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Abstract: Climate change and population growth risk the world’s food supply. Annual crop yield 
production is one of the most crucial components of the global food supply. Moreover, the COVID-
19 pandemic has stressed global food security, production, and supply chains. Using biomass esti-
mation as a reliable yield indicator, space-based monitoring of crops can assist in mitigating these 
stresses by providing reliable product information. Research has been conducted to estimate crop 
biophysical parameters by destructive and non-destructive approaches. In particular, researchers 
have investigated the potential of various analytical methods to determine a range of crop parame-
ters using remote sensing data and methods. To this end, they have investigated diverse sources of 
Earth observations, including radar and optical images with various spatial, spectral, and temporal 
resolutions. This paper reviews and analyzes publications from the past 30 years to identify trends 
in crop monitoring research using remote sensing data and tools. This analysis is accomplished 
through a systematic review of 277 papers and documents the methods, challenges, and opportu-
nities frequently cited in the scientific literature. The results revealed that research in this field had 
increased dramatically over this study period. In addition, the analyses confirmed that the normal-
ized difference vegetation index (NDVI) had been the most studied vegetation index to estimate 
crop parameters. Moreover, this analysis showed that wheat and corn were the most studied crops, 
globally. 
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1. Introduction 
Providing adequate agricultural production is critical to a nation’s economic devel-

opment and social stability [1,2]. This sector continues to be challenged by climate change, 
increasingly unpredictable weather patterns, and global population growth [3]. As such, 
ongoing monitoring of crop conditions and production estimates can assist in building 
short-term and long-term resilience for national and international food security and trade 
and market management [4–9]. Moreover, the COVID-19 pandemic has stressed global 
food security, production, and supply chain systems [10]. Accurate in-season monitoring 
of crop conditions and yield estimation can positively impact economic development, na-
tional food security, and risk assessment of agricultural production [11,12]. To achieve 
accurate and precise crop production forecasts, various input data, including incoming 
solar radiation, temperature, precipitation, soil moisture, and crop phenology, are needed 
[7,13,14]. The performance of crop models depends on the quality of these input data. 
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Traditionally, crop yield forecasts have been made using in situ and field measurements 
in which a small part or whole plant is cut as ground samples. However, this approach is 
destructive, time-consuming, and expensive [15–19]. Furthermore, the information pro-
vided by in situ measurements is restricted to small geographies and may be limited in 
applicability to the entire growing season. Estimating crop production over large areas is 
vital for assessing national and regional food security. 

Remote sensing can provide data to assist with monitoring and mapping crops at 
spatial and temporal scales that are difficult to achieve with in situ approaches [2,20–25]. 
Various sensor technologies and observing platforms have been developed to acquire 
these data. Sensors mounted on space-based orbiting platforms collect frequent images of 
the Earth, often with large swath coverage and over regions where on-the-ground access 
is challenging [26–30]. Typically, airborne sensors provide better spatial resolutions at the 
expense of temporal revisit and spatial coverage. Airborne systems are more flexible than 
satellite ones, with deployment dictated primarily by the operator and local weather con-
ditions. These systems also offer choices for acquisition configurations such as incident 
angles, flight paths, and flying heights [31–33]. Various sensors can be mounted on air-
craft, helicopters, unmanned aerial vehicles (UAVs), or drones [34]. In particular, UAV or 
drone platforms can collect very high-resolution data and are cost efficient relative to sat-
ellite remote sensing platforms if the required spatial coverage is small [2,35–37]. 

Various remote sensing technologies can measure and estimate crop biophysical pa-
rameters. These technologies include passive optical, multi- or hyper-spectral, active mi-
crowave or synthetic aperture radar (SAR), and optical light detection and ranging (Li-
DAR) sensors. Multispectral optical sensors have extensively been used for in-season crop 
mapping and monitoring [38,39]. In particular, vegetation indices (VIs) computed from 
multispectral data have been widely studied for agriculture applications, while far less 
research has examined the use of SAR to monitor crops [40]. The results of several studies 
showed that optical data, particularly VIs, outperform the use of SAR data alone in crop 
parameter estimation and crop mapping [41–45]. Reflectance and absorption of visible 
and infrared wavelengths are linked with plant pigmentation and internal leaf structure. 
Thus, optical VIs respond well to crop condition dynamics and have been used to estimate 
crop biophysical parameters and yield [46–50]. VIs are typically expressed as normalized 
ratios. This normalization decreases the impacts of atmospheric effects and bi-directional 
reflectance and mitigates the effect of soil background reflectance [51,52]. For instance, the 
normalized difference vegetation index (NDVI) is used to estimate crop biomass and leaf 
area index (LAI) [53–55]. Despite the sensitivity of optical wavelengths to crop biophysical 
and biochemical conditions, optical remote sensing is limited in the presence of clouds, 
cloud shadows, and other atmospheric conditions [56,57]. This limitation complicates the 
use of optical sensors for operational monitoring, considering that clouds cover two-thirds 
of the Earth for at least part of the growing season [58]. Optical reflectance saturates when 
significant biomass accumulates, and the crop canopy is dense, impacting the sensitivity 
of these VIs during periods of peak growth [59–61]. 

Synthetic aperture radars are active microwave sensors that generate their energy 
source and can thus operate independent of solar illumination [20,62]. SARs transmit mi-
crowave signals that are significantly longer than wavelengths in the optical and infrared 
regions of the electromagnetic spectrum. Given these characteristics, SARs are essential 
for imaging regions of the Earth that experience prolonged periods of cloud cover and in 
high latitude regions during periods of the year with low solar illumination [62,63]. SARs 
can collect images of agricultural landscapes regardless of the presence of clouds, and as 
such, this technology is an attractive option when operational monitoring is essential 
[20,64]. SARs measure the intensity and phase of target scattered signals [13]. The intensity 
and phase of microwave scattering depend  on system configurations (incident angle, fre-
quency, and polarization), as well as on the characteristics of the agricultural target (die-
lectric properties, soil surface roughness, and canopy structure) [4,56,65–68]. SARs can 
provide important information about crop development throughout the growing season 
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because the scattering, intensity, and phase are impacted by canopy structure and water 
content [69]. When longer wavelengths are used, the sensitivity of SARs to crop charac-
teristics can extend to larger biomass canopies and periods in the growing season when 
optical signals saturate [70]. However, regardless of whether optical or SAR is used, meth-
ods to retrieve biophysical parameters (e.g., biomass, LAI) developed for one site and one 
season may not be easily transferable over space or time [71]. 

LiDAR systems can accurately generate and measure the profile of the terrain and 
vegetation height [72,73]. The primary measurement acquired by LiDAR systems is the 
distance between the sensor and target, determined by calculating the elapsed time be-
tween the emission of a laser pulse and the arrival of the backscattered pulse to the sensor. 
Time to and from the target, and the speed of light, determine the distance [74]. LiDAR 
systems usually utilize near-infrared pulses for topography profile retrieval. The data ac-
quired by the LiDAR system typically have a high resolution because the instrument is 
mounted on UAVs or aircraft, which can fly at low altitudes [75]. Terrestrial laser scanning 
(TLS) systems collect data at a higher spatial resolution than airborne or spaceborne plat-
forms [76]. TLS provides a dense 3D point cloud of the target [77,78] and is used exten-
sively in close-range remote sensing. 

There are fundamental differences between optical, SAR, and LiDAR and their tech-
nical functionalities. Agrawal and Khairnar [75] conducted comprehensive research and 
demonstrated the primary differences between optical, SAR, and LiDAR systems. The 
electromagnetic range for SAR systems is from approximately 1 mm to 1 m; however, this 
range is from 0.4 μm to 1 mm for optical sensors and 250 nm to 10 μm for LiDARs. For 
optical and SAR systems, information about reflection or scattering is stored in pixels. In 
contrast, data gathered by LiDARs form 3D point clouds that contain information about 
the point’s coordinates, altitudes, and intensity. Because LiDAR systems are usually 
mounted on UAVs, aircraft, and ground platforms, the coverage area is relatively small 
compared to optical and SAR systems. Moreover, the cost of gathering LiDAR data is typ-
ically high. 

Various review studies, summarized in Table 1, have documented the potential of 
remote sensing to retrieve crop biophysical parameters. Despite the diversity of this re-
search, no paper comprehensively reviews optical and SAR sensors across platforms 
(spaceborne, airborne, and ground-based). Furthermore, most review papers on crop pa-
rameter estimation did not address the application of machine learning methods. 

Table 1. Review studies on crop parameter estimation and remote sensing methods. 

No. Title Ref. Journal Year Citation 

1 Systematic mapping study on remote sensing in  
agriculture 

[79] Applied Sciences 2020 3 

2 
Review of machine learning approaches for biomass 

and soil moisture retrievals from remote sensing data [80] Remote Sensing 2015 148 

3 
Estimation methods developing with remote sensing 
information for energy crop biomass: A comparative 

review 
[81] Biomass and Bioenergy 2018 10 

4 Applications of vegetative indices from remote sensing 
to agriculture: past and future [82] Inventions 2019 6 

5 
Estimating the crop leaf area index using hyperspectral 

remote sensing [83] 
Journal of Integrative  

Agriculture 2016 44 

6 Research advances of SAR remote sensing for  
agriculture applications: A review 

[1] Journal of Integrative  
Agriculture 

2019 22 

7 A review of multitemporal synthetic aperture radar 
(SAR) for crop monitoring 

[39] Multitemporal Remote  
Sensing 

2016 43 
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8 A review on drone-based data solutions for cereal 
crops 

[10] Drones 2020 0 

9 Radar remote sensing of agricultural canopies: A  
review 

[84] IEEE JSTARS 2017 104 

10 
Optical remote sensing and the retrieval of terrestrial 

vegetation bio-geophysical properties—A review [85] 
ISPRS J. of Photogramme-
try and Remote Sensing 2015 297 

11 
Remote sensing for agricultural applications: A  

meta-review [86] 
Remote Sensing of  

Environment 2020 228 

García-Berná et al. [79] defined eight mapping questions and analyzed the various 
platforms, methodologies, and spectral information used in published studies to estimate 
vegetation parameters, growth vigor, and water usage. Their results showed that most 
experiments applied multi- and hyperspectral data classification techniques. Ali et al. [80] 
reviewed machine learning algorithms to retrieve crop biomass and soil moisture, but 
these authors did not cover a range of sensors or platforms. Chao et al. [81] analyzed five 
approaches to estimate vegetation biomass, including the use of VIs, SAR backscatter, net 
primary productivity (NPP), crop height, and assimilation of state variables from remote 
sensing into crop growth models (CGMs). This article did not describe the details of the 
crops and machine learning algorithms investigated, nor did it provide a detailed review 
of sensors and platforms. 

Hatfield et al. [82] evaluated the potential of various VIs to estimate several crop 
characteristics, including leaf chlorophyll, plant biomass, leaf area, phenological develop-
ment, plant type, photosynthetic activity, and ground cover. The focus of this study was 
to investigate the applicability of VIs extracted from optical remote sensing data for crop 
biophysical parameter retrieval. In another review study by Ke et al. [83], research into 
the estimation of crop LAI using hyperspectral remote sensing data was described. Three 
papers by Liu et al. [1], McNairn and Shang [39], and Steele-Dunne et al. [84] reviewed 
the application of SAR systems in agriculture, including crop mapping, monitoring, and 
biophysical parameter estimation. None of these three studies included a review of the 
application of optical data. 

Verrelst et al. [85] comprehensively described retrieval methods using optical data to 
estimate crop biophysical parameters. Panday et al. (2000a) reviewed airborne remote 
sensing using various methods for local-scale crop monitoring and yield estimation. Weiss 
et al. [86] published a meta-analysis that presented an overview of different remote sens-
ing techniques to retrieve crop parameters but did not provide details of the platforms 
and sensors used. 

Our research is the first comprehensive meta-analysis, and we pay particular atten-
tion to addressing the gaps and limitations of the existing review publications, as de-
scribed above. This paper provides a robust analysis of the current status and general 
trends in crop biophysical estimation studies from remotely sensed observations. An ex-
tensive literature review is invaluable in pulling together disparate research findings to 
deliver a clearer understanding of where we stand on the science and better inform new 
research to overcome challenges and address gaps. The complete database was created 
based on critical information needed by researchers, including platforms, sensors, meth-
odologies, and geographic location. The database was analyzed to determine the follow-
ing: 
1. Research studies with the highest citation; 
2. Platforms used; 
3. Most frequently exploited sensors; 
4. Most widely used SAR frequency and polarization; 
5. Countries that lead in research; 
6. Most commonly used VIs; 
7. Crop parameters studied most; and 
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8. Most widely used algorithms. 
Several parameters were extracted from the database, including authors with the 

highest publications in this field, temporal trends in the studies based on the article’s pub-
lished date, sensor spatial and temporal resolution, study area size, and the total number 
of sampling points in each study. 

