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Abstract: Hyperspectral band selection is a commonly used technique to alleviate the curse of dimen-
sionality. Recently, clustering-based methods have attracted much attention for their effectiveness in
selecting informative and representative bands. However, the single clustering algorithm is used in
most of the clustering-based methods, and the neglect of the correlation among adjacent bands in
their clustering procedure is prone to resulting in the degradation of the representativeness of the
selected band set. This may, consequently, adversely impact hyperspectral classification performance.
To tackle such issues, in this paper, we propose a correlation-guided ensemble clustering approach
for hyperspectral band selection. By exploiting ensemble clustering, more effective clustering results
are expected based on multiple band partitions given by base clustering with different parameters. In
addition, given that adjacent bands are most probably located in the same cluster, a novel consen-
sus function is designed to construct the final clustering partition by performing an agglomerative
clustering. Thus, the performance of our addressed task (band selection) is further improved. The
experimental results on three real-world datasets demonstrate that the performance of our proposed
method is superior compared with those of state-of-the-art methods.

Keywords: band selection; ensemble clustering; hyperspectral images; manifold ranking

1. Introduction

Hyperspectral remote sensing images (HSIs) contain rich spectral and spatial infor-
mation of ground objects. Thus, they are widely used in land cover classification [1,2],
environmental protection [3], mineral exploration [4], precision agriculture [5], and other
fields [6,7]. In these fields, hyperspectral classification is an important application that
can identify different materials with subtle spectral divergences. However, there is much
redundant information in hyperspectral image cubes because of the strong correlations
among adjacent bands, which cause Hughes’ phenomenon [8]. This may deteriorate the
performance of hyperspectral classification [9]. Therefore, reducing the dimensionality of
HSIs before classification is necessary.

The dimensionality reduction techniques of HSIs mainly include feature extraction [10–12]
and band selection [13–20]. Compared with feature extraction, which maps high-dimensional
data into a low-dimensional space, band selection methods can select a subset of representative
bands from all bands and thus can well retain the original physical meaning of HSIs [9].
According to whether there are labeled samples, band selection methods can be classified
as supervised [13], semi-supervised [14], and unsupervised [15–20]. Due to the high cost of
obtaining labeled samples, supervised and semi-supervised methods are difficult to apply in
practical applications. In contrast, unsupervised methods do not require labeled samples and
thus can be better applied in real tasks [18].

Unsupervised band selection methods can be further categorized into ranking-based,
sparsity-based, searching-based, and clustering-based methods. Ranking-based methods,
such as maximum-variance principal components analysis (MVPCA) [16] and manifold
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ranking-based method [21], perform band selection by assigning a weight to each band
using some criteria and then selecting the top-ranked bands. As the ranking-based methods
neglect the correlation between bands, the selected bands may have considerable infor-
mation redundancy [22]. Sparsity-based methods, such as sparse non-negative matrix
factorization [23] and low-rank representation [24], select proper bands by fully exploiting
the sparsity representation of hyperspectral bands. However, the global structure informa-
tion of HSIs is hard to capture effectively in the learned sparse coefficient matrix, limiting
the effectiveness of the band selection of sparsity-based methods [25]. Searching-based
methods, such as the firefly algorithm [26] and particle swarm optimization algorithm [27],
select representative bands by optimizing a given criterion. However, the computational
complexity of the nonlinear search process involved in these methods is relatively high [28].
Clustering-based methods have attracted much attention due to the low redundancy of
their selected bands and their high classification accuracy [15]. These methods, such as
Ward’s linkage strategy using divergence (WaluDi) [17], normalized cut-based optimal
clustering with ranking criteria using information entropy (NC-OC-IE) [18], and adaptive
subspace partition strategy (ASPS) [19], first divide all bands into multiple clusters, and
then select the most representative band in each cluster. Recently, Zeng et al. [29] proposed
a deep subspace clustering (DSC), which combined the subspace clustering into a convolu-
tional autoencoder to obtain more accurate clustering results. Although clustering-based
methods have improved the effectiveness of band selection to some extent, they also have
some shortcomings in the clustering process. For example, most of these methods use a
single clustering algorithm, which may be sensitive to the randomly chosen initial cen-
troids. Thus, the effectiveness and robustness of clustering results cannot be guaranteed
for high-dimensional data [15–17]. In addition, most clustering-based methods neglect the
exploitation of problem-dependent information of band selection during clustering.

In recent years, ensemble clustering has attracted extensive attention as it can combine
multiple base partitions into a more effective clustering. Moreover, ensemble clustering
has shown advantages in generating a robust partition, dealing with noisy features, and
mining novel structures [30,31]. Generally, ensemble clustering can be classified into ob-
jective function-based and heuristic-based methods [30]. The objective function-based
methods treat the similarity measures between partitions as an explicit global objective for
designing an effective consensus function. Representative methods include combination
regularization [32] and K-means-like algorithm [33]. In contrast, heuristic-based methods,
such as voting-based [34] and co-association matrix-based methods [31], employ some
heuristics instead of objective functions to search for approximate solutions. For example,
Huang et al. [31] recently proposed a locally weighted ensemble clustering method, which
estimated the uncertainty for each cluster of all the base clusterings by entropy theory to
further improve the consensus clustering results by exploiting a locally weighted strategy
in the consensus function. Although the existing ensemble clustering methods have made
significant improvements in clustering performance, they have not been fully tested for
band selection tasks. In addition, these methods were developed without considering the
inherent characteristics of HSIs. Therefore, introducing problem-dependent information of
hyperspectral band selection into the clustering strategy and designing an effective consen-
sus function for generating superior consensus clustering results remains challenging.

