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Abstract: Shale oil/gas extraction has expanded rapidly in the last two decades due to the rising
energy prices and the advancement of technologies. Its development can have huge impacts on
and, at the same time, is also deeply affected by energy markets, especially in an era with high
economic uncertainty. Understanding and monitoring shale oil/gas development over large regions
are critical for both energy policies and environmental protection. However, there are currently no
applicable methods to track the spatio-temporal dynamics of shale oil/gas development. To fill this
gap, we propose a new NDVI Trajectroy Matching algorithm to track shale oil/gas development
using the annual Landsat NDVI composite time series from 2000 to 2020. The results reveal that our
algorithm can accurately extract the location and time of shale oil/gas exploitation in Eagle Ford and
Three Forks, with an accuracy of 83.80% and 81.40%, respectively. In the Eagle Ford area, accuracy
for all disturbance year detection was greater than 66.67%, with the best in 2011 and 2019 at 90.00%.
The lowest accuracy in the Three Forks area was 63.33% in 2002, while the highest accuracy was
93.33% in 2019. In conclusion, the algorithm can effectively track shale oil/gas development with
considerable accuracy and simplicity. We believe that the algorithm has enormous potential for other
applications, such as built-up regions, forests, farmlands, and water body expansion and contraction
involving vegetation damage.

Keywords: shale oil/gas; long-term sequence; NDVI trajectory matching

1. Introduction

In 2020, the Financial Times reported that oil prices in the United States crashed into
the negative territory for the first time in history as the evaporation of demand caused
by COVID-19 left the world awash with oil and short of storage [1]. Since the industrial
revolution, energy has become a material guarantee for the survival and development of
human society [2]. It is an essential foundation for maintaining lighting, transportation,
catering, heating, cooling, and automated management systems [3,4].

Energy is also the most fundamental driving force for national development and
economic growth [5,6]. Reserves and the development and utilization of energy are essential
elements for the healthy and stable development of a country [7]. After more than two
decades of development, the shale gas revolution, which began in the 1990s, has changed
the pattern of energy use in the United States and around the world [8]. Shale oil/gas
well platforms are the carrier of shale gas extraction. Thereby, obtaining datasets of shale
oil/gas well platforms is the basis for analyzing energy developments in the United States,
especially in current special epidemic period.

Currently, datasets on shale oil/gas extraction are often obtained from government
statistics and field visits [9]. These datasets often give only a general range of wells and
mines, lacking a long time series of data for shale oil/gas monitoring [10,11]. It is difficult to
continuously obtain a spatial and temporal distribution of shale oil/gas development map.
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Optical remote sensing images, as massive datasets for systematic exploration of the
Earth from space during the daytime, have considerable advantages in land cover and land
use surveys and change monitoring [12,13]. The local land cover and ecological environ-
ment are often artificially changed during the process of shale oil/gas development [14].
Therefore, acquiring land cover through a long-term remote sensing time series to monitor
land disturbance provides the most important and practical method for monitoring shale
oil/gas development [15].

Seto et al., investigated land disturbance studies using multitemporal optical remote
sensing to analyze global urban land expansion, and presented a meta-analysis of 326 stud-
ies to map urban land conversion [16]. Gong et al. mapped Global Annual Impervious
Areas (GAIA) from 1985 to 2018 using the entire archive of 30 m resolution Landsat images
on the Google Earth Engine platform to understand the process of urbanization and land
use/cover change as well as the impacts on the environment and biodiversity [17].

Recently, Liu et al., also mapped global annual urban dynamics (GAUD) from 1985 to
2015 at a 30 m resolution using numerous surface reflectance data from Landsat to provide
basic information of global environmental change and contribute to applications related to
climate mitigation and urban planning for sustainable development [18].

Moreover, methods suitable for land disturbance monitoring with multi-temporal
remote sensing have been proposed, focusing on the accurate detection of the position
or time point of disturbances [19–25]. Earlier algebra-based and statistics-based methods,
including image differencing, image rationing, and Change Vector Analysis (CVA), applied
the threshold selection procedure to detect disturbed areas [26–31].

Although the above techniques are easier to implement, they may fail to provide
comprehensive information regarding changes [32]. It was found that using feature space
transformation operation [33,34] can provide additional textural and spatial features to
solve the problem of the homologous spectrum and heterogeneous spectrum brought by
spectral interpretation and reduce “salt and pepper effects” [35].

Consequently, a large number of algorithms are proposed to make the results more
accurate, including Machine Learning (Decision Tree (DT), Support Vector Machine (SVM),
Random Forest (RF)) [36–38], even deep learning (Deep Neural Network (DNN), Recurrent
Neural Network (RNN), Long Short Term Memory (LSTM)) [39–41]. Image segmentation
is a key technology in these object-based interpretations. The quality of segmentation
directly affects the accuracy of feature-based detection [42,43].

Due to the complexity of geographic space, it is difficult to adaptively select the
segmentation scale, especially for long-term sequence land disturbance. In addition, the
time scale is also one of the important factors of land disturbance [44,45], and some scientists
have designed different algorithms to remove the effect of seasonal characteristics of plants
on long time series [46–50]. There are methods that combine the position and time point of
disturbances, like Breaks For Additive Seasonal and Trend (BFAST) [44], Landsat-based
detection of Trends in Disturbance and Recovery (LandTrendr) [45,51,52].