2. Methods 
A set of comprehensive queries was selected to search in the Web of Science (WoS) 

and Scopus knowledge websites to find review articles, book chapters, and conference 
papers and establish a database for this review. The search queries were created based on 
five basic categories to encompass all the papers with a crop parameter estimation focus. 
1. Finding relevant keywords to crops and agriculture in the title; 
2. Finding relevant studies on the topic of remote sensing (i.e., title, abstract, and key-

words); 
3. Finding relevant methods in crop parameter estimation on the topic; 
4. Finding several relevant terms to crops on the topic; 
5. Choosing several terms to exclude irrelevant studies on crops and agriculture. 

“Or” is set between the keywords, and “and” is set between the categories (Figure 1). 
We tried to include only relevant articles in the search queries. According to Figure 1, the 
keyword in the ‘title’ column searches only among the title of articles. However, the 
“Topic” column searches keywords among title, abstract, and keywords of papers. The 
star sign (*) is to replace the character chain after the main word. For example, in the 'ag-
ricultur', both 'agriculture' and ''agricultural' would be accepted for the title. 

 
Figure 1. Designed search query and corresponding search phrases for crop parameter estimation 
review. Key terms in the first column were imported as input data in the topic, and the other col-
umns were in the title. (Leaf area index (LAI), plant area index (PAI), look-up table (LUT), radiative 
transfer model (RTM), water cloud model (WCM)). The star marks mean that the system identified 
all suffixes, including the primary word. 

In total, 1039 and 444 articles, including conference papers, reviews, and book chap-
ters, were found in Scopus and WoS, respectively. In this study, only journal articles were 
included in the meta-analysis database. The selected studies were published from 1990 to 
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2020. After removing duplicate articles, 381 studies remained. Only related titles and ab-
stracts for research on estimating crop parameters were selected from these studies. Fi-
nally, 277 published articles were included in the meta-analysis (Figure 2). 

 
Figure 2. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow dia-
gram for selecting relevant manuscripts. PRISMA aims to help researchers improve the reporting of 
systematic and meta-analyses reviews. 

Figure 3 shows a cloud graphic of the most frequently utilized keywords in the final 
277 papers. In this figure, the text size represents the number of keywords repeated in the 
research papers. These keywords are selected based on the occurrence  of higher than 50. 
This image is captured by VOS  viewer, free accessible software for constructing biblio-
metric networks. 

The meta-analysis database was created using 21 attributes (Table 2). These attributes 
comprise broad terms that capture comprehensive information regarding the studies re-
viewed. This database contains general information about articles, including title, year, 
citation, publication, author(s), and affiliation. Furthermore, additional terms were cre-
ated to extract specific information from each study, such as geographic location, crop 
type, platform, sensor, and methodology. The details of the attributes selected in this 
study are shown in Table 2. These attributes were imported into an excel sheet, and each 
article’s data was inserted. 
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Figure 3. A cloud graphic of frequent terms in journal papers studying crop retrieval using remote 
sensing. The size of the text reflects the frequency of each specific term. 

Table 2. Attributes extracted from screened articles in the database for comprehensive meta-analy-
sis. These attributes were imported into an excel sheet for further analysis. 

No. Attribute Description 
1 Title - 
2 Year - 
3 Citation - 
4 Publication Journal name 
5 Author(s) - 
6 Affiliation - 
7 Geographic location Country name 
8 Study area size km2 
9 Crop type - 

10 Platform Spaceborne, airborne, or ground sensor 

11 Sensor 
Optical, synthetic aperture radar (SAR), point 

cloud, and integrating 
12 SAR single or multifrequency - 
13 Used SAR frequency X, C, P, L, Ku bands 
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14 Used VI(s) Normalized difference vegetation index (NDVI), 
enhanced vegetation index (EVI), or … 

15 Polarization Single, dual, or quad polarization 
16 SAR Incident angle Range of incidence angle 
17 Spatial resolution Meters 
18 Methodology Regression, etc. 
19 Single or multi-date - 
20 Crop parameter estimation Biomass, LAI, crop height, … 

21 Accuracy Assessment 
The value of coefficient of determination (R2), 

root mean square error (RMSE), mean absolute 
error (MAE), … 

Accuracy Assessment 
In regression models, the most widely used evaluation criteria are coefficient of de-

termination (R2), root mean square error (RMSE), mean absolute error (MAE), normalized 
RMSE (nRMSE), and simple correlation coefficient (R). RMSE is a commonly used statis-
tical measure that calculates the average differences between observed and estimated val-
ues as follows: 

RMSE = ∑ (y − y )N , (1)

where y  is the predicted value for ith sample, y  is the observed value for the ith sample, 
and N is the number of observations. MAE is also a measure of errors between the pre-
dicted and observed data and is calculated as follows: MAE = ∑ |y − y |N , (2)

In addition, R2 is calculated as follows: R = 1 − ∑ (y − y )∑ (y − y) , (3)

where y is the average value of observations. R is used in statistics problems to measure 
the relationship between the estimated and observed samples and is calculated as follows: R = N ∑ (y y ) − (∑ y )(∑ y )(N ∑ y − (∑ y ) )(N ∑ y − (∑ y ) ), (4)

Finally, nRMSE is the RMSE normalized by the average value of the respective crop 
parameter. 

3. Results of Bibliographic Analysis 
3.1. General Characteristics 

Figure 4a represents the number of published full-text articles per year. This figure 
shows that from 2008 up to now, the number of studies has steadily increased. Years with-
out any published articles were excluded from this figure. Manuscripts that tackled the 
estimation of crop parameters received significant attention post-2011. This may be due 
to new technologies from satellite sensors and UAV and ground remote sensing sensors, 
which have become more accessible or have improved capability. An expansion in the 
availability of satellite remote sensing data, such as WorldView-1 and -2 (launched in 2007 
and 2009, respectively), RapidEye (launched in 2008), RADARSAT-2 (launched in 2007), 
and other satellites/sensors launched just before this period (Landsat 5 and 7, MODIS) 
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could explain the increase in research publications. Another driving factor is likely related 
to the rise in the development of computing power systems enabling the scalability of 
parametric and non-parametric regression methods. Recognition of the importance of 
large-scale agricultural monitoring using remote sensing technologies could further ex-
plain the increasing number of published papers. 

 
Figure 4. (a) The number of studies per year; (b) the number of papers published in each journal 
from 1990 to 2020. The journals with more than two articles were plotted here. In addition, the jour-
nals with fewer than five studies are included in the other plot. The journals include the Interna-
tional Journal of Applied Earth Observation and Geoinformation (JAG), ISPRS Journal of Photo-
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grammetry and Remote Sensing (ISPRS J. of PHOTOGRAMM), Computers and Electronics in Ag-
riculture (CEA), Advances in Space Research (ASR), Ecological Indicators (EI), Agricultural and 
Forest Meteorology (AFM), Field Crops Research (FCR), Canadian Journal of Remote Sensing 
(CJRS), Geocarto International (GI), GIScience and Remote Sensing (GISRS), Remote Sensing Letters 
(RSL), IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (IEEE J. 
of STARS), IEEE Transactions on Geoscience and Remote Sensing (IEEE TGRS). 

The first paper on remotely sensed data for crop parameter estimation was published 
in 1990. There might be other papers published before 1990, but they did not satisfy our 
queries or were not in the Scopus or WoS database. Figure 4b documents the number of 
studies published in each journal. A significant number of studies were published in the 
Remote Sensing journal (44 articles), followed by Remote Sensing of Environment (RSE) 
with 29 articles, and the International Journal of Remote Sensing (IJRS) with 25. Journals 
with one or two published articles were removed. The “Other” bar plot (Figure 4b) in-
cluded the Journal of Applied Remote Sensing (JARS) (6), Precision Agriculture (PA) (6), 
Journal of Photogrammetry, Remote Sensing and Geoinformation Science (JPHRSG) (3), 
and Photogrammetric Engineering and Remote Sensing (PEERS) (3). Cumulatively, 18 
manuscripts were published in these journals. 

Figure 5 maps the distribution of the sites of study for the research. The countries 
with more than 10 studies are China (75), Canada (37), the United States of America (USA) 
(34), Spain (17), Italy (16), France and Germany (15 each), India (13), and Brazil (10). In 
addition, the Netherlands (6), South Africa and Finland (5 each), Japan, Reunion Island, 
Iran, and Australia (4 each), and Senegal, Switzerland, Austria, and Greece (3) are also 
noteworthy. The impact of extensive experiments, for example, the Soil Moisture Active 
Passive Validation Experiment 2012 (SMAPVEX12) and 2016 (SMAPVEX16) over Canada, 
received significant attention given efforts to share these data broadly and considering the 
range of crops studied in these experiments [7,87–93]. 

 
Figure 5. World map illustrating the number of published articles based on the location of the study 
site. 

Wheat is an important staple, and the significance of this crop is reflected in the at-
tention paid to it in remote sensing research (Figure 6). Remote sensing to estimate wheat 
parameters was studied in 110 manuscripts. Other globally important crops followed, in-
cluding corn (91 studies), soybean (32), rice (26), potato (24), barley (18), sunflower (18), 
canola (15), sugar beet (14), onion (12), and oats (10). Crops cited in less than 10 manu-
scripts are shown as others in the bar chart. Perennial crops and other agricultural land 
covers are essential in supporting livestock production. In the papers reviewed, remote 
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sensing of grasslands was studied in 42 papers, while alfalfa was investigated in 22 and 
pasture lands in 12. 

 
Figure 6. The number of manuscripts studying different crop types. 

Figure 6 shows that wheat and corn received more attention than other crops. Ac-
cording to the Food and Agriculture Organization, wheat is cultivated more than any 
other commercial crop. It plays a significant role as the most critical food grain for humans 
(http://www.fao.org/3/y4011e/y4011e00.htm) (accessed on 31 October 2022). According to 
Shewry and Hey [94], wheat is an important staple crop in temperate and moderate zones. 
In addition, wheat produces essential by-products, such as proteins and vitamins, crucial 
for human health. Farmers are encouraged to increase wheat acreages, especially in Asia, 
because of this crop’s potential high yield, affordability, and institutional support [95]. 
Corn, another globally important crop, can be grown under diverse agro-environmental 
conditions, including different climate zones and varying soils and landscapes [96]. Com-
pared to other cereal crops, corn produces high yields. To this end, the cultivation of corn 
has become more attractive to farmers, particularly in areas with high population pres-
sures [96]. The United States Department of Agriculture estimates that for China’s mar-
keting year (2021/2022), corn production is 273 million metric tons, a 5% increase from the 
previous year. According to the International Maize and Wheat Improvement Center, 
wheat products are consumed by 2.5 billion people in 89 countries. Furthermore, wheat 
and corn acreages total 218 and 197 million hectares (https://www.cimmyt.org/news/ten-
things-you-should-know-about-maize-and-wheat/) (accessed on 31 October 2022), respec-
tively (https://www.cimmyt.org/) (accessed on 31 October 2022). 

3.2. Data Processing 
In general, papers that examined remote sensing to estimate crop biophysical param-

eters followed four primary steps (Figure 7). The remote sensing data collection included 
sensors mounted on spaceborne, airborne, and ground-based platforms. The sensor tech-
nology varied, but the most common experiments exploited SAR, optical, and laser-based 
sensors. The methodologies developed to estimate crop parameters and yield fell into one 
of four categories: parametric models, non-parametric models, physical-based models, 
and empirical models [85]. Researchers primarily studied the retrieval of LAI, biomass 
(wet and dry), and crop height using these varied methods and remote sensing technolo-
gies. 
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Figure 7. Essential parameters of meta-analysis articles assessed in this study. 

3.2.1. Remote Sensing Platform 
A further breakdown of the various platforms used in the manuscripts examined in 

our analysis is shown in Figure 8. Spaceborne platforms were most commonly used in 
these agriculture monitoring studies (169 articles), followed by airborne (45) and ground-
based (35) platforms. All papers using ground SAR or optical sensors, including ground 
spectrometers and scatterometers, camera and imaging systems onboard ground plat-
forms, such as a tripod or hand-held systems, are categorized into ground-based plat-
forms. Many authors combined data from multiple platforms, such as spaceborne and 
airborne (15 studies), or spaceborne and ground-based (13 studies). Figure 8 presents the 
cumulative summation of platforms used in the studies examined in our meta-analysis, 
starting from 1990. Notably, spaceborne platforms for crop studies increased significantly 
in 2011. This uptake in research using space-based sensors may be partially due to the 
release of the Landsat data archive by the US Geology Survey on January 9, 2009 
(https://www.usgs.gov/landsat-missions/january-9-2009-usgs-announcement-opening-
landsat-archive) (accessed date on 31 October 2022). According to the USGS announce-
ment, data from Landsat 1 to Landsat 7 could be downloaded for free, and users could 
begin accessing a collective archive of data dating back 35 years. In addition, this period 
witnessed an increase in the launch of new satellite SAR and optical systems. For example, 
TerraSAR-X and its companion TanDEM-X were launched in 2007 and 2010. Canada 
launched the C-band RADARSAT-2 satellite in 2007. In addition to satellite SAR data, the 
increase in available optical satellite data accelerated research to monitor croplands and 
assess crop parameters using these space-based technologies. 

