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Abstract: In recent years, convolutional neural network (CNN)-based methods have been extensively
explored for synthetic aperture radar (SAR) target detection. Nevertheless, the convolutional sam-
pling locations of CNNs cannot accurately fit vehicle targets due to the fixed sampling mechanism
in the convolutional kernel. In this paper, we focus on the vehicle target detection task in SAR
images and propose a novel rectangle-invariant rotatable convolution (RIRConv) to determine more
accurately the convolutional sampling locations for vehicle targets. Specifically, this paper considers
the shape characteristic of vehicle targets in SAR images, which always retain a rectangular shape
despite having varying sizes, aspect ratios, and rotation angles. The proposed RIRConv equips three
additional learnable attribute parameters, namely, width, height, and angle attributes, to adaptively
adjust the sampling locations in the convolutional kernel according to the targets. In addition, the
RIRConv applies a modulation mechanism to focus on the sampling locations that significantly affect
the output. Finally, the RIRConv is introduced into the single-shot multibox detector (SSD) to realize
SAR vehicle target detection. In this way, the feature representation capability of SSD for vehicle
targets can be enhanced, thus leading to higher detection performance. Notably, the proposed RIR-
Conv is “plug-and-play” and can also be used with other existing advanced technologies to achieve
higher detection performance. The experiments based on the measured miniSAR data validate the
effectiveness of the proposed method.

Keywords: synthetic aperture radar (SAR); vehicle target detection; rectangle-invariant rotatable
convolution (RIRConv)

1. Introduction

Synthetic aperture radar (SAR) imaging is not limited by time, illumination, and
weather constraints and can obtain large areas of high-resolution radar images with the
development of SAR sensor technology. With the acquisition of numerous SAR images in
recent years, SAR automatic target detection has become one of the vital issues studied by
researchers. An important branch in this field is SAR vehicle target detection, which is of
great significance in urban traffic management and military surveillance. During the past
few decades, constant false alarm rate (CFAR) methods [1,2], as one of the conventional
SAR target detection methods, have been extensively studied. However, the performance
of CFAR methods heavily depends on the statistical modeling of clutter. The land scene
where the vehicle targets are located is complex, and the interference of buildings, trees,
and other clutter is too severe to accurately establish the statistical model, thus restricting
the performance of CFAR methods.

With the improvement of computing power, target detection methods based on convo-
lutional neural networks (CNNs) are developing rapidly. These methods can be roughly
divided into two-stage and one-stage detectors. The two-stage detectors, such as region-
based CNN (R-CNN) [3] and Faster R-CNN [4], must first extract region proposals and
then perform further classification and regression. Without the proposal extraction step,
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one-stage detectors, such as You Only Look Once (YOLO) [5] and the single-shot multibox
detector (SSD) [6], are faster and more straightforward. Furthermore, unlike YOLO, SSD
combines the predictions in multi-scale feature maps, which is conducive to detecting
objects of various sizes. Therefore, SSD has been widely used in the optical target detection
task. Apart from optical images, SSD has also been adopted for SAR vehicle target detection
and performs better than conventional methods [7,8].

Nevertheless, a square kernel shape (e.g., 3× 3) is applied in the regular convolutional
layer, in which fixed locations are sampled for the convolution operation. Although a
stack of convolutional layers can increase the range of the receptive field, the shape of
the receptive field remains square. However, the vehicle targets in the SAR images we
are interested in mainly include cars, trucks, vans, and so on, which vary significantly
in terms of size, aspect ratio, and rotation angle and do not always maintain a square
shape. The convolutional sampling locations of CNNs cannot accurately fit the vehicle
targets, resulting in the limited feature representation ability of CNNs for the vehicle
targets. With the goal of enhancing the transformation modeling capability of CNNs, Dai
et al. [9] proposed the deformable convolution, which adjusts the sampling locations with
learned offsets to matching targets. However, it is mainly designed for general geometric
transformations without considering the characteristics of vehicle targets in SAR images.
As for vehicle target detection in SAR images, there are more rotation and scale variations,
but hardly nonrigid deformation. Furthermore, learning these additional offsets without
extra constraints makes the network converge more difficult.