Aiming to select more representative bands from HSIs by improving the accuracy
of clustering, in this paper, we propose a novel correlation-guided ensemble clustering
(CGEC) approach for hyperspectral band selection. By exploiting ensemble clustering in
our work, more effective clustering results are expected based on multiple band partitions
respectively obtained by K-means methods with different parameter settings. In practice,
adjacent bands have a strong correlation because of the continuity of the bands in HSIs [19].
To effectively exploit this property of HSIs in ensemble clustering, the proposed CGEC
approach incorporates the similarity relationship between adjacent bands into the design of
a consensus function for ensemble clustering. Consequently, the clustering results yielded
by the proposed CGEC better satisfy the needs of band selection applications. Specifically,
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multiple initial base clustering results are first obtained by setting diverse parameters for
K-means. Then, a novel consensus function is proposed to act as a consensus strategy
for generating consensus clustering results by considering the assumption that adjacent
bands most probably located in the same cluster [18]. Then, the target bands are obtained
by adopting an improved manifold ranking method that selects a representative band
from each cluster. In our experiments, the proposed approach is compared with seven
representative competitors on three real hyperspectral datasets. The experimental results
show the superiority of our proposed method.

2. Method
2.1. Ensemble Clustering

Clustering aims to divide similar data into several clusters using a certain dissim-
ilarity measure without prior knowledge. When a clustering method is performed on
high-dimensional datasets, traditional clustering methods such as K-means and spectral
clustering may be challenging [35]. Ensemble clustering is an emerging approach that can
provide more accurate and robust clustering results based on multiple data partitions given
by base clustering [36]. The formal description of ensemble clustering can be expressed
as follows.

Given a set of N data patterns O = {o1, o2, · · · , oN}, after running the base clustering
algorithm Z times, the partitions obtained by all the base clustering algorithms form a
set Π =

{
π1, π2, · · · , πz, · · · , πZ}, where πz =

{
Gz

1, Gz
2, · · · , Gz

nz
}

, referred to as base
clustering, is the z-th partition that divides O into nz crisp clusters, and maps each data
point of O to a cluster label (ranging from 1 to nz). The consensus partition π∗ given by
ensemble clustering is defined as follows

π∗ = g(Π) = {G∗1 , G∗2 , · · · , G∗l , · · · , G∗L}, (1)

where G∗l denotes the l-th cluster given by ensemble clustering, and g(·) represents a
consensus function that generates the consensus partition based on all the base clusterings.

2.2. Locally Weighted Ensemble Clustering

In ensemble clustering, low-quality base clusterings may seriously affect the results of
ensemble clustering. To address this issue, a locally weighted ensemble clustering (LWEC)
method has recently been proposed [31], which develops the uncertainty estimation and
validity measurement for each cluster of all the base clusterings to improve the consensus
performance. Specifically, LWEC integrates the uncertainty and validity of each cluster into
the locally weighted strategy to generate a locally weighted co-association (LWCA) matrix
that is used to indicate the probability that two objects are divided into the same cluster
among the multiple base clusterings. The cluster uncertainty is measured by exploiting the
entropy theory, whereas the cluster validity is evaluated using an ensemble-driven cluster
index (ECI), which will be explained in Equation (5) below. According to the ECI, LWEC
constructs an LWCA matrix as a summary of the diverse clusters of all the base clusterings.

More precisely, LWEC uses the concept of entropy to measure the uncertainty of each
cluster, which indicates the difference that the objects of a cluster are partitioned among
multiple base clusterings. Formally, given a cluster Gi ∈ πz, the entropy of Gi w.r.t. the
base clustering πz (z=1, 2, · · · , Z) is defined as

Hz(Gi) = −
nz

∑
j=1

f
(

Gi, Gz
j

)
log2 f

(
Gi, Gz

j

)
, (2)

with

f
(

Gi, Gz
j

)
=

∣∣∣Gi ∩ Gz
j

∣∣∣
|Gi|

, (3)
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where nz denotes the number of clusters included in πz and Gz
j represents the j-th cluster

of πz. The symbol “ ∩ ” expresses the intersection of two clusters, and |Gi| indicates the
number of objects in Gi. On the basis of Equation (2), the entropy of cluster Gi w.r.t. the set
of base clusterings Π is defined as

HΠ(Gi) =
Z

∑
z=1

Hz(Gi), (4)

where Z denotes the number of base clusterings in Π.
ECI is proposed to measure the validity of each cluster of all the base clusterings by

considering the entropy of each cluster w.r.t. the set of base clusterings. More formally,
given the set of base clusterings Π with Z base clusterings, ECI for the cluster Gi is defined as

ECI(Gi) = exp
(
−HΠ(Gi)

θ · Z

)
, (5)

where θ denotes a parameter used to adjust the influence of the entropy over ECI. According
to Equation (5), obviously, the smaller the entropy of a cluster Gi, the greater the value of
ECI(Gi). Based on ECI, the LWCA matrix is constructed to reflect the probability that two
objects are divided into the same cluster among the multiple base clusterings. Formally, the
LWCA matrix W is defined as

W =
(
wij
)
∈ RN×N , (6)

with

wij =
1
Z
·

Z

∑
z=1

vz
i · rz

ij , (7)

vz
i = ECI(Glsz(oi)) , (8)

rz
ij =

{
1, if Glsz(oi) = Glsz(oj

)
0, otherwise

, (9)

where Glsz(oi) denotes the cluster in which an object oi belongs. To generate the clustering
results of ensemble clustering, LWEC exploits locally weighted evidence accumulation
(LWEA) as a consensus function, which is used to guide the merging of two clusters in the
hierarchical agglomerative clustering. Note that LWEA is developed without considering
the characteristics of hyperspectral data and not tested on the task of band selection.

