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Abstract: Hyperspectral images (HSIs) have high spectral resolution and low spatial resolution. HSI
super-resolution (SR) can enhance the spatial information of the scene. Current SR methods have
generally focused on the direct utilization of image structure priors, which are often modeled in
global or local lower-order image space. The spatial and spectral hidden priors, which are accessible
from higher-order space, cannot be taken advantage of when using these methods. To solve this
problem, we propose a higher-order Hankel space-based hyperspectral image-multispectral image
(HSI-MSI) fusion method in this paper. In this method, the higher-order tensor represented in
the Hankel space increases the HSI data redundancy, and the hidden relationships are revealed
by the nonconvex penalized Kronecker-basis-representation-based tensor sparsity measure (KBR).
Weighted 3D total variation (W3DTV) is further applied to maintain the local smoothness in the image
structure, and an efficient algorithm is derived under the alternating direction method of multipliers
(ADMM) framework. Extensive experiments on three commonly used public HSI datasets validate
the superiority of the proposed method compared with current state-of-the-art SR approaches in
image detail reconstruction and spectral information restoration.

Keywords: hyperspectral super-resolution; Hankel space; Kronecker-basis-representation tensor
factorization; image fusion

1. Introduction

The hyperspectral (HS) remote sensing technique, which emerged in the 1980s, is a
comprehensive scientific technique combining information processing, computer technol-
ogy and other technologies. Hyperspectral images (HSIs) consist of dozens to hundreds of
spectral bands in the same area of the Earth’s surface. HSIs have the characteristics of high
dimensionality, high redundant band information and high spectral resolution. Compared
to traditional remote sensing techniques, hyperspectral remote sensing techniques can be
used to qualitatively and quantitatively detect substances with ultrastrong spectral informa-
tion. The advantage of HSIs lies in their high spectral resolution. In HSIs, many bands are
required to increase the physical size of the photoreceptor, spatial resolution is sacrificed
as a result. However, high spatial resolution images are required in many applications
of HS remote sensing, such as marine research [1,2], food detection [3], military [4] and
other fields [5–9]. Therefore, research on super-resolution (SR) reconstruction technology
for HSIs has important scientific significance and engineering application value.

Recent studies of HSI SR can be divided into four types: Bayesian framework [10–13],
matrix factorization [14–17], tensor factorization [18–21], and deep learning [22–24].

The Bayesian framework is a common method that is used to establish the posterior
distribution of high spatial resolution hyperspectral image (HR-HSI) based on prior in-
formation and observational models. In [10], a multi-sparse Bayesian learning method
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was proposed based on the sparsity prior and the temporal correlation between successive
frames. Wei et al. [11] adopted a Bayesian model based on sparse coding and dictionary
learning to solve the fusion problem. The maximum a posterior (MAP) estimator, which
uses a coregistered HSI from an auxiliary sensor, was introduced in [12]. In [13], a Bayesian
sparse representation and spectral decomposition fusion method was adopted to improve
image resolution. Bayesian-based methods are very sensitive to the independence of input
data, which limits the practical application of the Bayesian framework.

Matrix factorization-based methods usually decompose HSI into two matrix forms
to represent the spectral dictionary and low retention numbers. These two matrices are
estimated by observing HS-multispectral (HS-MS) pairs. In [14], a spectral matrix decom-
position and dictionary learning method was proposed to train spectral dictionaries of high
spatial-spectral information by low spatial resolution HSI (LR-HSI) and HR multispectral
image (HR-MSI) matrices. In [15], a spatial-spectral sparse representation method was
adopted by using spectral decomposition priors, sparse priors and nonlocal self-similarity.
In [16], a non-negative structure sparse representation (NSSR) method based on the sparsity
of HR-HSI was proposed for the joint estimation of the HS dictionary and sparse code.
In [17], based on sparse representation and local spatial low-rank, a method was proposed
to solve HSI SR by estimating spectral dictionary and regression coefficients. Hyperspectral
data are three-dimensional images, which have one more dimension of spectral information
than ordinary two-dimensional images. Matrix-based methods destroy the data structure.

As multidimensional arrays, tensors provide a natural expression of HSI data. Ten-
sor representation has been widely applied to high-dimensional data denoising [25–28],
completion [29–31] and SR [18–21] in the past few years. A coupled non-negative tensor
decomposition (NTD) method was introduced in [18] to extend the non-negative matrix
decomposition to a tensor. In this method, Tucker decomposition of LR-HSI and HR-MSI is
performed under NTD constraints. A joint tensor decomposition (JTF)-based method for
solving HR-HSI was proposed by Ren et al. [19]. These methods are designed by treating
the HSI data as a 3rd-order tensor and assuming that the tensor is of sufficiently global
low-rank. Nonlocal self-similarity is an important feature of images. It depicts the repeated
appearance of the nonlocal regional structure of the image, effectively retains the edge
information of the image, and has certain advantages in image restoration. Dian et al. [20]
adopted a fusion method based on low tensor train rank (LTTR) decomposition. This
method was applied to HR-HSI through the nonlocal similarity learned from HR-MSI,
and multiple group 4D similarity cubes were formed. The SR problem was efficiently
solved using LTTR priors for the 4D cubes. In [21], a fusion method based on nonlocal
Tucker decomposition, which uses the nonlocal similarity of HS data, was proposed. The
clustering blocks obtained by nonlocal self-similarity are very dependent on the accuracy
of block matching. The nonlocal clustering space does not improve the data redundancy,
which makes it difficult to effectively explore the low-rank characteristics contained in
the data.