3.2.2. Sensors 
Using one spectral region is likely to yield acceptable results in the characterization 

of crop conditions, yet most researchers focus on combining two or more spectral regions 
(Figure 9). Examination of 182 articles (optical-based studies) and those which used a com-
bination of optical with SAR and laser-based sensors showed that many studies used VIs 
extracted from optical sensors compared to exploiting spectral bands alone. Most studies 
examined visible and infrared sensors for biophysical retrieval (182 studies), which is ex-
pected given the long history of data available from optical sensors. The link between 
optical reflectance and crop metrics is physically meaningful and intuitive. Of the 53 stud-
ies that used SAR technologies, 32 examined the integration of SAR with optical data. A 
much smaller number of studies (10) used LiDAR data, with few combining LiDAR with 
optical data. 
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Figure 8. The variability of platforms used in screened articles, based on publication year. 

 
Figure 9. Sensors utilized in screened articles. 

In those manuscripts that used optical multispectral data for crop biophysical retriev-
als, a wide range of VIs were evaluated (Figure 10). NDVI is the most studied VI, appear-
ing in 161 papers. It should be noted, although NDVI is the most popular VI [97], it may 



Remote Sens. 2022, 14, 5633 14 of 49 
 

 

not always be the best VI to use. The exploitation of NDVI for vegetation condition assess-
ment dates back to the earliest optical remote sensing technologies, the NOAA series of 
satellites that carried the AVHRR sensor. Justice et al. [89] reported the first agricultural 
research using AVHRR images. Donald Deering and Robert Hass first introduced NDVI, 
with the assistance of mathematician John Schell, to normalize the effect of the solar zenith 
angle on vegetation reflectance [98]. The vast area coverage and consistency in data avail-
ability from NOAA’s AVHRR sensors encouraged the uptake of NDVI as an essential re-
mote sensing method for crop monitoring [99,100]. 

 
Figure 10. A representation of the most-utilized VIs. 

NDVI is simple to calculate from optical sensors carrying one red and one NIR band, 
and its meaning is intuitive to vegetation conditions [97]. Chlorophyll, an indicator of veg-
etation health, strongly absorbs energy in the visible region of the electromagnetic region; 
however, the cellular part of leaves strongly reflects the infrared light. When the plant 
becomes sick or afflicted with disease, it absorbs near-infrared light instead of reflecting 
it. Therefore, NDVI provides important information on chlorophyll content and is 
strongly correlated with plant health. Multispectral sensors are typically less costly to de-
sign, manufacture, and deploy than SAR sensors. Thus, multispectral sensors are attrac-
tive as payloads for spaceborne, airborne, and ground platforms [97]. For this reason, 
NDVI has been widely adopted for field-scale national and global monitoring. Many other 
VIs were studied in three or more manuscripts. These included the enhanced vegetation 
index (EVI) (48 papers), soil-adjusted vegetation index (SAVI) (47), simple ratio (SR) (44), 
optimized soil-adjusted vegetation index (OSAVI) (27), green NDVI (GNDVI) (26), ratio 
vegetation index (RVI) (25), modified soil-adjusted vegetation index (MSAVI) (19), modi-
fied triangular vegetation index 2 (MTVI2) (18), EVI2 (17), wide dynamic range vegetation 
index (WDRVI) (14), red-edge chlorophyll index (CI-Re) (13), green chlorophyll index (CI-
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G) (12), renormalized difference vegetation index (RDVI), transformed chlorophyll ab-
sorption ratio index (TCARI), transformed vegetation index (TVI), MERIS terrestrial chlo-
rophyll index (MTCI) (12), difference vegetation index (DVI) (11), modified SR (mSR) and 
normalized difference water index (NDWI) (10). The list of the top 10 VIs with their for-
mula is shown in Table 3. 

Table 3. The formula of the top 10 VIs. 

Index Formula Ref. 

NDVI 
𝑅 − 𝑅𝑅 + 𝑅  [98] 

EVI 2.5 𝑅 − 𝑅𝑅 +  6𝑅 − 7.5𝑅 + 1 [101] 

SAVI (1 + 𝐿) 𝑅 − 𝑅𝑅 + 𝑅 + 𝐿 [102] 

SR 
𝑅𝑅  [103] 

OSAVI (1 + 0.16) 𝑅 . − 𝑅 .𝑅 . + 𝑅 . + 0.16 [104] 

GNDVI 
𝑅 − 𝑅𝑅 + 𝑅  [105] 

RVI 
𝑅𝑅  [106] 

MSAVI 
2(𝑅 + 1) − ((2𝑅 + 1) − 8(𝑅 − 𝑅 ) . )2  [107] 

MTVI2 

1.5(1.2(𝑅 − 𝑅 ) − 2.5(𝑅 − 𝑅 ))(2𝑅 + 1) − 6𝑅 − 5 𝑅 − 0.5 
[59] 

EVI2 2.5 𝑅 − 𝑅𝑅 +  2.4𝑅 + 1 [108] 

Concerning SAR research, Figure 11a illustrates the dominance of C-band SAR in 
crop biophysical retrieval studies. Routine collections of C-band SAR data from space first 
became readily available in 1991 with the launch of the ERS-1 satellite, followed by several 
other C-band missions (ERS-2, Envisat ASAR, RADARSAT-1, RADARSAT-2, Sentinel-1 
A/B, RISAT, and the RADARSAT Constellation Mission). Although the C-band frequency 
was beneficial for ocean and ice monitoring, the availability of C-band data over land en-
couraged agricultural research (65 studies). Fewer studies reported the use of X-band (27 
studies), L-band (19 studies), Ku-band (7 studies), P-band (2 studies), S-band (2 studies), 
and Ka-band (1). This is likely partially due to the limited data available at these frequen-
cies. Of interest is the number of studies that examined only one frequency versus those 
researchers who could use SAR data collected at multiple frequencies (Figure 11b). Again, 
this would be related to the availability of satellite, airborne, or ground-based platforms 
that acquire data at more than one SAR frequency. The limited number of multi-frequency 
studies shows a significant gap in research, given the expected benefits of multi-frequency 
SAR for agricultural monitoring and mapping. For example, [109,110] showed the utility 
of multi-frequency data in crop monitoring and mapping. In addition, Mohan et al. [111] 
reported that multi-frequency data provided better accuracy in forest biomass estimation. 
Although many airborne platforms carry SAR sensors capable of acquiring data in more 
than one frequency, these data collections are more limited because of the cost of airborne 
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campaigns. A movement toward free and open SAR satellite data has lagged behind ini-
tiatives such as the release of the Landsat archives. However, the Sentinel-1 constellation 
is an excellent example of the efforts of SAR data providers toward open and easy data 
access. 

 
Figure 11. (a) SAR frequencies used, and (b) the combination of SAR frequencies studied in screened 
articles. 

Our metadata analysis revealed that of the satellites used, the Landsat series of satel-
lites (74 manuscripts in total), Sentinel-2 (51), and the moderate-resolution imaging spec-
troradiometer (MODIS) (39), which is a sensor on board the Aqua and Terra satellites, 
were exploited the most (Figure 12). The emphasis on these platforms is likely related to 
the accessibility of the data and a longer data record. UAV platforms are also used exten-
sively (57), a function of the growth in technologies to fit these platforms, the reduced cost, 
and the spatial scale associated with these data acquisitions. Ground-based spectrometers 
and scatterometers (categorized here as ground-based optical-SAR; 45 studies) offer flex-
ibility in deployment under controlled experimental settings and are often used to build 
and test models scaled to satellite platforms [112,113]. Sentinel-1, RADARSAT-2, and En-
visat ASAR have been used in 19, 18, and 11 studies, respectively. A smaller number of 
studies have completed research using other optical satellites (HJ-1 (12), SPOT-4 (12), and 
RapidEye (11)). 
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Figure 12. A detailed breakdown of remote sensing sensors used in screened articles. 

3.2.3. Methodology 
There are four main approaches for retrieving crop biophysical parameters, includ-

ing parametric and non-parametric regression models, physically based models, and em-
pirical models. In regression models, the number of parameters is a priori specified; ac-
cordingly, they can be categorized as parametric regression models. In parametric regres-
sion methods, two aspects are considered: (1) the type and the number of independent 
variables and (2) the mathematical model which defines the relationship between the de-
pendent and independent variables. Unlike parametric regression methods, non-paramet-
ric regression methods build a non-explicit relationship, transformation, or fitting func-
tion on the independent variable(s). Generally, machine learning (ML) methods are con-
sidered non-parametric techniques in the literature. Non-parametric methods are divided 
into two common groups: (1) linear non-parametric methods (e.g., stepwise multiple lin-
ear regression (SMLR), principal components regression (PCR), partial least squares re-
gression (PLSR)), and (2) nonlinear non-parametric methods (e.g., random forest (RF), 
support vector machine (SVM), and neural network (NN)). Non-parametric models, par-
ticularly machine learning regression-based algorithms, have outperformed parametric 
regression methods in crop parameter estimation [114]. These algorithms are widely ap-
plied to complex data; therefore, they can learn the nonlinear relationship between input 
variables and target parameters. RF is an ensemble learning model used in both regression 
and classification problems. RF is the first successful bagging model that combines all es-
timator predictions to produce an accurate model. Since the execution of RF is based on 
averaging all decision tree predictions, it significantly reduces the variance of the model. 
Among various machine learning algorithms for classification and regression problems, 
RF has been considered one of the more robust methods because of the nonlinear model-
ing relationships between features and target parameters [55]. RF models have several 
advantages as they can run efficiently on a large amount of data and use a relatively low 
number of hyper-parameters compared to other machine learning algorithms [55]. RFs 
are less sensitive to noise and overfitting [115]. 
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NNs are popular machine learning algorithms inspired by the human brain. NN con-
sists of interconnected neurons that learn by modifying their weights. NN models typi-
cally consist of one input layer, one hidden layer, and one output layer. In the NN model, 
the neurons of one layer can be connected to all previous and following layers’ neurons 
but not to the same layer’s neurons. NNs are an excellent alternative to classic mathemat-
ical algorithms and are promising alternatives to these classic mathematic models [116]. 
Deep NNs are increasingly studied because of their performance and automatic feature 
extraction [117]. Numerous studies have discussed the advantage of using NNs in crop 
parameter estimation [7,41,116,118]. 

The SVM model is a robust kernel-based machine learning algorithm. SVM aims to 
identify a hyperplane that maximizes the margins between different classes of training 
samples. Using support vector regression (SVR), a flexible tube is formed comparably 
around the estimation function such that the absolute amount of error less than a specified 
threshold is ignored. In contrast to outside points, those inside points above or below the 
prediction function are not penalized. SVR has produced promising results in retrieving 
crop parameters. However, SVR is inappropriate when working with data that may have 
substantial errors and uncertainty, particularly in remote sensing data. This is because 
SVR exploits a fixed cost function, independent of its statistical nature, that assumes a 
specific density model [119]. 

Physical-based models are built upon physical laws, creating cause–effect relation-
ships between a physical crop parameter and remote sensing observations [120]. Typi-
cally, physically based models derive variables using the radiative transfer model (RTM). 
Finally, empirical and semi-empirical methods build a simple statistical model between 
vegetation remote sensing observations, e.g., backscattering or reflectance, and crop pa-
rameter(s). Of the approaches taken to estimate crop biophysical parameters, linear re-
gression (LR) parametric methods are the most common (136 studies) (Figure 13), likely 
because of the simplicity of applying these models. Other parametric methods include 
multiple linear regression (MLR) (43 studies), exponential regression (Exp-R) (28), loga-
rithmic regression (Log-R) (20), polynomial regression (Poly-R) (16), and power regres-
sion (Pow-R) (11). There are also various non-parametric approaches, including neural 
network (NN) (32 studies), random forest (RF) (27), partial least square regression (PLSR) 
(24), support vector regression (SVM) (23), Gaussian process regression (GPR) (12), step-
wise multiple linear regression (SMLR) (11), gradient boosting decision tree (GB) (4), and 
K-nearest neighbor (K-NN) (3)). Thirty-five manuscripts reported research using physi-
cal-based methods (i.e., RTM), and 20 used the semi-empirical water cloud model (WCM). 

Figure 14 shows the results of various models based on the publication year. As seen 
in this figure, when considering parametric models, the number of publications has been 
increasing rapidly since around 2010. The number of publications of non-parametric mod-
els from 2010 is also increasing. 
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Figure 13. Methods used to estimate crop parameters from remote sensing data. 

 
Figure 14. Methods used to estimate crop biophysical methods by year. 

3.2.4. Crop Parameters 
Crop parameters, such as biomass and LAI, correlate with essential crop productivity 

outcomes such as yield [70]. Most research has focused on wet and dry biomass, crop 
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height, vegetation water content (VWC), and LAI retrievals (Figure 15). Crop height is 
more easily measured in the field as a quick metric of crop growing status. Although yield 
is the ultimate measure of agricultural productivity, collecting yield data at the field scale 
is tedious and expensive. Other parameters (i.e., biomass and LAI) are often used as sur-
rogates for crop productivity [92]. VWC is typically a secondary measure derived from 
biomass drying and has received less attention in the literature. 

 
Figure 15. Most studied crop biophysical parameters. 