2.3. CGEC

The flowchart of our proposed approach is illustrated in Figure 1. This approach
consists of two parts: ensemble clustering and manifold ranking. Via ensemble clustering,
multiple base partitions given by a group of base clustering algorithms can be combined
into a more effective and robust partition with the help of an effective consensus function.
Next, the manifold ranking method is used to generate representative bands based on the
clustering results given by the ensemble clustering. Specifically, in the part of ensemble
clustering, given the HSI data B ∈ RN×P, where N denotes the number of bands and
P stands for the number of pixels, we first conduct clustering analysis on B by running
K-means Z times with different parameters in each run. Consequently, the collection of
Z base clusterings Π =

{
π1, π2, · · · , πz, · · · , πZ} is generated, where πz denotes the z-th

base clustering. On the basis of Π, the LWCA matrix is obtained by Equation (6). Next, the
results of ensemble clustering denoted by π∗ = g

(
π1, · · · , πZ) = {

G∗1 , G∗2 , · · · , G∗L
}

are
obtained via the proposed consensus function g(·), which is used to combine the clustering
solutions of multiple base clusterings and produce a single clustering partition for ensemble
clustering. Finally, the target band subset is obtained by selecting a representative band
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from each cluster via the improved manifold ranking method. A detailed description is
given in the following subsections.

HSI Cube All Bands Ensemble Clustering Representative Bands

LWCA MatrixK-means

Final Clustering π *
 

G1

G2

GL

...

...

...

ILWEA Consensus Function

π 
1

π 
2

π 
Z

...

 

 

 

 

Manifold 

Ranking

...

...

Figure 1. Flowchart of our proposed CGEC approach, which consists of two parts: ensemble
clustering and manifold ranking. First, we conduct clustering analysis on the HSI data by running
K-means Z times with different parameters in each run, and the collection of Z base clusterings
Π =

{
π1, π2, · · · , πZ} is obtained. Based on these base clusterings, the LWCA matrix is generated

by Equation (6). Then, the final consensus clustering results π∗ =
{

G∗1 , G∗2 , · · · , G∗l , · · · , G∗L
}

are
obtained using a novel consensus function (i.e., ILWEA), which can combine the clustering solutions
of the base clusterings and produce a single clustering result as the final output of the ensemble
clustering. Finally, the target band subset is obtained by selecting a representative band from each
cluster via the improved manifold ranking technique.

2.3.1. Consensus Function

In HSIs, adjacent bands are most probably located in the same cluster [18], which is
rational because each band has a stronger correlation with the adjacent bands within a
certain range and a lower correlation with farther bands [18,19]. Figure 2 illustrates the
correlation of all the bands on the Pavia Centre dataset projected to a three-dimensional
space. Figure 2 shows that all the bands are arranged in order and form an approximately
smooth curve. This further manifests the strong correlations between adjacent bands. On
this basis, we propose a consensus function ILWEA by improving the consensus function
LWEA used in the LWEC method [31]. As stated in Section 2.2, LWEA is a consensus
function used for hierarchical agglomerative clustering that iteratively performs cluster
merging by finding two clusters with the maximum similarity. However, LWEA was not
developed for hyperspectral band selection. Therefore, we improved LWEA on two aspects
to enhance its band selection performance. (1) LWEA performs cluster merging by finding
two clusters with maximum similarity among all the obtained clusters. In the proposed
ILWEA, we improved this procedure by merging two adjacent clusters with the highest
similarity, which can make full use of the similarity relationship between the adjacent bands
to enhance the effectiveness of the clustering results. (2) The similarity measurements of
two clusters used in LWEA equally consider the similarities between data samples included
in these two clusters; we improved this similarity measurement and its updating strategy
by simultaneously exploiting the similarity between the nonadjacent bands as well as
the important influence of the similarity of the adjacent bands included in two adjacent
clusters. More precisely, in the updating strategy of the similarity between adjacent clusters
in the procedure of ensemble clustering, the weights of the similarity measurements of two
adjacent bands contained in two adjacent clusters, respectively, are enhanced. Thus, the
importance of the similarity between adjacent bands is enforced. With these improvements,
our proposed consensus function can effectively exploit both the similarity between the
nonadjacent bands and the similarity between the adjacent bands, which is more in line
with the characteristics of hyperspectral data.
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Figure 2. Illustration of band correlation by projecting each band into a three-dimensional space on
the Pavia Centre dataset.

Specifically, ILWEA first treats each band as an initial cluster, from which we can
obtain the initial cluster set C(0) =

{
G(0)

1 , G(0)
2 , · · · , G(0)

N

}
with G(0)

i = {bi}, where bi = Bi:

and i = 1, 2, · · · , N. Next, by referring to [31], the initial similarity vector x(0) is constructed
on the basis of the LWCA matrix W, which is expressed as

x(0) =
(

x(0)1 , x(0)2 , · · · , x(0)i , · · · , x(0)N−1

)
, (10)

with

x(0)i = wi(i+1), (11)

where wi(i+1) denotes the similarity measurement between the adjacent bands bi and b(i+1).
After constructing the initial similarity vector and initial clusters, the cluster merging

process is implemented iteratively. In each step of the cluster merging, instead of perform-
ing cluster merging by finding two clusters with maximum similarity, as is done in LWEA,
two adjacent clusters with the highest similarity are merged into a larger cluster so that
the obtained ensemble clustering results better satisfy the characteristics of HSIs. More
precisely, given that G(j)

i = {bα, bα+1, · · · , bδ} and G(j)
i+1 =

{
bδ+1, bδ+2, · · · , bη

}
are two

adjacent clusters in the j-th iteration, if the similarity measurement x(j)
i between G(j)

i and

G(j)
i+1 is highest among all the adjacent clusters, G(j)

i and G(j)
i+1 are combined into a new

cluster G(j+1)
i . Formally, this can be expressed as

G(j+1)
i = E

(
G(j)

i , G(j)
i+1

)
, (12)

with

i = min
({

v|v ∈ {1, 2, ..., (N − j− 1)} ∧ ∀s ∈ {1, 2, ..., (N − j− 1)} : x(j)
s ≤ x(j)

v

})
, (13)

where the function min(H) is used to calculate the minimum element of set H, and E(·)
represents the merging operation of two clusters. Accordingly, the set of clusters obtained
in the (j + 1)-th step is represented as follows:

