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Abstract: Large-scale, long time-series, and high-precision land-use mapping is the basis for assessing
the evolution and sustainability of ecosystems in Xilingol, the Inner Mongolia Autonomous Region,
China. Based on Google Earth Engine (GEE) and Landsat satellite remote-sensing images, the
random forest (RF) classification algorithm was applied to create a yearly land-use/land-cover change
(LULC) dataset in Xilingol during the past 20 years (2000–2020) and to examine the spatiotemporal
characteristics, dynamic changes, and driving mechanisms of LULC using principal component
analysis and multiple linear stepwise regression methods. The main findings are summarized as
follows. (1) The RF classification algorithm supported by the GEE platform enables fast and accurate
acquisition of the LULC dataset, and the overall accuracy is 0.88 ± 0.01. (2) The ecological condition
across Xilingol has improved significantly in the last 20 years (2000–2020), and the area of vegetation
(grassland and woodland) has increased. Specifically, the area of high-coverage grass and woodland
increases (+13.26%, +1.19%), while the area of water and moderate- and low-coverage grass decreases
(−15.96%, −7.23%, and −3.27%). Cropland increases first and then decreases (−34.85%) and is
mainly distributed in the southeast. The area of deserted land decreases in the south and increases
in the center and north, but the total area still decreases (−13.74%). The built-up land expands
rapidly (+108.45%). (3) In addition, our results suggest that regional socioeconomic development
factors are the primary causes of changes in built-up land, and climate-related factors are the primary
causes of water changes, but the correlations between other land-use types and relevant factors
are not significant (cropland and grassland). We conclude that the GEE+RF method is capable of
automated, long time-series, and high-accuracy land-use mapping, and further changes in climatic,
environmental, and socioeconomic development factors, i.e., climate warming and rotational grazing,
might have significant implications on regional land surface morphology and landscape dynamics.

Keywords: spatial pattern; dynamic change; driving factor; time-series stability; random forest;
statistical modeling

1. Introduction

Land-use/land-cover change (LULC) plays a key role in the study of global climate
change, food security, ecological restoration, and governance and has received widespread
attention from governments and scientists around the world [1–3]. LULC is a direct
consequence of human and nature interactions [4] and is influenced by multiple behavioral
and structural factors, i.e., demand, technical capacity, social relationships, and natural
environment [5]. On the one hand, the physical environment (topography, landscape,
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temperature, precipitation, etc.) is the underlying element that determines the spatial
distribution patterns of LULC and significantly influences changes in surface patterns and
landscape dynamics at long time scales [6,7]. On the other hand, various human-imposed
land-development activities, such as agricultural exploitation and urbanization, not only
change the regional land-use structure and landscape ecological patterns at the local scale
but also accelerate global warming through increased greenhouse gas emissions [8–10].
In addition, large land-use changes often significantly affect ecosystem service supply,
such as soil carbon pool change, soil fertility decline, water supply capacity decline, forest
disaster risk increase, and biodiversity loss, leading to greater vulnerability to ecosystem
services [11–13]. In urban areas, land-use change also severely affects the quality of
urban human settlements, such as the formation of the urban heat island effect and urban
waterlogging disasters [14].

At global or regional scales, the occurrence of disturbance events associated with land-
use change generally alters the spectral properties of the land surface radically, making
it easier to identify in Landsat imagery [15]. To perform high-precision remote-sensing
monitoring of large-scale LULC over a long period and identify spatial patterns and dy-
namic changes, it is necessary to continuously improve land-use classification and mapping
methods [16,17]. Satellite remote-sensing image classification and mapping methods can
be generally classified into supervised classification, unsupervised classification, image seg-
mentation, and deep learning. The dominant supervised classification algorithms include
maximum likelihood (MLC), categorical regression decision tree (CART), random forest
(RF), artificial neural network (ANN), and support vector machine (SVM) methods [18,19].
Among them, the RF method was proposed by Breiman in 2001 and has been widely used
in ecosystem and land-use classification [20–22]. Akar et al. compared the classification
results obtained by different algorithms based on the RF, SVM, and MLC using IKONOS
and QuickBird images with different spatial resolutions and scene features. The results
showed that for IKONOS images in the urban areas, the RF algorithm presented a classifi-
cation accuracy 10% higher than SVM and 14% higher than SVM; for QuickBird images
in the rural areas, the RF algorithm also showed the highest classification accuracy [23].
In the past, RF-based image classification studies were limited by computing power and
storage space, which commonly only allowed the input of limited wavelength bands from
multispectral images and rarely applied the full wavelength band from multispectral and
hyperspectral satellite images. In addition, relatively few studies have introduced spatial
auxiliary elements such as the NDVI (Normalized Difference Vegetation Index), NDWI
(Normalized Difference Water Index), Digital Elevation Model (DEM), and Nighttime Light
Index, which strongly reflect the spatiotemporal dynamics of the geographic environment
and human activity elements. Therefore, the strengths of RF methods in processing multi-
dimensional feature data have not been fully exploited. The emergence and development
of satellite remote-sensing cloud storage and cloud computing platforms represented by
the Google Earth Data Engine (GEE: Google Earth Engine) not only makes it possible to
integrate multi-source and multi-scale global remote-sensing images but also allows for
full-band and high-intensity image calculation [24]. Therefore, with the support of the
GEE platform, the exploitation of the potential of classical algorithms such as MLC, ANN,
RF, and SVM and the development of new deep-neural-network-based machine learning
algorithms have become an important theme in the study field of LULC mapping at large
scales [25–27].

Supported by continuous spatiotemporal datasets, the analysis of spatiotemporal
patterns of LULC and the identification of driving mechanisms of environmental and
anthropogenic activity factors gradually became the important prerequisites for sustainable
development assessment, ecological restoration, and governance. Zewdie and Csaplovics
analyzed the LULC in the semi-arid region of Ethiopia using Landsat MSS and Landsat
TM data from 1970 to 2010 with SVM supervised classification algorithm and used socio-
ecological survey to explore the driving forces, showing that agricultural land expansion,
migration, and excessive deforestation were the most significant factors contributing to the
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loss of vegetation [28]. Hu et al. used the remote-sensing inversion products, including NPP
and NDVI, to analyze the desertification sensitivity and long-term trends in Kazakhstan
during 2000–2015 by a linear regression method; the results showed that the desertification
process in the region was mainly driven by a warm–dry climate trend, and high-intensity
pastoral development was another important factor contributing to desertification [29]. Liu
et al. explored the spatial pattern of LULC in China during the early 21st century and its
relationship with socioeconomic development factors, based on a 1 km dataset of LULC in
China for every five years from 1995 to 2010. They found the implementation of regional
development strategies such as “Western Development” and “Revitalization of Northeast
China” were the main driving factors of LULC during that period [30]. The above studies
provide fundamental spatial datasets for assessing regional sustainable development and
propose specific policy rationales for protecting ecosystem services and reducing extreme
environmental hazards in the context of global climate change. Most of these studies
used the empirical qualitative analysis or correlation-based statistical modeling to analyze
driving mechanisms. These approaches are difficult to isolate the real, direct drivers from
complex systems and have the problem of simplifying causation to correlations.

