There were significant differences between phenology trends from the 8-day and
the 16-day NDVI composite data (Figure 6) only in DBF and GRA. In DBF, significant
differences occurred for all interpolation methods except PCF (Figure 6a). For PL, AG,
Linear, and Spline, the mean SOS trends from the 8-day and 16-day NDVI composite
data were 0.12 d/year and 0.00 d/year; 0.13 d/year and 0.01 d/year; 0.17 d/year and
−0.24 d/year; and 0.22d /year and −0.23 d/year, respectively. There were also significant
differences between the mean EOS trends from the 8-day and 16-day NDVI composite data
among Linear and Spline, which were 0.07 d/year and −0.13 d/year (Linear), 0.11 d/year,
and −0.14 d/year (Spline), respectively (Figure 6e). In GRA, the differences between the
mean SOS trend from the 8-day and the 16-day NDVI composite data were significant
among Linear and Spline, which were 0.14 d/year and −0.18 d/year (Linear), 0.11 d/year,
and −0.20 d/year (Spline), respectively (Figure 6c). In addition, for Spline, the mean
EOS trend from 8-day NDVI composite data was −0.09 d/year, which was significantly
different from the 16-day mean EOS trend (0.19 d/year) (Figure 6g).
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interpolation methods. (a) SOS trends comparisons in DBF, (b) SOS trends comparisons in ENF, (c) SOS trends comparisons
in GRA, (d) SOS trends comparisons in OSH, (e) EOS trends comparisons in DBF, (f) EOS trends comparisons in ENF, (g) EOS
trends comparisons in GRA, and (h) EOS trends comparisons in OSH. SOS and EOS are the start of growing season and the
end of growing season; DBF, ENF, GRA, and OSH are deciduous broadleaf forest, evergreen needleleaf forest, grassland, and
open shrubland, respectively; PL, AG, PCF, Linear, and Spline are piecewise logistic function fitting, asymmetric Gaussian
function fitting, polynomial curve fitting, linear interpolation, and cubic spline interpolation, respectively; * below the
16-day NDVI composite data indicates there is significant difference (p < 0.05) between the mean phenology trends from the
8-day and from the 16-day NDVI composite data.

4. Discussion
4.1. Effects of Time Interpolation on Trend Estimation among Different Interpolation Methods

Even though differences between the mean trends estimated from NDVI composites
and from the reference (daily) data were insignificant, the discrepancies caused by time
interpolation could not be ignored. The mean SOS trends based on Linear and Spline
from 16-day NDVI composite data were slightly advanced while the mean trend based
on daily data was delayed. The mean EOS trends based on Linear from the 8-day NDVI
composite data, along with the Linear and Spline from 16-day NDVI composite data, all
showed the advancing rates, which were inconsistent with the mean EOS trend based
on daily data (showing the delaying rate). Therefore, it might be incomprehensive to
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evaluate the effects of multiple interpolation methods only by analyzing the mean trends
of all sites. We further calculated the root-mean-square error (RMSE) between the trend
estimated from the reference (daily) data and the trend from each interpolation method
(Figures S1 and S2). The RMSE values of SOS and EOS trends based on all interpolation
methods ranged from 0.35–0.52 d/year and 0.39–0.47 d/year (Figures S1 and S2), which
were overall similar between each method, and the piecewise logistic function fitting (8 d)
performed slightly better with the lowest RMSE values. For each interpolation method,
the ratio of sites for which its absolute values of trends were lower than the corresponding
RMSE value ranged from 56 to 77% for SOS trends and 58–71% for EOS trends (Table S2),
which implied that the process of time interpolation on NDVI composites might even
change the trend direction over half of all sites. RMSE is sensitive to outliers; thus, our
calculation results might overestimate the effects of time interpolation on trend estimation,
but the uncertainties caused by time interpolation should be considered.