Inspired by the idea of matching the sampling locations of convolutions with the
corresponding targets, we propose a novel rectangle-invariant rotatable convolution (RIR-
Conv) for SAR vehicle target detection. Specifically, we noticed that the vehicle targets in
SAR images vary significantly in terms of size, aspect ratio, and rotation angle, but always
maintain a rectangular shape. The proposed RIRConv combines this characteristic. It keeps
the rectangular sampling shape in the convolution kernel unchanged, while adaptively
adjusting the sampling locations by learning three additional attribute parameters (i.e.,
the width, height, and rotation angle attributes) according to different vehicle targets. The
RIRConv makes the sampling locations focus more on the target area of interest. In addition,
refer to [10], we apply a modulation mechanism into RIRConv. By multiplying a learnable
modulation mask with the pixel values at the sampling locations, the RIRConv can pay
more attention to the sampling locations that significantly impact the output. Notably,
because the RIRConv always keeps the sampling shape of the rectangle, only three attribute
parameters and a modulation mask must be learned to make the sampling process more
adaptive. In this way, learning these parameters does not make the network converge more
difficult, and the network can still be trained end-to-end. By introducing the RIRConv
into SSD, the feature representation capability of SSD for vehicle targets gains a marked
improvement, thus improving the detection performance.

The principal contributions of this paper are as follows: (1) the shape-related prior
information of vehicle targets in SAR images is fully exploited in the proposed method,
and (2) this work proposes a design for a convolution operation (i.e., the RIRConv) for
vehicle targets in SAR images. In particular, the RIRConv can extract the features of vehicle
targets more accurately by adaptively adjusting the sampling locations, thus improving the
detection performance.

2. Proposed Method
2.1. Network Architecture

The architecture of the proposed SAR vehicle target detection network is illustrated
in Figure 1. We take the SSD network [6] as our baseline. Based on SSD, the proposed
RIRConv is introduced. The framework is briefly introduced as follows.
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Figure 1. The architecture of the proposed vehicle target detection network for SAR images. 
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Figure 1. The architecture of the proposed vehicle target detection network for SAR images.

(1) Feature extraction module with RIRConv. This module is used to extract deep features
of input SAR images. Its backbone is the truncated VGG16 network [11], which
consists of 10 convolutional layers with 3× 3 convolutional kernels and three pooling
layers. In the feature extraction module with RIRConv, the proposed RIRConv replaces
the first two convolutional layers of the truncated VGG16.

(2) Detection module. The detection module is added following the feature extraction
module with RIRConv. It first extracts feature maps of five scales, the sizes of which
are 38× 38, 19× 19, 10× 10, 5× 5, and 3× 3, respectively. Then, these feature maps are
fed into the convolutional predictors to output the detected boxes and the confidence
score of each box.

(3) Post-process module. After the detection module outputs the detected boxes, we use
the non-maximum suppression (NMS) algorithm [12] to reduce the repeated detected
boxes positioned to the same vehicle targets. Thus, we are able to obtain the detection
results, which are the predicted specific locations of the vehicle targets.

In the following section, the details of the RIRConv are introduced concretely.

2.2. Rectangle-Invariant Rotatable Convolution

The vehicle targets vary significantly in terms of size, aspect ratio, and rotation angle
but maintain a rectangular shape. Considering this prior information, we propose a novel
RIRConv. Its convolutional kernel is equipped with width, height, and rotation angle
attributes to adaptively adjust the sampling locations according to the targets.

First, the regular convolution operation samples the input feature map X using a fixed
square grid G centered on the location p0. For example, for a 3× 3 convolutional kernel,
G = {(−1,−1), (−1, 0), (1, 0), . . . . . ., (−1, 1), (0, 1), (1, 1)}. Then, the sampled values are
element-wise multiplied by the learned weight w. Finally, the corresponding output value
on the output feature map Y is obtained through summation. The convolution operation
can be formulated as follows:

Y(p0) = ∑
pn∈G

w(pn) · X(p0 + pn) (1)

where pn =
[
pnx, pny

]
enumerates the locations in the square grid G.