With its superior effect in detection, recognition, classification and other tasks [32–39],
deep learning has been gradually applied to deal with low-level vision tasks in recent
years [22–24]. Bing et al. [22] proposed an improved generative adversarial network
(GAN) to improve the squeeze and excitation (SE) block. By increasing the weight value
of important features and reducing the weight value of weak features, the SE block is
included in the simplified enhanced deep residual networks for the single image SR (SISR)
model to recover HSIs. To improve the computing speed of deep learning networks,
Kim et al. [23] designed an SISR network, which improves the fire modules based on
Squeeze-Net, and asymmetrically arranges the fire modules. The number of network
parameters is effectively reduced. In [24], a video SR network based on learning temporal
dynamics was introduced. In this network, filters with different temporal scales are used to
fully exploit the temporal relationship of continuous LR frames, and a spatial alignment
network is employed to reduce motion complexity. The performance of deep learning
networks is closely determined by the size of the training data. However, the size of the
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acquired HSI data is limited by the physical size of the photosensor, and there are only
dozens to hundreds of spectral bands, which is not sufficient for training.

Considering the limitation of HSI data and to better maintain the data structure, we
adopt a tensor-based method. To improve data redundancy and fully explore the low-rank
characteristics of data, we propose using HSIs in the Hankel space to carry out high-order
low-rank tensor SR (HTSR). The Hankel space is an embedded space obtained by employing
delay-embedding transform in a multi-way manner for tensors, which consists of dupli-
cated high-order tensors with low-rankness. Different from traditional high-order tensor
decomposition, we use a folded-concave penalized Kronecker-basis-representation-based
tensor sparsity measure (KBR) tensor decomposition [40] to reasonably and effectively
represent the low-rank properties of high-order tensor in the Hankel space. From the
spatial-spectral domain of HS data, there are local smoothing characteristics between adja-
cent pixels. We adopt W3DTV to constrain the spatial-spectral local continuity of HSIs. To
further improve the effect of HSI SR recovery, HSI-MSI fusion is used in our method. Unlike
HSIs, multispectral images (MSIs) contain 3–20 discontinuous bands with a higher signal-
to-noise ratio (SNR) and spatial resolution. HR-MSI-assisted enhancement can compensate
for the lack of LR-HSI, so the fusion method can more accurately reconstruct HR-HSI.

The contributions are highlighted as follows:

• To exploit the low-rank information hidden in HSI data, we propose modeling the SR
problem in the Hankel space. Compared with the global and nonlocal image spaces,
the effectiveness of the designed Hankel space SR has been demonstrated.

• A folded-concave penalized KBR tensor decomposition is proposed to describe the
low-rank characteristics in the spatial–spectral domain of the high-order tensor in the
Hankel space.

• Extensive experiments demonstrate that our HTSR method can obtain a relatively
great performance compared with the current state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, we introduce the tensor
preparatory knowledge. In Section 3, we present the proposed HTSR fusion method. In
Section 4, we introduce the optimization problem of the solution algorithm of the HTSR
method in detail. The experimental results on three commonly used hyperspectral datasets
are described in Section 5. Finally, conclusions are presented in Section 6.

2. Notions and Preliminaries on Tensors

A tensor is a multidimensional array, and a given tensor of order N is denoted as
X ∈ RI1×I2×···×IN . The related operations of the tensor are introduced in Table 1.

Table 1. Tensor notations and operations.

Notation Definition

x, x, X,X scalar, vector, matrix, tensor
xi1,i2,...,iN tensor element
X:,i2,i3,...,iN tensor fiber
X:,:,i3,...,iN tensor slice
Y = X ×n U tensor mode−n product

X(n) or un f oldn(X ) tensor mode−n matrix
f oldn(X(n)) the inverse operation of un f oldn(X )

rn = rank(X(n)) multilinear rank
X = G×1U1×2U2 · · · ×NUN Tucker decomposition

X = ∑R
r x(1)r ◦ x(2)r ◦ · · · ◦ x(N)

r CP decomposition
〈X ,Y〉 inner product
‖X ‖0 `0 norm
‖X ‖1 `1 norm
‖X ‖F `F norm
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3. HSI-MSI Fusion Problem Formulation

In this section, the HTSR method for HR-HSI SR is presented. The main framework of
HTSR is shown in Figure 1.

Initialize  HR-HSI

MDTUpsample

LR-HSI (Input)

HR-MSI (Input)

Fusion

 KBR Decomposition

Weighted 3DTV

Inverse 
MDT

HR-HSI (Output)

ADMM Iterations

Low-Rank HR-HSI Smoothed HR-HSI 

 Hankel Tensor Low-Rank Hankel Tensor

Figure 1. The framework of our HTSR method.