Xilingol is located in the southeastern part of the Inner Mongolia Plateau, the transition
zone from the arid region of northwest China to the humid region of the east. In the second
half of the 20th century, due to climate change and intensifying grazing and reclamation
activities, the ecosystem of this region experienced serious degradation, highlighted by
the degradation of grassland and sand, and intensified wind and sand activities, which
further affected the capital Beijing and the entire North China region. In response, the
Chinese Government has strengthened the protection and governance of the ecosystem in
this region since 2000; deployed the “Beijing–Tianjin Sandstorm Source Control” Project;
and implemented a series of initiatives, including the conversion of cropland to grassland,
reforestation, rotation grazing, and grass–livestock balance [31,32]. Various scholars have
studied the pattern of LULC and the driving mechanisms in the region. Batunacun et al.
studied the spatiotemporal patterns of land-use in Xilingol from 1975 to 2015 based on
Landsat MSS/TM/ETM+/OLI data by visual interpretation of computer aided satellite
images; they found that the region was dominated by grassland degradation from 1975 to
2000, while grassland recovery was obvious from 2000 to 2015 [32]. Based on 1995 and 2000
LULC datasets, Xu et al. used typical correspondence analysis to examine the relationship
between climate, topography, human activity factors and LULC in Xilingol, showing
that the total annual rainfall, distance to the nearest settlement, and LULC are strongly
correlated [33]. Zhao et al. applied MOD09A1 remote-sensing images from 2000 to 2013
to investigate the relationship between grassland changes and meteorological conditions
and human activities in Xilingol; they found that the correlation between grassland and
precipitation was significant [34]. These studies analyzed regional LULC and ecosystem
characteristics parameters (e.g., NDVI, NPP, etc.) in different time-series, and applied
empirically statistical modeling approaches to discuss the driving mechanisms. However,
there are some limitations: (1) the lack of high-precision, automated, spatiotemporal
continuous LULC datasets makes it difficult to meet the practical needs in terms of the
current status of the study results; (2) comparative studies based on time transects, rather
than trend analysis based on time-series, can cause serious cognitive bias due to the
contingency and randomness of selection; (3) trend analyses based on indirect indicators
such as NDVI cannot reflect significant changes in all land-use types; (4) in the traditional
LULC driver mechanism analysis, researchers typically include all potential elements in
a particular model (e.g., statistical correlation model) at once, and then identify the key
factors and their impact on LULC. The above technical route might lead to problems of
autocorrelation between factors and unreasonable exclusion of direct drivers.

In response to the above issues, our study aims to implement a long time-series, high-
accuracy land-use mapping of Xilingol by using Landsat remote-sensing image data since
2000 with a random forest classification algorithm and then investigate the relationship
between LULC and climate and regional socioeconomic development factors of Xilingol by
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using principal component analysis and multiple linear stepwise regression methods. The
specific objectives of this research are:

1. To explore whether the GEE+RF method is capable of automated, long time-series,
and high-accuracy land-use mapping;

2. To examine the spatial pattern and characteristics of LULC over the study period;
3. To investigate the relationship between LULC and explanatory variables, including

climate factors and regional socioeconomic development factors in Xilingol.

2. Materials and Methods
2.1. Study Area

Xilingol, a typical zone of arid and semi-arid grassland in Northern China (43–44◦N,
115–117◦E), is located in the southeastern edge of the Mongolian Plateau, and in the
central part of the Inner Mongolia Autonomous Region of China, with a total area of
20.3 × 104 km2 (Figure 1). Located in the middle temperate zone, the study area has arid
and semi-arid continental monsoon climate, which is characterized by aridity, low rainfall,
and high winds, with spatial variability in temperature in the form of a north–south gradi-
ent. The mean annual temperature is 1–4 ◦C, and the annual precipitation is 150–400 mm,
with 70% of the annual precipitation concentrated between June and September; the evapo-
ration is between 1500–2700 mm [31].

Figure 1. Location and terrain map of Xilingol. Notes: DW: Dongwuzhumuqin, XW: Xiwuzhu-
muqin, XL: Xilinhot, AB: Abaga, SZ: Sunitezuo, SY: Suniteyou, EL: Erlianhot, XH: Xianghuang, ZXB:
Zhengxiangbai, ZL: Zhenglan, DL: Duolun, TP: Taipusi.

The general landscape of the Xilingol region consists of gently undulating hills,
plateaus, and dunes; the elevation gradually decreases from south to north, with an
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average altitude of 800–1800 m; it is bordered by the northern foothills of Yin Mountain
in the south and the Gobi of the Mongolian Plateau in the north; it is a zone of transition
from the arid northwest to the humid east and a sensitive area in responding to global
change [33].

From east to west, across the Xilingol grassland region, precipitation and soil fertility
decrease gradually, creating three separate vegetation types: meadow steppe, typical
steppe, and desert steppe, which are commonly referred to as the zonal vegetation types in
Chinese literature. In addition, there are also a few “non-zonal” vegetation regions in the
study area, including shrublands, woodland, saline meadows, and lowland marshes [35].

2.2. Data Description

Various satellite images and geographic, environmental background datasets were
used in the study (Table 1), comprising all Landsat 5/7/8 images and EVI/NDVI/NDWI
products of the Xilingol during the summer, as well as SRTM V3, global night-time light
products, and China’s land-use/cover datasets (CLUDs). To investigate the driving forces
of LULC, the climatic data and regional socioeconomic statistical yearbook data were also
selected. All of the base datasets were integrated into the GEE platform and can be used
directly, except for CLUDs and regional socioeconomic statistical yearbook data.

Table 1. Datasets used in the study.