Considering that the vehicle targets maintain a rectangular shape with different sizes

and aspect ratios, a scale-transformation matric
[

∆w 0
0 ∆h

]
is applied to each location pn in

G; hence, and the sampling is now on the new location:

pn
st =

[
∆w 0
0 ∆h

]
pn (2)

where ∆w and ∆h represent the extent of the expansion of the convolution kernel on the
width and height, respectively. Based on ∆w and ∆h, the sampling points can form a
rectangle instead of a fixed square.
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With the goal of rotating the sampling points to match the angles of targets, a rotation-

transformation matric
[

cos θ − sin θ
sin θ cos θ

]
with the rotation angle θ is adopted. As a result,

the sampling is now on location pn
rst, which can be formulated as follows:

pn
rst =

[
cos θ − sin θ
sin θ cos θ

]
pn

st =

[
cos θ − sin θ
sin θ cos θ

][
∆w 0
0 ∆h

]
pn (3)

where cos and sin denote the cosine and sine functions, respectively.
Figure 2 presents the sampling locations with different ∆w, ∆h, and θ values based

on a 3× 3 convolutional kernel. As expected we can see in Figure 2 that, given the ∆w,
∆h, and θ values, the sampling locations have a rectangular shape with different widths,
heights, and rotation angles, respectively.
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Figure 2. The sampling locations on a 3× 3 kernel: (a) original sampling locations; (b) the sampling
locations when ∆w = 2, ∆h = 3, and θ = 300; (c) the sampling locations when ∆w = 2, ∆h = 3, and
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Through the new sampling locations
{

pn
rst|n = 1, 2, ..., N

}
, where N = |G| represents

the number of sampling locations in G, the convolution operation can be formulated as:

Y(p0) = ∑
pn∈G

w(pn) · X
(
p0 + pn

rst) = ∑
pn∈G

w(pn) · X(p0 + pn + ∆pn) (4)

where ∆pn = pn
rst − pn =

[
cos θ · ∆w · pnx − sin θ · ∆h · pny − pnx
sin θ · ∆w · pnx + cos θ · ∆h · pny − pny

]
.

Next, a learnable modulation mask, which can assign modulation weights to sampling
locations, is adopted to enable the RIRConv to focus on the sampling locations that signif-
icantly impact the output. The modulation weights indicate the importance of different
sampling locations and will be multiplied by the pixel values at the corresponding sampling
locations. Finally, the RIRConv operation can be formulated as follows:

Y(p0) = ∑
pn∈G

w(pn) · X(p0 + pn + ∆pn) · ∆mn (5)

As the offset ∆pn may be fractional, the sampling location may not correspond to an
integer position. Thus, Equation (5) is implemented via bilinear interpolation as:

X(p) = ∑
q

K(q, p) · X(q) (6)

where p = p0 + pn + ∆pn, which denotes a fractional location; q enumerates all integral
spatial locations in the feature map X; and K(·, ·) represents the bilinear interpolation kernel
proposed by [9]:

K(q, p) = k(qx, px)× k(qy, py), (7)
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where k(a, b) = max(0, 1− |a− b|).
The proposed RIRConv is illustrated in Figure 3. As can be seen, an additional convolu-

tional layer is employed over the input feature map to learn the transformation parameters
and mask (i.e., ∆w, ∆h, θ, and ∆m). The offsets can then be computed based on the learned
∆w, ∆h, and θ values. The offsets and mask are employed to obtain the values in the output
feature map, as shown in Equation (6). During training, the transformation parameters,
mask, and other network parameters are learned simultaneously and adaptively under
supervision. Although an additional convolution layer is added, this only amounts to small
additional network parameters and costs.
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3. Experimental Results and Analysis
3.1. Experimental Data Description

The experimental data comprise the miniSAR data provided by the U.S. Sandia Na-
tional Laboratories. The miniSAR dataset is an actual measured dataset acquired by the
spotlights mode in the Ku band. The resolutions of SAR images in the miniSAR dataset
are 0.1 m× 0.1 m, and the sizes are 1638× 2510 pixels [13]. All these SAR images have
large-area complex scenes, in which the background clutter includes man-made clutter (e.g.,
buildings, roads, and streetlights) and natural clutter (e.g., trees and grasslands). The split
of training and test SAR images is consistent with [7]. In each SAR image of the miniSAR
dataset, the targets, which we are interested in, are all vehicle targets. The labels of these
vehicle targets are all marked manually. However, these SAR images are collected by the
airborne SAR at different places. Figure 4a shows a SAR image from the training set, which
is obtained by imaging a highway area with the airborne SAR. Figure 4b shows a SAR
image from the test set, which is obtained by imaging an urban area with the airborne SAR.
Therefore, the training and test SAR images have obvious differences in scene types, clutter
types, etc., which guarantees the experiments in this paper can verify the generalization of
the proposed method.