For example, the LandTrendr method uses both trajectory segmentation and temporal
segmentation to capture both abrupt and slow change phenomena and the broad features
of the trajectory in the Landsat time series. While it is often necessary to simulate the
possibility of changes in all disturbance values throughout time, such as continuous rise,
continuous fall, rise and fall back and forth, and more, it may waste a great deal of
computing time in certain cases.

Vegetation Indices (VI) play a vital role in remote sensing analysis. They are pretty
easy to analyze and essential for both quantitative and qualitative measurements of veg-
etation cover and properties of soil [32,34,53]. Furthermore, they can reduce the impacts
of topographic effects [54] and illumination by using NDVI, which is more suitable for
long-term sequence land disturbance monitoring. However, to date, there are no refined
spatio-temporal shale oil/gas maps, and shale oil/gas extraction’s spatial and temporal
characteristics have not been widely discussed.
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Existing disturbance monitoring algorithms, which tend to focus only on the spatial
and temporal variability of the features, rarely consider the quantitative characteristics of
the disturbance. In this paper, we focus on developing a method to pinpoint shale oil/gas
platform construction location and time over large regions, with the 30 m resolution Landsat
time series. Our proposed method is based on the observed fact that the construction of
shale oil/gas platforms often causes long-term damages to vegetation at the sites, and their
sizes are large enough to be captured with Landsat time series. Although high-resolution
images are much better to detect shale oil/gas platforms, especially with the help of deep
learning technologies, they are often very expensive to cover large regions, and historical
archives are generally not available in most cases.

2. Materials and Methods
2.1. Study Areas

Shale oil/gas plays are widely distributed in the United States (Figure 1a). The United
Nations Conference on Trade and Development (UNCTAD) reported that the United States
shale gas reserves are the fourth largest in the world (17.7 trillion cubic meters) [55]. In
2000, shale gas provided only 1% of natural gas production. By 2010, however, it grew
rapidly to over 20%, mainly due to energy mining technology advancements [56]. The
main shale play areas in Figure 1a represent the major shale plays in the U.S. The location
information is published by the Energy Information Administration (EIA) [57]. In this
study, we selected two typical shale oil/gas production areas in the United States as the
study area: Eagle Ford (Figure 1b) and Three Forks (Figure 1c).

Figure 1. The distributions of main shale gas plays in 48 states of the United States, and the locations
of Eagle Ford and Three Forks in the United States.
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Eagle Ford shale (discovered in 2008) is a late Cretaceous sedimentary rock stratum,
located below most parts of southern Texas, covering an area of 3000 square miles [58].
It is composed of an organic-rich marine shale found in the outcrop. This hydrocarbon-
producing formation rich in oil and gas extends 400 miles east of Texas from the Texas and
Mexico border in Weber and Maverick counties. The shale gas play is 50 miles wide, with
an average thickness of 250 feet and a depth of 4000 to 12,000 feet [59]. Shale contains a
large amount of carbonate, which makes shale fragile and easier to carry out hydraulic
fracturing to produce oil or natural gas.

The Three Forks play has emerged as a significant exploration and development target
for the Williston Basin oil and gas industry. The play’s primary acreage is located in western
North Dakota. Since the discovery of the Parshall oil field, the state’s daily oil output has
climbed from approximately 90,000 B/D (1990–2005) to more than 1.4 million B/D in
2019 [60]. While recent global events have delayed development and production, over
15,400 horizontal wells have been drilled and finished within the Bakken and Three Forks
Formations to date, producing over 3.3 billion barrels of oil from North Dakota alone [61].

2.2. Workflow

Figure 2 shows the flow chart for this study, which is divided into three parts: source
data, processing steps, and result evaluation. We first retrieve the Landsat-7 and Landsat-8
data, then apply a multi-temporal rolling strategy together with the mixed NDVI com-
positing method to generate a 20-year NDVI composite time series for each pixel. Then,
based on the NDVI value’s distributions of vegetation and the shale oil/gas well platforms
obtained from samples, we simulate the NDVI curves with changes occurred in each year
from 2000 to 2020, by generating Gaussion random numbers. The Manhattan distances are
then calculated between the 20-year NDVI composite time series and the simulated change
template pixel by pixel.

Figure 2. Research framework of shale oil/gas well detection.

The year corresponding to the smallest distance is the year in which the shale oil/gas
well platform was built. Simultaneously, we use a distance threshold to effectively reduce
the false alarm rate. If a calculated minimum distance is larger than that threshold, that
pixel will be labeled as an other type of change and will not be considered relative to
shale oil/gas development. Finally, the shale oil/gas platform’s area attribute is used to
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eliminate some isolated pixels and large patches. The visual interpretation is completed
with high-resolution Google Earth historical images.