Dataset Year(s) Temporal
Resolution

Spatial
Resolution Data Sources

Landsat 5/7/8 2000–2020 * 16 days 30 m http://landsat.usgs.gov/ (accessed on
15 November 2021)

Landsat 5/7/8 8-Day
NDVI 2000–2020 * 8 days 30 m

https://developers.google.com/s/results/
earth-engine/datasets?q=Landsat%20

NDVI%208-Day (accessed on
15 November 2021)

Landsat 5/7/8 8-Day
EVI 2000–2020 * 8 days 30 m

https://developers.google.com/s/results/
earth-engine/datasets?q=Landsat%20

EVI%208-Day (accessed on
15 November 2021)

Landsat 5/7/8 8-Day
NDWI 2000–2020 * 8 days 30 m

https://developers.google.com/s/results/
earth-engine/datasets?q=Landsat%20

NDWI%208-Day (accessed on
15 November 2021)

SRTM3 2000 - 30 m http://www2.jpl.nasa.gov/srtm/ (accessed
on 15 November 2021)

DMSP-OLS 2000–2011 1 year 30 arc s
https://ngdc.noaa.gov/eog/dmsp/
download_radcal.html (accessed on

15 November 2021)

NPP-VIIRS 2012–2020 1 month 15 arc s https://eogdata.mines.edu/products/vnl/
(accessed on 15 November 2021)

CLUDs 2000, 2005, 2010,
2015 - 30 m https://www.resdc.cn/ (accessed on

15 November 2021)

PERSIANN-CDR 2000–2020 * 1 day 0.25 arc degrees

https://climatedataguide.ucar.edu/
climate-data/persiann-cdr-precipitation-
estimation-remotely-sensed-information-

using-artificial (accessed on
15 November 2021)

GLDAS-2.1 2000–2020 * 3 h 0.25 arc degrees https://ldas.gsfc.nasa.gov/gldas/
(accessed on 15 November 2021)

TerraClimate 2000–2020 * 1 month 2.5 arc min
http://www.climatologylab.org/

terraclimate.html (accessed on
15 November 2021)

Note: Year(s) represents the temporal range of the datasets used; * represents the selection of images for the summer months
(July–September). To better distinguish grassland and sandy land from satellite images, as well as grassland with different cover-
age degrees, satellite images in summer (July–September), which is the best season for grassland growth, were selected as the basic images
for LULC classification.

http://landsat.usgs.gov/
https://developers.google.com/s/results/earth-engine/datasets?q=Landsat%20NDVI%208-Day
https://developers.google.com/s/results/earth-engine/datasets?q=Landsat%20NDVI%208-Day
https://developers.google.com/s/results/earth-engine/datasets?q=Landsat%20NDVI%208-Day
https://developers.google.com/s/results/earth-engine/datasets?q=Landsat%20EVI%208-Day
https://developers.google.com/s/results/earth-engine/datasets?q=Landsat%20EVI%208-Day
https://developers.google.com/s/results/earth-engine/datasets?q=Landsat%20EVI%208-Day
https://developers.google.com/s/results/earth-engine/datasets?q=Landsat%20NDWI%208-Day
https://developers.google.com/s/results/earth-engine/datasets?q=Landsat%20NDWI%208-Day
https://developers.google.com/s/results/earth-engine/datasets?q=Landsat%20NDWI%208-Day
http://www2.jpl.nasa.gov/srtm/
https://ngdc.noaa.gov/eog/dmsp/download_radcal.html
https://ngdc.noaa.gov/eog/dmsp/download_radcal.html
https://eogdata.mines.edu/products/vnl/
https://www.resdc.cn/
https://climatedataguide.ucar.edu/climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial
https://climatedataguide.ucar.edu/climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial
https://climatedataguide.ucar.edu/climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial
https://climatedataguide.ucar.edu/climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial
https://ldas.gsfc.nasa.gov/gldas/
http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
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Landsat 5/7 images we used include bands 1 (0.45–0.53 µm), 2 (0.52–0.60 µm),
3 (0.63–0.69 µm), 4 (0.76–0.90 µm), 5 (1.55–1.75 µm), and 7 (2.08–2.35 µm), and Landsat
8 images include bands 1 (0.43–0.45 µm), 2 (0.45–0.51 µm), 3 (0.53–0.59 µm), 4 (0.64–0.67 µm),
5 (0.85–0.88µm), 6 (1.57–1.65µm), 7 (2.11–2.29µm), 10 (10.6–11.19µm), and 11 (11.50–12.51 µm).
EVI/NDVI/NDWI products are derived from Landsat 5/7/8 Collection 8-Day compos-
ites [36]. The EVI/NDVI indices were introduced to improve the classification accuracy
of grassland and woodland [37], and the NDWI index was introduced to improve the
classification accuracy of lakes and rivers [38].

SRTM V3 data (Shuttle Radar Topography Mission Version 3) are from NASA JPL,
providing a near-global scale digital elevation model [39]. The SRTM V3 product was
introduced to eliminate the impact of mountains.

Night-time lights products include the DMSP-OLS Nighttime Lights Time Series
product from the Defense Meteorological Satellite Program (DMSP) and the NPP-VIIRS
Day/Night Band (DNB) product from the Suomi National Polar-orbiting Partnership.
Both products can detect visible and near-infrared emissions in cities and towns, using
sensors that can capture low-light emission sources under varying illumination conditions,
resulting in an effective improvement in the classification accuracy of built-up areas.

To construct highly reliable training and validation sample sets for RF models quickly
and efficiently, as well as to reduce the huge labor and time costs associated with visual
interpretation, Hu et al. proposed a computer-automated selection of the samples based on
the principles of “multi-source consistency” and “time-series stability” [40,41]. This method
was applied in our study to extract areas with no change in land-use types based on the five
land-use datasets of 2000, 2005, 2010, and 2015 of the 30 m China’s land-use/cover datasets
(CLUDs), which were provided by the Institute of Geographical Sciences and Resources
of the Chinese Academy of Sciences, and then generated sample sets. The classification
system we adopted was proposed by Liu et al. [42]; this classification used a two-level
structure to group land-use types into 6 major classes and 25 sub-classes, which has been
widely used in Chinese academia and government planning. In the study, the main
land-use type in Xilingol is grassland, to describe the differences within grassland more
carefully, we further subdivided the grassland into secondary classes (i.e., high-coverage
grass, moderate-coverage grass, and low-coverage grass) according to the differences of
grassland coverage, forming a classification system of 8 categories of LULC.

The climatic data, namely, precipitation, temperature, and climate water deficit, were
separately derived from PERSIANN-CDR [43], GLDAS-2.1 [44] and TerraClimate [45]
datasets. The data of total precipitation and mean temperature in the summer and mean
growing season climate water deficit data were further obtained based on the original data.

The data from the regional socioeconomic statistical yearbook were divided into
7 categories in the study: population and labor force, regional economic development,
industrial structure, agricultural and pastoral production, agricultural and pastoral input,
and residential income. All the indicator data (2000–2020) were obtained from literature,
including “Xilingol League Statistical Yearbook”, “Inner Mongolia Statistical Yearbook”,
“China Population, and Employment Statistical Yearbook”, “Inner Mongolia in 30 Years
of Reform and Opening Up”, “China Regional Economic Statistical Yearbook”, “60 Years
of Glory”, etc. The specific indicator items are listed in Table 2. All the above data are
included in the China Economic and Social Big Data Research Platform (https://data.cnki.
net/NewHome/index, accessed on 15 November 2021).

https://data.cnki.net/NewHome/index
https://data.cnki.net/NewHome/index
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Table 2. Indicators and categories of regional socioeconomic development.

