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Abstract: Floods, one of the most common natural hazards globally, are challenging to anticipate
and estimate accurately. This study aims to demonstrate the predictive ability of four ensemble
algorithms for assessing flood risk. Bagging ensemble (BE), logistic model tree (LT), kernel support
vector machine (k-SVM), and k-nearest neighbour (KNN) are the four algorithms used in this study
for flood zoning in Jeddah City, Saudi Arabia. The 141 flood locations have been identified in the
research area based on the interpretation of aerial photos, historical data, Google Earth, and field
surveys. For this purpose, 14 continuous factors and different categorical are identified to examine
their effect on flooding in the study area. The dependency analysis (DA) was used to analyse the
strength of the predictors. The study comprises two different input variables combination (C1 and
C2) based on the features sensitivity selection. The under-the-receiver operating characteristic curve
(AUC) and root mean square error (RMSE) were utilised to determine the accuracy of a good forecast.
The validation findings showed that BE-C1 performed best in terms of precision, accuracy, AUC, and
specificity, as well as the lowest error (RMSE). The performance skills of the overall models proved
reliable with a range of AUC (89–97%). The study can also be beneficial in flash flood forecasts and
warning activity developed by the Jeddah flood disaster in Saudi Arabia.

Keywords: artificial intelligence; flood; Saudi Arabia; machine learning; GIS; remote sensing

1. Introduction

Millions of people worldwide are affected by natural disasters every year. Floods are
the most severe phenomenon among all types of natural disasters that cause significant
losses in human lives and economics. Every year about 200 million people are affected by
flood hazards [1]. In the past few decades, the number of such disasters has increased due
to climate change [2,3]. Jonkman [3] reported that floods affected 1.4 billion people and
killed over 100,000 individuals during the last decade of the twentieth century. Because of
their unique qualities, flooding in semi-arid and arid regions is more dangerous than in
wet regions.

Studying floods in semi-arid and arid regions is a challenging task. Saudi Arabia
(KSA) is considered within the semi-arid regions according to the classification of the
World Map of Kopper–Geiger Climate [4]. Many cities in Saudi Arabia suffer from annual
floods [5]. The flood of 2009 caused loss of life and economic loss of more than 121 deaths,
20,000 displaced households [6,7], and billions of dollars [7]. The Jeddah flood disaster has
worsened due to urban changes, rainfall, climatic changes, and network and watershed
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factors. Thus, flood vulnerability research is mandatory to accurately identify flood risk
zones to reduce the effect of floods by developing preventive measures [8].

Various studies about flood occurrence probability have been done using different tech-
niques, such as rainfall runoff, pattern classification, and traditional analyses [9]. Rainfall-runoff
models (e.g., GSSHA [10], MIKE by DHI [11], HEC-HMS [12], and SWAT [13–15]) are most
commonly used to predict the temporal and spatial variation of floods based on establishing
a relation between runoff and rainfall. However, they require field observation data to
achieve a high accuracy level of prediction [16–18]. Pattern classification used “on-off”
classification, which does not require field observation data. In this model, the flood-prone
area is classified into non-flood and flood zones based on geo-environmental data and
historical floods [19]. Various models have been suggested and proposed based on the
remote sensing data to predict floods [20–23], but in mountainous areas, these models
could not accurately predict flash floods [24,25]. In traditional analyses, regression models
are generated based on the field observation of historical data to forecast discharge [25–28].
However, this kind of model is mostly applied to specific areas.

In order to properly prepare for any natural hazard susceptibility mapping, it is
essential to control the risk factors that cause the hazard [29]. Floods are caused by various
connected conditions or factors [29,30]. The terrain significantly impacts the surface runoff
in terms of direction and rate. According to earlier studies [31,32], elevation is one of the
most critical criteria in mapping flood susceptibility. It is, however, inversely associated
with flooding; the lower the elevation, the higher the likelihood that a flood might occur.
The slope angle determines the trends of physiography and soil moisture patterns [33]. As
a result, it is crucial to determine the status of hydrologic settings that affect infiltration
rate, runoff, and subsurface drainage [32]. Hydrologic processes such as the direction
of frontal precipitation, evapotranspiration, vegetation development, and weathering
processes are significantly impacted by the slope aspects, particularly in dry environmental
conditions [34]. Another key component in controlling flooding is lithology. The type of
geological formation greatly influences the permeability of soils. The porosity will decrease
with increasing topsoil fineness, generating more runoff flow [35]. Higher permeability of
the upper soil layer on the terrain increased infiltration capacity and decreased runoff [36].