3.2.5. Accuracy Assessment 
We summarized the coefficient of determination (R2) associated with retrieving crop 

physical parameters, as reported in each screened article. This meta-analysis provided in-
sight into retrieval performance by crop type, biophysical parameter, sensor type and plat-
form, and methodologies. The boxplots are used to visualize these results. Note that the 
coefficient of determination is not always the square of R. It would provide a sum square 
error greater than the sum squares total (computed from the flat reference line). It pro-
duces a ratio value above one and thus the negative R2 value when subtracted from one 
(Equation (3)). Except for barley, the median R2 was above 0.6 (Figure 16). Although accu-
racies could reach as high as 0.9, significant variance in results is revealed in these plots. 
This range in results could be associated with the variety of sensor technologies or meth-
odologies exploited in the literature. Some crops have a lower standard deviation in the 
reported results (canola and sunflower) (Table 4). The significant variation in results from 
grasslands may be due to the varied nature of these land covers, even within a single 
experiment. Rice has the highest median and mean accuracies (i.e., R2 = 0.79 and 0.74). The 
count row in the table is the amount of data in the analysis. Some papers utilized various 
vegetation indices for crop parameter estimation. To this end, they precisely calculated 
the value of R2 for each index. Therefore, the amount of data in the analysis is greater than 
the number of papers screened in this research. 
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Figure 16. The coefficient of determination (R2) of biophysical retrievals as a function of crop type. 

Table 4. Statistical analysis of R2 in various crops. 

 Wheat Corn Grassland Soybean Rice 
Mean 0.61 0.66 0.59 0.69 0.74 
STD 0.22 0.23 0.24 0.24 0.20 
Min 0.00 −0.07 0.00 −0.07 0.01 

1st quartile 0.50 0.54 0.46 0.57 0.67 
Median 0.64 0.73 0.63 0.76 0.79 

3rd quartile 0.77 0.82 0.79 0.88 0.89 
Max 0.979 0.992 0.993 0.990 0.990 

Count 789 666 660 237 176 
 Potato Alfalfa Barley Sunflower Canola 

Mean 0.61 0.71 0.51 0.73 0.67 
STD 0.22 0.18 0.24 0.17 0.13 
Min 0.09 0.12 0.00 0.12 0.29 

1st quartile 0.48 0.63 0.37 0.68 0.60 
Median 0.67 0.73 0.55 0.78 0.65 

3rd quartile 0.77 0.83 0.65 0.84 0.78 
Max 0.959 0.992 0.970 0.959 0.910 

Count 213 147 125 83 43 

The boxplots of the accuracies of various non-parametric and parametric regression 
methods are provided in Figure 17. The details of R2 values for non-parametric and para-
metric regression methods are provided in Tables 5 and 6. However, the highest accuracy 
among all non-parametric methods was reported for the RF algorithm (i.e., R2 of 0.998), 
and GPR achieved the highest median accuracy (i.e., R2 of 0.88) (Table 5). GPR and RF 
have the highest mean of R2 (0.8 and 0.76, respectively) (Table 5). The exponential regres-
sion model had the highest accuracy among parametric methods, while polynomial and 



Remote Sens. 2022, 14, 5633 22 of 49 
 

 

exponential regression methods had the highest median (Table 6). In addition, polynomial 
regression has the highest average of R2 (0.628) (Table 6). Compared to parametric meth-
ods (Figure 17b), most non-parametric methods yielded lower accuracy variances as a col-
lective of research results. A comparison between non-parametric and parametric models 
showed that the median of non-parametric algorithms is higher than parametric regres-
sion models. 

 
Figure 17. The coefficient of determination of (a) non-parametric algorithms and (b) parametric 
regression models. LR: Linear Regression; MLR: Multiple Linear Regression; GPR: Gaussian Pro-
cess Regression. 
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Table 5. Statistical analysis of R2 in various non-parametric algorithms. 

 ANN RF SVR GB PLSR K-NN GPR 
Mean 0.65 0.76 0.71 0.57 0.75 0.74 0.80 
STD 0.20 0.18 0.17 0.19 0.15 0.16 0.16 
Min 0.01 0.31 0.10 0.36 0.14 0.40 0.29 

1st quartile 0.51 0.67 0.62 0.42 0.67 0.68 0.71 
Median 0.71 0.80 0.74 0.53 0.79 0.75 0.88 

3rd quartile 0.81 0.92 0.85 0.69 0.85 0.77 0.93 
Max 0.930 0.998 0.990 0.854 0.970 0.994 0.970 

Count 88 111 105 9 188 19 42 

Table 6. Statistical analysis of R2 in various parametric algorithms. 

 LR MLR Power Exponential Logarithmic Polynomial 
Mean 0.59 0.63 0.61 0.62 0.62 0.63 
STD 0.25 0.20 0.19 0.20 0.23 0.25 
Min −0.07 0.02 0.01 0.00 0.03 0.00 

1st quartile 0.43 0.51 0.52 0.57 0.44 0.52 
Median 0.62 0.64 0.63 0.67 0.64 0.69 

3rd quartile 0.79 0.79 0.76 0.76 0.81 0.80 
Max 0.99 0.98 0.900 0.99 0.97 0.99 

Count 1363 260 150 199 172 180 

As with the analysis of methods, the accuracy of retrievals for most biophysical mod-
els also had high variance; albeit, high median accuracies were reported when all studies 
were considered (Figure 18). LAI and fAPAR had high median correlations, and VWC 
and fAPAR had lower standard deviation among studies relative to other biophysical pa-
rameters; however, the amount of data in the analysis by the papers for fAPAR and VWC 
is significantly lower than the other crop parameters (Table 7). Among the three biophys-
ical parameters that received the greatest attention (i.e., LAI, dry and wet biomass), LAI 
has the highest mean and median (0.67 and 0.7, respectively). 

Table 7. Statistical analysis of R2 in various crop biophysical parameters. 

 Dry-B Wet-B LAI Height fAPAR Yield VWC 
Mean 0.62 0.62 0.67 0.61 0.82 0.59 0.42 
STD 0.23 0.22 0.20 0.27 0.18 0.24 0.18 
Min −0.07 0.01 0.00 0.01 0.15 0.00 0.04 

1st quartile 0.46 0.49 0.57 0.40 0.77 0.45 0.31 
Median 0.66 0.63 0.70 0.70 0.86 0.64 0.47 

3rd quartile 0.80 0.77 0.82 0.81 0.95 0.78 0.52 
Max 0.993 0.990 0.998 0.990 0.980 0.990 0.837 

Count 1240 288 1116 165 60 284 47 
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Figure 18. The coefficient of determination (R2) of crop parameter estimation of screened studies 
(Dry-B: dry biomass; Wet-B: wet biomass; CH: crop height; VWC: vegetation water content). 

In Figure 19, accuracy results are broken down by platform and sensor. Among var-
ious platforms, spaceborne remote sensing data have higher accuracy (Figure 19). How-
ever, spaceborne data coupled with airborne have a higher mean and median, although 
this combination has a lower standard deviation in the reported coefficient of determina-
tion (Table 8). 

 
Figure 19. Various platforms’ coefficient of determination (R2) (SB: spaceborne; AB: airborne; GB: 
ground-based sensors). 
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Table 8. Statistical analysis of R2 in various platforms. 

 SB AB G-B SB + AB SB + G-B 
Mean 0.64 0.63 0.61 0.71 0.65 
STD 0.22 0.23 0.25 0.21 0.16 
Min −0.07 0.00 0.00 0.08 0.02 

1st quartile 0.50 0.50 0.46 0.64 0.56 
Median 0.67 0.68 0.67 0.75 0.63 

3rd quartile 0.81 0.80 0.80 0.85 0.75 
Max 0.998 0.990 0.990 0.960 0.990 

Count 1802 633 562 104 95 

Among various sensors, an examination of the mean results showed that the combi-
nation of multispectral and SAR data provided better accuracy for crop biophysical pa-
rameter estimation compared to the exclusive use of either optical or SAR data (Figure 
20). However, the median of point-cloud data was higher than the other data types. Nev-
ertheless, the amount of data in the analysis used by the papers for point-cloud sensors 
was less than the others. The publications that modeled biophysical parameters from SAR 
data reported slightly higher accuracies than those that used multispectral data (0.72 com-
pared to 0.66) (Table 9). Nevertheless, several studies have shown that optical spectral 
bands or VIs obtained better accuracy than only using SAR backscatter and polarimetric 
features. Some papers examined a large number of VIs individually for estimation of plant 
parameters. However, some of VIs might produce poor results, impacting the overall 
mean and median results reported in our research. In addition, the combination of SAR 
and multispectral data can provide better accuracies than multispectral data alone. This 
is evident from the size of the boxes (i.e., values from first to third quartiles) in the boxplots 
for the combination of SAR and multispectral, compared to boxes of only SAR or only 
optical data. 

 
Figure 20. The coefficient of determination (R2) of various sensors (M-S: multispectral; P-C: point-
cloud; H-S: hyperspectral). 
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Table 9. Statistical analysis of R2 in various sensors. 

 M-S SAR M-S + SAR P-C H-S 
Mean 0.62 0.66 0.70 0.71 0.65 
STD 0.23 0.22 0.18 0.15 0.24 
Min −0.07 0.00 0.10 0.35 0.00 

1st quartile 0.49 0.53 0.60 0.62 0.55 
Median 0.66 0.72 0.68 0.74 0.69 

3rd quartile 0.79 0.82 0.85 0.82 0.83 
Max 0.998 0.990 0.990 0.950 0.980 

Count 2384 456 126 116 214 

Figure 21 shows the potential of the various remote sensing sensors for crop param-
eter estimation. Research exploiting the multispectral RapidEye and WorldView satellites 
had the highest median accuracy of all optical sensors (Table 10). This may be a function 
of the red-edge band available from these sensors. RapidEye and WorldView also have a 
higher spatial resolution than other satellite systems, contributing to higher accuracy for 
studies using these satellites. MODIS yielded relatively low accuracy compared to other 
optical sensors. This result could be due to this sensor’s low spatial resolution and the 
absence of red-edge bands on MODIS. 

 
Figure 21. The coefficient of determination (R2) of specific sensors. 
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Table 10. Statistical analysis of R2 in various specific sensors. 

 Sentinel-2 Landsat Sentinel-1 RADARSAT UAV RapidEye MODIS HJ 
Mean 0.65 0.62 0.58 0.66 0.62 0.81 0.55 0.60 
STD 0.20 0.23 0.25 0.20 0.23 0.15 0.24 0.20 
Min 0.01 −0.07 0.00 0.01 0.00 0.36 −0.07 0.01 

1st quartile 0.55 0.49 0.42 0.53 0.49 0.73 0.39 0.49 
Median 0.69 0.64 0.60 0.69 0.68 0.86 0.57 0.62 

3rd quartile 0.80 0.79 0.77 0.81 0.79 0.91 0.71 0.74 
Max 0.970 0.992 0.976 0.990 0.990 0.970 0.993 0.960 

Count 503 445 122 252 649 54 240 132 
 Worldview TerraSAR-X G-S TLS LiDAR SPOT Hyperion QuickBird 

Mean 0.71 0.82 0.61 0.70 0.75 0.66 0.63 0.63 
STD 0.18 0.11 0.25 0.11 0.14 0.24 0.16 0.17 
Min 0.31 0.66 0.00 0.47 0.35 0.10 0.02 0.19 

1st quartile 0.58 0.74 0.49 0.64 0.73 0.51 0.55 0.56 
Median 0.75 0.80 0.65 0.71 0.80 0.68 0.62 0.68 

3rd quartile 0.86 0.92 0.80 0.74 0.83 0.87 0.69 0.73 
Max 0.998 0.959 0.990 0.880 0.950 0.990 0.980 0.930 

Count 143 12 623 12 73 165 77 72 

TerraSAR-X showed significant potential in estimating crop biophysical parameters, 
perhaps a function of the higher spatial resolution associated with X-band sensors and the 
interaction of these shorter microwaves with the upper parts of the crop canopies. Ter-
raSAR-X can acquire dual-polarized data with one co- and one cross-polarized channel 
(HH and HV; VV and VH). A number of studies reported that TerraSAR-X co-polarized 
backscatter was strongly correlated with crop parameters [20,121,122]. Although some 
penetration in canopies is required, it can be beneficial to use SAR wavelengths that inter-
act within the canopy but do not penetrate farther and scatter from the soil. The number 
of studies that used TerraSAR-X is significantly lower than RADARSAT and Sentinel-1 
data. As shown in Table 10, research that exploited RADARSAT yielded higher accuracies 
(mean and median) when compared to studies that used data from Sentinel-1. Several 
studies have shown the potential of fully polarimetric SAR data in estimating crop param-
eters [41,123,124] and the lack of a polarimetric capability on Sentinel-1 may explain the 
difference in results using these two C-band satellites. 

4. Discussion 
This metadata analysis assessed research papers investigating various remote sensing 

technologies and methodologies to estimate different biophysical parameters for various 
crop types. The primary goal of these researchers was to discover and report on optimum 
data and the most accurate algorithms for crop parameter determination. 