2.3. Data Preprocessing
2.3.1. Data

Landsat-7 and Landsat-8 satellite images were used in this study. Landsat-7 is the
world’s longest-running optical remote sensing satellite collecting imagery at the 30 m
scale. It was launched in 1999 and is equipped with the Enhanced Thematic Mapper Plus
(ETM+). ETM+ detects reflected solar radiation and emitted thermal radiation passively,
using eight bands of sensors that span the infrared to the visible light spectrum. Landsat-7
has collected a vast amount of high-quality remote sensing image data since its launch and
is now the longest-running land satellite in terms of observation time.

Due to the unexpected failure of the Landsat-7 ETM+ on-board scan line corrector
(SLC) in May 2003, which resulted in data gaps and 22% pixels loss in the obtained
images [62]. However, the ETM+ data are commonly used for land cover change analysis
due to their long time archive [63–65]. NASA launched the Landsat-8 satellite in 2013,
which has the exact spatial resolution and spectral characteristics of the Landsat-7 satellite.
The Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) are aboard the
Landsat-8 satellite. Landsat-7 and Landsat-8 are sun-synchronous polar-orbiting satellites
with a 16-day equatorial repetition period, and both acquire images at a spatial resolution
of 30 m [66].

We accessed and processed satellite data on Google Earth Engine (GEE). GEE is a
cloud-based platform that allows users to access and use a wide range of remote sensing
data, including a substantial number of preprocessing, calibration, and correction products.
Google also provides the computing power for planetary-scale geospatial analysis [67]. We
used GEE to retrieve Landsat-7 and Landsat-8 data for this study (USGS Landsat-7 and
Landsat-8 Collection 1 Tier 1 TOA Reflectance). The Landsat TOA Tier 1 collection on GEE
comprises data with calibrated reflectance values of the highest geometric and radiometric
quality [68], making it appropriate for time series analysis [69].

Simultaneously, the TOA spectral features accurately match ground characteristics and
efficiently capture ground disturbance phenomena. We also used high-resolution historical
images from Google Earth to validate our classification results [52]. Google Earth has a
variety of high-resolution satellite images, and the data is regularly updated, making it
ideal for evaluating change detection results. Table 1 shows the specifics of the data we use.

Table 1. The remote sensing data used in this study.

Data Set Data Name Spatial Resolution Date Source

Landsat
Landsat-7/ETM+ 30 m 11 January 2000–16 November 2021 GEE 1

Landsat-8/OLI 30 m 15 January 2014–10 December 2021 GEE

High-resolution data DigitalGlobe Imagery / 2000–2020 Google Earth
1 Google Earth Engine (USGS).

2.3.2. Data Preparation

All Landsat-7 and Landsat-8 datasets were released with preprocessing metadata
about cloud coverage for each scene, as well as cloud and cloud shadow information
for each pixel. The Quality Assessment (QA) Bands [70] in Landsat is a bitmask that
provides information about pixel-level clouds and cloud shadows. We mask all pixels with
clouds or cloud shadows based on the information in the QA Bands. It is worth noting
that low-quality pixels in Landsat-7/ETM+ images frequently lack entire spectral bands,
particularly around the image’s periphery. Before final use, these parts must be recognized
and eliminated.

We generate a low-quality ETM + pixel mask by examining bands 1–5 and 7 of a
Landsat-7 image using a simple and effective method [71]. The gap generated by SLC-OFF
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is also included in this mask. If the product of the corresponding positions of the six
bands equals zero, the pixel is of low quality and should be removed. Following these
two mask-processing steps, the remaining pixels constitute the images in the following
compositing process.

Using the method of Kennedy et al. [51], we applied the harmonizationRoy function
on the filtered image collections to coordinate the Landsat-8/OLI images with the Landsat-
7/ETM+, ensuring that the spectral parameters of the Landsat sensor remain consistent.
We utilized the TOA spectral transformation coefficient [72] in this method, and the band
conversion encompasses six bands: blue (B1), green (B2), red (B3), near-infrared (B4), short
wave infrared 1 (B5), and short wave infrared 2 (B7). The band selection is based on
Landsat-7. Simultaneously, to ensure consistency, we renamed the band corresponding to
Landsat-7 in Landsat-8 [73].

2.3.3. Annual NDVI Composite

Since Landsat-7/ETM+ was made available to the public for free in 2008 [74], a vast
number of 30 m resolution optical remote sensing images have been collected into GEE.
However, their use has been severely limited because of cloud and cloud shadow pollution
and a lack of algorithms to evaluate them. As a result, for a long time, most applications
had been restricted to small areas that can be covered with single imagery [16]. Researchers
have established two primary ways to deal with clouds in optical remote sensing images:
(1) direct but arduous mapping efforts and (2) picking only high-quality clear pixels in
partially polluted images through a multi-temporal image compositing process according
to specific criteria.

The automatic cloud classification approach based on a single Landsat image achieves
excellent accuracy in detecting clouds and cloud shadows [75–78], and those based on multi-
temporal images can achieve better results [79–81]. However, supervision classification
algorithms are generally time-consuming and labor-intensive, making them unsuitable for
widespread use. In the beginning, satellite image compositing was intended to pick up
pixels without cloud or cloud shadow pollution pixel by pixel for the Advanced Very High
Resolution Radiometer (AVHRR) [82].