The most important climate parameter influencing hydrological processes and flood
risk assessment is precipitation, which includes rainfall and snowfall [37]. The amount
and rate of precipitation significantly impact the flood risk. Notably, the crucial factors
are the frequency and intensity of rainfall events [38]. Various hydrological responses
are significantly impacted by changes in land cover and land use. In this context, several
studies have been devoted to evaluating the effects of land use and land cover (LULC)
trends at various scales on flooding assessment and management. They reported the
crucial role of LULC plays in the runoff rate and volume [39]. Many landscape changes are
primarily caused by LULC changes, such as transitions from forest to agriculture, forestry
to arable land, rain and/or groundwater-fed farmland to irrigated agriculture, or forest use
to urbanised regions [40].

In the last few years, flood susceptibility evaluation research has significantly in-
creased [35,38,41,42]. In recent years, artificial intelligence models have been integrated
with GIS and remote sensing techniques to predict the spatial variability of flood susceptibil-
ity. Examples of these models include: kernel logistic regression (KLR) [43], evidential belief
function and decision trees (DT) [44], support vector machine (SVM) [45,46], deep learning
neural network [47], logistic regression [48,49], artificial neural networks (ANN) [49–51],
rotation forest [52], WELLSVM [53], Naïve Bayes [54], random forest [55], QUEST and
GARP [56], and classification and regression trees (CART) [56]. However, researchers are
not consensus about selecting the best-performed models. Accordingly, other studies found
that hybrid models can predict flood susceptibility at a high level of accuracy, such as
metaheuristic algorithms and neuro-fuzzy systems [57–59], support vector machines with
an ensemble of weights-of-evidence [28], bagging ensembles, and logistic model tree [60],
the ensemble of multi-criteria decision making [61], SVM, CART, and an ensemble of multi-
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variate discriminant analysis [62], swarm optimised neural networks [63], fuzzy rule-based
ensembles [9,64], and hybrid Bayesian framework [9].

Similarly, Mosavi et al. [65] provide a detailed review of the performance of machine
learning models in flood prediction. It was evidenced that several technical pieces of
literature have been published on flood assessment. However, the estimation of flood
risk and vulnerability is valuable in preventing loss of life and damages. Computational
algorithms such as ML models are a subdivision of artificial intelligence in which the
machine learns from machine-readable data and information. It uses data, learns the
pattern, and predicts new outcomes. Its popularity is growing because it helps us to
understand the trend and provides a solution that can be either a model or a product.
Applications of ML algorithms have increased drastically in GIS and remote sensing in
recent years. The role of geoinformation technology, for instance, GIS and remote sensing
in flood analysis and land use changes, cannot be overlooked. This role further generated
several interests of researchers to employ data-driven approaches and sensed data as well
as other source data to create the vector or raster inputs.

The application of machine learning to analyse floods in Jeddah city received less
attention despite other published studies along the same line. This study explored machine
learning models viz: bagging ensemble (BE), logistic model tree (LT), kernel support vector
machine (k-SVM), and k-nearest neighbour (KNN) for flood susceptibility mapping and
prediction in Jeddah City. For this purpose, dependency analysis (DA) was employed to
feature categorization and selection. The major motive behind this study is attributed to
the flood scenarios of 2009 and 2011, where more than 113 persons died, in addition to
damaged records of buildings, roads, cars, and the loss of several properties.

2. Description of the Study Area and Input Data
2.1. Study Area

Jeddah city, located within three major sub-basins (northern, middle, and southern),
which are the main source of flash floods, was selected as a case study (Figure 1). The
northern sub-basin includes wadi Daghbaj, wadi Brayman, wadi Muraygh, wadi Quraa,
wadi Ghaia, and wadi Um Hablain. The middle sub-basin includes Wadi Mraikh and Wadi
Bani Malik. The southern sub-basin includes wadi Qaws, Wadi Wadi Methweb, Asheer,
Wadi Al Khomra, and Wadi Ghulail. In 2022, an estimated 4.78 million people occupy
Jeddah city [66]. The city is boarded west by the Red Sea and east by mountain chains with
a maximum altitude of 675 m. The drainage area, as delineated by 30 m DEM is 1821 km2.
The residential area is in the coastal plain, exposing it to the effects of flash floods from the
mountain chains. Figure 1 shows the topography of the Jeddah watershed, which shows
two geomorphological units: the coastal plain and the mountains which dominate the city.
Although Jeddah is arid, it suffers from flash floods that have hit the city several times. The
urban areas were attacked on 25 November 2009, by flash floods causing much damage to
infrastructures, buildings, cars, and roads, and about 113 people died. Huge damage was
also caused by another event in 2011 [67]. The watershed drains in many neighbourhoods,
such as Al-Harazat, King Abdel Aziz University, Al-Haramin Highway, Al-Mesaid, Queza,
and Al-Sawaid, which were significantly affected due to the 2009 flash flood event.
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Figure 1. Study area employed in this work.