4.1. Earth Observation Platform 
Earth observation systems provide essential information spanning a multitude of dis-

ciplines. In agriculture, remote sensing research is consequential in applications to opti-
mize production and minimize environmental footprints, such as precision agriculture 
and larger-scale initiatives to mitigate food insecurity. The technology has changed sub-
stantially in the years under investigation in this metadata analysis, and the number of 
satellites has increased considerably. Moreover, open data policies have driven innova-
tion and provided more opportunities and data for the scientific community. Other tech-
nological advancements have accelerated research into collecting and analyzing data from 
sensors on drones and UAVs. Sensor capabilities have also advanced, including improve-
ments in spatial resolutions but also the ability of sensors to acquire more complex data. 



Remote Sens. 2022, 14, 5633 28 of 49 
 

 

This leap in sensor innovation is particularly evident with SARs, where single-polariza-
tion sensors have been superseded by SARs that collect complex polarimetric data. The 
legacy of remote sensing for crop monitoring is multispectral moderate-resolution satel-
lites/instruments, such as Landsat, NOAA AVHRR, and MODIS. Optical imagery is also 
more intuitive for users than other sensors. Access to optical sensors dates back to the 
1970s. Analysis of optical data is more straightforward than SAR imagery since these data 
require less complicated processing and more analytical software packages are available 
[125]. This access has resulted in greater use of optical imagery relative to SAR and LiDAR. 
However, with increasing accessibility to SAR imagery, this technology is making inroads 
in agricultural monitoring. As this analysis of the literature has discovered, substantial 
research has been conducted using space-borne platforms [18,61,89,121,126–128], airborne 
platforms [129–134], and ground-based [135–138] platforms to estimate crop parameters 
and yields. However, ground-based and airborne platforms are not conducive to moni-
toring crop parameters at large spatial scales [19]. 

Yu et al. [139] investigated the potential of three spaceborne satellites, including 
Landsat 7/8 and Sentinel-2, to estimate corn LAI using PROSAIL and a look-up table. They 
utilized three VIs for Landsat and Sentinel-2 data, including NDVI, EVI2, and green chlo-
rophyll index (CIgreen), and one VI for Sentinel-2 data (red-edge chlorophyll index). 
Moreover, they used four spectral bands for extracting the VIs mentioned above. Their 
results showed that the green band of Sentinel-2 performed better among all the spectral 
bands they utilized in their study. They also stated that, compared to the three red-edge 
spectral bands, the green band performed better. These researchers pointed out that CI-
green yielded better accuracy than other VIs extracted from Sentinel-2 data. Results 
showed that the combination of CIgreen extracted from Landsat 7/8 data and the three 
red-edge bands of Sentinel-2 were optimal for inversion methods. They also stated that 
the red-edge bands of Sentinel-2 were more accurate (RMSE = 0.64) than the Landsat 7/8 
VI (RMSE = 0.72). 

Estévez et al. [140] studied the potential of spaceborne Sentinel-2 level-1C and level-
2A data to estimate the LAI of several crops. They studied several models, including PRO-
SAIL, a look-up table, GPR, and variational heteroscedastic GPR. They stated that by us-
ing level-1C and level-2A and variational heteroscedastic GPR, a high R2 could be ob-
tained (R2 = 0.80), but the RMSE of level-1C data is slightly lower than that of level-2A (i.e., 
0.57 vs. 0.60). 

Other technological advancements have accelerated research into collecting and an-
alyzing data from sensors on drones and UAVs. Sensor capabilities have also advanced, 
including improvements in spatial resolutions but also the ability of sensors to acquire 
more complex data. Darvishzadeh et al. [141] utilized the PROSAIL RTM model, a look-
up table for inversion, and PLSR to estimate grassland LAI using hyperspectral airborne 
sensors. They stated whether using all spectral bands or a subset of spectral bands by 
PLSR yielded the same R2 (R2 = 0.87); however, the RMSE of a subset of spectral bands was 
lower (RMSE = 0.64 compared to 0.68). These researchers stated that the optimum spectral 
bands for grassland LAI retrieval include bands in the NIR and SWIR regions. In this same 
study, a feature selection was applied to the hyperspectral data. Finally, a total of 107 
bands were selected and used for the modeling. 

Nie et al. [73] assessed the potential of airborne LiDAR data to estimate corn LAI, 
utilizing the Beer-Lambert law and LR in their study. Various sample radii were consid-
ered to determine which radius delivered higher accuracy. These researchers declared 
that using a radius of 3.5 m for samples using the Beer-Lambert law had higher accuracy 
(R2 = 0.85). Zhang et al. [32] utilized a UAV RGB sensor to estimate grassland biomass and 
height. The results revealed that using LR, grassland height could be estimated with R2 of 
0.90, while dry biomass could be retrieved using a logarithmic regression model with R2 
of 0.89. 

Ground-based sensors, such as scatterometers and spectrometers, have shown prom-
ise in estimating crop parameters. Singh [142] investigated the potential of a ground-based 
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scatterometer operating at X-band, with VV and HH polarizations, to estimate LAI, dry 
biomass, and height of soybeans. This research utilized the WCM to compute the backscat-
tering coefficient and MLR and PLSR at various incident angles. Their results showed that, 
given the parametric regression results, dry biomass could be retrieved with higher accu-
racy (R2) than LAI and crop height. Moreover, the VV polarization showed a better ability 
to estimate crop parameters than the HH polarization. For dry soybean biomass and crop 
height estimation, a 40° incident angle and VV and HH polarizations yielded the best ac-
curacy (R2 of 0.98 for the VV polarization and 0.96 for the HH polarization). For LAI, using 
the HH polarization, as reported for dry biomass and plant height, an incident angle of 
40° delivered the best results; however, using VV polarization, a slightly shallower angle 
of 50° delivered better accuracy. Shen et al. [143] assessed the potential of several VIs to 
estimate the dry biomass of five grasslands using LR and MLR models. They extracted 
VIs from a hyperspectral ground-based spectrometer. Their results revealed that NDVI, 
SAVI, and EVI showed significant potential in retrieving dry biomass. 

Xing et al. [144] gathered data from a hyperspectral ground sensor and data from the 
Sentinel-2 satellite to estimate wheat LAI using parametric linear and nonlinear regression 
models. They utilized 14 VIs and proposed a new VI (the transformed triangular vegeta-
tion index (TTVI)). The results from the ground sensor data showed that TTVI, MTVI2, 
and EVI were ranked one to three in performance, with R2 of 0.62, 0.60, and 0.60, respec-
tively. In addition, their results revealed that using Sentinel-2 VIs, TTVI, EVI, and TVI 
were ranked one to three in accuracy among all VIs with R2 of 0.59, 0.55, and 0.52, respec-
tively. Overall, the results obtained by the ground-based sensing TTVI, for LAI less than 
4, achieved an R2 of 0.78. 

In another study, Afrasiabian et al. [145] investigated the effect of spatial, temporal, 
and spectral resolution on wheat and barley LAI retrieval. To this end, they used various 
spaceborne sensors (i.e., Sentinel-2, Landsat 8, and MODIS) and a hyperspectral ground-
based sensor. Their results revealed that spatial and temporal resolution did not have any 
remarkable effect on crop LAI estimation accuracy; however, they reported a significant 
correlation between several VIs and wheat and barley LAI. The best performance related 
to Landsat 8 derived VIs was the LSWI and NDWI with R2 of 0.69 and 0.65. Similarly, for 
Sentinel-2 data, LSWI and NDWI yielded a higher accuracy (R2 = 0.60 and 0.58, respec-
tively). These researchers hypothesized that the improved performance of Landsat 8 VIs, 
compared to Sentinel-2 VIs, may be explained by the narrower NIR bandwidth of Landsat 
8 spectral channels. They pointed out that the high temporal resolution of MODIS data 
did not significantly improve the LAI estimation. The highest accuracy yielded by the VIs 
reported in this study was related to the VI calculated from the normalized difference of 
the 1115 nm and 1135 nm spectra (R2 = 0.85) collected by the hyperspectral ground sensor. 

4.2. Remote Sensing Systems 
One approach to categorizing sensors is to divide these technologies into passive and 

active instruments. Passive sensors measure the energy emitted from or reflected by the 
Earth at wavelengths selected across the electromagnetic spectrum. The received signal 
by the sensor is a function of many Earth and atmospheric parameters. Examples of space-
based passive remote sensors commonly used in agriculture include Landsat, Sentinel-2, 
MODIS, and Worldview. In contrast, active sensors generate their waveforms and propa-
gate this energy toward the target of interest. Active sensors then measure the energy’s 
characteristics (intensity, phase) scattered and returned to the sensor. These sensors also 
range or locate the target’s position using the time between transmitting and receiving 
propagated signals. LiDAR and SAR are two active remote sensing technologies. 

4.2.1. Optical Earth Observations 
Optical sensors have been widely used in crop mapping and monitoring. These sen-

sors measure reflected energy from the vegetation. This energy varies according to plant 
and canopy properties and depends on leaf orientation, shadowing illumination angle, 
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and background properties such as soil characteristics. These sensors gather data in the 
electromagnetic spectrum’s visible, near-infrared, shortwave, and thermal infrared re-
gions. In addition, spectral vegetation indices (VIs) are used to estimate many crop bio-
physical parameters. Figure 12 revealed that Sentinel-2, MODIS, and Landsat sensors/sat-
ellites are widely utilized in crop parameter estimation. Critically, Sentinel-2 (A and B) 
data are free and accessible, and the combination of these two satellites yields good tem-
poral (5-day revisit at the equator with two satellites), spectral, and spatial (10–20 m in the 
visible and near-infrared bands) resolutions. The 10 m spatial resolution bands include B2 
(490 nm), B3 (560 nm), B4 (665 nm), and B8 (842 nm), while 20 m spatial resolution bands 
are B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm), and B12 (2190 
nm). Sentinel-2 also provides additional bands in the red-edge spectral region, effective 
in crop mapping and parameter estimation. MODIS is a passive sensor on board the Aqua 
(launched in 1999) and Terra (launched in 2002) satellites that obtains data in the visible 
and infrared spectral domains, including thermal infrared. MODIS has 36 bands; bands 1 
and 2 have a 250 m resolution, bands 3 to 7 have a 500 m resolution, and bands 8 to 36 
have a 1 km spatial resolution. Landsat is a joint mission program between NASA and the 
United States Geological Survey, gathering data from 1972 until today. The current active 
and orbiting satellites are Landsat 8 and Landsat 9. The first satellite of the program was 
launched on July 1972. The continuity of the Landsat program has ensured access to data 
to support the tracking of land-use and land cover change. The Landsat 8 and 9 opera-
tional land imager (OLI) and thermal infrared sensor (TIRS) have 11 spectral bands, con-
sisting of visible, NIR, SWIR, and TIR. The spatial resolution for multispectral bands is 30 
m, except for the panchromatic band, which is 15 m. The spatial resolution for the TIR 
bands is 100 m. 

Jin et al. [146] utilized 14 VIs (e.g., NDVI, TCARI, and NDII) extracted from simulated 
Sentinel-2 optical data and LAI to estimate the biomass of corn. Their results showed that 
the three-band water index (TBWI) led to higher accuracy. Liao et al. [147] analyzed 
MODIS and Landsat 8 satellite data to extract phenology, dry biomass, and yield of corn 
and soybeans and reported an RMSE for corn and soybean yield of 146.33 g/m2 and 82.86 
g/m2, respectively. Punalekar et al. [148] used Sentinel-2 satellite images and proximal hy-
perspectral data to estimate pasture LAI and biomass. 

Within the peer-reviewed literature, high spatial resolution optical satellite data pro-
vided by sensors such as RapidEye and WorldView are exploited less in crop monitoring 
studies when compared to lower spatial resolution data (e.g., Sentinel-2 and Landsat). 
This is likely due to the higher cost associated with these commercial sensors. Neverthe-
less, studies that exploited these high spatial resolution data reported high accuracy. 
RapidEye consists of five identical satellites gathering data in five bands of blue, green, 
red, red-edge, and NIR. The ground sampling distance (GSD) at the nadir is 6.5 m. 
WorldView constellation satellites are a mission owned by DigitalGlobe. The first satellite, 
WorldView-1, was launched on September 2007 and gathered panchromatic data at a 0.5 
m resolution. WorldView-2 added eight spectral bands to its panchromatic capability. 
This second-generation satellite collects imagery in the red, green, blue, red-edge, and NIR 
spectral regions, with a GSD at the nadir of about 1.8 m. 