Category Indicator

Climate Total summer precipitation (X1), mean summer temperature (X2), mean growing
season climate water deficit (X3)

Population and labor force Resident population (X4), non-agricultural population (X5), agriculture, forestry,
animal husbandry, and fishery labor force (X6)

Regional economic development Gross domestic product (X7), gross agricultural product (X8), gross pastoral
product (X9)

Industrial structure Primary industry’s share of GDP (X10), agriculture’s share of GDP (X11), animal
husbandry’s share of GDP (X12)

Agricultural and pastoral production Total number of livestock (X13), grain crop yield (X14)

Agricultural and pastoral input Rural electricity consumption (X15), the total power of agricultural machinery
(X16), agricultural fertilizer application (X17)

Residential income Per capita disposable income of farmers and herdsmen (X18), per capita
disposable income of urban residents (X19)

Note: According to the “Conversion of Sheep Units for Grass-fed Livestock” standard, the stock of large livestock (cattle) is obtained by
converting 1 large livestock = 5 standard sheep units.

3. Land-Use Mapping Methods
3.1. Technical Process

The overall land-use mapping technical process is illustrated in Figure 2 and comprises
the following four steps:

1. Based on the Landsat images and EVI/NDVI/NDWI indices and night-time light
data, together with other related auxiliary data in GEE, we used image synthesis and
cloud mask methods to extract the 2000–2020 composite images without cloud or
shadow coverage in Xilingol.

2. Based on the principle of “time-series stability” of the corresponding image attributes
in the multi-period CLUDs, we selected sample points with no change in land-use
type in the CLUDs to form the sample points set required for the RF model.

3. Setting 70% of the sample points as training sample points, combined with the
synthetic images, RF model training was carried out to interpret the LULC dataset of
each year. The remaining 30% of the sample points were used as validation sample
points to evaluate the accuracy of classification results.

4. Supported by the climate change and regional socioeconomic development factors,
principal component analysis was applied to determine the categories of LULC
drivers; then, the contribution of each driving factor was calculated by multiple
stepwise regression method.

3.2. LULC Dataset Production

With the support of the GEE platform, the image synthesis and cloud mask methods
were applied to produce cloud-free composite images for each year in the summer [46].
Specifically, to eliminate image quality problems caused by cloudy and rainy areas in
the Xilingol, we replaced and supplemented low-quality pixels of each year with the
previous and following year’s TOA reflectance data to produce the best available pixel
image composites. Based on the image cloud distribution probability score, we selected
the images with less than 30% cloud coverage. Then, a median composite method was
applied to combine collection into a single image [41], resulting in the annual cloud-free
image dataset in summer from 2000 to 2020.
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Figure 2. The flowchart of generated LULC dataset and driving mechanism analysis.

3.3. Sample Points Set Deployment

Supervised classification commonly requires many training samples and validation
samples. In traditional studies, the method of manual visual interpretation is generally
used to obtain sample points. However, for such a large area as Xilingol, it will take a lot of
labor and time to obtain sufficient samples by relying on the manual visual interpretation
method. Based on the “time-series stability” principle, a highly reliable and automated
sample point selection method was achieved in the study by selecting pixels with “identical”
attributes from multi-period LULC products [40]. The specific steps are:

1. Unified classification system. Reclassification of land-use types in Xilingol into eight
categories: cropland, woodland, high-coverage grass, moderate-coverage grass, low-
coverage grass, water, built-up land, and deserted land (Table 3).

2. Selection of image pixels. We overlapped the CLUDs of 2000, 2005, 2010, and 2015 in
the study area to obtain the pixels with no change in land-use types during this period.

3. Stratified random sampling. To avoid the risk of sample bias (excessive representation
of correct or incorrect points), a stratified random sampling method was adopted to
randomly deploy sample points in the above target pixels regarding the area com-
position proportion of various land-use types. In this study, a total of 4800 samples
were deployed.

4. Manual adjustment of position. Based on the sample points mentioned above, the
high-resolution (10 m) satellite images Sentinel-2A were used to remove the sample
points, which were too close to the boundary of the plot, and retain those located in
the central part of the plot. In this study, 4788 samples were finally formed.

3.4. Random Forest Method

The RF classifier is an ensemble classifier that uses a set of decision trees to make a
prediction and applies a voting mechanism to the results [20]. Specifically, each decision
tree is judged independently, and each node is split using a user-defined number of
features. The final classification decision is made by averaging the probabilities of class
assignment calculated by all generated trees, and the class with the maximum votes is
the final class chosen [47]. RF allows the training and classification process to be highly
parallelized and run efficiently despite the high dimensionality of the sample features, thus
improving the overall predictive performance of the model and reducing the phenomenon
of overfitting [48]. To balance operational efficiency and accuracy of operational results,
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this study set the number of decision trees in the random forest to 200 after iterative trials.
The analysis and implications of the size of the number of decision trees in the random
forest can be found in the Discussion section of this paper (Section 4.1).

Table 3. Land-use types in Xilingol and the description.

Code 1st Classes 2nd Classes Description

1 Cropland Non-irrigated farmland
Cropland for cultivation without water supply and irrigating facilities;
cropland that has water supply and irrigation facilities and planting
dry farming crops; cropland planting vegetables; fallow land.

2 Woodland

Forest Natural or planted forests with canopy cover greater than 30%.
Shrub Land covered by trees less than 2 m high, canopy cover >40%.
Woods Land covered by trees with canopy cover between 10 and 30%.
Others Land such as tea gardens, orchards, groves and nurseries.

3

Grassland

High-coverage grass Grassland with canopy coverage greater than 50%.

4 Moderate-coverage grass Grassland with canopy coverage lower than 50% and greater than 20%.

5 Low-coverage grass Grassland with canopy cover between 5% and 20%.

6 Water

Streams and rivers Rivers, including canals.
Lakes Natural lakes.

Reservoirs and ponds Constructed reservoirs for water reservation and small natural ponds.
Beaches and shores Land between high tide and low tide level.

7 Built-up land

Urban built-up Land used for urban settlements.
Rural built-up Land used for village settlements.

Others Land used for factories, quarries, mining, oil-fields outside cities and
land for roads and other transportation infrastructure.

8 Deserted
land

Sandy land Sandy land covered with less than 5% vegetation cover.
Salina Land with surface salt accumulation and sparse vegetation.

Bare rock/Gobi Bare exposed rock with less than 5% vegetation cover.