2.2. Flood Conditioning Factors/Predictors

The study’s flooding conditioning factors, including elevation, slope, aspect, topog-
raphy, lithology, precipitation, land cover, and land use, were taken into account based
on the study region and the available data. Hydrology, geography, environment, and
anthropology form the four categories of these flood conditioning factors. In this study, the
following variables were extracted from 30 m shuttle radar topographic mission (SRTM) to
be considered slope angle (SA), topographic position index (TPI), stream power index (SPI),
plan curvature (PC), topographic wetness index (TWI), distance river (DR), rainfall (P),
lithology, land use (LD), soils, convergence index (CI), flow accumulation (FA), elevation,
topographic ruggedness index (TRI), F-NF (flood and non-flood) and aspect (Figure 2).

A major factor in the occurrence of floods is rainfall. It should be mentioned that the
vast majority of research pertaining to the assessment of flood susceptibility employed
the yearly average rainfall figure. All rainfall values were interpolated using the spline
approach. When there are only a few data points, as there are in this study, this approach
is advised. Due to its primary connection to the fluctuation of soil moisture, the aspect
was discovered to be a predictor of floods. A single flat zone and the ninth divisions of
north, north-east, east, south-east, south-west, west, and north-west and north were created
using the values of the aspect raster. The elevation of the surrounding cells was taken into
consideration by the topographic position index (TPI), which successfully distinguishes a
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cell from them (Jenness, 2000). In the current study, the following classes for the TPI map
were defined: (−79.38)–(−15.1); (−15.1)–(−3.72); (−3.72)–5.36; 5.36–22.76; 22.76–113.56.
Another morphometric indicator that will be employed as a flood prediction is the stream
power index (SPI). When determining water’s values, erosive force, and transport ability
are taken into account. The following expert judgment-based classifications for SPI maps
were created: 0–50; 50–100; 100–400; 400–1000; >1000.
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Similarly, the slope angle is a crucial morphometric component that significantly affects
the flooding process. It is common knowledge that a level location is more vulnerable to
floods than an area with a steep slope that promotes the manifestation of surface runoff.
To construct the slope angle map, the slope angle was divided into the following ranges:
<3; 3–7; 8–15; 16–25; and >25. Lithology primarily regulates the penetration of water
due to the permeability of the rock, which in turn impacts the flooding phenomenon. In
the research region, a total of five lithological classifications were discovered (igneous
extrusive rocks, igneous intrusive rocks, Polylithologic rocks, sedimentary rocks, and
sedimentary surficial deposits). As a result of the fact that flood occurrences are more
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likely to occur in low-lying locations, elevation is a second morphometric element that is
extremely important in determining flood vulnerability. In order to create the elevation
map for the case study at hand, the following 8 altitude classes were used: <50 m; 50–100 m;
100–200 m; 200–300 m; 300–400 m; 400–500 m; 500–600 m; >600 m. The Hydrological Soil
Group, a flood control parameter, has a significant impact on water infiltration. Particularly,
the soil texture affects infiltration directly because it affects hydraulic conductivity. Three
hydrological soil categories are located inside the watershed of Jeddah. The vertical plan’s
slope direction affects the profile’s curvature. Values greater than 0 imply enhanced surface
runoff, whereas negative values suggest decelerating surface runoff. The profile curvature
map was made using the following three classes: −3.15 to −0.1; −0.1 to 0.1; and 0.1 to
2.87. Surface runoff and water storage processes are significantly influenced by land use,
a component in flood prediction. The Jeddah catchment is divided into the following six
land-use categories: agricultural zones, built areas, roads, mountains, bare lands, and water
bodies. The topographic wetness index (TWI) is determined using the slope angle values
and the particular catchment region. This indicator emphasises how geography affects the
phenomena of water accumulation. The natural breaks technique was used to create the
classes listed below in order to design the TWI map: 3.5–6.58, 6.58–8.6, 8.6–11.1, 11.1–14.66,
and 14.66–28.05.