Reisi Gahrouei et al. [92] utilized multi-temporal RapidEye data to estimate the LAI 
and biomass of canola, soybeans, and corn. They extracted 11 VIs (e.g., GNDVI, SR, and 
EVI) to assess the potential of optical data in predicting crop biophysical parameters. Their 
model delivered an RMSE of 0.59 m2/m2 for canola LAI, 0.27 m2/m2 for corn LAI, and 0.21 
m2/m2 for soybean LAI. In the study by Bahrami et al. [40], using the same satellite and 
ground dataset as Reisi Gahrouei et al., the random forest feature importance showed that 
the red-edge VIs had higher significance than the conventional VIs, such as NDVI. 
Maimaitijiang et al. [149] analyzed several spectral bands and VIs extracted from 
WorldView-2/3 and UAV RGB images to estimate soybean dry biomass and LAI. They 
also used the digital elevation model (DEM) and digital surface model (DSM) extracted 
from the UAV points cloud to estimate crop height. Their results showed that UAV crop 
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height measurements were strongly correlated with crop height ground measurements 
(R2 = 0.90). In addition to crop height measured by the UAV sensor, they calculated crop 
canopy cover using RGB UAV images. Lu and He [150] used Sentinel-1, WorldView-2, 
and DEM data to estimate vegetation LAI. Their results showed that optical WorldView-
2 data delivered the best accuracy with an R2 of 0.630 and RMSE of 0.701. Wei et al. [151] 
used four high-resolution satellite datasets, including Pleiades-1A, WorldView-2 and -3, 
and Spot6, to estimate winter oilseed rape LAI through an integrated model (combination 
of radiative transfer model and RF and K-NN as inversion model). These researchers used 
RF to select the best features and calculated accuracy date by date (separately), achieving 
a high accuracy (R2 of 0.998) using the five top features. Kross et al. [54] investigated 
RapidEye data to estimate crop LAI and biomass, focusing on red-edge VIs and paramet-
ric regression models. Their results showed that the simple ratio red-edge delivered an R2 
of 0.97 for corn. However, the red-edge VIs did not significantly improve biomass and 
LAI estimation compared to conventional VIs. Campos-Taberner et al. [152] achieved an 
R2 of 0.97 for a study area in Spain using Sentinel-2 spectral bands. In this study, inversion 
of the radiative transfer model using GPR was applied to estimate rice LAI. Yue et al. [37] 
utilized spectral bands and VIs extracted from a hyperspectral sensor and RGB camera 
mounted on a UAV to estimate winter wheat dry biomass and LAI. Combining crop 
height and VIs did not improve estimation accuracy compared to using spectral bands 
alone. However, these researchers stated that multiplying crop height and VIs could im-
prove the estimation accuracy. In a study by Sibanda et al. [153], red-edge and infrared 
bands were the most effective in estimating grassland dry biomass using simulated Sen-
tinel-2 data. Moreover, they stated that using hyperspectral infrared imaging (HyspIRI), 
the red-edge and middle infrared bands were the most efficient bands. They also declared 
that using VIs extracted from Sentinel-2 and HyspIRI significantly improved the estima-
tion accuracy. 

4.2.2. SAR Earth Observations 
SAR sensors have shown potential in retrieving crop biophysical parameters. Unlike 

optical sensors, SAR sensors can gather data in cloudy weather conditions as these longer 
microwaves are, by and large, unaffected by atmospheric conditions. Microwave scatter-
ing is sensitive to the larger-scale physical characteristics of vegetation but also depends 
on sensor configurations (microwave wavelength, polarization of transmitted and re-
ceived wave, and incident propagation angle). Although various studies have examined 
single- or dual-polarization SAR data, their analytical power is significantly less than 
when fully polarimetric data are used [154,155]. Fully polarimetric SARs transmit and re-
ceive two orthogonal polarizations that provide valuable observations about the target. 
With intensity and phase to exploit, these data can be used to synthesize a range of polar-
imetric features and to determine scattering mechanisms. Polarimetric decompositions 
have been used to determine the target’s physical characteristics [156,157]. Standard de-
compositions exploited in the literature include Cloude–Pottier [158], Freeman–Durden 
[159], and Yamaguchi [160]. In two studies by [7,41], these decomposition methods were 
used to estimate crop biophysical parameters. 

SAR data from sensors operating at X-band, C-band, and L-band have been used in 
crop monitoring and mapping research. However, as evident in Figure 11, C-band data 
dominate research in this field, followed by X-band and L-band. Access to C-band satellite 
data dates back to the early 1990s, and in 2014 the Sentinel-1A satellite began acquiring 
standard coverages and releasing these C-band data as open access. The Sentinel-1 A and 
B constellation provided multitemporal coverage (6-day revisit with two satellites). The 
future generation of these satellites (Sentinel C and D) will provide longer-term data con-
tinuity. The Canadian C-band RADARSAT-2 satellite has fueled agricultural research, 
considering that since 2007 this satellite has provided the capacity to acquire fully polari-
metric space-based data [161]. Given the diversity of data synthesized from a fully polar-
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imetric mode, these data have attracted considerable attention from the scientific commu-
nity. However, the current engineering challenge with a fully polarimetric mode is the 
limited swath width at which these data can be acquired. 

Generally, satellite and UAV images, specifically Sentinel-1 satellite data, showed 
great potential in retrieving rice crop parameters, such as dry biomass, LAI, and crop 
height, using parametric and non-parametric algorithms [128,162–164]. Mansaray et al. 
[165] utilized combinations of Sentinel-1 C- VV and C-VH data to estimate the dry bio-
mass of rice, ultimately achieving an R2 of 0.73 and RMSE of 462.4 g/m2. Using these po-
larizations from Sentinel-1, Mandal et al. [93] predicted wet biomass and plant area index 
(PAI) for wheat, canola, and soybeans. Using the WCM, the correlation between observed 
and estimated C-VV backscatter was high for wheat and canola. For soybeans, the corre-
lation was higher using the VH polarization. Estimates of wheat PAI were poorer during 
the early tillering stages, likely because of the contribution of soil in radar backscatter. An 
underestimation occurred at a PAI greater than 5 m2m−2 because of the saturation of the 
C-band signal at high biomass. 

Hosseini and McNairn [88] tested both space-based C-band (RADARSAT-2) and air-
borne L-band (UAVSAR) SAR to estimate the biomass of spring wheat. Their results 
showed that with C-VV and C-VH data, wheat biomass could be estimated with an RMSE 
of 78.834 g/m2. In addition, their results showed that RADARSAT-2 HH-HV and VV-HV 
are the best polarizations to retrieve wheat total biomass and head biomass, respectively 
(R = 0.83 for total biomass and R = 0.70 for the biomass of heads of wheat). The highest 
error using RADARSAT-2 data was reported when retrieving biomass in the fruit/ripen-
ing stage. Errors were higher when retrieving biomass using UAVSAR L-band data. Ex-
panding the research to corn and soybeans, Hosseini et al. [87] used RADARSAT-2 C-
band and UAVSAR L-band data to estimate LAI for these two crops. Their results showed 
that RADARSAT-2 HH-HV and VV-HV provided reasonable estimates of corn LAI (R = 
0.83 and 0.81, respectively). At C-band, RADARSAT-2 outperformed UAVSAR-L-band 
data for estimating corn LAI. High correlations between observed and estimated LAI for 
soybeans were also reported from RADARSAT-2 data, with poor results found with the 
UAVSAR-L-band data. 

Although C-band SAR studies have dominated, data from X-band sensors have also 
been studied. Although shorter X-band microwaves have lower penetration into vegeta-
tion canopies [156], these sensors provide higher-resolution data. Ahmadian et al. [121] 
used TerraSAR-X dual-polarization data to estimate the wet and dry biomass of wheat, 
barley, and canola. Results for wheat showed that X-HH had better accuracy than X-VV. 
Inoue et al. [66] utilized five SAR wavelengths (C, L, Ka, Ku, X) to estimate rice biomass 
and LAI. Their results revealed that C-band HH and HV intensities are well-correlated 
with rice LAI, while L-band HH and the cross-polarization are well-correlated with wet 
biomass. Ott et al. [166] illustrated that L-band was sensitive to biomass and VWC, while 
Reisi-Gahrouei et al. [7] analyzed airborne L-band polarimetric data to estimate the bio-
mass of canola, corn, and soybeans. Canisius and Fernandes [38] assessed the potential of 
the Advanced Land Observing Satellite (ALOS) phased array synthetic aperture radar 
(PALSAR) L-band data and ENVISAT C-band ASAR data to estimate the LAI of corn, 
soybean, and pasture. ASAR did not have a polarimetric mode and therefore they could 
not compare the performance of L-band and C-band polarimetry. However, using HH 
and HV polarizations acquired at C- and L-band frequencies, Canisius and Fernandes [38] 
showed that both C-HH and C-HV delivered weak results for corn and soybean LAI. They 
stated that the C-band signal tended to saturate when the LAI reached a value between 2 
and 3. In contrast to C-band, L-band produced promising results for corn and soybean 
LAI estimation (R2 = 0.76 and 80 for HV and HH polarizations, respectively). They stated 
that their results showed no evidence of saturation of the L-band signal for the crops stud-
ied. In addition to the studies mentioned above, combining two or more bands may im-
prove accuracy. According to Figure 11, the combination of L- and C-band was studied 
most often. 
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The angle at which the radar beam hits the Earth (incident angle) affects the charac-
teristics of SAR scattering. The physics of wave propagation dictates that the intensity of 
scattering decreases as the incident angle increases; therefore, the same object has a dif-
ferent backscatter intensity in images obtained by various incident angles [167]. This angle 
also impacts how the wave interacts within, for example, a crop canopy. Steep (small) 
incident angles generally allow for greater penetration into the crop canopy and may lead 
to greater scattering contributions from the soil depending on the radar wavelength. 
Chakraborty et al. [168] illustrated that a shallower incident angle (>40°) led to improved 
mapping of rice crops using RADARSAT-1 C-band data. In studying winter wheat and 
barley, Ahmadian et al. [121] discovered that X-VV and X-HH backscatter (31° incident 
angle) increased from stem elongation to the start of the flowering period. Jiao et al. [169] 
reported that C-HV backscatter at both steep and shallow angles was well-correlated with 
corn and soybean LAI. Inoue et al. [66] used four incident angles (25°, 35°, 45°, and 55°) to 
estimate the LAI and biomass of rice. They discovered that L-band HH backscatter could 
accurately estimate biomass at all incident angles with R2 between 0.95 to 0.99 (with the 
highest accuracy at 45°). Baghdadi et al. [20] studied data from TerraSAR-X, ENVISAT 
ASAR, and ALOS PALSAR acquired at various incident angles (from 18° to 53°). The 
larger incident angles and longer wavelengths delivered the best estimates of sugarcane 
height. In addition to the impact on backscatter intensity, the angle of wave propagation 
also impacts scattering characteristics. 

4.2.3. Combination of Optical and SAR Images 
The combination of SAR and multispectral images has shown potential in retrieving 

crop parameters. Yadav et al. [170] assessed the potential of Sentinel-1 and Sentinel-2 data 
in estimating wheat LAI. They compared the results of the original WCM and a modified 
version. Their results showed that using Sentinel-1 VV intensiy in the modified WCM was 
more sensitive to crop growth features and was strongly correlated with LAI (R2 = 0.974). 
Results were better than those obtained with C-VV intensity using the original WCM or 
C-VH using either the modified WCM or original WCM. The LAI of wheat could be re-
trieved with the modified WCM and C-VV intensity, with high accuracy (R2 = 0.901). 

Jin et al. [171] utilized Huanjing (HJ) optical data and RADARSAT-2 SAR data to 
estimate wheat dry biomass and LAI. First, they assessed results using only optical or only 
SAR data and then evaluated performance when SAR and optical data were combined. 
They examined various VIs and SAR polarimetric decompositions using several paramet-
ric methods and PLSR. Among VIs extracted from the optical images, MTVI and EVI had 
better accuracy in estimating LAI and biomass, respectively. With respect to SAR features, 
RVI and double-bounce eigenvalue relative differences had higher accuracy in estimating 
LAI and biomass, respectively. Jin et al. [171] then multiplied six of the VIs with the two 
best radar features to produce a new series of combined features, then calcuated the accu-
racy of the parametric regression. Their results showed that this method could improve 
LAI and biomass retrievals (R2 = 0.68 for LAI and 0.80 for biomass). When LR and PLSR 
were used to combine VIs and radar features, PLSR delivered the best estimates of LAI 
and biomass with R2 of 0.83 and 0.90, respectively. 

Baghdadi et al. [27] studied the potential of RADARSAT-2 and Landsat 7/8 data to 
estimate soil moisture and several crop parameters, including LAI and biomass. They uti-
lized NN and considered six configurations for estimating the crop parameters under var-
ious conditions, such as the sole use of SAR or a combination of SAR and optical features. 
Moreover, they calculated several polarimetric decompositions, including Shannon en-
tropy (SE) and the Pauli component. The C-band HH polarization was the most suitable 
for estimating grassland biophysical parameters. In addition, they stated that dual polar-
ization or full polarimetric decomposition parameters did not improve vegetation param-
eter estimation nor soil moisture retrieval for grasslands. 

Luo et al. [61] analyzed the potential of Sentinel-1/2 and Landsat 8 data for crop mon-
itoring. They utilized spectral and texture features from optical and SAR data as inputs to 
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SVR and MLR models to estimate corn biomass and LAI. Their results showed that the 
texture features of both SAR and optical data could improve the accuracy of biomass and 
LAI estimation. 

Koppe et al. [172] assessed the potential of hyperspectral (EO-1 Hyperion) and mi-
crowave (Envisat ASAR) satellite data to estimate wheat dry biomass. Their results 
showed that the exclusive use of hyperspectral data yielded better accuracy (R2 = 0.83) 
than results from Envisat ASAR data (R2 = 0.75). They also stated that the combination of 
EO-1 Hyperion and Envisat ASAR data resulted in the highest accuracy when compared 
to results when only microwave or hyperspectral data were used (R2 = 0.9). 