This method seeks to produce synthetic products of clear image pixels from different
times, even if no one clear image is available in a given period. Consequently, it may use
the data from all incompletely polluted images. The Maximum NDVI Value approach and
the maximum apparent temperature method are the most widely employed compositing
methods [82]. Both are based on the coarse resolution AVHRR images, and clouds and
cloud shadows affect the vegetation surface’s NDVI value and perceived temperature.

The Maximum NDVI Value method works well over vegetation but fails over water
and bare land surfaces because the NDVI value of clouds can be greater than that of bare
land and water surfaces [83]. The maximum apparent temperature technique assumes that
the surface remains stable over a short time. However, the earth’s surface may change over
a long time, and the surface may also vary significantly over a more extended period. Even
on a gloomy summer day, the temperature of pixels may be higher than on a clear winter
day [71]. Landsat’s revisit duration is 16 days, which indicates that more data is required
to gather sufficient observations from Landsat. Thus, the synthesis period will be long.

In this research, we utilized the nominal rolling compositing method of multi-temporal
data to obtain adequate data to collect clean pixels, as shown in Figure 3. We used three
years of Landsat-7 images from 2000 to 2013, including images from the current and the
immediate following two years, regardless of their cloud coverage to ensure that there
are enough numbers of observations for image compositing. For instance, we can create a
nominal 2000 NDVI composite using images from 2000, 2001, and 2002; a nominal 2001
NDVI composite using images from 2001, 2002, and 2003; and so on.

Using the rolling method, we obtained 13 years of annual synthetic Landsat-7 images
from 2000 to 2013. We used the previous harmonization approach described in Section 2.3.2
to harmonize Landsat-7 with Landsat-8 from 2014 to 2020. Similarly, we collected Landsat-7
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and Landsat-8 mosaics using a two-year rolling method from 2014 to 2020, considering
that the number of observations now significantly increased. Finally, from 2000 to 2020, we
generated 20 annual Landsat NDVI composites from a high-quality NDVI time-series free
of cloud and shadow contamination.

Although having certain drawbacks, the Maximum NDVI Value method is straightfor-
ward, simple, and quick, allowing NDVI compositing at a broad scale, even at the global
scale, and can ensure high-quality data from the growing season. In this study, we adopted
the mixed NDVI composite approach proposed by Zhang et al. [71], adapted from the
Maximum NDVI Value method and generated NDVI composites on GEE using various
treatments for vegetation, barren land, and water.

We first established two thresholds for distinguishing vegetation (maximum NDVI
> 0.4) and water bodies (minimum NDVI < −0.3) from others. Then, we generated a
composite with median NDVI and replaced all median NDVI values more than 0.4 with
the Maximum NDVI value in the NDVI image collection and all values less than −0.3
with the minimum NDVI value. This method successfully mitigates the effects of some
seasonal and transitory variations in feature categories. In addition, we multiplied each
pixel’s final NDVI value by 10,000 and transform it to an int16 integer to reduce file storage
space. Finally, we obtained an annual mixed NDVI composite.

Figure 3. The rolling method was used to generate a multi-temporal NDVI composite time series
from 2000 to 2020.

2.4. Shale Oil/Gas Platforms Appearance in Remote Sensing Images

The infrastructure for extracting, processing, and temporarily storing shale oil/gas is
the shale oil/gas well platform. This is the carrier of surface shale oil/gas well building
activity. In general, the development of a shale oil/gas well platform is often accompanied
by the destruction of vegetation. Then, the concrete structure of artificial buildings is created
in the damaged region. At the same time, it is challenging to extract shale oil/gas well
platforms due to their poor image characteristics, broad background vegetation coverage,
and the influence of noise in Landsat images.

The majority of shale oil/gas well platforms are concrete structures with substantially
lower NDVI values than vegetation, which is represented in the brightness difference
between the shale oil/gas well platform and the vegetation background. At the same time,
the NDVI value will drop dramatically once a piece of vegetated land is disturbed. As seen
in Figure 4, the location was covered with vegetation from 2000 to 2013, and the NDVI
value remained stable around 0.6 but dropped significantly below 0.2 in 2014 when the
vegetation was destroyed for a shale oil/gas well platform. From 2014 through 2020, the
location’s NDVI value remained stable at roughly 0.15.
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Figure 4. Changes in NDVI value and ground cover before and after shale oil/gas well construction
from 2000 to 2020.

2.5. The Gaussian-Manhattan Models
2.5.1. Simulated NDVI Trajectory Templates

Land disturbance usually occurs while a shale oil/gas well platform is built. As a result,
the change in NDVI value in a long time series can be effectively used to detect this
occurrence. We discover that stable vegetation land type value will only fluctuate a little
around 0.6 in the long-term NDVI sequence. The disruption of the land type caused by
building a shale oil/gas well platform is frequently a quick occurrence. Once shale oil/gas
extraction begins at a specific location, the NDVI value will plummet to around 0.15 in the
following year.

As a result of the statistics of NDVI values of various land types, we estimate that the
average NDVI value of vegetation types is about 0.6 with a variance of 0.05, but the average
NDVI value of shale oil/gas well platforms is about 0.15 with a variance of 0.05. Then, as
shown in Figure 5, we mimic the converting process of vegetation to shale oil/gas well
platform in different years by generating Gaussian random numbers, with the consideration
of the above discussed NDVI distribution patterns for different land types.