2.3. Flood Locations Inventory

Understanding the flooding inventory is very essential for successful flood man-
agement and mitigations. For computing the flood susceptibility, the past event loca-
tions were used to generate the crucial input variables. According to Costache et al. [41],
Costache et al. [68], Sammen et al. [69], the probability of floods could be attributed to areas
with the same features and other characteristics. The source of flood inventory differs from
one geographical location to another but generally can be from past technical, scientific
work, government achieves, newspapers, field surveys, or recently emerging technologies.
The current study developed the flood inventory map based on information from past pub-
lished articles, aerial photos, historical data, Google Earth, and news from the government
database in Saudi Arabia. Hence, a total of 282 flood events were used for the occurred
flood in the prone zone of Saudi Arabia (Figure 2). The points were proved as the most
important flood zone locations; thus, we considered these points to reflect the complex
problems of the Jeddah region. In several works of literature, for example [60,61,70,71],
flood susceptibility-dependent variables have been used as points for flood locations.

3. Background of Methods Used

The complicated phenomena of natural events such as floods proved to be due to
several factors, including climate change and human activities. This study proposes
different machine learning algorithms integrated with remote sensing and GIS to control
this phenomenon. The flood pattern falls into binary classification; hence the susceptibility
mapping procedure includes the non-flood’s location (141). As a tradition of reliable
models, the training and testing performance was validated using several indicators. The
total sample of the data comprises both flood and non-flood samples with a ratio of 70%
and 30% for the training and testing phase, respectively. To ensure a subjective sampling
process, the external validation of random sampling for all the locations was conducted
using the ArcGIS 10.8 software. The overall proposed methodology is presented in Figure 3.
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3.1. Bagging Ensemble (BE)

For more stable, reliable, and accurate models, a technique known as “bagging” or
“Bootstrap Aggregating” is used [72,73] (Figure 4). One reliable ensemble learning technique
used to resample the training dataset is bagging. The raw data samples that make up the
multiple sets of training data are bootstrapped in the first stage. These training datasets
are used to construct a variety of models. The continual training processes for datasets and
numerous models produce predictions. The basic idea behind the bagging technique is
simple. Multiple models are developed to characterise the relationship between the input
and output variables instead of a single model making appropriate predictions for the actual
data. Then, several models are linked to create a single output using the weighted average in
the bagged algorithm [74,75]. The potential uncertainties in the modelling process can be
successfully reduced with this tactic. As demonstrated by earlier publications, bagging is a
good option for ensemble modelling of various environmental problems [76].
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3.2. Logistic Model Tree

The logistic model tree is a classification model that combines logistic regression (LR)
with decision tree learning techniques [77,78]. While the efficiency of categorization is not
greatly affected, this exploratory strategy significantly improves time. The key advantages
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of LMT models are their rapid construction and simple interpretation. The LogitBoost
algorithm is used in the logistic variation to create an LR model at each node in the tree,
and the CART algorithm is used to prune the tree. Information gain is employed for
splitting [79]. To avoid overfitting with training data, the LMT finds several LogitBoost
rounds using cross-validation. Generally, LMT constructs compact tree structures using
high-tech, low-cost pruning techniques [80,81].

3.3. Kernel SVM Algorithms

The k-SVM model (Figure 5) was developed based on the concept of a support vector
machine (SVM), which is generally used in solving problems through regression and clas-
sification approach [82–86]. SVR is an established computational technique with various
merits, such as good noise-tolerating, superior generalization ability, and high learning
speed [87]. Generally, the input variables from the datasets were mapped into a compacted-
spatial elements filter architecture via a nonlinear kernel operator using the SVM [87–89].
This regression technique can convert a complex process into a simple one via understand-
ing the learning complexity of the interaction between the predictors and responses [90,91].
Different kernel functions have been used to solve chaotic problems in science and engi-
neering, for example, linear, multinomial, and radial basis function (RBF). In the current
study, RBF was used owing to its robustness to handle the complex nonlinear process.
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3.4. K-Nearest Neighbor (KNN)

As non-parametric soft computing supervised learning algorithm, KNN is employed
in both problems related to classification and regression model that classifies a viewpoint in
n-spatial space [92]. However, the k-adjoining bordering features are used in the exercise
calibration, which relies mainly on distance pattern classification [93]. It is based on the
concept that elements which the same geographic coordinate or site will eventually occupy the
same attribute and characteristic if they are situated near each other. This algorithm has been
promising in forecasting problems such as flooding with the voting process nature to spatial
objects. As indicated in several works, for instance, distance has been defined in [68,94,95].

4. Model Validation Techniques

For all the developed models, the results from the proposed approach were validated
using several performance matrices such as sensitivity, specificity, precision, and accuracy.
According to [96,97], performance indices are considered significant if the spatial correlation
exists between the measured flood and non-flood and predicted flood susceptible zone.