3.1. Observation Model

In this paper, all HR-HSI, HR-MSI, and LR-HSI are denoted as 3D tensors. The target
HR-HSI is denoted as X ∈ RW×H×B, where W and H represent the spatial size of the
spatial mode and B represents the band size of the spectral mode. LR-HSI is denoted as
Y ∈ Rw×h×B. Through spatial blurring and downsampling from X , Y can be obtained
as follows:

Y = DSX (1)

where S is the blurring operator and D is the downsampling operator.
Z ∈ RW×H×b denotes the acquired HR-MSI of the same scene, where b represents

the spectral bands. Through downsampling from X along the spectral mode, Z can be
modeled as

Z = X×3R (2)

where R ∈ Rb×B represents the spectral response matrix.

3.2. Multi-Way Delay-Embedding Transform on HR-HSI

Traditionally, global or nonlocal low-rank techniques are used to model direct correla-
tions in data. These techniques are insufficient for exploiting indirect correlations hidden
in data. To better employ the low-rank correlations hidden in X , we map it to the Hankel
space. We perform Hankel processing on all modes of X to acquire Hankel tensorHX via
multi-way delay-embedding transform (MDT) [41]. The Hankel tensorHX can be obtained
via MDT with an N-th order tensor X and ξ ∈ RN as follows:

Hξ(X ) = f old(I,ξ)(X×1 J1 · · · ×N JN) (3)
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where a 2N-th order tensor from the input N-th order tensor is constructed by f old(I,ξ) :

Rξ1(I1−ξ1+1)×···×ξN(IN−ξN+1) → Rξ1×(I1−ξ1+1)×···×ξN×(IN−ξN+1), Jn ∈ {0, 1}ξn(In−ξn+1)×In

(n ∈ [1, N]) is a duplication matrix. The inverse MDT for Hankel tensorHX is defined by

H−1
ξ (HX ) = un f old(I,ξ)(HX )×1 J⊥1 · · · ×N J⊥N (4)

where un f old(I,ξ) = f old−1
(I,ξ), J⊥ = (JT J)−1 JT .

The MDT is a combination of multi-way folding and multi-linear duplication oper-
ations. Thus, the Hankel tensor HX has the characteristic of high redundancy and is a
high-order tensor. The KBR is more suitable for exploiting the low-rank information hidden
in the high-order Hankel tensor. For a given N-dimensional tensor X ∈ RI1×I2×···×IN , its
KBR decomposition can be represented as

S(X ) = t‖O‖0 + (1− t)
N

∏
j=1

rank(X(j)) (5)

where t ∈ [0, 1] is used to balance the two terms in the equation and O ∈ Rr1×r2×···×rN is
the core tensor of the Tucker decomposition of X . The first term characterizes the number
of non-zero elements in the nuclear tensor, and the second term characterizes the volume
size of the non-zero square in the nuclear tensor.

Since the l0 norm and the nuclear norm in Equation (5) are discrete measures, it is
computationally difficult to directly model them, and it is necessary to reasonably relax
them. Many studies have shown that it is easy to relax the l0 norm and the nuclear
norm [21,42,43] using the minimax concave plus (MCP) norm, which is very reasonable
and can compensate for the biased estimates brought by l0 norm modeling.

The MCP penalty is a typical folded-concave penalty as follows:

ψλ(t) =

{
γλ2/2 , i f |t| ≥ γλ.
λ|t| − t2

2γ , otherwise.
(6)

where γ is a fixed constant.
To better approximate HX , we adopt the MCP penalty as the sparsity constraint,

and the above KBR sparse model is formulated as

S∗(HX ) = Mλ1(O) + λ3

N

∏
j=1

M∗λ2
(HX(j)

) (7)

where Mλ1(O)= ∑
i,j,k

ψλ1(Oi,j,k), M∗λ2(HX(j)
)=∑

m
ψλ2(σm(HX(j)

)), and σm(HX(j)
) is the m-th

singular value ofHX(j)
.

3.3. Weighted 3D Total Variation Regularization

Total variation (TV) regularization has been commonly applied to study the spatial
piecewise smooth structure to address HSI restoration tasks [21,44,45]. Considering that
HR-HSI is a 3D tensor and has a strong spatial-spectral continuity structure, we use a
weighted 3DTV (W3DTV) term to explore the local smooth structure of X as follows:

‖X ‖3DTV = ∑
a,b,c

w1
∣∣xa,b,c − xa,b,c−1

∣∣+ w2
∣∣xa,b,c − xa,b−1,c

∣∣+ w3
∣∣xa,b,c − xa−1,b,c

∣∣ (8)

We obtain the following form:

‖X ‖3DTV = ‖Gw(X )‖1 (9)
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where Gw(·) = [w1 × Gh(·); w2 × Gv(·); w3 × Gt(·)] is the weighted 3D difference operator.
Gh(·), Gv(·) and Gt(·) are the first-order difference operators along the three modes of the
HSI cube.

3.4. HSI-MSI Fusion via HTSR

By integrating the regulation terms mentioned above (Equations (1), (2), (7) and (9)),
we formulate the HSI-MSI fusion problem as

S∗(HX ) + λ4‖Y − DSX‖2
F + λ5‖Z −X×3R‖2

F + λTV‖X ‖3DTV (10)

which is equal to

Mλ1(O) + λ3
N
∏
j=1

M∗λ2
(HX(j)

) + λ4‖Y − DSX‖2
F + λ5‖Z −X×3R‖2

F + λTV‖Gw(X )‖1

HX = O×1U1 · · · ×NUN

(11)

where λ1, λ2, λ3, λ4, λ5 and λTV are regularization parameters. This is a nonconvex
optimization problem.