3.5. Accuracy Assessment of Results

To evaluate the sample points’ set construction method under the principle of “time-
series stability” and confirm whether the above method is competent for automated, long
time-series, and high-precision land-use mapping tasks, based on the method proposed
by Olofsson [49], we calculated the overall accuracy, kappa coefficient, user accuracy
(UA), and producer accuracy (PA) of the clarification results for each year by constructing
the confusion matrix. The confusion matrix represents the relationship between known
reference data (true land-use type) and the corresponding results of the classification
process on each land-use type. User accuracy represents the frequency with which the
classifications on the map will appear on the ground, and producer accuracy represents
the proportion of the total observations that are correctly judged for each classification on
the map.

3.6. Analysis of Driving Mechanisms

In this study, we proposed a “two-step” analytical framework. The first step is to carry
out a principal component analysis of all factors recognized in the general LULC analysis,
i.e., meteorological factors, socioeconomic development factors, industrial structure factors,
and cost and benefit factors, to simplify the complex changes into a few key dimensions;
subsequently, selecting the primary factors within the key dimensions and carrying out
stepwise regression modeling based on the relationship between typical LULC and key
elements. Through the above two steps, we finally achieved the objective of accurately
identifying the driving factors and determining their contribution.
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3.7. Principal Components Analysis

Principal component analysis (PCA) is an important dataset-simplification method in
multivariate statistical analysis. With a core idea of reducing the dimension of variables
while preserving the information of variables as much as possible, the PCA method
performs orthogonal transformation on the observed values of a series of possibly related
variables and re-projects the observed values of these variables into the values of a series of
linearly unrelated variables, which are called principal components. Moreover, these new
variables are in order, and the first few variables retain most of the changes in the original
variables [50]. Here, principal component analysis was adopted to concentrate the change
information of all 19 indicators (Table 2) into multiple principal components.

From a mathematical point of view, assuming that x has n samples and each sample
has p variables, the matrix of order n × p is formed:

X =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

...
xn1 xn2 · · · xnp

 (1)

We performed linear transformation on this variable, and the comprehensive indexes
are, respectively: z1,z2, · · · , zm, (m ≤ p)

z1 = l11x1 + l12x2 + . . . + l1pxp
z2 = l21x1 + l22x2 + . . . + l2pxp

. . . . . .
zm = lm1x1 + lm2x2 + . . . + lmpxp

(2)

In the formula, the coefficient lij is determined by the following principle:
(1) zi is independent of zj; (2) z1 is the largest variance among all linear combinations,

and zm is the smallest variance among all linear combinations. At this point, the new
variables z1, z2, z3 are the first, second, and third principal components of the original
variables, respectively. In practical problems, the first few largest principal components are
often chosen to simplify the relationship between variables.

3.8. Multiple Linear Stepwise Regression Analysis

Multiple stepwise regression analysis is a method of fitting a regression model.
For a given set of predictor variables, the model is repeatedly regression-analyzed and
significance-tested through an automated procedure, and a set of explanatory variables is
considered for addition or deletion based on some pre-defined criteria, ultimately retain-
ing only those explanatory variables that significantly improve the model. The multiple
regression model is as follows:

Y = β + α1X1 + α2X2 + . . . + αnXn (3)

where α1, α2, . . . , αn represent the correlation coefficients, and β is a constant term.
The PCA was completed with the support of SPSS [51], and the multiple linear

stepwise regression analysis was completed with the support of R [52]. All the GEE
JavaScript code and driving forces analysis data involved in the study are uploaded as
Supplementary Materials.

4. Results
4.1. Selection of Sample Points

The main land-use type in Xilingol is grassland, while the other land-use types are
small and scattered. Therefore, the sample points of grassland are generally distributed
evenly, while the sample points of other land-use types (e.g., built-up land and water) show
a dense distribution (Figure 3).
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Figure 3. Distribution of sample points in the study area. Notes: DW: Dongwuzhumuqin, XW: Xi-
wuzhumuqin, XL: Xilinhot, AB: Abaga, SZ: Sunitezuo, SY: Suniteyou, EL: Erlianhot, XH: Xianghuang,
ZXB: Zhengxiangbai, ZL: Zhenglan, DL: Duolun, TP: Taipusi.

4.2. Accuracy Assessment of Classification Results

With the support of GEE, we obtained a LULC dataset (30 m) for Xilingol for 2000–2020.
The overall accuracy of this dataset was 0.88 ± 0.01, and the Kappa coefficient was
0.87 ± 0.02 (Table 4). The averaged results of user accuracy and producer accuracy of
all land-use types in 21 years (Table 5) show that user accuracy and producer accuracy of
built-up land and water are relatively high (0.99 ± 0.01, 0.99 ± 0.01; 0.98 ± 0.01, 0.94 ± 0.02)
while high- and moderate-coverage grass are comparatively low (0.80 ± 0.03, 0.85 ± 0.03;
0.80 ± 0.03, 0.78 ± 0.04).

Table 4. Accuracy assessment of LULC dataset from 2000 to 2020.

Year Overal Accuracy Kappa PA UA

2000 0.90 0.88 0.90 0.90
2001 0.88 0.86 0.89 0.89
2002 0.87 0.85 0.88 0.88
2003 0.86 0.84 0.86 0.87
2004 0.88 0.87 0.89 0.89
2005 0.90 0.88 0.90 0.90
2006 0.90 0.88 0.90 0.90
2007 0.89 0.87 0.90 0.90
2008 0.89 0.87 0.89 0.89
2009 0.88 0.86 0.88 0.89
2010 0.90 0.88 0.90 0.91
2011 0.86 0.84 0.86 0.87
2012 0.87 0.85 0.87 0.87
2013 0.89 0.88 0.89 0.90
2014 0.90 0.88 0.90 0.90
2015 0.89 0.87 0.89 0.90
2016 0.89 0.88 0.89 0.90
2017 0.90 0.88 0.90 0.90
2018 0.90 0.88 0.90 0.91
2019 0.88 0.86 0.88 0.89
2020 0.91 0.89 0.90 0.91
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Table 5. Accuracy assessment of different land-use types.

Land-Use Type
Classification Accuracy

UA PA

Cropland 0.88 0.89
Woodland 0.91 0.90

High-coverage grass 0.80 0.85
Moderate-coverage grass 0.80 0.78

Low-coverage grass 0.91 0.92
Water 0.98 0.94

Built-up land 0.99 0.99
Deserted land 0.87 0.83

The high accuracy of built-up land and water classification is related to the full
application of night-lighting products and NDWI auxiliary data. The low accuracy of
high-coverage grass is mainly due to more misclassifications between high- and moderate-
coverage grass. The low accuracy of moderate-coverage grass is mainly due to more
misclassifications and omissions between this category and high-and low-coverage grass
(Table 6).

Table 6. Confusion matrix of LULC dataset in 2007.