C(j+1) =

{
G(j+1)

1 , · · · , G(j+1)
|C(j+1)|

}
, (14)

where
∣∣∣C(j+1)

∣∣∣ denotes the number of clusters in C(j+1).
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To prepare for the next iteration, ILWEA will update the similarity vector on the basis
of the new cluster set obtained in each iteration. Here, based on updating the LWCA
matrix in [31], we further introduce the similarity measurement of adjacent bands into
the updating strategy of the similarity vector to enhance the importance of the similarity
between adjacent bands. More formally, the updating vector of the (j + 1)-th step is
calculated as follows:

x(j+1) =

(
x(j+1)

1 , x(j+1)
2 , · · · , x(j+1)

i , · · · , x(j+1)
|C(j+1)|−1

)
, (15)

with

x(j+1)
i =

1
2

 1∣∣∣G(j+1)
i

∣∣∣ · ∣∣∣G(j+1)
i+1

∣∣∣− 1

 ∑
bm∈G(j+1)

i ,bn∈G(j+1)
i+1

wmn −wδ(δ+1)


+

1
2

wδ(δ+1), (16)

where
∣∣∣G(j+1)

i

∣∣∣ denotes the number of bands in the cluster G(j+1)
i . In Equation (16), the

first term denotes the average value of the similarity of nonadjacent bands between the
cluster G(j+1)

i = {bα, bα+1, · · · , bδ} and G(j+1)
i+1 =

{
bδ+1, bδ+2, · · · , bη

}
. The second term

is the similarity of the adjacent bands bδ and bδ+1, which correspond to the last band of
G(j+1)

i and the first band of G(j+1)
i+1 , respectively. Equation (16) is advantageous because

we simultaneously consider the similarity between nonadjacent bands and the important
influence of the similarity of adjacent bands between two adjacent clusters, which is more
favorable for generating effective consensus partition.

Finally, the final consensus clustering π∗ =
{

G∗1 , G∗2 , · · · , G∗l , · · · , G∗L
}

can be obtained
when the number of clusters is equal to L, where L denotes the number of selected bands. To
further illustrate the procedure of how to merge clusters in each iteration, we take an example be-
low (see Figure 3a,b. Given C(0) =

{
G(0)

1 , G(0)
2 , · · · , G(0)

5

}
= {{b1}, {b2}, {b3}, {b4}, {b5}},

and with x(0) = (0.65, 0.61, 0.62, 0.63) obtained by Equation (10), we can find that the similarity
between clusters G(0)

1 and G(0)
2 is the highest among those of all the adjacent clusters. Thus, accord-

ing to Equation (12), G(0)
1 and G(0)

2 are merged into a new cluster G(1)
1 = {b1, b2}. Accordingly,

C(1) = {{b1, b2}, {b3}, {b4}, {b5}} is obtained.

(a)

b1 b5b2

b1 b2

b4b3

b3 b4 b5b1 b2 b3 b4 b5

b1 b5b2 b4b3C
(0)

C
(1)

(b)

Figure 3. Illustration of the cluster merging procedure in ILWEA. (a) Example of the LWCA matrix.
(b) Example of merging two clusters in ILWEA.

2.3.2. Manifold Ranking for Representative Band Selection

Most conventional clustering-based methods select representative bands from the
obtained clusters using some kinds of criteria, such as information divergence [17], band
noise estimation [19], and band distance from the centroid [28]. However, these algorithms
are unfavorable for selecting representative bands because the most discriminative bands
in each cluster may not be discriminative as regards all bands [18]. To tackle this issue, we
improve the manifold ranking method [21] to rank all bands while ensuring that only one
band is selected from each cluster according to the rank information.
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Specifically, let y = (y1, y2, · · · , yn, · · · , yN) represent an indicating vector, with yn = 1
denoting that the corresponding band bn is included in the representative band set Φ. To
indicate whether the cluster G∗l has been used in selecting the representative band, a vector
a = (a1, a2, · · · , an, · · · , aN) is employed. First, we select the band bi with the largest
variance from all bands and put bi into the initial representative band set Φ. Then, we set
the value of y(0) = (y(0)1 , y(0)2 , . . . , y(0)n , . . . , y(0)N ) as

y(0)n =

{
1, if n = i
0, otherwise

. (17)

Meanwhile, we set a(0) = (a(0)1 , a(0)2 , . . . , a(0)n , . . . , a(0)N ) where a(0)n , for n = 1, 2, . . . , N, is
set to 1 if bn belongs to the same cluster with bi, and 0 otherwise. This can be formalized as

a(0)n =

{
1, if Gls∗(bi) = Gls∗(bn)
0, otherwise

, (18)

where Gls∗(bi) ∈ π∗ denotes the cluster to which band bi belongs.
Next, to select the remaining representative bands, we iteratively perform the follow-

ing procedures: (1) Compute the ranking score vector q ∈ RN according to the sorting
function that is expressed as [37]

q = (D− αW)−1y, (19)

with

D = diag{d11, d22, · · · , dnn, · · · , dNN}, (20)

where W is the LWCA matrix, and dnn = ∑j wnj; α denotes a balance parameter. (2) Select
a representative band bs = Bs: where the index s is determined by

s = min
({

n|(n ∈ {1, 2, ..., N} ∧ a(k−1)
n 6= 1) ∧ (∀t ∈ {1, 2, ..., N} ∧ a(k−1)

t 6= 1) : qn ≤ qt

})
. (21)

(3) Put the selected band bs into the representative band set Φ. (4) Update y(k) by

y(k)n =

{
1, if n = s
y(k−1)

n , otherwise
, (22)

and update a(k) by

a(k)n =

{
1, if Gls∗(bs) = Gls∗(bn)

a(k−1)
n , otherwise

. (23)

Finally, the algorithm is stopped when the number of bands included in Φ is equal to
L. As a result, the bands contained in Φ are regarded as the selected representative bands.
On the basis of the above analysis, the pseudocode of our proposed CGEC algorithm is
outlined in Algorithm 1.
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Algorithm 1: CGEC Algorithm
Input: Hyperspectral data B ∈ RN×P, the number of selected bands L, the number of base clusterings

Z, the balance parameter α.
Output: The selected band subset Φ .