4. Optimization Procedure
4.1. Algorithm

Equation (11) is an unconstrained optimization problem. We propose an effective
algorithm to solve it under the ADMM framework. By introducing two auxiliary variables
F = Gw(X ) and X =M, we have

Mλ1(O) + λ3
N
∏
j=1

M∗λ2
(HMj(j)

) + λ4‖Y − DSX‖2
F + λ5‖Z −X×3R‖2

F + λTV‖F‖1

s.t. HMj = O×1U1 · · · ×NUN

X =Mj
F = Gw(X )

UT
j Uj = I, j = 1, · · · , N

(12)

The corresponding augmented Lagrangian function is given as:

L(X ,M,O, U,F ,K,P ,V)

= Mλ1(O) + λ3
N
∏
j=1

M∗λ2
(HMj (j)

) + λ4‖Y − DSX‖2
F + λ5‖Z −X×3R‖2

F

+λTV‖F‖1 + 〈F − GwX ,K〉+ l
2‖F − GwX‖2

F +
N
∑

j=1

〈
X −Mj,Pj

〉
+

N
∑

j=1

µ
2

∥∥X −Mj
∥∥2

F +
N
∑
j

〈
HMj −O×1U1 · · · ×NUN ,Vj

〉
+

N
∑
j

v
2

∥∥∥HMj −O×1U1 · · · ×NUN

∥∥∥2

F

(13)

where K, {P}N
j=1 and {V}N

j=1 are the Lagrangian multipliers. µ, v and l are the penalty
parameters and UT

j Uj = I, ∀j = 1, · · · , N. Based on ADMM, we can minimize Equation (13)
by solving the following subproblems:

Update X . By fixing the other variables, Equation (13) leads to the following optimiza-
tion problem:

X = arg min
X

L(X ,M,O, U,F ,K,P ,V)

= λ4‖Y − DSX‖2
F + λ5‖Z −X×3R‖2

F + 〈F − GwX ,K〉

+ l
2‖F − GwX‖2

F +
N
∑

j=1

〈
X −Mj,Pj

〉
+

N
∑

j=1

µ
2

∥∥X −Mj
∥∥2

F

(14)
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which is equivalent to solving the following linear equation:

2λ4(DS)T DSX + µNX + lG′wGwX + 2λ5X

= 2λ4(DS)TY +
N
∑

j=1
(µMj −Pj) + lG′wF + G′wK+ 2λ5(Z×3RT)

(15)

where (DS)T denotes the transpose of DS and G′w denotes the adjoint of Gw. Equation (15)
can be addressed by the off-the-shelf conjugate gradient method.

UpdateMk. By fixing the other variables, Equation (13) with regard toHMj is

HMj = arg min
HMj

L(X ,M,O, U,F ,K,P ,V)

= λ3
N
∏
j=1

M∗
λ2
(HMj(j)

) +
N
∑

j=1

{〈
X −Mj,Pj

〉
+ µ

2

∥∥X −Mj
∥∥2

F

}
+

N
∑

j=1

{〈
HMj −O×1U1 · · · ×NUN ,Vj

〉
+ v

2

∥∥∥HMj −O×1U1 · · · ×NUN

∥∥∥2

F

} (16)

WithHMj(j 6= k),HMk can be solved via

arg min
HMk

λ3
N
∏
j 6=k

M∗
λ2
(HMj(j)

)M∗
λ2
(HMk(k)

) +
〈
HX −HMk ,HPk

〉
+ µ

2

∥∥HX −HMk

∥∥2
F

+
〈
HMk −O×1U1 · · · ×NUN ,Vk

〉
+ v

2

∥∥HMk −O×1U1 · · · ×NUN
∥∥2

F

(17)

The above equation is equal to

arg min
HMk

βk M∗
λ2
(HMk(k)

) +
1
2

∥∥HMk − T
∥∥2

F (18)

where T =
HPk

+µHX−Vk+v(O×1U1···×NUN)

µ+v , βk =
λ3 ∏

j 6=k
α

µ+v , (k = 1, 2, · · · , N) .

In addition, α=

{
1 , i f M∗

λ2
(HMj(j)

) = 0
M∗

λ2
(HMj(j)

), otherwise
.