3.2. Experimental Settings

As described in Section 3.1, the sizes of the original SAR images are too large, not
satisfying the size restriction of general network inputs. Therefore, when training, the large
original SAR images were cropped into many sub-images with a fixed size of 300× 300.
Then, we augment the training sub-images by adding noise, filtering, rotating, and flipping.
After augmentation, we arrive at a total of 1430 sub-images in the training set. These sub-
images and the corresponding labels are used to train the network. Under the weighted
loss function (i.e., smooth L1 loss for localization and softmax loss for classification), the
proposed network is trained by a stochastic gradient descent (SGD) optimizer in an end-to-
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end manner. When testing, the original test SAR images are also cropped into many test
sub-images by sliding window with overlapping. Then all the test sub-images are fed into
the network to process individually. After that, all detection results in test sub-images are
stitched together. Finally, we use the NMS algorithm to select the predicted bounding box
with the highest confidence and to remove duplicate bounding boxes.

The experiments are implemented with the Pytorch deep learning framework, using a
personal computer with Intel Xeon E5-2630 v4 CPU of 2.2 GHz and NVIDIA GTX 1080Ti
GPU on an Ubuntu 16.04 Linux system.
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3.3. Evaluation Criteria

The quantitative evaluation criteria we used in the experiments include precision,
recall, and F1-score, which can be formulated as:

precision =
the number of target chips
the total number of chips

, (8)

recall =
the number of detected targets

the total number of targets
, (9)

F1− score =
2× precision× recall

precision + recall
, (10)

where precision measures the fraction of true positives among all detected results. The
recall measures the fraction of positives over the number of ground truth, and the F1-score
is the harmonic mean between precision and recall, which is the main reference index to
evaluate the detection performance comprehensively. The higher the value of the above
three evaluation criteria, the better the performance of the detection method.

3.4. Comparison with Other SAR Target Detection Methods

In this section, we compare the proposed SAR target detection method with conven-
tional SAR detection methods and some deep-learning based target detection methods in
SAR images. The conventional SAR target detection methods for comparison are two com-
mon CFAR detectors, namely, the two-parameters CFAR detector and the Gamma-CFAR
detector. The deep-learning based target detection methods in SAR images include some
basic target detection networks (i.e., the Faster R-CNN [4] and the original SSD [6]) and two
other target detection networks proposed in the last three years, namely, the DA-TL SSD [8]
and the RefineDet [14]. The DA-TL SSD applies subaperture decomposition to acquire
three-channel SAR images and then uses the VGG pre-trained model trained on the optical
ImageNet dataset to initialize corresponding parameters. Based on SSD architecture, the



Remote Sens. 2022, 14, 3086 7 of 11

RefineDet introduces the idea of two-step cascaded regression used in two-stage target
detection methods. At the same time, RefineDet introduces a structure similar to FPN to
fuse features. Figure 5 exhibits the target detection results on two test SAR images, while
Table I lists the numerical detection results in terms of the evaluation criteria shown in
Section 3.3.
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Figure 5. The target detection results compared with other detection methods for Images I and II,
where green, red, and yellow rectangles represent the detected target chips, false alarms, and missing
alarms, respectively. (a,b) the two-parameter CFAR method, (c,d) the Gamma CFAR method, (e,f)
the Faster RCNN, (g,h) the original SSD, (i,j) the DA-TL SSD, (k,l) the RefineDet, (m,n) the proposed
target detection method.

From Figure 5a–d, we can see that the CFAR methods have numerous false alarms,
leading to lower precisions. From rows 2 and 3 in Table 1, we can observe that the
precision of the two-parameter CFAR is 0.3789, while that of the Gamma CFAR is a little
better, at 0.3931, which significantly reduces the corresponding comprehensive criterion
F1-score. The reason is that CFAR methods face difficulties in accurately establishing the
statistical model in complex scenes, resulting in poor detection performance. Compared
with unsupervised CFAR methods, the deep-learning based target detection methods draw
support from the data-driven approach and have better performance. From Figure 5e–n,
we can see that the deep-learning based methods have fewer false alarms than the CFAR
methods. Moreover, the deep-learning based methods also have fewer missing alarms,
leading to higher recalls. In conclusion, the detection performance of the deep-learning
based methods is generally better than that of conventional CFAR methods. In the listed
deep-learning based target detection networks, the proposed method has the highest
precision, recall, and F1-score. Therefore, it can achieve the best detection performance
compared to other detection methods. As mentioned in Section 3.1, the training and test
SAR images have obvious differences in terms of scene types, clutter types, and so on.
Meanwhile, from Figure 5m–n, we can see that the proposed method generates very few
false and missing alarms on the test SAR images, which verifies that the proposed method
has strong generalization.
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Table 1. Overall evaluation of different target detection methods.