1 Generate the set of base clustering Π =
(
π1, π2, · · · , πz, . . . , πZ) by running K-means Z times;

2 Calculate the entropy of each cluster of πz w.r.t. Π by Equation (4);
3 Compute ECI of each cluster of πz by Equation (5);
4 Generate the LWCA matrix W by Equation (6);

5 Initialize the set of clusters C(0) =
{

G(0)
1 , G(0)

2 , · · · , G(0)
N

}
with G(0)

i = {bi}, where i = 1, 2, · · · , N;

6 Initialize the similarity vector x(0) by Equations (10) and (11);
7 Set j = 0;
8 while j < L do
9 Obtain a new cluster by Equations (12) and (13);

10 Obtain C(j+1) by Equation (14);
11 Update the similarity vector x(j+1) by Equations (15) and (16);
12 j = j + 1;
13 end
14 set π∗ = C(L);
15 Select the band bi with the largest variance from the set of all the bands {b1, b2, · · · , bN};
16 Initialize y(0) and a(0) by Equations (17) and (18) respectively;
17 Compute the matrix D by Equation (20);
18 Set representative band subset Φ = {bi} and set k = 1;
19 while k < L do
20 Compute the ranking score vector q by Equation (19);
21 Select a representative band bs by Equation (21) and put bs into Φ;
22 Update y(k) by Equation (22);
23 Update a(k) by Equation (23);
24 k = k + 1;
25 end
26 Return Φ;

3. Result
3.1. Datasets

In our experiments, three benchmark datasets respectively listed in Table 1 and dis-
played in Figure 4 were chosen to test the performance of the proposed approach according
to the classification accuracy criteria.

Table 1. Information on the three real datasets used in our experiments.

Dataset Names Pixels Spatial
Resolutions Classes Bands

Pavia University 610 × 340 1.3 m/pixel 9 103
Botswana 1476 × 256 30 m/pixel 14 145

Pavia Centre 1096 × 715 1.3 m/pixel 9 102

1. Pavia University dataset: The Pavia University dataset is part of the hyperspectral
data taken from the image of the Italian city of Pavia in 2002 by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor. This image has 610 × 340 pixels and 115 bands with
wavelengths ranging from 0.43 µm to 0.86 µm, and its spatial resolution is 1.3 m. In our
experiments, 12 bands were eliminated because of the influence of noise, and the image
made up of the remaining 103 spectral bands was used. There are 9 classes in this image.

2. Botswana dataset: The Botswana dataset was acquired by the NASA EO-1 satellite
over the Okavango Delta, Botswana, in 2001. The original Botswana image has 242 bands
covering wavelengths from 0.4 µm to 2.5 µm, and its spatial resolution is 30 m. After some
uncalibrated and noisy bands were removed, the remaining 145 spectral bands were used
in this study. The adopted image has 1476 × 256 pixels and 14 classes.

3. Pavia Centre dataset: The Pavia Centre dataset was obtained by the ROSIS sensor
during a flight campaign over Pavia in northern Italy. Thus, it has the same spectral and
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spatial resolution as those of the first dataset. In our experiments, the noisy bands were
removed, and the remaining 102 bands were used. This image has 1096 × 715 pixels that
belong to nine different classes.

(a) (b) (c)

Figure 4. Three real HSI datasets. (a) Pavia University. (b) Botswana. (c) Pavia Centre.

3.2. Comparison Methods

Seven representative band selection methods, briefly introduced in this section, were
used as baselines to verify the effectiveness of the proposed methods.

1. E-FDPC [15]: Enhanced fast-density-peak-based clustering (E-FDPC) is a clustering-
based method that improved a fast density peak-based clustering [38] algorithm by
weighting the local density and the distance within the cluster. In addition, it adopts
an exponential-based learning rule to control the number of selected bands of HSIs.

2. ASPS [19]: ASPS is also a clustering-based method for band selection. It first divides
the HSI cube into several subcubes by maximizing the ratio of the intercluster distance to
the intracluster distance, and then estimates the band noise in each subcube. Thereafter,
the band containing the minimum noise in each cluster is selected as the target band.

3. WaLuDi [17]: This method uses the hierarchical clustering technique to select
representative bands. To measure the dissimilarity among the bands, the Kullback–Leibler
divergence is employed in the clustering procedure.

4. NC-OC-IE [18]: It is a clustering-based method that adopts an optimal clustering
framework (OCF) to search for the optimal clustering structure on HSIs. First, an objective
function based on a normalized cut criterion is designed. Then, the best band partition
is obtained using OCF. Next, the importance of all the bands is evaluated using the in-
formation entropy-based criterion. Finally, the target bands are found by selecting the
highest-ranked band in each cluster.

5. MVPCA [16]: MVPCA is a ranking-based method that evaluates the band prioritiza-
tion by constructing a data-sample covariance matrix. Then, all bands are ranked according
to the matrix. The band subset can be obtained by selecting the top-rank bands.

6. LWEA [31]: LWEA is an ensemble clustering method based on hierarchical ag-
glomerative clustering, which utilizes a similarity matrix as input and iteratively performs
cluster merging by finding two clusters with the maximum similarity.

7. DSC [29]: DSC is a clustering-based band selection approach that exploits a convo-
lutional autoencoder and deep subspace clustering to obtain the clustering results. Then,
the final band subset can be obtained by selecting the band closest to its cluster center in
each cluster.