We can solve Equation (18) via

HMk = f oldk[Sλ2βk ,Tk (T(k))], k = 1, 2, · · ·N (19)

SΩ(X) is the singular value shrinkage operator which is formed as
SΩ(X) := UXDΩ(∑X)VT

X , where X = UX∑XVT
X is the singular value decomposi-

tion. For a matrix Y, [DΩ(Y)]mn = sgn(Y(mn)(|Ymn| −Ω)+. Additionally, the weight
matrix Tk is defined by Tk = Diag((λ− σ(HM(j)

)/γ))+) for some fixed γ > 1.
Therefore, we can obtainMk(k ∈ [1, N]) by

Mk = H−1
Mk

(20)

whereH−1
Mk

is the inverse MDT for Hankel tensorHMk .
Update O. By extracting all terms containing O, Equation (13) can be deduced as

follows:

O = arg min
O

Mλ1(O) +
N

∑
j=1

v
2

∥∥∥∥O×1U1 · · · ×NUN − (
Vj

v
+HMj)

∥∥∥∥2

F
(21)
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For any tensor A, there is the ‖A×nU‖2
F = ‖A‖2

F form. By mode-j producting UT
j on

each mode, Equation (21) can be rewritten as:

arg min
O

Mλ1(O) +
N
∑

j=1

v
2‖O −N‖

2
F (22)

where N = (
Vj
v +HMj)×1UT

1 · · · ×NUT
N .

O can be updated by:
O = Dδ ,W (N ) (23)

where δ = λ1/vN,W = (λ1 −O/γ)+.
Update Uk. By extracting all terms containing Uk, Equation (13) can be deduced as

follows:

UK = arg min
UT

k Uk=I

〈
HMk −O×1U1 · · · ×NUN ,Vk

〉
+

v
2

∥∥HMk −O×1U1 · · · ×NUN
∥∥2

F (24)

When Uj(j 6= k) and the other variables are fixed, we need to solve the following:

arg min
UT

k Uk=I
‖O×1U1 · · · ×NUN −R‖2

F (25)

whereR = Vk
v +HMk .

Combining equations ‖D×nU‖2
F = ‖D‖2

F and B = D×nU ⇔ B(n) = UD(n),
Equation (25) is equivalent to:

max
UT

k Uk=I
〈Zk, Uk〉 (26)

where Zk = R(k)(un f oldk(O
−
×−k{Uj}N

j=1))
T and O

−
×−k{Uj}N

j=1 = O×1U1 · · · ×k−1Uk−1
×k+1Uk+1 · · · ×NUN .

According to von Neumann’s trace inequality [46], Uk can be solved as:

U+
k = BkCT

k , k = 1, 2, · · ·N (27)

where Zk=BkDCT
k is the SVD of Zk.

Update F . By selecting all terms containing F , Equation (13) can be deduced:

F = arg min
F

λTV‖F‖1 + 〈F − GwX ,K〉+ l
2
‖F − GwX‖2

F (28)

We can update F as

F = f oldj[So f tλTV β j/l(GwX(j) −
K(j)

l
)] (29)

where So f tλTV β j/l(·) is the soft-thresholding operator, which has the following form:

So f tψ(a) =


a− ψ, i f a > ψ ,
a + ψ, i f a < ψ ,

0, otherwise.
(30)

where ψ > 0 and a ∈ R.
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Update Lagrangian multipliers Pj,Vj,K.

K = K+ θ · l(F − GwX )
Pj = Pj + θ · µ(X −Mj)
Vj = Vj + θ · v(HMj −O×1U1 · · · ×NUN)

(31)

where the parameter θ is fixed, θ = 1.05, and parameters µ, v and l have a certain adaptive
update strategy that promotes the astringency of our optimization algorithm. For instance,
we initialize l = 10−5, and we can update l as

l ← p1 · l, i f Res > p2 · Respre (32)

where Res =
∥∥Y − DSXm+1

∥∥
F and Respre = ‖Y − DSXm‖F, and p1 and p2 can be taken

as 1.05 and 0.95, respectively. The proposed algorithm for the HTSR model (11) is shown in
Algorithm 1.

Algorithm 1: HTSR-Based HSI Super-Resolution.
Input: LR-HSI Y , HR-MSI Z , Spectral matrix R, Algorithm parameters w, ξ, γ, λ
Output: HR-HSI X
Initialization: X = upsample(Y),Mk = X ,HMk = HX ,O, Uk,Vk,Pk,F are

initialized by zero tensor or matrix of their corresponding size, K = F .
while not converge do

1. Update X via Equation (15);
2. UpdateMk via Equation (20);
3. Update O via Equation (23);
4. Update Uk via Equation (27);
5. Update F via Equation (29);
6. Update Pk,Vk,K via Equation (31).

end

4.2. Computational Cost Analysis

The main computational cost of our method HTSR lies in the following subprob-
lems: as for the subproblem of updating X , the main cost lies in solving a large linear
system by using conjugate gradient technique. It is known that the computational cost
of conjugate gradient method for solving a linear system Ar = b is O(m

√
k), where m

is the number of nonzero entries in A and k is its condition number. Thus, the main
cost solving such a subproblem is O((WH)2√k1 +

√
k2 + B2√k3 +

√
k4), where k1, k2,

k3 and k4 are the condition numbers for the linear system, see Equation (15). It is not
hard to see that these condition numbers could not be very large, since all such linear
systems are well defined. For the subproblem of updatingMk and O, the singular value
shrinkage cost is O(W(HB)2 + B(WH)2 + H(WB)2). For the subproblem of updating
Uk, it requires performing several SVDs for each Zk, where k is the number of iterations
used in the algorithm. Thus, if we adopt a parallel computing procedure, the cost of
solving this subproblem is comparable to a simple SVD algorithm, which gives the cost
as O(WHB). For the subproblems of updating F and Lagrangian multipliers, they can
be solved through a simple algebraic calculation. In all, the total computational complex-
ity of HTSR is O(K((WH)2√k1 +

√
k2 + B2√k3 +

√
k4 +W(HB)2 + B(WH)2 + H(WB)2 +

WHB)). The computational cost of HTSR is comparable with the existing matrix and
tensor-based methods for dealing with HSI tasks [16,21], and thus reasonable in practice.