Precision Recall F1-Score

Two-parameter CFAR 0.3789 0.7966 0.5135

Gamma CFAR 0.3931 0.8136 0.5301

Faster R-CNN 0.8115 0.8051 0.8083

Original SSD 0.8468 0.8814 0.8638

DA-TL SSD 0.8843 0.8983 0.8912

RefineDet 0.8828 0.9237 0.9027

Proposed method 0.9134 0.9431 0.9280

3.5. Model Analyses
3.5.1. Sampling Locations in the RIRConv

Figure 6 exhibits the SAR chips of vehicle targets and the sampling locations obtained
from the RIRConv on three different SAR targets. Considering that the sizes of the SAR
images are too large, which cannot show the sampling locations clearly. Thus, we plot the
sampling locations on the vehicle target chips of SAR images. Figure 6a–c show the SAR
chips of three vehicle targets with different lengths, widths, and rotation angles. Figure 6d–f
show the sampling locations obtained from the RIRConv. In Figure 6d–f, the points denote
the sampling locations in two levels of 3× 3 RIRConv kernels. The green points at the center
of the vehicle targets represent the center sampling location of the RIRConv kernel. The
modulation weights of the sampling locations are reflected in the colors of the points: the
larger the modulation weight, the closer it is to a red color, while the smaller the modulation
weight, the closer it is to a blue color. By stacking two layers of 3× 3 RIRConv, we can
obtain 81 sampling points.
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From Figure 6d–f, we can see that these sampling locations no longer obey a fixed
square but can be adaptively adjusted according to the lengths, widths, and rotation angles
of the vehicle targets, thus proving that the RIRConv can adjust the sampling locations
adaptively. Moreover, by observing the colors of these sampling points, we can see that the
sampling points with low modulation weights (i.e., the sampling points close to blue) are
mostly distributed outside the vehicle targets. The sampling points with high modulation
weights (i.e., the sampling points close to red) are mostly distributed inside the vehicle
targets. It proves that the modulation weights can make the RIRConv pay more attention
to the sampling locations that significantly impact the output.

3.5.2. Parameters, FLOPs, and Runtime Analysis

We compare the parameters, FLOPs, and runtime of the proposed method and other
deep-learning based target detection methods. As shown in Table 2, we can see that
the proposed method is significantly less than RefineDet and Faster RCNN in terms of
parameters, FLOPs, and runtime, but only slightly higher than SSD. Nevertheless, as
described in Section 3.4, the proposed method can obtain the highest detection performance.
In conclusion, the proposed method can significantly improve the detection performance
by adding a few parameters, FLOPs, and runtime.

Table 2. Complexities of the proposed method and other deep-learning based methods.

Parameters FLOPs
Runtime

(Seconds/Per Test
Sub-Image)

Faster R-CNN 1.36× 108 18.5× 1010 0.102

SSD 2.37× 107 6.1× 1010 0.015

RefineDet 3.39× 107 7.6× 1010 0.054

Proposed method 2.38× 107 6.7× 1010 0.021

4. Conclusions

In this paper, we proposed a novel vehicle target detection network based on RIRConv.
For the vehicle target detection task in SAR images, the proposed RIRConv is designed
according to the shape prior information of the vehicle targets to determine more accurately
the convolutional sampling locations for vehicle targets. The RIRConv is lightweight
and can be trained without additional supervision in an end-to-end manner. Finally, we
introduced the proposed RIRConv into SSD to realize SAR vehicle target detection. The
qualitative and quantitative experimental results based on the measured SAR dataset show
the effectiveness of the proposed method. In addition, as the vehicle targets in optical
remote sensing images also maintain a rectangular shape, we believe the RIRConv can
also be used for optical vehicle target detection. However, the effect of RIRConv is more
prominent for SAR vehicle target detection.
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