Precision =
TP

TP + FP
(1)
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Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP = true positive, TN = true negative, FP = false positive, FN = false negative.
Similarly, another common index called the receiver operating characteristic (ROC) curve
was used in the analysis. As the most frequently employed, the ROC defines the reliability
of the predictive models by considering the area under the curve (AUC). In addition,
root mean squared error (RMSE) and mean absolute error (MAE) were also applied to
compute the flood susceptibility mapping. These two indices have been employed in
several scientific works.

AUC =
(∑ TP + ∑ TN)

(P + N)
(5)

where TP is true positive, TN is true negative, P is the total number of pixels with torrential
phenomena, and N is the total number of pixels without torrential phenomena

RMSE =

√
1
n ∑n

i=1

(
Xpredicted − Xactual

)2
(6)

MAE =

√
1
n ∑n

i=1

∣∣∣Xpredicted − Xactual

∣∣∣ (7)

where n is the total samples in the training or testing phase, the predicted value is Xpredicted,
the observed value is Xactual from the flood susceptibility model.

5. Results and Discussion

Due to the different flood predictors used in this study, it is evident that conditioning
factors affect flood variability. The strength of these predictors needs to be understood again
the target flood occurrence. Different methods to analyse the strength of the predictors have
been utilised in various technical works of literature, for example, the IGR method, average
merit (AM), and dependency analysis (DA). The dependency analysis was employed in
this study due to its popularity in science and engineering and uniqueness novelty in risk
and flooding problems. Figure 6 shows the DA with respect to another flood-predicted
occurrence. The analysis indicates that TWI, FA, SPI, and P are directly related to the target
parameters, while all other variables, including TPI, TRI, DEM, aspect, PC, slope, lithology,
soils, LU, and DR, were correlated indirectly.

The five most strongly factors affecting the target variables irrespective of their di-
rection according to the DA were DR (−0.79007), TWI (0.5619), slope (−0.5114), DEM
(−0.4563), and lithology (−0.4145). This justification has been reported in some of the liter-
ature; however, historical investigation of flood data depicted that the common occurrence
of floods is attributed to the low slopes and distance to the rivers, this is in line with the
study of [60]. The factors that notably affected the overall flood analysis and their absolute
weight were ranked in Figure 7. As stated above, the study comprises two different input
variables combination (C1 and C2) based on the features sensitivity selection. The C1 and
C2 define the dominancy towards target variables for instance C1 (DR + TWI + S lope +
DEM + Lithology + TRI + TPI), and C1 (FA + P + SPI + PC + LU + Soil + Aspect). It is
quite important to note that formulating these variables is quite complex hence feature
optimization is crucial to ease the complex process.
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The results for this study were constructed using a bagging ensemble (BE), logistic
tree (LT), kernel support vector machine (k-SVM), and k-nearest neighbour (KNN), and the
training and validation dataset was divided into 70% and 30%, respectively. In addition,
10-k-fold cross-validation was applied for all the combinations. The validation phase results
were recorded for the combination 1 and 2, as presented in Tables 1 and 2, respectively. For
all the classifiers, the optimal parameters such as the number of iterations, prediction speed
(obs/s) and training time (s) were attained, and the best stooping criteria were selected.
Different performance indicators were used to estimate flood susceptibility in this study.
The under-the-receiver operating characteristic curve (AUC) was utilised to determine
the accuracy of a good forecast; for example, if AUC is ranged between 0.5 and 1, where
0.5 implies a poor estimate, while an excellent forecast is when AUC approaches or is
equal to 1. Figure 8a–d indicates the efficiency performance of BE, LT, k-SVM, and KNN
algorithms during the validation phase.
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Table 1. Performance of the models based on the calibration dataset.

Validation Phase BE-C1 LT-C1 k-SVM-C1 KNN-C1

True positive (TP) 92.9 90.1 93.6 88.7
True negative (TN) 90.1 90.1 83.7 88.7
False positive (FP) 9.9 9.9 16.3 11.3
False negative (FN) 7.1 9.9 6.4 11.3

Precision 0.9037 0.901 0.85168 0.887
Sensitivity 0.929 0.901 0.936 0.887
Specificity 0.901 0.901 0.837 0.887
Accuracy 0.915 0.901 0.8865 0.887

RMSE 0.00501 0.017006 0.01504 0.005
AUC 0.97 0.97 0.93 0.89

Prediction speed (obs/s) 1700 4100 4300 3300
Training time (s) 5.4626 3.8231 2.9381 2.2905

Table 2. Performance of the models based on the validation dataset.