4.2. Effects of Time Interpolation on Trend Estimation among Different Vegetation Types

For vegetation types with apparent seasonal changes such as DBF, almost all the time
interpolation methods had significant effects on phenology trend estimation. However, for
vegetation types with weaker seasonal changes such as ENF, time interpolation methods
had almost no significant effects on trend estimation. Figures 7 and 8 showed an example
of phenology extraction results and trends from the daily and 8-day NDVI composite
data in DBF and ENF, respectively. During 90–150 in Julian day, changes of daily NDVI
values and 8-day NDVI composite values in DBF ranged from 0.33 to 0.28 (Figure 7c),
while it only ranged from 0.11 to 0.13 in ENF (Figure 7f). Meanwhile, during 270–330
in Julian day, changes of daily NDVI values and 8-day NDVI composite values in DBF
ranged from 0.23 to 0.29 (Figure 8c), but it ranged from 0.03 to 0.07 in ENF (Figure 8f).
The 8-day NDVI composite data values changed fast in DBF especially during greening
and senescence stages (Figure 7b), making it hard for time interpolation to capture the
detailed NDVI changes of each Julian day, which increased errors in the extraction of SOS
(EOS) annually and in trend estimation (Figure 7a). Compared with DBF, values of NDVI
composites changed slightly in ENF (Figure 8b), which resulted in a higher fidelity after
time interpolation compared with daily NDVI data. Therefore, the annual extraction results
of SOS (EOS) and their trends had higher accuracies (Figure 8a). The same pattern of results
was found in our analysis of the 16-day NDVI composite data. We suggest that remote
sensing data of daily temporal resolution should be used for estimating phenology trends
in vegetation types especially with apparent seasonal changes. For vegetation with weaker
seasonal changes, using NDVI composites (i.e., 8-day or 16-day) would have weaker effects
on trend estimation.

4.3. Effects of Time Interpolation on Trend Estimation among Different Combinations of Time
Interpolation Methods and Phenology Extraction Methods

The selection of phenology extraction methods should be fully considered based on
study areas, vegetation types, satellite products, and interpolation methods. For vegetation
types with apparent seasonal changes such as DBF, even though most time interpolation
methods had significant effects on phenology trend estimation, the phenology trends from
few specific combinations (i.e., polynomial curve function fitting and maximum rate of
change based on the 16-day NDVI composite data in SOS (Figure 5a), asymmetric Gaussian
function fitting, and dynamic threshold 30% based on the 8-day NDVI composite data in
EOS (Figure 5e)) still showed no significant differences compared with the trends from
daily NDVI data. In addition, for vegetation types with weaker seasonal changes such as
ENF, there still existed phenology trends from specific combinations that had significant
differences with trends from the daily NDVI data. Previous studies also indicated that
different combinations could result in different accuracies of trend estimation [33,75,76].
According to our results, the maximum rate of change and the change rate of curvature
method could be used for estimating phenology trends of DBF based on 8-day composite
NDVI data, while a dynamic threshold of 20% and 30% had a better performance on
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phenology trend estimation for ENF. The dynamic threshold of 30% and the change rate of
curvature method were suitable for GRA, and a dynamic threshold of 10% had a better
result in OSH trend estimation.
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Figure 7. Extraction results and trends of the start of growing season (SOS) from the daily and the 8-day NDVI composite
data in deciduous broadleaf forest (DBF) and evergreen needleleaf forest (ENF). (a) SOS trends of DBF from 2001 to
2019, (b) SOS trends of DBF in 2004, (c) SOS estimation results of DBF in 2004, (d) SOS trends of ENF from 2001 to 2019,
(e) SOS trends of ENF in 2008, and (f) SOS estimation results of ENF in 2008. Piecewise logistic function fitting and linear
interpolation are chosen as interpolation method examples; the dynamic threshold 30% is chosen as the extraction method.
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Figure 8. Extraction results and trends of the end of growing season (EOS) from the daily and 8-day NDVI composite data
in deciduous broadleaf forest (DBF) and evergreen needleleaf forest (ENF). (a) EOS trends of DBF from 2001 to 2019, (b) EOS
trends of DBF in 2005, (c) EOS estimation results of DBF in 2005, (d) EOS trends of ENF from 2001 to 2019, (e) EOS trends of
ENF in 2016, and (f) EOS estimation results of ENF in 2016. Piecewise logistic function fitting and linear interpolation are
chosen as interpolation method examples; a dynamic threshold of 30% is chosen as the extraction method.
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4.4. Effects of Time Interpolation on Trend Estimation among Data with Different
Temporal Resolutions