4.2.4. Laser-Based Sensors for Crop Parameters Estimation 
In addition to optical and SAR sensors, laser-based sensors, such as airborne LiDAR 

and terrestrial laser scanner (TLS), can also be used to estimate crop height and biomass. 
Active laser technologies gather data in three dimensions. The 3D points collected by la-
ser-based sensors provide longitude, latitude, and ellipsoidal height data. The ellipsoidal 
heights can then be converted to the elevation. Li et al. [141] used TLS to estimate rice 
aboveground biomass and the biomass of individual canopy components. They also mod-
eled rice development throughout the growing season. Zhu et al. [131] analyzed multi-
source data from two multispectral cameras and a LiDAR sensor mounted on three UAVs 
to estimate aboveground corn biomass. High-precision crop height measurements can 
lead to more accurate corn biomass. They showed that using this precise data, R2 of wet 
biomass increased by 0.01, 0.07, 0.19, and 0 (t/ha), and RMSE decreased by 0.02, 0.89, 1.65, 
and 0 (t/ha) for MLR, RF, ANN, and SVR, respectively. Zhu et al. [173] also exploited 
multispectral images and LiDAR data to estimate aboveground corn biomass and demon-
strated that integrating these two data sources improved retrieval accuracy. 

4.3. Analytical Methods 
Over the last three decades, many methods have been developed to retrieve crop 

parameters and estimate yield from remote sensing data. As stated in the previous section, 
these methods can be divided into four main categories: (1) parametric regression meth-
ods, (2) non-parametric regression methods, (3) physically based models, and (4) empiri-
cal and semi-empirical models. Our results showed that using high-resolution optical 
data, almost all models, such as parametric and non-parametric regression models and 
physical, empirical, and semi-empirical models, yielded high accuracy for crop parameter 
estimation [37,132,141,164]. 

4.3.1. Parametric Regression Models 
Parametric regression methods build a direct relationship between one dependent 

variable and one or more independent variables. Rueda-Ayala et al. [174] combined aerial 
and ground remote sensing data to estimate pasture biomass, plant volume, and plant 
height using simple linear regression (LR). Elsayed and Darwish [175] used LR to assess 
the potential of hyperspectral remote sensing data to predict corn VWC, dry and wet bio-
mass, yield, canopy water mass (CWM), and grain yield (GY). Ahmadian et al. [121] used 
LR, Pow-R, and Exp-R to estimate LAI, wet and dry biomass, and VWC of wheat, barley, 
and canola. Acorsi et al. [130] used UAV data to estimate black oat height, dry biomass, 
and wet biomass using parametric regression models. These researchers divided data col-
lection into three missions; the first mission was conducted at the booting stage, the sec-
ond at the flowering stage, and the third at the grain-filling stage. Their results showed 
that the crop height of black oat could be retrieved with high accuracy during the first and 
second missions with R2 of 0.86 and 0.92, respectively.  The accuracy of retrievals during 
the third mission was poor. Wet and dry biomass, as with crop height, could be well esti-
mated during booting and flowering stages (for dry biomass, R2 = 0.81 and 0.92, and wet 
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biomass, R2 = 0.87 and 0.94, respectively); however, the results at the grain-filling stage 
were again, poor. 

Using multiple parametric regression models, Eitel et al. [22] utilized TLSs and 
RapidEye images to predict dry wheat biomass, LAI, and crop height. Their results 
showed that crop heights extracted from the TLS were strongly correlated with in situ 
measurements with an R2 of 0.87. Han et al. [17] investigated the potential of several par-
ametric regression models, including power, exponential, linear, logarithmic, and quad-
ratic regression models, to estimate the dry biomass of winter oilseed rape using several 
VIs extracted from four high-resolution satellite images (WorldView-2/3, SPOT-6, and 
Pleiades-1A). They used several VIs, including EVI, EVI2, RVI, NDVI, RDVI, OSAVI, 
SAVI, and MTVI2. Their results showed that power regression had a higher R2 for all VIs 
(ranging from 0.71 to 0.77). The exponential regression model was the second best, with 
accuracies ranging from 0.66 to 0.76. Their results revealed that NDVI delivered higher 
accuracy using power regression compared to other VIs and parametric regression mod-
els. They stated that all VIs had a strong near-linear dependency to dry biomass at the 
seeding and stem elongation stages. Moreover, they observed that the samples were dis-
tributed away from the fitting line at the podding stage. Additionally, they reported that 
at the period of high biomass, NDVI tended to saturate to a greater extent than other VIs. 

4.3.2. Non-Parametric Regression Models 
Kernel-based machine learning algorithms have recently received significant atten-

tion because of their high generalization performance and ability to learn the nonlinear 
relationship between features and target parameters [114]. As shown in Table 5, although 
PLRS has a higher count number, it produces relatively higher accuracy than RF com-
pared to the other non-parametric regression models. Sibanda et al. [153] used PLSR to 
estimate dry grassland biomass. They utilized leave-one-out cross-validation in their re-
search to train the PLSR model. Their results revealed that using PLSR, dry grassland bi-
omass could be efficiently estimated using simulated bands and VIs. Their results also 
showed that using spectral bands and VIs extracted from simulated Sentinel-2 data, grass-
land dry biomass could be estimated with high accuracy (R2 ranging from 0.52 to 90 using 
raw spectral bands and from 0.51 to 0.97 using VIs). They also declared that using spectral 
bands and VIs simulated from the Hyperspectral Infrared Imager (HyspIRI), grassland 
dry biomass could be estimated with R2 ranging from 0.65 to 90 for spectral bands and 
ranging from 0.70 to 0.97 for VIs. 

Yue et al. [37] utilized two non-parametric regression models, i.e., RF and PLSR, and 
several parametric models to estimate wheat dry biomass and LAI. Their results revealed 
that parametric regression models did not provide good results for the three crop devel-
opment stages. However, their results showed that using RF and PLSR regression, dry 
biomass and LAI could be accurately retrieved. Utilizing VIs extracted from a digital cam-
era delivered better results than VIs extracted from a hyperspectral sensor mounted on a 
UAV. The results by RF models were better than PLSR. The R2 for dry biomass and LAI 
using RF was 0.94 and 0.93 for digital camera VIs and 0.93 and 0.93 for hyperspectral VIs, 
respectively, while the R2 for dry biomass and LAI using PLSR was 0.61 and 0.50 for the 
digital camera and 0.34 and 0.45 for hyperspectral, respectively. They also achieved a high 
accuracy by using all VIs and crop height. In this scenario, the R2 was 0.96 and 0.77 for the 
digital camera and 0.94 and 0.64 for hyperspectral VIs for dry biomass using RF and PLSR, 
respectively. 

Mansaray et al. [25] utilized data from three satellites, including Sentinel-2, Landsat 
8, and the Chinese Huanjing (HJ-1 A and B), to estimate rice dry biomass using RF, SVR, 
k-NN, and gradient boosting decision tree (GB). They stated that EVI was highly corre-
lated with crop biophysical parameters while being less susceptible to saturation at high 
biomass. GB delivered the best estimation of dry rice biomass before the heading period 
(R2 = 0.82). Furthermore, K-NN led to the best results after the rice heading stage (R2 = 
0.43). Duan et al. [162] also assessed the potential of SVR to estimate rice LAI using a UAV 



Remote Sens. 2022, 14, 5633 36 of 49 
 

 

dataset. In this study, the researchers calculated the simple correlation between several 
spectral bands, VIs, and VI-based Fourier spectra with rice LAI. Their results showed that 
compared to the spectral bands, NDVI and EVI extracted from the UAV data were the 
most strongly correlated features with rice LAI. VI-based Fourier features, when input to 
the SVR model, delivered better accuracy than VIs. 

Li et al. [164] utilized several parametric and non-parametric regression methods (LR, 
MLR, principal component regression (PCR), PLSR, RF, and SVR) to estimate rice LAI 
using combined optical indices and texture features. Kiala et al. [176] investigated the po-
tential of PLSR and SVR to estimate grassland LAI using a ground hyperspectral field 
spectrometer. They stated that at the beginning and end of summer, PLSR outperformed 
SVR. They also observed that at the peak of the growing season (mid-summer), when sat-
uration occurred, SVR performed better than PLSR. Moreover, they reported that for the 
whole dataset, SVR was slightly better than PLSR (R2 = 0.74 for SVR and 0.73 for PLSR). 
PLSR and SVR yielded R2 of 0.87 and 0.86 for the beginning of summer, 0.89 and 0.90 for 
the middle of summer, and 0.85 and 0.83 for end of summer, respectively. 

Khan et al. [177] applied ANN to Landsat 8 optical data to estimate Mentha crop 
biomass yield over India. They extracted several VIs, including NDVI, GNDVI, and SAVI, 
and achieved an R2 of 0.76. Zhu et al. [131] assessed four non-parametric machine learning 
algorithms, including RF, MLR, ANN, and SVR, to estimate corn biomass and height. 
Their results showed that the estimation accuracy of MLR was close to the results obtained 
by RF and SVR, indicating that non-parametric regression methods do not efficiently im-
prove rice wet and dry biomass estimation. In addition, they expressed that ANN per-
formed poorly in estimating corn biomass when compared to SVR and RF methods. High-
spatial-resolution crop-height data was deemed a key parameter in estimating crop bio-
mass. Khan et al. [177] utilized several non-parametric machine learning algorithms, in-
cluding OLSR, RF, SVR, and extreme learning regression (ELR). Their results showed that 
combining data from satellite and UAV platforms delivered higher accuracy estimates of 
dry biomass and LAI, when evaluated against data collect using only UAV or only satel-
lite images. Also, ELR and RF outperformed other machine learning algorithms in retriev-
ing dry biomass (R2 = 0.92 for ELR and 0.92 for RF). The LAI of soybeans could be accu-
rately estimating by combining satellite and UAV data, with ELR delivering slightly better 
results relative to other models (R2 = 0.93). This research showed that soybean parameters 
could be accurately estimated using high-spatial-resolution images and machine learning 
algorithms. 

Recently, GPR has received considerable attention for retrieving crop and vegetation 
biophysical parameters [178]. GPR comprises a Bayesian framework to solve regression 
and probabilistic classification problems. As observed in Table 5 and Figure 17, GPR has 
the highest mean and median R2 among non-parametric methods. This finding could be 
explained by the fact that GPR does not have numerous parameters, making this method 
a suitable choice to resolve overfitting and underfitting problems [179]. Yin et al. [180] 
utilized GPR coupled with gap-filling methods to produce aboveground grassland bio-
mass. Several studies showed that GPR outperformed other ML algorithms [181,182]. Mao 
et al. [183] assessed the potential of five ML methods and Sentinel-2 spectral bands to 
estimate cotton LAI, including ANN, SVR, RF, GPR, and GB. Grid search cross-validation 
was implemented to find the best parameters for tuning the machine learning models. To 
avoid biased results caused by the random selection of training and testing samples, they 
conducted 20 repetitions of the machine learning algorithms using different training and 
testing sample sets. GB had the highest accuracy among various machine learning models 
(R2 = 0.854 on average). Although GB outperformed other non-parametric machine learn-
ing algorithms, it was a less robust algorithm because of its wide distribution range of R2 
and RMSE. After GB, the best results were from ANN, SVR, RF, and GPR. Mao et al. [183] 
also found that SVR delivered good results (R2 = 0.83 on average) and was the most robust 
model as evident in its narrower distribution of R2 and RMSE. ANN delivered the best 
results when feature selection was conducted for the Sentinel-2 spectral bands (R2 = 0.88 
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on average). After SVR, GPR was next most robust model for estimating the LAI of cotton, 
when considering the standard error of the models. 

4.3.3. Physical-Based Models 
Physical-based models have significant potential in crop characterization and are eas-

ily transferable to various crop types [184,185]. Generally, complex RTM models are more 
realistic but with many parameters, retrievals are challenging because of the complexity 
of the inversion task. The number of independent observations is typically less than the 
number of unknown parameters; for this reason, physically based models can be ill-posed. 
Several methods have been suggested to overcome this challenge, including look-up table 
and hybrid approaches to model inversion. 

Physical-based models have been widely used to estimate LAI, dry and wet biomass, 
and other crop parameters [151,186]. Klingler et al. [187] utilized several methods based 
on RTM models. Their results showed that these methods had a lower error than direct 
green LAI (GLAI) measurements. Chen et al. [188] also utilized PROSAIL, as an RTM-
based method, to generate simulated hyperspectral GF-5 reflectance data under various 
soil and vegetation conditions. They used Sentinel-2 multispectral and GF-5 hyperspectral 
data in their research. They applied three feature selection methods, including RF, mean 
impact value, and K-means clustering, and three regression methods, including RF, NN, 
and K-NN, to develop various scenarios. RF was the most efficient method. Chen et al. 
[188] also used nine spectral bands and five VIs, e.g., NDVI and four red-edge VIs, as 
input variables. Based on the feature selection results, blue, red, and red-edge bands were 
the best features. They stated that when using the spectral bands and 5 VIs without per-
forming feature selection, RF obtained the highest accuracy and lowest error (i.e., R2 = 0.83 
and RMSE of 0.84). Although feature selection did not improve the model performance, 
they stated that by using RF feature selection, the most useful data was preserved. 