Validation Phase BE-C2 LT-C2 k-SVM-C2 KNN-C2

True positive (TP) 73 76.6 67.4 65.2
True negative (TN) 75.9 63.1 67.4 65.2
False positive (FP) 42.1 36.9 32.6 34.8
False negative (FN) 27 23.4 32.6 34.8

Precision 0.634231 0.67489 0.674 0.652
Sensitivity 0.73 0.766 0.674 0.652
Specificity 0.390738 0.38806 0.5 0.5
Accuracy 0.683028 0.6985 0.674 0.652

RMSE 0.007092 0.031518 0.025324 0.005015
AUC 0.83 0.80 0.75 0.65

Prediction speed (obs/s) 690 1800 1800 1700
Training time (s) 14.376 11.8 8.9565 5.2392

The best iteration algorithms were chosen and reported, as indicated in Table 1. From
the Table results, BE-C1 attained the best results based on the sensitivity (0.929) and
specificity (0.901). The quantitative comparison regarding the accuracy shows that BE-C1
(0.915), LT-C1 (0.901), k-SVM-C1 (0.886), and KNN-C1 (0.887) demonstrated a promising
ability of ensemble boosting. For combination 1 (C1), the validation results depicted that
BE-C1 had the highest performance in terms of accuracy, precision, AUC, and specificity
and the lowest error (RMSE). This indicated the probability of the machine ensemble models
in classifying the flood. The accuracy of the models’ combination (C2) is also presented
in Table 2; this combination includes an absolute strength ranging from 23–35% with the
target variables. The highest sensitivity was attributed to the LT-C2 (0.763) followed by
BE-C2 (0.7), k-SVM (0.67), and KNN-C2 (0.65) model. The C2 shows marginal convergence
and accuracy owing to the less correlated strength with the target variables. The numerical
comparison for the two-combination revealed that k-SVM- C1 models had promising
sensitivity, with more than 93% of the flood pixels being acceptably classified into the
classes of flooding. Similarly, BE-C1 models were found to have the highest specificity,
indicating that 90% of the validation datasets were classified as non-floods (Figure 9).
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Besides the specificity and sensitivity criteria, the statistical comparisons were gener-
ated using the RMSE, as demonstrated in Tables 1 and 2. The results showed that the RMSE
for the best combination is 0.00501, 0.0315, 0.01504, and 0.0050 for EB-C1, LT-C1, k-SVM-C1,
and KNN-C1, respectively. The overall ranking of RMSE can be indicated in Figure 10.
The values of RMSE for EB-C1 depicted the perfect agreement between the observed and
simulated values; hence the estimated probability of susceptibility was attained.
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Generating Flood Susceptibility Map

In a complex prone flood area such as Jeddah, it is very essential to develop and
categories flood susceptibility probability maps for both the failure and success rate. In
most of the literature, training datasets were used to efficiently create flood model reliability
performance. According to Towfiqul Islam et al. [98] spatial flood prediction was attributed
to the probability of several flood vulnerability maps. The flood maps in this study
were generated using GIS software after the model’s calibration. Researchers such as [46]
categorised the various approaches of flood susceptibility indices (FSI), for example, natural
breaks, standard deviation, interval techniques, etc., depending upon the nature and
objective of the specific method. Moreover, the previous literature recommended the
quantile-based approach as the most widely used classification method for generating
susceptibility maps. The classifications were verified using the validation results, and the
outcomes show that predominant locations towards the distance to the river served as
highly susceptible to flooding with high intensity of overestimation.

The flood susceptibility maps are presented in Figure 11. For comparison with
Youssef et al. [67] proposed bivariate and multivariate statistical models for flood as-
sessment in Jeddah city. The obtained conclusion indicated that high susceptibility was
associated with TWI and DR along the wadis and western catchments. This conclusion
is in line with our findings. Besides, the outcomes and the behaviour of flood predictors
depicted that the topography of the Jeddah watershed is expected to have frequent flooding
even with the small number of return periods. Generally, in the Kingdom of Saudi Arabia,
for example, so much research has been taken to map out the flood-vulnerable areas and
zones to take accurate mitigate its future occurrence; still, in an ongoing flood event, the
adoption of the policies and strategies are not fully taking cognizance by the decision-
makers. Information on flood characteristics and their effects is vital for flood defence
authorities to help formulate policies and, at the same time, in flood decision-making
management strategies such as building flood protection structures to strengthen flood
emergency response settlement plans [99].
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6. Conclusions