There were no significant differences between trends derived from the 8-day and
16-day NDVI composite data in ENF and OSH, and significant differences existed in DBF
and GRA only among a few interpolation methods. Zhu et al. [8] used asymmetric Gaussian
function fitting and piecewise logistic function fitting for estimating SOS trends of Tibetan
Plateau alpine meadow from 2000 to 2015, and they found that the trends estimated from
the fine temporal resolution (8-day) NDVI data and the coarse temporal resolution (16-day)
NDVI data (MOD13A2) had no significant differences, which were in agreement with our
research results (Figure 6c,g). Kross et al. [60] also observed that shifts in SOS were not
sensitive to temporal resolution (4–28 days) among Canadian deciduous broadleaf sites.
According to Figures S1 and S2, the RMSE values of trend estimated from the reference
(daily) data and from 8-day NDVI composites were overall lower than those from 16-day
NDVI composites. For DBF and GRA, especially among interpolation methods that caused
significant differences between trends from the 8-day and 16-day NDVI composite data,
we suggest NDVI composites of lower temporal resolution (8-day) for trend estimation
when daily-scale datasets were not available. For ENF and OSH, there were no significant
differences between trends estimated from the 8-day and 16-day NDVI composite data,
which implied fewer discrepancies when applying coarse temporal resolution (16-day) data
especially based on the AG and PCF method (Figure 6b,f,d,h) in which the discrepancies
were relatively low. However, we only compared the mean trends between the 8-day and
16-day NDVI composite data among all sites; thus, our general conclusions may not apply
for every site accurately. The selection of NDVI composites should still be fully considered
based on the specific research area, vegetation type, and the data preprocessing method.

4.5. Limitations

We observed the delaying SOS mean trends and advancing EOS mean trends among
daily-scale NDVI data and NDVI composites, which indicated opposite phenology trends (ad-
vancing SOS trends and delaying EOS trends) compared with former research [6,50,52,77,78].
We provide three explanations. First, the results demonstrated above (Figures 3 and 4) were
the mean values of SOS and EOS trends, which cannot fully represent the trend of each
site with different geographical locations and heterogeneous landscapes. Second, the oppo-
site trends of phenology were also reported by various authors at continental scales over
the northern high latitudes due to differences in data sources and scales [8,38], winter or
spring warming [73,79], and the mixed impacts of increased spring–fall temperature and
fall precipitation [80]. Finally, satellite-based phenological metrics may mainly reflect the
spring phenology of early-unfolding (flowering) plant species, indicating that satellite-based
phenology trends may follow the trends of ground-measured early plants. Fu et al. [3] found
that most of these species showed a delayed trend in spring through the species-specific
trend analysis, which confirmed that the delay of the SOS trends monitored by the satellite
datasets truly exists. The uncertainties of the opposite phenology trends and their environ-
mental/ecological consequences among different biome zones, study period, and remote
sensing sensors still require deeper investigations.