Figure 5a–t show that land disturbance happened in a specific year during the period
from 2001 to 2020. The figure also shows that the NDVI value has changed dramatically in
the corresponding year. Figure 5u denotes a stable shale oil/gas platform, with a mean of 0.15
and a variance of 0.05. Figure 5v denotes stable vegetation, with a mean of 0.60 and a variance
of 0.05. Figure 5w denotes stable water with a mean of −0.45 and a variance of 0.05.
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Figure 5. The 24 Gaussian random number templates, (a–t) the construction of a shale oil/gas
well platform in the year of the curve mutation point, (u) a stable shale oil/gas platform, (v) stable
vegetation, and (w) stable water.

2.5.2. Model Matching with the Minimum Manhattan Distance

A distance is a simple similarity measure, which is to calculate the distance of an
unknown category vector to a known category vector [84]. The smaller the distance, the
more similar the two vectors are. The basic principle of the minimum distance method is
that, in an N-dimensional space, the minimum distance method first calculates the mean of
each dimension of each known class XA and similarly calculates the mean of another class
XB. We use µA,µB to represent their mean values.

Then, for a feature vector x to be classified, we only need to calculate the distance
D(x, µA) and D(x, µB) to XA and XB, respectively. Then, we find the smallest values in
D(x, µA) and D(x, µB). If the former is small, x belongs to class A. Otherwise, it belongs to
class B. We use the Manhattan distance to measure the distance between two n-dimensional
vectors as Equation (1), the X1 is (a1, a2, . . . , an), X2 is (b1, b2, . . . , bn). The Manhattan
distance has the advantages of being quick to calculate and simple to implement.
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D(X1, X2) =
n

∑
k=1
|ak − bk| (1)

We use the NDVI images from 2000 to 2020 as our vector to be classified, and a
total of 24 random number templates simulated above as our known classes. The length
of the NDVI time series for a specific pixel is 21, consistent with the length of NDVI
trajectory templates, we set from 2000 to 2020 (Figure 6). We match the unknown pixel
with random number templates, find the minimum Manhattan distance, and label it with
the corresponding class category. After assigning the label, we can easily pinpoint the time
when the change occurred since we already know that each NDVI trajectory has a fixed
occurrence time point.

Figure 6. The Manhattan distance is used to calculate the distance between the actual NDVI sequence
in the figure and the simulated NDVI sequence. Four cases are placed in the figure: (a) indicates that
the disturbance occurred in 2007; (b) suggests that the disturbance occurred in 2011; (c,d) suggest
that no land disturbance has occurred, (c) suggests stable vegetation; and (d) suggests a stable shale
oil/gas platform.

2.6. Post-Processing
2.6.1. The Minimum Distance Threshold

Due to the complexity and diversity of landscapes, we discovered that calculating the
location and built year of a shale oil/gas well platform directly through template matching
will result in a significant false alarm rate. This indicates that many pixels that are not
shale oil/gas well platforms will be labeled as shale oil/gas well platforms. For example,
the construction of a shale oil/gas well mining platform is frequently accompanied by the
construction of roads and pipelines, which has an impact on the accuracy. Let us suppose
that a pixel changed over time, and the change is vegetation conversion to a shale oil/gas
well platform.

In that case, the minimum distance calculated from the random number templates we
set must be less than that calculated from pixels with other kinds of changes. As a result,
we explore establishing a minimum distance criterion to reduce false alarms. The minimum
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distance obtained by pixels with other changes is greater than this threshold if the location
is a land disturbance caused by an existing shale oil/gas well platform. The estimated
minimum distance is then compared to that threshold. A label assigned will be kept if the
corresponding minimum distance is smaller than that threshold. Otherwise, we classify it
into other classes, significantly reducing the false alarm rate.

We determine the threshold with random simulation. We randomly select 500 shale
oil/gas well platform sample points and 500 sample points with other disturbances. Then,
we retrieve the minimum Manhattan distance for each of sample to the NDVI trajectory
templates. A random simulation experiment will utilize the average minimum Manhat-
tan distances of the 500 points with the disturbance caused by the construction of the
shale oil/gas well platform and the 500 points with other disturbances. We conducted
5000 random simulation experiments to acquire the minimum distance distribution of
each category.

Disturbances caused by different factors can be distinguished extremely effectively
in the event of a large number of random simulations. It is easy to find that the threshold
is about 18,400 in Eagle Ford (Figure 7a) and 16,200 in Three Forks (Figure 7b). It is
worth noting that our thresholds are for a specific disturbance related to shale oil/gas well
platform construction. Some pixels in the classification process of vegetation and water
bodies have a minimum distance greater than the defined threshold and are thus classified
as other categories.