3.3. Experimental Setup

1. Classification setting
Support vector machine (SVM) [39] and K-nearest neighbor (KNN) [40] were used

to test the classification accuracy of different band selection methods. In the experiments,
we randomly selected 20% of the samples as the training set, and the rest of the samples
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were used as the test set. Each method was run 10 times, and the average performance was
reported. To test the influence of different band numbers on overall accuracy, we conducted
experiments in the range of 5–50 bands. In addition, by referring to [31], 10 base clusterings
were randomly produced by running the K-means algorithm with different numbers of
clusters L. The range of L is from 2 to

√
N, where N denotes the number of bands in HSIs.

The balance parameter α in Equation (19) is set to 0.99 according to [37].
2. Accuracy measures
Three accuracy criteria are used to analyze the accuracy of the classified pixels. These crite-

ria are overall accuracy (OA), average overall accuracy (AOA), and Kappa coefficient (Kappa).

3.4. Experimental Results

To test the performance of the proposed approach, two classifiers were adopted to
analyze three hyperspectral datasets. The average performance comparison of all the
methods for different numbers of bands (the range of 5–50) is reported in Table 2, where
the classification performance of the SVM and KNN classifiers is indicated by the AOA
and Kappa. Each row represents the classification accuracy of a specified classifier for the
target dataset using the bands given by different methods. The values in red bold and blue
italic fonts denote the best and second-best results, respectively. Table 2 shows that the
superiority of CGEC is evident in comparison with the other band selection approaches.
Particularly, when using an SVM classifier on the Pavia Centre dataset, our method can
achieve an improvement of 2.84% and 2.85% in AOA and Kappa, respectively, compared
with LWEA. LWEA had the second-best performance when using an SVM classifier on the
three datasets. DSC obtained the second-best results when using a KNN classifier on the
Pavia University and Pavia Centire datasets. For the Botswana dataset, the second best
is NC-OC-IE.

Table 2. Performance comparison on the three datasets, where larger values indicates better perfor-
mance; the values in red bold and blue italic fonts denote the best and second-best results, respectively.
CGEC is our proposed approach.

Dataset Classifier CGEC LWEA [31] E-FDPC
[15]

NC-OC-IE
[18] ASPS [19] WaLudi [17] MVPCA

[16] DSC [29]

Pavia
University

SVM(AOA) 90.09 89.86 85.21 89.58 88.70 88.17 77.22 89.64
SVM(KAPPA) 0.8670 0.8640 0.7998 0.8600 0.8479 0.8412 0.6660 0.8611

KNN(AOA) 84.22 83.86 82.15 84.02 83.83 82.33 72.53 84.15
KNN(KAPPA) 0.7836 0.7794 0.7554 0.7809 0.7789 0.7574 0.6219 0.7827

Botswana

SVM(AOA) 90.43 90.13 74.10 89.87 89.03 85.77 78.44 88.53
SVM(KAPPA) 0.8961 0.8932 0.7194 0.8902 0.8811 0.8458 0.7662 0.8758

KNN(AOA) 86.42 85.19 63.52 85.62 83.39 80.82 72.91 82.67
KNN(KAPPA) 0.8527 0.8396 0.6052 0.8442 0.8201 0.7922 0.7065 0.8109

Pavia
Centre

SVM(AOA) 98.11 95.27 91.28 87.91 88.55 88.75 73.77 90.60
SVM(KAPPA) 0.9731 0.9446 0.9037 0.8715 0.8767 0.8796 0.7090 0.8980

KNN(AOA) 97.14 96.96 96.95 97.04 96.80 96.97 87.92 97.05
KNN(KAPPA) 0.9596 0.9570 0.9569 0.9589 0.9547 0.9572 0.8249 0.9591

To further demonstrate the performance of all the methods, the classification results
for each class on the three datasets using 30 selected bands are listed in Tables 3–5. The
values in red bold and blue italic fonts denote the best and second-best results, respectively.
Clearly, our proposed method performs best or second best at most classes on three datasets.
Some methods are slightly unstable. For example, the performance of LWEA is better on
the Botswana dataset, but slightly worse on the other datasets. DSC performs better on the
Botswana dataset than on the other datasets. This shows the effectiveness and stability of
our method on the three datasets. In addition, Figures 5–7 illustrate the OA values of all
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eight methods on the three datasets when using the SVM and KNN classifiers, respectively.
More detailed analyses are given as follows.

Table 3. The classification accuracy of each class for the Pavia University dataset, where larger
values indicate better performance; the values in red bold and blue italic fonts denote the best and
second-best results, respectively. CGEC is our proposed approach.

Class Name CGEC LWEA [31] E-FDPC [15] NC-OC-IE
[18] ASPS [19] WaLudi [17] MVPCA [16] DSC [29]

Asphalt 91.61 91.51 88.61 91.42 91.31 89.24 86.11 91.55
Meadows 97.13 96.79 96.62 96.83 97.15 94.95 98.01 97.05

Gravel 71.90 70.98 53.75 71.27 69.66 68.95 61.36 69.56
Trees 94.12 93.72 87.49 93.97 93.93 92.17 92.06 93.82

Metal sheets 99.73 99.54 99.68 99.70 99.69 99.67 99.59 99.62
Bare Soil 80.56 80.45 53.39 77.33 75.93 71.87 50.97 80.14
Bitumen 82.36 82.49 72.74 82.08 81.90 80.00 65.66 80.56

Bricks 86.96 86.88 83.15 87.64 87.86 83.87 75.38 86.79
Shadows 99.72 99.80 93.79 99.34 98.93 99.78 96.07 99.87

Table 4. The classification accuracy of each class for the Botswana dataset, where larger values indicate
better performance; the values in red bold and blue italic fonts denote the best and second-best results,
respectively. CGEC is our proposed approach.