In order to eliminate noise in NDVI time-series curves, we reconstructed the daily
NDVI data by using the Savitzky–Golay filter as reference data. However, it still cannot
completely simulate NDVI curves in a real natural state, which may cause uncertainties
in trend estimation. In addition, similar studies replicated at additional locations, among
various satellite products and vegetation types, are also needed for more comprehensive
and reliable evaluation on the effects of time interpolation on phenology trend estimation.
Due to the mismatch in observation scale (plant scale and pixel scale) and content (the
definition of phenological events), we did not use the ground observations as reference
data, but comparative studies between using remote-sensing tools and using high-accuracy
ground-based measurements still constitute a common and direct method for assessing
remote sensing approaches in predicting phenological events. In order to validate vegeta-



Remote Sens. 2021, 13, 5018 15 of 19

tion phenology products properly, ground observations from individual species, canopy
cameras, or flux towers should be upscaled temporally and spatially for matching satellite
pixels over various ecosystems and geographical regions.

5. Conclusions

In this study, we used MODIS MCD43A4 daily surface reflectance data to construct a
daily NDVI time-series dataset as the reference data and then generated an 8-day and a
16-day NDVI composite dataset among 120 sites in the mid-high latitudes of the northern
hemisphere during 2001–2019. The NDVI composites were used to comprehensively inves-
tigate the effects of time interpolation on trend estimation among (1) five time-interpolation
methods; (2) four vegetation types; and (3) the combinations of five time-interpolation
methods and three extraction methods. We also analyzed the differences of trends estimated
between the 8-day and 16-day dataset.

Four main conclusions were drawn from our study. First, none of the interpolation
methods had significant effects on trend estimation over all sites, but the discrepancies
between trends estimated from NDVI daily data and from NDVI composites could not be
ignored. For each interpolation method, the RMSE value of multi-day scale trends was
higher than the absolute values of these trends among most of the sites (56–77% of all sites
for SOS trends and 58–71% of all sites for EOS trends). Even the effects were insignificant,
the process of time interpolation might still change trend direction compared with the
trend from the NDVI daily data. Second, time interpolation had significant effects on
phenology trend estimation among vegetation types with apparent seasonal changes, but
had almost no significant effects among vegetation types with weak seasonal changes. In
order to minimize estimation bias, we strongly suggest remote sensing datasets with a daily
or high temporal resolution to be applied for estimating phenology trends in vegetation
types especially sensitive to season changes. Third, the selection of extraction methods
should be fully considered. Trends estimated based on the same interpolation method
but different extraction methods were not consistent in showing significant (insignificant)
differences with the trend estimated from the daily data, implying that the selection of
extraction methods also affected trend estimation. The maximum rate of change and the
change rate of curvature method could be used in deciduous broadleaf forest based on
8-day composite NDVI data, while the dynamic threshold of 20% and 30% had better
performances for evergreen needleleaf forest. The dynamic threshold of 30% and the
change rate of curvature were suitable for grassland, and the dynamic threshold of 10%
had a better result in open shrubland. Lastly, for deciduous broadleaf forest and grassland,
especially among interpolation methods that caused significant differences between trends
from the 8-day and 16-day NDVI composite data, we suggest NDVI composites with a
lower temporal resolution (8-day) for trend estimation when daily-scale datasets were
not available. For evergreen needleleaf forest and open shrubland, there were fewer
discrepancies between trends from 8-day and 16-day NDVI composite data, which implied
the availability of using a coarse temporal resolution (16-day), especially based on the
asymmetric Gaussian function and the polynomial curve function. In order to further
enhance the comprehensive evaluation about the effects of time interpolation on phenology
trend estimation, future studies should be carried out at additional locations and among
various satellite products and vegetation types.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13245018/s1, Table S1: p values of experimental results in Kolmogorov–Smirnov (K-S)
test, Figure S1: Comparisons of the start of growing season (SOS) trends estimated from daily data
and from each interpolation method, Figure S2: Comparisons of the end of growing season (EOS)
trends estimated from the daily data and from each interpolation method, Table S2: The ratio of sites
for which its absolute values of trends were lower than the corresponding root-mean-square error
(RMSE) value among each interpolation method.
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