5. Experiments
5.1. Datasets

To test the effectiveness of the proposed HTSR method, three different HSI datasets
are used in the experiment.
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The first dataset is Pavia University [47]. The size of this dataset is 610 × 340 × 115.
We select 93 clean spectral bands from this dataset as the ground truth (GT) HR-HSI with a
size of 128 × 128 × 93. We use a 5 × 5 Gaussian spatial filter with a standard deviation of 2
and a downsampling operator with 4 × 4 disjoint spatial blocks averaged on the HR-HSI
to generate the LR-HSI with a size of 32 × 32 × 93. The HR-MSI with a size of 128 × 128 ×
4 is constructed using an IKONOS-like spectral reflectance response filter [48]. The second
dataset is the Washington DC Mall [49]. This dataset has a size of 1208 × 307 × 191. We
take a 128 × 128 × 191 subset from this dataset as the GT HR-HSI. The third dataset is the
Urban. The size of this dataset is 307 × 307 × 210. We select 176 clean spectral bands from
this dataset as GT HR-HSI, with a size of 128 × 128 × 176. The LR-HSI and HR-MSI of
these two datasets are constructed and applied to the first dataset.

5.2. Compared Methods and Quantitative Metrics

Eight state-of-the-art (SOTA) HSI SR methods are compared with our HTSR method,
including the GS adaptive (GSA) method [50], coupled nonnegative matrix factorization
(CNMF) method [51], coupled spectral unmixing (CSU) method [52], NSSR method [16],
local low-rank and sparse representations (LRSR) method [17], LTTR method [20], HS-MS
image Fusion with spectral Variability (FuVar) method [53], and nonlocal low-rank tensor
decomposition and spectral unmixing (LRTD) method [21]. Five assessments are used
in this paper to measure the quality of recovered HSIs, including the peak SNR (PSNR),
spectral angle mapper (SAM) [10], universal image quality index (UIQI) [54], relative
dimensionless global error in synthesis (ERGAS) [55], and the degree of distortion (DD).
Note that the higher values of UIQI and PSNR, and the lower values of DD, ERGAS,
and SAM indicate better performance.

All experiments are performed in MATLAB R2020a on a 3.60 GHz Intel i9-9900K CPU
and 36-GB RAM localhost.

5.3. Experimental Results

We quantitatively and qualitatively compare our HTSR method with eight SOTA SR
methods on the Pavia University, Washington DC Mall and Urban datasets. Table 2 shows
the PSNR, SAM, UIQI, ERGAS, and DD of all competitive methods on the above HSI
datasets. The best and second-best performance measures are highlighted in red and blue,
respectively.

Table 2. Quantitative metrics of the competitive methods on the Pavia University dataset.

Method
Pavia University

PSNR SAM UIQI ERGAS DD
GSA [50] 34.788 3.934 0.967 2.861 3.476

CNMF [51] 32.848 3.373 0.960 3.351 3.341
CSU [52] 38.633 2.346 0.980 2.057 1.878

NSSR [16] 36.343 2.390 0.983 2.284 2.473
LRSR [17] 41.568 1.999 0.992 1.256 1.704
LTTR [20] 41.893 2.407 0.986 1.584 1.508
FuVar [53] 41.145 2.497 0.984 1.470 1.596
LRTD [21] 41.871 2.191 0.992 1.246 1.491

HTSR 42.251 2.122 0.992 1.216 1.400

The best and second-best performance measures are highlighted in red and blue, respectively.

From Tables 2–4, we can see that our HTSR method is superior to the eight competitive
methods in terms of PSNR, ERGAS, and DD metrics, and ranks second in terms of UIQI and
SAM metrics. HTSR method outperforms the GSA, CNMF, CUS, NSSR, FuVar, and LTTR
methods in all metrics on the three HSI datasets. Notably, the GSA method only uses a
simple image transformation operation, and the metrics are relatively low. Furthermore,
the proposed HTSR method outperforms the LRTD method for most metrics on each
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dataset. It also has better PSNR, ERGAS, and DD values than LRSR. The above results show
that using a high-order Hankel space data structure in HSI SR is a viable idea. We infer
that the good performance of the HTSR method is a result of its ability to exploit priors of
the HSI data, including the local smoothness structures and low-rank characteristics.

Table 3. Quantitative metrics of the competitive methods on the Washington DC Wall dataset.

Method
Washington

PSNR SAM UIQI ERGAS DD
GSA [50] 27.813 5.816 0.971 3.053 8.831

CNMF [51] 28.660 3.669 0.974 2.608 6.772
CSU [52] 31.994 4.250 0.930 4.332 3.993

NSSR [16] 30.166 4.134 0.983 2.230 6.212
LRSR [17] 34.835 2.532 0.994 1.376 3.636
LTTR [20] 33.021 5.671 0.973 2.544 5.997
FuVar [53] 33.128 4.604 0.986 1.847 4.512
LRTD [21] 35.101 3.699 0.990 1.613 4.042

HTSR 37.458 3.460 0.992 1.309 3.273

The best and second-best performance measures are highlighted in red and blue, respectively.