Figure 7. 5000 simulation calculations are used to determine the minimum distance threshold.
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2.6.2. Filtering with the Geometric Area Property

Setting the minimum distance threshold for truncation helps to reduce the false alarm
rate. However, some too large or too small regions are still designated as shale oil/gas well
platforms. We noticed that the shape of shale oil/gas well platforms are often rectangular,
with a comparable size and shape. In other words, the area’s geometric properties can
be efficiently screened. We binarize the final land disturbance map, classifying the pixel
values (1–20) of shale oil/gas disturbance as 1 and all other classes as 0.

Then, we use GDAL to vectorize the binarized image and calculate the area. We use
the geometric attribute of the area to delete any portions that are too large or too small.
To determine the best-reserved shale oil/gas well area range, we first sort the vector data
by area, then define four intervals, randomly sample 100 vector spots within these four
intervals, and perform visual interpretation to determine the correct number of selected
areas. Table 2 displays the findings of our verification.

We can see that the accuracy of the shale oil/gas well platform is very low between
(0, 3000] and (60,000, 125,426], whereas (3000, 30,000] and (30,000, 60,000] are almost shale
oil/gas well platforms, and thus we delete regions with an area less than 3000 and greater
than 80,000 to remove isolated pixels and other large artificial buildings. We found some
pixels from different years in the same shale oil/gas well platform. A simple and effective
method is used to solve this problem. We take a vote on the pixels in each shale oil/gas
well vector spot, calculate the number of pixels with the most pixels from the same year in
that patch, and determine the year of that pixel as the year of this shale oil/gas well.

Table 2. The accuracy of shale gas well platform sample points at different area intervals.

Area Interval (m2) Right Points False Points Total Points Accuracy

(0, 3000] 3 97 100 3%
(3000, 30,000] 94 6 100 94%

(30,000, 60,000] 91 9 100 91%
(60,000, 125,426] 11 89 100 89%

3. Results
3.1. Multi-Year Disturbance Detection Map

Two specific shale oil/gas well regions in the United States were studied in this re-
search: Eagle Ford (Figure 8) and Three Forks (Figure 9), a–d in Figures 8 and 9 represent
details of shale oil/gas platform extraction. The land disturbance cause by the develop-
ment of a shale oil/gas well platform from 2000 to 2020 was identified together with the
construction period and locations of the shale oil/gas well platforms.

3.2. Detection Accuracy Analysis
3.2.1. Classification Accuracy

To verify our algorithm’s accuracy, we randomly picked 500 vector spots from Eagle
Ford and Three Forks. As we treat a shale oil/gas well platform as a whole entity, we can
directly check the class accuracy of the vector spots. We verified the results using Google
Earth high-resolution images and careful visual inspection. If both our chosen sample point
and the feature in Google Earth are shale gas well platforms, the point is correctly classified;
otherwise, it is incorrectly classified. Table 3 shows that the accuracy in Eagle Ford was
83.80% and in Three Forks was 81.40%.
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Figure 8. Disturbance map of shale gas wells built in Eagle Ford from 2000 to 2020.

Figure 9. Disturbance map of shale gas wells built in Three Forks from 2000 to 2020.
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Table 3. Results of the accuracy verification derived from 500 random shale oil/gas vector spots.

Right Vector Spots False Vector Spots Total Vector Spots Accuracy

Eagle Ford 419 81 500 83.80%
Three Forks 407 95 500 81.40%

3.2.2. Disturbance Year Accuracy

We also verified the disturbance year accuracy of shale oil/gas well platforms. This
was accomplished by identifying vector spots with actual shale oil/gas platforms based on
visual interpretation of the shale oil/gas multi-year disturbance results. For the Eagle Ford
area, we chose 30 vector spots in which the actual landscape was a shale gas well platform
each year from 2000 to 2020. We compared the disturbance time of each year with the right
sample year by year using Google Earth high-resolution historical images.

The best accuracy was 90.00% in 2011 and 2019, while the lowest was 66.67% in 2001
(Table 4). At the same time, the overall accuracy for all the 20 years was 81.00%. The same
verification method was used in Three Forks. The best accuracy was 93.33% in 2019, the
lowest accuracy was 63.33% in 2002, and the overall accuracy for all the 20 years was 78.99%
(Table 5). Here, we also adopted a confidence interval of ±1 years in the comparison in
view of the uncertainty in visual interpretation of the change year [85,86].

When assessing the reliability of our maps using a fuzzy accuracy assessment classi-
fication, the accuracy increased moderately. In Eagle Ford, when the previous year was
included in the accuracy evaluation, the lowest accuracy was 73.33% in 2001 and 2004, and
the highest accuracy was 96.67% in 2011 and 2018; when the latter year was included in the
accuracy evaluation, the lowest accuracy was 83.33% in 2001, 2002 and 2012, the highest
accuracy was 96.67% in 2014 and 2020. In Three Forks, the lowest accuracy was 73.33%
in 2001 and 2002 and the highest accuracy was 96.67% in 2019 when the previous year
was included in the accuracy evaluation. When the latter year was included, the lowest
accuracy was 80.00% in 2002 and 2003, the highest accuracy was 96.67% in 2008, 2015,
and 2019.
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Table 4. The accuracy of the disturbance year accomplished by selecting 30 shale oil/gas well samples in Eagle Ford each year.