Land-Use Type Cropland Woodland
High-

Coverage
Grass

Moderate-
Coverage

Grass

Low-
Coverage

Grass
Water Built-Up

Land
Deserted

Land

Cropland 149 1 1 6 0 0 0 1
Woodland 5 134 11 0 0 0 0 0

High-coverage grass 1 4 203 11 0 0 0 2
Moderate-coverage grass 1 0 17 153 10 0 1 0

Low-coverage grass 0 0 0 3 229 0 1 15
Water 0 0 1 1 0 125 0 7

Built-up land 0 0 0 0 0 0 168 0
Deserted land 1 0 8 9 12 3 0 125

4.3. Spatial Pattern of LULC

Grassland, which accounted for more than 85.6% of the total area in 2020, was the
main land-use type in Xilingol. Specifically, the area of high-coverage grass was the largest,
followed by low-coverage grass, and the area of moderate-coverage grass was the smallest,
with the area of grassland ranging from 24% to 39% of the total area. The area of the other
three land-use types, namely deserted land, woodland, and cropland, decreased in order,
accounting for 2–6% of the total area, while the area of water and built-up land was the
smallest, covering only 0.6% and 0.58% of the total area (Figure 4).

The basic spatial patterns of LULC in Xilingol in 2020 can be summarized as follows.
The grassland area decreased from the east to the west. High-coverage grass was

primarily distributed in the east (Dongwuzhumuqin, Xiwuzhumuqin, and Xilinhot);
moderate-coverage grass was mainly distributed in the center and south (Abaga, Xilinhot,
eastern part of Sunitezuo, Zhengxiangbai, Xianghuang, and Zhenglan); low-coverage
grass was primarily distributed in the center and west (Sunitezuo, Suniteyou, Erlianhot,
northern part of Zhengxiangbai and Abaga). Woodland was mainly distributed in the
east of the greater Khingan Mountains (Dongwuzhumuqin and Xiwuzhumuqin); cropland
was mainly in the south and southeast (Taipusi, Duolun, Zhenglan, and Xilinhot) and
in the urban periphery, usually forming agro-pastoral ecotone together with grassland.
Water was mainly located in the east and center (Ulagai water system in the northeast,
and Hurchagannuoer water system in the middle). Deserted land was mainly located
in the core area of the Hunshandake Sandy Land (northern part of Zhenglan, northern
part of Zhengxiangbai, central and northern part of Sunitezuo, central and northern part
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of Suniteyou and Erlianhot), in the Gobi area of the Mongolian Plateau in the northwest,
and at the periphery of the lake and river in the northeast. Built-up land was sporadically
distributed throughout the study area.

Figure 4. Acquired land-use map across Xilingol in 2020. Notes: DW: Dongwuzhumuqin, XW:
Xiwuzhumuqin, XL: Xilinhot, AB: Abaga, SZ: Sunitezuo, SY: Suniteyou, EL: Erlianhot, XH: Xi-
anghuang, ZXB: Zhengxiangbai, ZL: Zhenglan, DL: Duolun, TP: Taipusi.

4.4. Temporal Characteristics of LULC

From 2000 to 2020, the ecological status in Xilingol indicated significant characteristics
of improvement. In particular, the area of natural vegetation (grassland and woodland)
increased slightly (+4.42 × 103 km2, +3.95%), but the area of deserted land, water, and
cropland presented a shrinking trend (Figure 5A). Of the natural vegetation, high-coverage
grass continued increasing; moderate-coverage grass decreased first and then increased,
but the total area remained decreased; low-coverage grass gradually decreased (Figure 5B).

From 2000 to 2020, the basic temporal characteristics of changes in various land-use
types in Xilingol can be summarized as follows.

Overall, cropland lost amounted to 4.51 × 103 km2, which was mainly used for natural
vegetation and built-up land, mainly due to the implementation of the “Grain for Green”
Project and the expansion of built-up land (Table 7). During the same period, cropland
gained 1.49 × 103 km2, mainly from natural vegetation and deserted land, but the total
cropland showed conversion and abandonment. The decreased cropland is concentrated
in the agro-pastoral ecotone of south Xilingol (Zhenglan, Zhengxiangbai, Xianghuang,
Taipusi, and Duolun) (Figure 6A).
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Figure 5. Temporal characteristics of LULC across Xilingol from 2000 to 2020. (A) Cropland, vegetation, deserted land,
water; (B) vegetation (high-coverage grass, moderate-coverage grass, low-coverage grass).

Table 7. The land-use transfer matrix in Xilingol during 2000–2020.

2000
2020

Cropland Vegetation Deserted Land Water Built-Up Land Total

Cropland 3145.48 4423.56 6.64 66.56 13.28 7655.53
Vegetation 1392.59 170,936.00 122.02 707.03 5458.32 178,615.96

Deserted land 3.59 203.92 812.57 0.20 408.51 1428.80
Built-up land 24.44 95.59 5.31 422.59 24.18 572.12

Water 71.41 7515.30 222.92 38.13 7310.24 15,158.00
Total 4637.51 183,174.37 1169.47 1234.50 13,214.54 203,430.39

During the two decades, natural vegetation lost totaled 7.68 × 103 km2, which was
mainly converted to cropland and deserted land (Table 7). Meanwhile, natural vegetation
gained 1.22 × 104 km2, mainly from cropland and deserted land, with increased natural
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vegetation mainly in the south and west Xilingol due to expansion of low-coverage grass
into high- and moderate-coverage grass (Zhenglan, Zhengxiangbai, Xianghuang, Taipusi,
and Duolun). Although the natural vegetation in the entire region gradually increased,
in individual banners and counties (e.g., Dongwuzhumqin and Sunitezuo), the natural
vegetation showed a shrinking trend (Figure 6B).

In addition, deserted land lost 7.85 × 103 km2 and was mainly used for natural vegeta-
tion; an obvious change was concentrated in the Otindag Sandy Land (Zhengxiangbai and
Zhenglan) of the center, which indicated that the land desertification has been significantly
restrained and presented a greening trend (Table 7). During the same period, deserted land
gained 5.90 × 103 km2, mainly from natural vegetation and water, and increased deserted
land was mainly concentrated in the Dongwuzhumuqin of the northeast, mainly due to the
obvious land salinization process caused by the drying up of rivers and lakes (Figure 6C).

Figure 6. Cont.
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Figure 6. Spatial patterns of land-use gains/losses during 2000–2020. (A) Cropland; (B) vegetation;
(C) deserted land; (D) water. Notes: DW: Dongwuzhumuqin, XW: Xiwuzhumuqin, XL: Xilinhot,
AB: Abaga, SZ: Sunitezuo, SY: Suniteyou, EL: Erlianhot, XH: Xianghuang, ZXB: Zhengxiangbai, ZL:
Zhenglan, DL: Duolun, TP: Taipusi.