Table 4. Quantitative metrics of the competitive methods on the Urban dataset.

Method
Urban

PSNR SAM UIQI ERGAS DD
GSA [50] 29.417 7.059 0.962 3.696 7.240

CNMF [51] 29.691 4.699 0.977 2.752 4.681
CSU [52] 33.266 4.117 0.981 2.690 3.410

NSSR [16] 31.934 4.754 0.980 2.778 4.913
LRSR [17] 34.339 3.148 0.992 2.096 4.204
LTTR [20] 33.444 6.648 0.966 3.330 5.170
FuVar [53] 35.245 5.300 0.981 2.506 3.925
LRTD [21] 35.729 4.398 0.987 2.192 3.626

HTSR 37.639 4.112 0.987 2.003 3.243

The best and second-best performance measures are highlighted in red and blue, respectively.

To qualitatively compare the performance of these competing methods, Figures 2–4
show two recovered bands and their corresponding error images on each dataset. The
closer the dark blue the error image is, the smaller the error between the GT and the
reconstructed band.

Figure 2 shows the reconstructed image results of the 22nd and 40th bands and their
corresponding error images on the Pavia University dataset. Among all the comparison
methods, satisfactory results are achieved based on the HR-HSI recovered by the HTSR
and LRTD methods. The error images generated by the HTSR method in the 40th band
are the closest to the ground truth, and a few spectral distortions are produced when
using the LRTD method. Figure 3 shows the reconstructed 15th and 38th bands and their
corresponding error images yielded by GSA, CNMF, CSU, NSSR, LRSR, LTTR, FuVar,
LRTD, and our HTSR method on the Washington dataset. The reconstructed image results
of the 25th and 40th bands and their corresponding error images on the Urban dataset are
shown in Figure 4. From the error images in Figures 3 and 4, we can easily find that our
HTSR method has much bluer and smoother results. The error images reconstructed by
competitive methods result in obviously different shades of yellow. Compared with other
methods, better recovery performance in terms of spatial details is achieved by using our
HTSR method.
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  （a）                         (b)                            (c)                            (d)                           (e)                             (f)                            (g)                            (h)                            (i)                            (j)  

Figure 2. Reconstructed HR-HSI and corresponding error images for Pavia University. First and
second rows: reconstructed HSI and its corresponding error image at the 22nd band. Third and fourth
rows: reconstructed HSI and its corresponding error image at the 40h band. (a) GSA; (b) CNMF;
(c) CSU; (d) NSSR; (e) LRSR; (f) LTTR; (g) FuVar; (h) LRTD; (i) HTSR; (j) Ground truth.

  （a）                         (b)                            (c)                            (d)                           (e)                            (f)                            (g)                            (h)                            (i)                            (j)  

Figure 3. Reconstructed HR-HSI and corresponding error images for Washington DC Mall. First and
second rows: reconstructed HSI and its corresponding error image at the 15th band. Third and fourth
rows: reconstructed HSI and its corresponding error image at the 38th band. (a) GSA; (b) CNMF;
(c) CSU; (d) NSSR; (e) LRSR; (f) LTTR; (g) FuVar; (h) LRTD; (i) HTSR; (j) Ground truth.

To further prove the significance of MDT in the HTSR model, we conduct exper-
iments on HTSR and HTSR without MDT (HTSRWM), which can be rewritten as the
following model:

Mλ1(O) + λ3
N
∏
j=1

M∗λ2
(X(j)) + λ4‖Y − DSX‖2

F + λ5‖Z −X×3R‖2
F + λTV‖Gw(X )‖1

X = O×1U1 · · · ×NUN

(33)
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  （a）                         (b)                            (c)                            (d)                           (e)                             (f)                            (g)                            (h)                            (i)                            (j)  

Figure 4. Reconstructed HR-HSI and corresponding error images for Ubran. First and second rows:
reconstructed HSI and its corresponding error image at the 25th band. Third and fourth rows:
reconstructed HSI and its corresponding error image at the 40th band. (a) GSA; (b) CNMF; (c) CSU;
(d) NSSR; (e) LRSR; (f) LTTR; (g) FuVar; (h) LRTD; (i) HTSR; (j) Ground truth.

From Table 5, we can see that the MDT in the HTSR model can indeed improve the
performance of HTSR. For clarity, we mark the best results in bold red. For example,
Figures 5–7 show the 63rd band of Pavia University, the 30th band of Washington DC
Mall and the 15th band of Urban datasets and the corresponding error images that are
reconstructed by the HTSR method and HTSRWM method. From Figures 5–7, we can
see that the HSI recovered by the HTSRWM method has obvious artifacts. The HR-HSI
details recovered by the HTSR method are closer to the GT, which further demonstrates the
significance of MDT in the HTSR model.

Table 5. Quantitative metrics of HTSRWM method and HTSR method on the Pavia University,
Washington DC Wall and Urban data sets.