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

2000 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2001 20 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2002 5 22 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2003 3 3 26 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2004 0 3 1 21 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2005 0 0 0 6 24 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2006 0 0 0 2 3 22 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2007 0 0 0 0 2 4 26 2 0 0 0 0 0 0 0 0 0 0 0 0
2008 0 0 0 0 0 1 1 26 3 0 0 0 0 0 0 0 0 0 0 0
2009 0 0 0 0 0 0 2 2 23 2 0 0 0 0 0 0 0 0 0 0
2010 0 0 0 0 0 0 0 0 4 25 2 0 0 0 0 0 0 0 0 0
2011 0 0 0 0 0 0 0 0 0 3 27 1 0 0 0 0 0 0 0 0
2012 0 0 0 0 0 0 0 0 0 0 1 22 2 0 0 0 0 0 0 0
2013 0 0 0 0 0 0 0 0 0 0 0 3 24 1 0 0 0 0 0 0
2014 0 0 0 0 0 0 0 0 0 0 0 4 4 26 0 0 0 0 0 0
2015 0 0 0 0 0 0 0 0 0 0 0 0 0 3 25 3 0 0 0 0
2016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 23 3 0 0 0
2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 25 3 0 0
2018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 26 2 0
2019 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 27 1
2020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 26
2021 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

Total 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
PA 1 66.67 73.33 86.67 70.00 80.00 73.33 86.67 86.67 76.67 83.33 90.00 73.33 80.00 86.67 83.33 76.67 83.33 86.67 90.00 86.67

PA[−1] 73.33 80.00 96.67 73.33 83.33 83.33 90.00 93.33 86.67 90.00 96.67 76.67 86.67 90.00 83.33 86.67 93.33 96.67 90.00 90.00
PA[+1] 83.33 83.33 90.00 90.00 90.00 86.67 90.00 93.33 90.00 93.33 93.33 83.33 93.33 96.67 93.33 90.00 90.00 90.00 93.33 96.67

1 Product Accuracy (%).
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Table 5. The accuracy of the disturbance year accomplished by selecting 30 shale oil/gas well samples in Three Forks each year.

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

2000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2001 21 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2002 5 19 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2003 3 5 23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2004 0 3 1 25 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2005 0 0 4 2 20 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2006 0 0 0 2 5 22 2 0 0 0 0 0 0 0 0 0 0 0 0 0
2007 0 0 0 0 1 5 24 1 0 0 0 0 0 0 0 0 0 0 0 0
2008 0 0 0 0 0 0 3 25 4 0 0 0 0 0 0 0 0 0 0 0
2009 0 0 0 0 0 0 1 4 21 2 0 0 0 0 0 0 0 0 0 0
2010 0 0 0 0 0 0 0 0 4 26 3 0 0 0 0 0 0 0 0 0
2011 0 0 0 0 0 0 0 0 1 2 22 4 0 0 0 0 0 0 0 0
2012 0 0 0 0 0 0 0 0 0 0 4 21 2 0 0 0 0 0 0 0
2013 0 0 0 0 0 0 0 0 0 0 1 2 25 1 0 0 0 0 0 0
2014 0 0 0 0 0 0 0 0 0 0 0 3 2 27 1 0 0 0 0 0
2015 0 0 0 0 0 0 0 0 0 0 0 0 1 1 26 2 0 0 0 0
2016 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 24 2 0 0 0
2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 25 3 0 0
2018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 25 1 0
2019 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 28 2
2020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 25
2021 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

Total 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
PA 1 70.00 63.33 76.67 83.33 66.67 73.33 80.00 83.33 70.00 86.67 73.33 70.00 83.33 90.00 86.67 80.00 83.33 83.33 93.33 83.33

PA[−1] 73.33 73.33 83.33 86.67 80.00 83.33 86.67 86.67 83.33 93.33 83.33 83.33 90.00 93.33 90.00 86.67 90.00 93.33 96.67 90.00
PA[+1] 86.67 80.00 80.00 90.00 83.33 90.00 90.00 96.67 83.33 93.33 86.67 76.67 90.00 93.33 96.67 93.33 86.67 90.00 96.67 93.33

1 Product Accuracy (%).
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4. Discussion
4.1. Comparison with Other Algorithms

There are many algorithms that consider different land types characteristics to detect
land disturbances, like Breaks For BFAST [44] and LandTrendr (LT) [45]. However, the
long-term sequence quantitative and digitized disturbance phenomenon simulation was
lacking. The LT algorithm is data-intensive and heavily reliant on random accesses to
the time series. The input for each pixel is a spectral band or an indexed annual time
series, plus the date of each observation, and computing the vertices entails generating
multiple models that include different groupings of input values, which is computationally
complex [51].

The NDVI Trajectory Matching algorithm can successfully locate shale oil/gas wells
and pinpoint the construction time with a simple minimum distance method that is easy
to understand and implement with light computation. We accurately captured the land
disturbance characteristics of shale oil/gas before and after development. This is because,
once the construction from vegetation to the shale oil/gas well platform occurs, the sudden
change of NDVI value in that year is very clear, forming a strong change signal that can
easily be captured by the Landsat NDVI time series.