During the same period, water lost amounted to 6.16 × 102 km2 and was mainly
converted to deserted land and grassland (Table 7); decreased water was mainly concen-
trated in the major water system of Dongwuzhumuqin due to the shrinking of rivers and
the drying up of lakes, as well as the recovery of grassland. Meanwhile, water gained
amounted to 3.57 × 102 km2, mainly from deserted land and grassland (Figure 6D).
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4.5. Driving Forces and Driving Mechanisms of LULC

Using PCA, the information on the changes of all 19 indicators (Table 2) can be
concentrated on three principal components (Table 8). Among them, the first principal
component (F1) is a characterization of the regional socioeconomic development and
agricultural construction condition, mainly including the gross domestic product (X7),
rural electricity consumption (X15), the total power of agricultural machinery (X16), and
gross agricultural product (X8); the second principal component (F2) is a characterization
of the climate, mainly including the mean growing season climate water deficit (X3),
total summer precipitation (X1), and mean summer temperature (X2); the third principal
component (F3) is a characterization of the development of the grassland livestock industry,
mainly the total number of livestock (X13).

Table 8. Rotated component matrix of PCA.

Variables Description
Component

F1 F2 F3

X1 Total summer precipitation 0.324 0.753 −0.131
X2 Mean summer temperature 0.253 −0.704 −0.279
X3 Mean growing season climate water deficit 0.045 −0.852 0.227
X4 Resident population 0.901 −0.232 −0.292
X5 Non-agricultural population 0.924 −0.101 −0.104
X6 Agriculture, forestry, animal husbandry, and fishery labor force 0.390 −0.194 0.622
X7 Gross domestic product 0.989 0.008 0.083
X8 Gross agricultural product 0.980 0.063 0.120
X9 Gross pastoral product 0.910 −0.018 0.269

X10 Primary industry’s share of GDP −0.678 0.588 0.362
X11 Agriculture’s share of GDP −0.617 0.276 0.514
X12 Animal husbandry’s share of GDP −0.389 0.583 0.472
X13 Total number of livestock 0.341 0.073 0.881
X14 Grain crop yield 0.925 0.198 −0.030
X15 Rural electricity consumption 0.981 0.028 0.069
X16 The total power of agricultural machinery 0.981 −0.042 −0.032
X17 Agricultural fertilizer application 0.968 0.062 0.127
X18 Per capita disposable income of farmers and herdsmen 0.973 0.059 0.156
X19 Per capita disposable income of urban residents 0.971 0.028 0.190

Variance (%) 60.99% 15.01% 9.92%

Using various land-use types area as the dependent variables and the above princi-
pal components as the independent variables, the regression models of typical land-use
types can be obtained by applying the multiple linear stepwise regression method; their
significance level and R2 are shown in Table 9. The results showed that regional economic
development and agricultural construction factor (F1) have a significant positive impact
on the area of cropland. In addition, the grassland area was negatively correlated with
economic development and agricultural construction factor (F1) and positively correlated
with animal husbandry factor (F3). The water area has a positive relationship with regional
socioeconomic development and agricultural construction factor (F1) and climate factor
(F2). It should be noted that the regression models for grassland and water have not passed
the significance test.

Table 9. Multivariate linear stepwise regression results of the area of land-use types and principal components.

Cropland Grassland Water Built-Up Land

Y1 = 8421.1 ∗ ∗ ∗
− 151.7 × F1 ∗ ∗ ∗

(R2 = 0.67)

Y2 = 93985.43 ∗ ∗ ∗
−181.61 × F1 + 604.57 × F3

(R2 = 0.29)

Y3 = 1321.38 ∗ ∗ ∗+ 3.96 ×
F1 − 13.55 × F2

(R2 = 0.41)

Y4 = 623.89 ∗ ∗ ∗
+22.89 × F1 ∗ ∗ ∗

(R2 = 0.77)

Note: the significance test symbol *** is p < 0.001.
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Furthermore, we used land-use type areas as the dependent variables and the follow-
ing key factors as input variables: X7, X8, X15, and X16 in F1 (absolute values of factor
information loadings above 0.98 in the rotated component matrix); X1, X2, and X3 in F2
(absolute values of factor information loadings above 0.70 in the rotated component matrix);
and X13 in F3 (absolute values of factor information loadings above 0.65 in the rotated
component matrix) to fit the multiple linear regression models of typical land-use types
(Table 10). In general, built-up land (Y4) has a highly significant positive correlation with
the gross domestic product (X7), primarily due to the promotion of urban expansion by the
regional economic development. The area of water (Y3) positively correlates with the mean
summer temperature (X2), which is mainly due to the continuous warm climate. There
is no statistically significant relationship between the area of cropland and grassland and
other relevant factors.

Table 10. Multivariate linear stepwise regression results of the area of land-use types and driving factors.

Cropland Grassland Water Built-Up Land

Y1 = 3332.57 + 9.27 ×
X1 + 3.61 × X2 + 0.36 ×
X3 − 11.05 × X7 + 7.93 ×

X8 − 0.37 × X15 + 75.80 × X16
(R2 = 0.59)

Y2 = 108921.77 ∗ ∗ ∗
− 1.79 × X1 − 1248.69 ×

X2 + 4.05 × X3
−8.88 × X7 + 5.32 × X13

(R2 = 0.56)

Y3 = −286.83+ 0.187×X1+
78.45 × X2 ∗∗ − 0.07 × X3

(R2 = 0.48)

Y4 = 340.57
+0.83 × X7 ∗ ∗ ∗

(R2 = 0.77)

Note: the significance test symbol ** is p < 0.01 and *** is p < 0.001.

5. Discussion
5.1. Land-Use Mapping Methods

The GEE platform greatly reduced the time and cost required for researchers to find
and process the fundamental data [53]. In the study, we created a LULC dataset in Xilingol
by retrieving 2436 satellite images during 2000–2020. The sample database construction
method [40] can complete the entire land-use mapping task quickly and accurately in only
18,900 s by applying the principle of “time-series stability” and combining with the land
classification method of random forest. The study shows that using the RF algorithm for
LULC in Xilingol leads to better results. By comparing different machine-learning methods,
the validity of the RF classifier has also been verified in other land-use classification
studies [19].

According to the principle of parsimony, the RF parameters were optimized to balance
model complexity (size of the RF classifier) and classifier performance [54]. We found that
RF exhibited signs of overfitting (large difference between training and validation error)
if the complexity of RF was not constrained. Limiting the number of decision trees can
reduce the complexity of the model and narrow the gap between training and validation
errors [55]. The classification results also showed that reducing the number of decision
trees (from 120 to 40) resulted in a loss of approximately 1–2% in validation accuracy, which
was recovered by increasing the number of decision trees.