Class Name CGEC LWEA [31] E-FDPC [15] NC-OC-IE
[18] ASPS [19] WaLudi [17] MVPCA [16] DSC [29]

Water 100.00 99.86 92.13 99.58 99.61 99.88 98.70 96.90
Hippo grass 97.78 96.04 73.21 94.94 96.67 96.90 96.91 89.26
Floodplain
grasses 1 97.71 97.61 87.51 96.07 95.47 96.32 84.43 95.57

Floodplain
grasses 2 97.62 97.15 77.68 94.88 93.78 95.87 91.51 93.60

Reeds 1 86.23 86.13 68.51 80.65 83.49 84.14 78.84 84.28
Riparian 80.37 78.72 57.26 79.54 77.53 72.37 68.93 75.12
Firescar 2 98.70 96.78 92.22 98.12 98.07 98.08 91.45 88.84

Island
interior 98.15 98.27 76.11 97.96 96.36 94.26 91.61 97.47

Acacia
woodlands 91.79 92.71 77.89 91.00 86.81 87.49 88.45 88.01

Acacia
shrublands 90.00 89.24 80.00 90.05 88.64 88.03 86.11 85.61

Acacia
grasslands 92.01 93.49 89.26 93.32 92.58 91.51 86.72 91.96

Short mopane 92.27 92.90 68.14 94.07 92.27 92.76 76.83 83.86
Mixed

mopane 92.80 92.52 65.89 90.75 89.77 90.05 83.50 79.58

Exposed soils 97.37 97.89 83.29 97.24 95.92 93.95 64.21 94.87

Pavia University dataset. For this dataset, Figure 5a,b indicate the OA results of the
SVM and KNN classifiers using bands given by all the methods. The range of the number
of bands selected is from 5 to 50. Figure 5a clearly shows that when using an SVM classifier,
the performance of CGEC is better than those of the other algorithms at most of the selected
bands. More specifically, when the numbers of selected bands are 10, 15, and 25, our
method surpasses the other methods and achieves a satisfactory classification accuracy.
It is worth noting that the data redundancy is obviously reduced via the band selection
process, and more than 90% of the redundant bands in the original dataset are removed.
When the number of the selected bands exceeds 30, our method also performs best, and the
OA values of LWEA, DSC, ASPS, and NC-OC-IE are close to each other. Meanwhile, these
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four methods outperform the other methods. In Figure 5b, when using a KNN classifier,
the OA value of CGEC is better than those of the other methods when using 15, 20, 30, 35,
and 50 bands. For the other bands, although our method is slightly lower than NC-OC-IE
or MVPCA, it outperforms other approaches.

Table 5. The classification accuracy of each class for the Pavia Centre dataset, where larger values
indicate better performance; the values in red bold and blue italic fonts denote the best and second-
best results, respectively. CGEC is our proposed approach.

Class Name CGEC LWEA [31] E-FDPC [15] NC-OC-IE
[18] ASPS [19] WaLudi [17] MVPCA [16] DSC [29]

Water 100.00 99.98 99.97 99.95 99.98 99.93 99.99 99.99
Trees 96.75 95.40 95.67 96.89 95.75 95.72 95.58 96.44

Asphalt 92.26 89.54 90.38 92.20 90.27 89.36 81.77 92.44
Bricks 87.50 85.70 79.05 87.31 83.48 87.42 66.84 87.15

Bitumen 96.91 96.26 94.30 96.87 95.73 96.30 75.08 96.69
Tiles 96.13 95.67 96.02 95.35 96.21 96.23 88.36 96.47

Shadows 93.59 93.16 92.16 93.31 93.53 93.44 86.83 93.12
Meadows 99.56 99.46 99.60 99.64 99.63 99.53 97.91 99.59
Bare soil 99.86 99.80 98.45 99.68 99.39 99.50 91.95 99.40
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Figure 5. OA for the SVM and KNN classifiers on the Pavia University dataset under the condition
of selecting different numbers of bands. (a) OA by SVM. (b) OA by KNN.

Botswana dataset. Similar to the Pavia University dataset, Figure 6a,b illustrate the
OA results of the classification using SVM and KNN, respectively. Figure 6a shows that the
OA value of the CGEC method is the highest except when the number of selected bands
is 35. At 35 bands, our method achieves the second-best performance. In Figure 6b, our
method shows significant superiority when the numbers of selected bands are 5, 10, 15, and
25. At the same time, the OA values of the CGEC, LWEA, ASPS, WaLuDi, and NC-OC-IE
approaches are close to each other at the other bands, which outperform the other methods.
In general, the effectiveness of our method is verified.

Pavia Centre dataset. For this dataset, the advantage of our approach is more apparent
when using the SVM classifier, as shown in Figure 7a. When the number of selected bands
is 5, our method is significantly better than the other methods. Remarkably, the proposed
method achieves a satisfactory result with only 5% of the bands from the dataset. When
the number of selected bands exceeds 5, our method also performs very well. In Figure 7b,
when KNN is utilized, the difference in the OA values is not obvious, and all the methods
attain satisfying results, except for MVPCA.

In addition, Figures 8–10 compare classification maps and ground truth information
using 30 selected bands. These classification maps indicate that our method can provide
satisfactory results on condition that 79% of the bands from the Botswana dataset, as well
as 70% of the bands from the Pavia Center and Pavia University datasets are removed.
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Therefore, our method can reduce lots of redundant information while maintaining good
classification accuracy.
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Figure 6. OA for the SVM and KNN classifiers on the Botswana dataset under the condition of
selecting different numbers of bands. (a) OA by SVM. (b) OA by KNN.
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Figure 7. OA for the SVM and KNN classifiers on the Pavia Centre dataset under the condition of
selecting different numbers of bands. (a) OA by SVM. (b) OA by KNN.
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Figure 8. Comparison of classification maps and ground truth information using 30 selected bands
on the Pavia University dataset. (a) Ground truth. (b) CGEC by SVM. (c) CGEC by KNN.
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Figure 9. Comparison of classification maps and ground truth information using 30 selected bands
on the Botswana dataset. (a) Ground truth. (b) CGEC by SVM. (c) CGEC by KNN.
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Figure 10. Comparison of classification maps and ground truth information using 30 selected bands
on the Pavia Centre dataset. (a) Ground truth. (b) CGEC by SVM. (c) CGEC by KNN.