Flash flood management is crucial to preventing human casualties and economic
losses, particularly in high residential areas like Jeddah. Therefore, high-accuracy mapping
of flood susceptibility is seen to be crucial for developing flood management strategies,
especially in light of climate change. The major motive behind this study is attributed to the
flood scenarios of 2009 and 2011, where more than 113 persons died in addition to damaged
records of buildings, roads, cars, and the loss of several properties. This study explored
machine learning models viz: bagging ensemble (BE), logistic model tree (LT), kernel
support vector machine (k-SVM), and k-nearest neighbour (KNN) for flood susceptibility
mapping and prediction in Jeddah City. For this purpose, dependency analysis (DA) was
employed to feature categorization and selection. The AUC values of the BE-C1, LT-C1,
k-SVM-C1, and KNN-C1 are 97%, 97%, 93%, and 89%, respectively. While AUC values of
the BE-C2, LT-C2, k-SVM-C2, and KNN-C2 are 0.83%, 0.8%, 0.75%, and 0.65%, respectively.
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In general, the introduced models in this paper can be used as alternate methods for spatial
flood model prediction. However, owing to the emerging knowledge in the field of AI-
based models it is suggested that other feasible alternative approaches such as feature
selection methods, hybrid learning techniques, and optimization algorithms should also be
practised. The major limitation of this study is based on data mining and gathering using
highly sophisticated high-resolution satellites.
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82. Usman, A.G.; Işik, S.; Abba, S.I. Hybrid Data-Intelligence Algorithms for the Simulation of Thymoquinone in HPLC Method
Development. J. Iran. Chem. Soc. 2021, 18, 1537–1549. [CrossRef]

83. Veenaas, C.; Linusson, A.; Haglund, P. Retention-Time Prediction in Comprehensive Two-Dimensional Gas Chromatography to
Aid Identification of Unknown Contaminants. Anal. Bioanal. Chem. 2018, 410, 7931–7941. [CrossRef]

84. Olson, R.S.; la Cava, W.; Mustahsan, Z.; Varik, A.; Moore, J.H. Data-Driven Advice for Applying Machine Learning to Bioinfor-
matics Problems. Pac. Symp. Biocomput. 2018, 2018, 192–203. [CrossRef]

85. Tewari, S.; Dwivedi, U.D. Ensemble-Based Big Data Analytics of Lithofacies for Automatic Development of Petroleum Reservoirs.
Comput. Ind. Eng. 2019, 128, 937–947. [CrossRef]

86. Chuma, G.B.; Bora, F.S.; Ndeko, A.B.; Mugumaarhahama, Y.; Cirezi, N.C.; Mondo, J.M.; Bagula, E.M.; Karume, K.; Mushagalusa,
G.N.; Schimtz, S. Estimation of Soil Erosion Using RUSLE Modeling and Geospatial Tools in a Tea Production Watershed
(Chisheke in Walungu), Eastern Democratic Republic of Congo. Model. Earth Syst. Environ. 2021, 8, 1273–1289. [CrossRef]

87. ArunKumar, K.E.; Kalaga, D.V.; Sai Kumar, C.M.; Chilkoor, G.; Kawaji, M.; Brenza, T.M. Forecasting the Dynamics of Cumulative
COVID-19 Cases (Confirmed, Recovered and Deaths) for Top-16 Countries Using Statistical Machine Learning Models: Auto-
Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). Appl.
Soft Comput. 2021, 103, 107161. [CrossRef] [PubMed]

88. Bagherzadeh, F.; Mehrani, M.-J.; Basirifard, M.; Roostaei, J. Comparative Study on Total Nitrogen Prediction in Wastewater
Treatment Plant and Effect of Various Feature Selection Methods on Machine Learning Algorithms Performance. J. Water Process
Eng. 2021, 41, 102033. [CrossRef]

89. Zeng, J.; Chai, Q.; Peng, X.; Li, S. Geographical Origin Identification for Tetrastigma Hemsleyanum Based on High Performance
Liquid Chromatographic Fingerprint. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China,
22–24 November 2019; pp. 1816–1820. [CrossRef]

90. Agrawal, P.; Ganesh, T.; Mohamed, A.W. A Novel Binary Gaining–Sharing Knowledge-Based Optimization Algorithm for Feature
Selection. Neural. Comput. Appl. 2020, 33, 5989–6008. [CrossRef]

91. Yaseen, Z.M.; Deo, R.C.; Hilal, A.; Abd, A.M.; Bueno, L.C.; Salcedo-Sanz, S.; Nehdi, M.L. Predicting Compressive Strength of
Lightweight Foamed Concrete Using Extreme Learning Machine Model. Adv. Eng. Softw. 2018, 115, 112–125. [CrossRef]