We used the “compare after classification” approach for LULC monitoring. In contrast
to the continuous change-detection algorithms (e.g., CCDC, LandTrendr, CVAPS-NDVI,
etc.) [56–58], this method has a significant shortcoming which ignores the temporal con-
tinuity of land-use changes at the same pixel during adjacent years, which might treat
algorithmic classification errors as real type changes. In addition, the mapping accuracy
of high- and moderate-coverage grass are both low, mainly due to the fact that moderate-
coverage grass is a transition type between high- and low-coverage grass (Tables 5 and 6);
meanwhile, in the southern agro-pastoral ecotone, cropland is scattered within the grass-
land, which also caused low mapping accuracy of grassland (Tables 5 and 6).

In addition, the pixel-based LULC classification method we used only takes spectral
features as input variables for discrimination features, and several studies showed that an
object-oriented discrimination method based on clustering and segmentation could com-
bine spectral and geometric information with the texture information from high-resolution
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images to effectively improve the accuracy of LULC classification in urban and vegetation
areas [59–61]. In subsequent studies, we can apply high-resolution images combined with
methods such as continuous change-detection algorithms and object-oriented discrimina-
tion methods to produce higher-accuracy LULC classification results.

5.2. Spatial Patterns and Characteristics of LULC

In this study, we produce an annual LULC dataset for 2000–2020 in Xilingol, and the
results indicate that the ecological state of the study area improves significantly [35,62],
with the area of natural vegetation expanding steadily, especially high-coverage grass. The
results are generally consistent with the findings by Zhao et al. and Wang et al. Zhao et al.
showed an overall improvement in grassland quality in Xilingol during 2000–2013 [34].
Wang et al. found that the direction of shift in grassland coverage during 2000–2008 for
different classes is mainly towards higher classes [63]. Our study suggests that during
2000–2020, high-coverage grass increases by 13.26%, moderate-coverage grass decreases
by 7.23%, and low-coverage grass decreases by 3.27%. Compared to previous studies, our
findings reveal the dynamics of changes over a longer time scale (2000–2020) and across
a wider range of land-use types. Moreover, our study indicates that the area of cropland,
water, and deserted land is gradually shrinking, and build-up land is rapidly expanding.
The results are consistent with the findings of Batunacun et al. They found four land-use
change processes in Xilingol during 2000–2015, i.e., expansion of built-up land, restriction
of cropland expansion, increase in grassland, and decrease in water [32].

The LULC dataset obtained in this study is largely consistent with the GlobeLand30 in
terms of the general land-use pattern, and our dataset is more suitable for the characteristics
of land classification in Xilingol. As grassland is the dominant land-use type in Xilingol, we
have classified grassland into three categories based on the coverage, whereas GlobeLand30
has only one category [64,65]. Following a comparative analysis of five typical land-use
categories in Xilingol (cropland, grassland, woodland, built-up land, water, and deserted
land), it was found that 77.23% of the pixels in the 2000 product from this study are
consistent with the GlobeLand30 product; 82.2% of the pixels in the 2020 product are
consistent with the GlobeLand30 product (mainly grassland and built-up land). The main
difference between two datasets is the discrimination of land-use types in some transition
areas (mainly cropland and deserted land).

5.3. Uncertainty in the Analysis of Driving Mechanisms

In the study, PCA was used to classify the variables that might affect LULC. Subse-
quently, the key factors were extracted from each group and the stepwise method was
used to fit the multiple linear regression model. In particular, among all the linear regres-
sion models fitted in Table 10, not all the input variables and dependent variables have a
cause-and-effect relationship. Although this study provides a method for extracting key
variables from various potential variables hierarchically, identifying the drivers, and fitting
the regression models, the completeness of selected independent variables and whether
these variables can truly and effectively reflect the driving mechanisms of land-use change
have great impacts on the reliability of the results [66]. In addition, although we retained
independent explanatory variables when possible, potential multicollinearity between the
drivers was not quantified and fully removed before the regression analysis, which may
cause model instability and increase the complexity of interpretation of results [67].

The overall results of the driving mechanism we obtained are consistent with previous
studies, but there are still some differences. Xu et al. suggested that the mean annual
precipitation and distance to the nearest settlement were closely related to LULC [33].
Hu et al. concluded that climate change had an important impact on the evolution of
the Xilingol ecosystem, and the effects of human activities superimposed on climate
change may accelerate the evolution of the ecosystem [68]. Shi et al. suggested that the
heterogeneity of spatial changes in vegetation was mainly influenced by both climate
and human activities [69]. Our results reveal that, except for two specific relationships
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(i.e., national economic development facilitating the expansion of built-up land, warming
climate facilitating the increase of water), which can be statistically confirmed, the other
land-use types (cultivated land, grassland) have no significant relationship with relevant
variables. This is probably because the study region is part of the agro-pastoral transitional
zone, where changes of cropland and grassland might indeed be largely edaphically or
climatically determined. More generally, in response to the interaction of human activities
and environmental drivers, the ecosystems of cropland and grassland are both highly
dynamic and also resilient, with some patches moving through multiple vegetation types,
resulting in disorderly patterns of transformation.

6. Conclusions

LULC is the most direct manifestation of the interaction between human activity
and the natural environment. Spatial patterns and characteristics of LULC can reflect
the intensity and modes of human–environment interactions. We generated a yearly
updated LULC dataset in Xilingol from 2000 to 2020 using random forest algorithm in
the GEE platform, along with high-resolution satellite remote-sensing images. Based on
the dataset, we investigated the spatiotemporal characteristics, dynamic changes, and
driving mechanisms of LULC. Given the convenience of the GEE platform for remote-
sensing analysis and the importance of the RF algorithm in automated classification studies,
the technical process and modeling approach used in this study are of great reference
value for conducting similar studies in other regions in the future. The application of
continuous change-detection algorithms and object-oriented discrimination methods to
land-use change is our further research direction.

Our results suggest that, during the two decades between 2000 and 2020, the ecological
status across Xilingol indicates significant improvement characteristics. The area of high-
coverage grass and woodland increases while the area of water and moderate- and low-
coverage grass decreases. Cropland increases first and then decreases, which is mainly
distributed in the southeast. The area of deserted land decreases in the south and increases
in the center and north, but the total area still decreases. The built-up land expands rapidly.
In addition, our results suggest that regional socioeconomic development factors are the
primary causes of changes in built-up land, and climate-related factors drive variations
in the spatial pattern of water. This study is helpful not only to reveal the dynamics of
LULC in Xilingol since the large-scale implementation of the “Beijing–Tianjin Sandstorm
Source Control” project but also to better understand the mechanisms contributing to
LULC in the context of global climate change and regional socioeconomic development
and to further achieve intensive and sustainable development of the regional agriculture
and animal husbandry.
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