4. Discussion

Band selection is one of the important dimensionality reduction techniques for hyper-
spectral classification. Aiming to select more representative bands from HSIs by enhancing
the accuracy of clustering, in this paper, LWEA, a recently proposed ensemble clustering
method, was improved to tackle the band selection problem. The original LWEA can
obtain better clustering performance by implementing aggregation clustering. However, it
performs cluster merging by only finding two clusters with maximum similarity among
all the obtained clusters without considering the characteristics of HSIs. Moreover, the
similarity measurements between two clusters used in LWEA equally consider the similari-
ties among data samples included in these two clusters, which may not meet the needs of
band selection. Experimental results have demonstrated these issues limit the algorithm
performance for band selection. Based on the assumption that adjacent bands in HSIs have
a high correlation, and thus they are most probably located in the same cluster, in this paper,
we proposed CGEC by improving the cluster merging procedure of LWEA, which can
make full use of the similarity relationship between the adjacent bands to generate effective
ensemble clustering results. Moreover, based on the clustering results provided by CGEC,
our modified manifold ranking method can contribute to selecting more representative
bands. To the best of our knowledge, this is the first time that ensemble clustering has been
applied to the band selection of HSIs. The experimental results presented in the previous
section demonstrate that ensemble clustering is more effective for band selection compared
with the single clustering-based band selection methods and LWEA. In addition, exploiting
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the similarity relationship between adjacent bands in the design of consensus function can
effectively enhance the performance of ensemble clustering for band selection.

According to the experimental results, the clustering-based methods achieved better
performance than the ranking-based method (i.e., MVPCA). This is because the selected
bands of MVPCA have higher redundancy. This finding is consistent with that of a
previous study [41]. In contrast, the clustering-based methods can remove the redundant
bands by selecting a representative band from each cluster. Compared with representative
clustering-based methods (i.e., E-FDPC, NC-OC-IE, ASPS, WaLudi, DSC, and LWEA), our
proposed CGEC has remarkable performance due to the use of ensemble clustering with
the guidance of band correlation property of HSIs. A clear explanation lies in the fact
that the cluster results given by CGEC meet the need of band selection, which helps to
select more representative bands. Thus, we believe that our method can provide more
effective clustering results on the HSI in which each band has a stronger correlation with
the adjacent bands.

The experimental results also demonstrate that the number of selected bands has a
significant influence on classification performance. For example, a general phenomenon
for all the methods lies in the fact that, as shown in Figures 5–7, the OA values rise rapidly
with the increase of the number of bands, but when a certain number of bands are reached,
the increase is very slight or even decreased. In accordance with our results, a previous
study [42] has demonstrated that the best performances do not always exist in the band
subset with the most bands. The reason is that more bands bring more redundancies.
Consequently, selecting more bands does not mean that better classification accuracy can
be obtained, while a reasonable number of bands will achieve the best performance.

We have to point out that our study neglects noise interference in HSIs. Thus, the
proposed CGEC may choose the noisy bands, which will degrade the classification per-
formance. In addition, base clustering in our method is carried out on the original high-
dimensional data, so the quality of base clustering is limited, which will affect the effec-
tiveness of the ensemble clustering result. In future studies, we will explore the strategy
of generating more effective base clustering based on representation learning to further
improve the band selection performance of ensemble clustering.

5. Conclusions

In this paper, we proposed a correlation-guided ensemble clustering approach for
hyperspectral band selection. By adopting ensemble clustering, a more accurate band
partition can be obtained compared with the single clustering methods. With the help of a
proposed consensus function that is designed based on the assumption that adjacent bands
are most probably located in the same cluster, the clustering results of the proposed method
more satisfy the needs of band selection. In addition, our proposed approach employs an
improved manifold ranking algorithm to select a band subset with better representativeness
from the final band partition. A variety of experiments on three real hyperspectral datasets
indicate that the effectiveness of the proposed method is superior compared with other
competitors. For the sake of clarity, the main conclusions of this paper are as follows.

An ensemble clustering-based approach is proposed to select representative bands for
hyperspectral classification. To the best of our knowledge, this is the first time that ensemble
clustering has been applied to the band selection of HSIs. The proposed approach consists
of two stages, i.e., ensemble clustering and manifold ranking. The ensemble clustering stage
is designed to improve the effectiveness of clustering, whereas the manifold ranking stage
is exploited to select a representative band from each cluster. Consequently, the chosen
band subset has good distinguishability and high representativeness for classification tasks.

In addition, we proposed a novel consensus function used for generating consensus
clustering results via agglomerative clustering. By utilizing the fact that adjacent bands
have high probability located in the same cluster, the proposed consensus function can
simultaneously exploit the problem-independent information and the power of ensemble
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clustering, so that the obtained results of ensemble clustering better satisfy the needs of
band selection.

To verify the effectiveness of our proposed method, we conducted extensive experi-
ments on three real HSI datasets. The experimental results of our method were compared
with those of seven representative methods, which demonstrates the superiority of our
proposed method.
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The following abbreviations are used in this manuscript:

HSI Hyperspectral remote sensing image
MVPCA Maximum-variance principal components analysis
WaLuDi Ward’s Linkage strategy Using Divergence
E-FDPC Enhanced fast density-peak-based clustering
ASPS Adaptive subspace partition strategy
LWCA Locally weighted co-association
CSBDS Continuous similar band division strategy
ILWEA Improved locally weighted evidence accumulation
NC-OC-IE normalized cut based optimal clustering with ranking criteria using information entropy
SVM Support vector machine
KNN K-nearest neighbor
OA Overall accuracy
AOA Average overall accuracy
CGEC Correlation-guided ensemble clustering
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