92. Kombo, O.; Kumaran, S.; Sheikh, Y.; Bovim, A.; Jayavel, K. Long-Term Groundwater Level Prediction Model Based on Hybrid
KNN-RF Technique. Hydrology 2020, 7, 59. [CrossRef]

http://doi.org/10.3390/rs12010106
http://doi.org/10.1007/s00704-022-03925-9
http://doi.org/10.3390/w10111536
http://doi.org/10.1016/j.jenvman.2022.115316
http://doi.org/10.1016/j.neucom.2008.09.002
http://doi.org/10.3390/su13115877
http://doi.org/10.1016/j.procs.2020.03.062
http://doi.org/10.1109/TCYB.2020.3036393
http://www.ncbi.nlm.nih.gov/pubmed/33320820
http://doi.org/10.1016/j.ecoinf.2021.101292
http://doi.org/10.1007/s10994-005-0466-3
http://doi.org/10.1007/s10346-015-0557-6
http://doi.org/10.1007/s41133-020-00032-0
http://doi.org/10.1080/10106049.2018.1425738
http://doi.org/10.1007/s13738-020-02124-5
http://doi.org/10.1007/s00216-018-1415-x
http://doi.org/10.1142/9789813235533_0018
http://doi.org/10.1016/j.cie.2018.08.018
http://doi.org/10.1007/s40808-021-01134-3
http://doi.org/10.1016/j.asoc.2021.107161
http://www.ncbi.nlm.nih.gov/pubmed/33584158
http://doi.org/10.1016/j.jwpe.2021.102033
http://doi.org/10.1109/CAC48633.2019.8996240
http://doi.org/10.1007/s00521-020-05375-8
http://doi.org/10.1016/j.advengsoft.2017.09.004
http://doi.org/10.3390/hydrology7030059


Remote Sens. 2022, 14, 5515 21 of 21

93. Thi Thuy Linh, N.; Pandey, M.; Janizadeh, S.; Sankar Bhunia, G.; Norouzi, A.; Ali, S.; Bao Pham, Q.; Tran Anh, D.; Ahmadi, K.
Flood Susceptibility Modeling Based on New Hybrid Intelligence Model: Optimization of XGboost Model Using GA Metaheuristic
Algorithm. Adv. Space Res. 2022, 69, 3301–3318. [CrossRef]

94. Sakizadeh, M.; Mirzaei, R. A Comparative Study of Performance of K-Nearest Neighbors and Support Vector Machines for
Classification of Groundwater. J. Min. Environ. 2016, 7, 149–164. [CrossRef]

95. Sami, N.A.; Ibrahim, D.S. Forecasting Multiphase Flowing Bottom-Hole Pressure of Vertical Oil Wells Using Three Machine
Learning Techniques. Pet. Res. 2021, 6, 417–422. [CrossRef]

96. Costache, R.; Tien Bui, D. Identification of Areas Prone to Flash-Flood Phenomena Using Multiple-Criteria Decision-Making,
Bivariate Statistics, Machine Learning and Their Ensembles. Sci. Total Environ. 2020, 712, 136492. [CrossRef]

97. Costache, R. Flash-Flood Potential Assessment in the Upper and Middle Sector of Prahova River Catchment (Romania). A
Comparative Approach between Four Hybrid Models. Sci. Total Environ. 2019, 659, 1115–1134. [CrossRef] [PubMed]

98. Towfiqul Islam, A.R.M.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood Susceptibility
Modelling Using Advanced Ensemble Machine Learning Models. Geosci. Front. 2021, 12, 101075. [CrossRef]

99. Desalegn, H.; Mulu, A. Flood Vulnerability Assessment Using GIS at Fetam Watershed, Upper Abbay Basin, Ethiopia. Heliyon
2021, 7, e05865. [CrossRef] [PubMed]

http://doi.org/10.1016/j.asr.2022.02.027
http://doi.org/10.22044/jme.2016.480
http://doi.org/10.1016/j.ptlrs.2021.05.004
http://doi.org/10.1016/j.scitotenv.2019.136492
http://doi.org/10.1016/j.scitotenv.2018.12.397
http://www.ncbi.nlm.nih.gov/pubmed/31096326
http://doi.org/10.1016/j.gsf.2020.09.006
http://doi.org/10.1016/j.heliyon.2020.e05865
http://www.ncbi.nlm.nih.gov/pubmed/33506123

	Introduction 
	Description of the Study Area and Input Data 
	Study Area 
	Flood Conditioning Factors/Predictors 
	Flood Locations Inventory 

	Background of Methods Used 
	Bagging Ensemble (BE) 
	Logistic Model Tree 
	Kernel SVM Algorithms 
	K-Nearest Neighbor (KNN) 

	Model Validation Techniques 
	Results and Discussion 
	Conclusions 
	References