What must be mentioned here is that the proposed method relies on vegetation change
signals. That is, if a shale oil/gas well was constructed on a piece of bare land without
vegetation, the proposed algorithm would not work as expected. The algorithm can
effectively extract the area of the shale oil/gas well platform and simplify the disturbance
scene of the LT method. The rolling NDVI compositing method in Section 2.3.3 can also
help to suppress some inter-annual disturbances, such as fallow lands.

From the results of our assessment, we can see that the classification accuracy of
shale oil/gas well platform extracted by this algorithm was 83.8% in Eagle Ford and 81.4%
in Three Forks, which are slightly lower than the accuracy reported by certain current
supervised learning algorithms, such as machine learning and deep learning [39]. However,
our algorithm does not require a great deal of preliminary sampling work, which is often
time-consuming and labor-intensive work.

Supervised learning methods, such as random forest or neural networks, also require
a large amount of data for training and require multiple bands of data added to the training
to achieve better results. In comparison, we use only one band of NDVI, which greatly
reduces the data storage space. The proposed algorithm can achieve a fast calculation
speed when using the Manhattan distance. Of course, it should be mentioned that the
generalization of our algorithm is not as good as the current deep learning methods.

4.2. Influence of Different Vegetation Growth Conditions

We can see that the classification accuracy and mean disturbance year accuracy were
higher in Eagle Ford at low latitude than in Three Forks at high latitude. Figure 1a shows
the two areas’ relative positions. Simultaneously, when we conduct a random simulation
experiment, we discover that the minimum distance threshold of the two regions is also
different. This is because the distribution of NDVI value of vegetation that we set is the
same for these two regions; however, the vegetation ecological environment of the two
regions is different due to the different geographical settings.

Compared with the Eagle Ford area at low latitude, the land in the Three Forks area at
high latitude is relatively barren with a low overall NDVI value. When a shale gas well
mining platform is built, the NDVI curve from vegetation to shale gas platform in Eagle
Ford changes dramatically and is easily detected. In contrast, the NDVI curve in Three
Forks changes less sharply, resulting in some false detection.

As a result of comparing the two research areas, we can see those different geographical
locations have different vegetation ecological environments, which are difficult to describe
using a unified random number template. Therefore, establishing an appropriate random
number template according to the specific study area is an issue worthy of attention.
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4.3. Limitations of the Shale Oil/Gas Research

In this paper, we monitored the activities of shale oil/gas well platform construction.
When vegetation is destroyed and a new shale oil/gas platform is built, the signal of NDVI
change is well captured by our algorithm. However, we can only interpret this as an indirect
indication of oil/gas production activities, as all we know about the shale oil/gas well
platform extracted through the algorithm is that a shale gas well platform’s construction
has occurred at this location. We cannot determine whether the shale oil/gas platform is
still in operation or has been abandoned. It is difficult to monitor this process directly using
remote sensing images.

Of course, if a shale oil/gas platform is in operation, waste gas might be burned to
generate a flame. In such a case, night light remote sensing images may be a good choice;
however, the current night light image resolutions are relatively low, making it difficult
to detect shale oil/gas platforms. Furthermore, waste gas is not burned at every oil/gas
extraction site. If we want to know whether a shale gas platform is in operation, we may
need to conduct field investigations or gather additional data, which is a challenge and
must be addressed in the future.

5. Conclusions

Shale oil/gas, as a cleaner energy, is now widely used in the United States and around
the world. Its development can have huge impacts on and, at the same time, is also deeply
affected by energy markets, especially in an era with high economic uncertainty. Fur-
thermore, its development also inevitably causes negative impacts on local environments.
Understanding and monitoring shale oil/gas development over large regions is critical for
energy policies and environmental protection. However, there are currently no applicable
methods to track the spatio-temporal dynamics of shale oil/gas development.

To fill this gap, we designed a new NDVI Trajectory Matching algorithm to detect
shale oil/gas development using the annual Landsat NDVI composite time series from
2000 to 2020. Compared with other methods, our proposed algorithm takes into account
both speed and accuracy, greatly simplifies the calculation, and effectively extracts the
location and construction time of shale oil/gas well platforms in two regions in the U.S.A.
The reason behind the success of the proposed method is that the NDVI signal change
caused by the damage of vegetation by the development of shale oil/gas platforms is quite
strong and can be easily captured by the Landsat NDVI time series at the 30 m scale.

Remote sensing imagery at the Landsat scale have been well archived and are continu-
ing to grow due to new satellite sensors, such as the Landsat-9 and the Sentinel-2 series, to
cover the entire global land surface. These publicly open and free of charge data, together
with powerful cloud-based computation infrastructures, such as the GEE, all provide huge
potential for the proposed method to be applied to a much broader extent and allow data
about shale oil/gas development to be collected in a more economical and objective way.

Although the proposed method relies on the land cover change signal due to veg-
etation disturbance and post-processing is required to reduce false alarm, it can also be
applied to detect similar changes involving vegetation changes, such as urban expansion
to agricultural lands. That is to say, the NDVI Trajectory Matching algorithm has the
potential to be applied to other perturbation phenomena of land features, such as built-up
areas, forests, farmlands, and water body expansion and contraction if there are vegetation
disturbances occurring.
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