Method
Pavia University

PSNR SAM UIQI ERGAS DD
HTSRWM 39.583 2.869 0.984 1.750 1.975

HTSR 42.251 2.122 0.992 1.216 1.400

Method
Washington

PSNR SAM UIQI ERGAS DD
HTSRWM 34.383 3.644 0.984 1.898 4.658

HTSR 37.458 3.460 0.992 1.309 3.273

Method
Urban

PSNR SAM UIQI ERGAS DD
HTSRWM 34.428 5.305 0.975 2.879 4.694

HTSR 37.639 4.112 0.987 2.003 3.243

The best performance measures are highlighted in red.
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               (a)                                                   (b)                                                       (c)

Figure 5. Reconstructed HR-HSI and its corresponding error image at the 63rd band for Pavia
University. (a) HTSRWM method. (b) HTSR method. (c) Ground truth.

               (a)                                                   (b)                                                       (c)

Figure 6. Reconstructed HR-HSI and its corresponding error image at the 30th band for Washington
DC Mall. (a) HTSRWM method; (b) HTSR method; (c) Ground truth.
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               (a)                                                   (b)                                                       (c)

Figure 7. Reconstructed HR-HSI and its corresponding error image at the 15th band for Ubran.
(a) HTSRWM method; (b) HTSR method; (c) Ground truth.

5.4. Experimental Setup

In our HTSR model, there are six regularization parameters λ1, λ2, λ3, λ4, λ5, and λTV
in Equation (11) and the MDT parameter ξ in Equation (4), the MCP parameter γ in
Equation (6) and the W3DTV parameter w in Equation (8). Taking parameter λ4 as an
example, we fixed other parameters and then optimized λ4 from a group of candidate
values (chosen first from a large range with a big interval then from a relatively small
range determined by the performance with a small interval). We thus chose λ4 = 8× 102.
The above parameter tune rules are also suitable for other regularization parameters, then
we have λ1 = 10−3, λ2 = 10−1, λ3 = 10−1, λ5 = 1.3, and λTV = 10−2. Since LR-HSI
does not degrade the spectrum and the spectrum information is relatively complete, we
selected the window length of MDT along the spectral dimension with a small step size 2.
The window length of MDT along the spatial dimension was tuned according to the rules
mentioned in regularization terms. For the sake of calculation complexity and performance,
we chose the spatial dimension window length of 4, and then we had ξ = [4, 4, 2]. γ is a
fixed constant in MCP. According to the parameter value commonly used in [42,56], we set
γ = 5. For simplicity, we fixed the value of wj(j = 1, 2) to 0.1 since the spatial dimensions
have a similar effect, and tune the spectral weight w3 between 0 to 1. We found that the
reconstruction performance was stable when 0.6 ≤ w3 ≤ 1. As such, we fixed the value
of w3 to 0.8 in our model, and then we had w = [0.1, 0.1, 0.8]. For the selection of ranks,
we first fixed the ranks of the first, third and fifth dimensions according to ξ, and then
optimized the ranks of other dimensions according to the tune rules mentioned above.
Thus, we have the rank value of the Hankel tensor as Rank = [4, 60, 4, 60, 2, 30]. The values
of each parameter in our HTSR model are shown in Table 6. The algorithm is stopped when
the difference of

∥∥∥X k −X k−1
∥∥∥

F

/
‖HR‖

F
between iterations is less than 10−5.

Table 6. The values of each parameter in HTSR model.

Trade-off λ1 λ2 λ3 λ4 λ5 λTV

0.001 0.1 0.1 800 1.3 0.01

Others ξ γ w
[4, 4, 2] 5 [0.1, 0.1, 0.8]
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6. Conclusions

In this paper, we address the issue of HSI SR from the viewpoint of higher-order
Hankel space prior modeling. Instead of directly using the global or local prior, we seek to
model the SR problem by mapping the HSI dataset to the Hankel space via MDT. To fully
exploit the low-rank characteristic of the spatial domain versus the spectral domain of
HR-HSI in the higher-order Hankel tensor form, we attempt to use the nonconvex penalized
KBR. W3DTV is further applied to maintain the local smoothness in the image structure.
Compared with the SOTA SR methods, the results of our experiment show that relatively
good reconstruction results can be obtained using our HTSR method, and the effectiveness
of higher-order tensor modeling in the Hankel space has also been verified. Notice that
our method is in common with singular spectrum analysis (SSA)-like scheme [57] from the
perspective of processing flow, i.e., they both need embedding/transformation, low-rank
approximation, and inverse embedding/transformation. However, they are different in the
embedding strategies and the low-rank approximation techniques. The SSA-like methods
construct a 2D trajectory matrix for vector, 2D and multivariate time series. Then, singular
value decomposition is applied to the trajectory matrix to extract signals representing
different components of the original time series. It is a special case of principal component
analysis based on 2D matrix data. While for the MDT used in our method, it embeds
the data into a high-dimensional feature space and constructs a duplicate tensor with
high dimensions. Then, the high-order tensor data is represented by low-rank tensor
decompositions in the embedded space. The high-order tensor presentation provides a
way to exploit the relationship between each order hidden in the data and our model is
designed in this framework.
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