In another study, Sun et al. [126] simulated the canopy spectral reflectance using the 
PROSAIL RTM model [122,123]. Their study used five VIs extracted from Sentinel-2 data, 
including NDVI, red-edge and green chlorophyll index, broad dynamic range vegetation 
index, and modified simple ratio. They concluded that the red-edge 2 and red-edge 3 
bands were the most optimal. However, some saturation was observed at high LAI. Yup-
ing et al. [189] regionalized and adjusted the WOFOST model in north China and com-
bined it with LAI and the PROSAIL RTM model to simulate SAVI. 

4.3.4. Empirical and Semi-Empirical Models 
In addition to the above methods, several empirical and semi-empirical methods 

have been studied to retrieve crop descriptors [93]. The WCM is a well-known semi-em-
pirical model widely used in agriculture. Hosseini et al. [89] assessed corn dry and wet 
biomass estimation using calibrated WCM and SAR data from RADARSAT-2. Moreover, 
they extracted four VIs from RapidEye optical data, including NDVI, red-edge simple ra-
tio, SR, and the red-edge triangular vegetation index (RETVI). This approached achieved 
an R of 0.73 and 0.74 between estimated and observed backscatter for the dry biomass, 
respectively. However, the correlation for wet biomass was lower (0.73 and 0.61 for HH 
and HV polarizations, respectively). Their results also revealed that almost all VIs deliv-
ered an acceptable correlation with dry and wet biomass. 

Ahmadian et al. [121] studied the impact of crop biomass on radar backscatter inten-
sity using the WCM. Their results showed a strong correlation between X-band VV 
backscatter, and barley and canola dry biomass (R2 = 0.87 for barley and 0.96 for canola). 
However, the HH polarization was more accurate in estimating dry wheat biomass. They 
also observed a high correlation between HH polarization and barley and canola wet bi-
omass. Utilizing MLR for dry biomass, they achieved an accuracy (R2) of 0.75 for wheat, 
0.87 for barley, and 0.66 for canola. In addition, they reported accuracy (R2) of 0.80 for 
wheat, 0.93 for barley, and 0.74 for canola dry biomass. Using MLR, the results revealed 
that the accuracy for dry biomass is higher than wet biomass. They also utilized RF and 
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found better results than when applying MLR, in all cases. The correlations (R2) were re-
ported as 0.8 and 0.92 for wheat dry and wet biomass, 0.96 and 0.96 for barley dry and 
wet biomass, and 0.74 and 0.68 for canola dry and wet biomass. 

Han et al. [190] applied the WCM and MLR to SAR and optical data from Sentinel-1 
and Sentinel-2 satellites to estimate the water content of winter wheat. Their results 
showed that estimation of the water content from Sentinel-2 optical data delivered higher 
accuracy than when Sentinel-1 SAR data were used. Hosseini and McNairn [88] coupled 
the WCM and the Ulaby soil moisture model to estimate spring wheat biomass and sur-
face soil moisture from RADARSAT-2 C-band and UAVSAR L-band data. Their results 
revealed that, for wheat biomass during development stage, a correlation coefficient of 
0.70 was obtained for a validation dataset using RADARSAT data. However, the results 
for UAVSAR L-band were not as promising; the highest correlation coefficient was 0.47 
for wheat biomass estimation. 

4.4. Crop Characterization 
Estimating crop biophysical parameters using remote sensing data depends on the 

model, the spatial and spectral resolution of the sensor, and landscape heterogeneity [191]. 
LAI, dry biomass, and wet biomass have been studied more extensively than other bio-
physical parameters. Biomass and LAI are primary crop growth parameters [146] and in-
dicate general crop health and biochemical status [55,145,171,183,192–195]. Accurate esti-
mation of aboveground biomass can be linked with the yield of some crops [196]. Man-
saray et al. (2020a) stated that dry biomass is one of the most critical crop growth param-
eters for rice. Paris [197] illustrated that K-band HH and VV polarized backscatter could 
be used to retrieve the LAI of corn. Pandey et al. [198] found that scattering measured 
with a ground-based X-band radar correlated well with ladyfinger’s biomass and LAI but 
was poorly correlated with plant height. 

Ganeva and Roumenina [199] used SPOT VEGETATION and simulated PROBA-V 
data to estimate several crop descriptors, including fAPAR, wet biomass, and LAI. Their 
results showed that Exp-R models coupled with simulated PROBA-V data delivered R2 of 
0.90 and 0.93 for wet biomass and 0.91 and 0.93 for LAI. Wong and Fung [194] extracted 
several VIs from EO1-Hyperion data and texture features from ENVISAT ASAR imagery 
to estimate mangrove LAI. Radar texture had a low correlation with mangrove LAI. Their 
research investigated the potential of two parametric regression models, including LR and 
MLR. LR, triangular vegetation index (TVI), and NDVI delivered the highest and lowest 
R2, respectively (R2 = 0.69 for the TVI and 0.02 for the NDVI). Jigh accuracy could be 
reached using MLR and a combination of the modified chlorophyll absorption ratio index 
and angular second moment texture feature (R2 = 0.79). 

Xing et al. [200] coupled ENVISAT ASAR with Landsat 5 optical satellite imagery to 
estimate aboveground biomass over mixed vegetation. They utilized the modified WCM 
and a look-up table in their research. Dry biomass could be retrieved with an R2 of 0.8 and 
RMSE of 0.28 kg/m2. Campos-Taberner et al. [201] studied optical data from Landsat 7 and 
Landsat 8 and discovered that the LAI of rice could be estimated with an R2 of 0.89. Reisi 
Gahrouei et al. [92] reported a high correlation between RapidEye VIs and corn, soybean, 
and canola biomass and LAI. These researchers examined SVR and ANN for modeling 
crop biomass and LAI. They extracted 11 VIs from RapidEye imagery, including NDVI, 
EVI, SAVI, red-edge NDVI, and red-edge SR. For dry biomass, the SVR model delivered 
higher accuracy for canola (R2 = 0.93). Using both SVR and ANN models produced good 
accuracy for soybeans (R2 = 0.89 and 0.83 for SVR and ANN, respectively). The results for 
all crops using ANN were poor compared to the SVR model. Estimating LAI using both 
SVR and ANN produced promising results for all crops. For canola, R2 was reported as 
0.94 and 0.84 for SVR and ANN models, respectively. For corn, R2 was 0.93 and 0.88 for 
SVR and ANN, respectively; the R2 for soybean was 0.98 and 0.9 using SVR and ANN, 
respectively. Reisi-Gahrouei et al. [7] evaluated ANN and MLR to estimate the dry bio-
mass of three crops from SAR observations. Polarimetric SAR L-band data delivered high 
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correlations when estimating the dry biomass of corn, canola, and soybeans. They stated 
that using MLR and a combination of HH and HV polarization intensities, an acceptable 
correlation could be reached for canola (R = 0.60). HH backscatter and entropy (H param-
eter from Cloude-Pottier decomposition) polarimetric feature produced a higher accuracy 
and a lowest error for corn (R = 0.91 and RMSE = 211.01 g/m2). For soybean, HH and en-
tropy parameter produced the best correlation (R = 0.79). In ANN, VV backscatter and 
double scattering derived from Freeman–Durden decomposition delivered better result 
for canola (R = 0.72). In ANN, HH backscatter and entropy features produced the best 
accuracy (R = 0.92). Finally, the best correlation they reported for soybean using ANN was 
R = 0.82. 

Yue et al. [37] highlighted a high correlation between VIs extracted from UAV-based 
cameras and LAI and biomass. In studying corn, Li et al. [50] reported that with LiDAR 
and GF-1 remote sensing data, LAI, height, and biomass could be estimated with an RMSE 
of 0.37 m2/m2, 0.17 m, and 0.49 kg/m2, respectively. This was accomplished with a loga-
rithmic regression and a multiplicative model. Paloscia et al. [202] reported a strong cor-
relation between X-band data collected by Cosmo-SkyMed and crop VWC. Using LR, X-
HH backscatter was sensitive to the VWC of sunflowers (R2 of 0.76) and wheat (R2 of 0.68). 
Lobell et al. [203] estimated the fraction of absorbed photosynthetically active radiation 
(fAPAR) from Landsat-5 and Landsat-8, then used the fAPAR in a light-use efficiency 
(LUE) model to predict the yield of wheat. 

4.5. Challenges and Opportunities 
Despite the notable advances in sensor technologies, challenges remain in applying 

remote sensing to map and monitor agricultural landscapes. Success is contingent upon 
technological advances in computing, algorithm development, and data policies. 
1. As discovered in this literature review, integrating data from multiple data sources 

is advantageous. This is not limited to, for example, the advantages of SAR acquisi-
tions during periods of cloud cover. In addition, it recognizes that multi-sensor ap-
proaches exploit differences in how canopies impact different spectral and micro-
wave wavelengths. The integration of data across Sentinel platforms (Sentinel-1A/B 
and Sentinel-2A/B) has provided outstanding outcomes, and more research using 
multi-sensors is required. Landsat-9 (launched in 2021) and the NASA–Indian Space 
Research Organization (ISRO) SAR (NISAR) (soon to be launched) will be of interest 
for crop mapping and estimation of LAI, biomass and crop phenology. NISAR will 
have two L- and S-band sensors. This SAR satellite will acquire images consistently 
over the globe with an exact 12-day repeat. Following the lead of the Landsat and 
Sentinel programs, NISAR data will be free and open. Operating as a virtual constel-
lation, the revisit time for Landsat-8 and Landsat-9 is eight days, narrowing the tem-
poral gap and providing essential opportunities to map crop growth. More research 
on data fusion and assimilation algorithms is needed to develop solutions to fill tem-
poral and spatial resolution gaps. 

2. Calibration, either absolute (to a standard) or relative (platform to platform and con-
sistency over time), is always challenging. Although calibration is always necessary, 
the demands are exceptionally high when remote sensing data model biophysical 
and biochemical crop parameters. Furthermore, inter-sensor calibration is particu-
larly important considering recent trends in constellations of satellites. 

3. Many studies have developed relationships between reflectance and/or backscatter 
crop by crop. Implementing these crop-specific models would be complex for large-
scale monitoring (nationally, for example), and a universal model may be required. 
The robustness of models developed for limited geographies and temporal periods 
must be evaluated if the goal is to adopt these methods for monitoring operations. 
The pooling of data and resources over multiple sites and research teams could pro-
vide a partial solution. 
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4. In the optical domain, many satellite sensors are limited to imaging in the near-infra-
red and visible spectral regions. They thus do not capture significant absorption and 
reflectance features in the more extended shortwave-infrared region [204]. Moreover, 
one of the main problems of remote sensing sensors operating in visible, near-infra-
red, and shortwave infrared is their sensitivity to atmospheric and weather condi-
tions, particularly to cloud cover. This challenge leads to inconsistency in data collec-
tions and data loss in vital months of the growing season. 

5. The trend toward more free and open data policies is still mostly limited to publicly 
owned and operated satellites. It has led to substantial increases in the volume of 
data in remote sensing archives. The Sentinel and Landsat archives are two good ex-
amples. As well, accessibility to these large datasets through open-source data com-
puting platforms, such as Google Earth Engine and Amazon Cloud Computing, is 
also improving [205]. This extensive archive of available data, coupled with access to 
computing platforms and open-source image processing tools, will continue to ad-
vance the use of remote sensing for monitoring agricultural landscapes. 

6. Researchers can develop more complex machine learning modeling approaches as 
computing capacity increases. This review demonstrated that advanced machine 
learning and deep learning improve model outcomes. Nevertheless, continued ad-
vancement to create robust models over space and time will rely on big data’s ongo-
ing availability and sharing. 

7. Several companies have announced plans to launch diverse satellite constellations 
into Earth’s orbit, in the coming years. One target application of these constellations 
is precision agriculture. Many of these constellations will provide data at high spatial 
resolutions. As discovered in our meta-review research, sensors which provide 
higher-resolution data tend to deliver more accuracy estimates of crop biophysical 
parameters, when compared to medium- and low-resolution sensors. 

5. Conclusions 
This research provides a meta-analysis of 277 papers published in the last three dec-

ades which focused on retrieving crop biophysical parameters from remote sensing data. 
This study gathered publications in crop parameter estimation and provided a statistical 
analysis of trends in this field of research. The outcomes of this meta-analysis can be sum-
marized as follows: 
• China (75), Canada (37), and the USA (34) were the countries where most studies 

were conducted. The ground data provided by SMAPVEX12 and SMAPVEX16 ex-
periments over Canada fueled many studies because of the open-access policy of the 
SMAPVEX team. 

• The largest number of publications occurred in 2019. The COVID-19 pandemic may 
have diminished publications in 2020 because of a limited ability to travel to study 
sites. Most papers were published in the Remote Sensing (44) and Remote Sensing of 
Environment (RSE) (29) journals. 

• The number of studies that utilized remote sensing data has steadily increased from 
2009 up to now. The availability of free remote sensing data, such as Landsat, and the 
launching of satellites such as RapidEye, WorldView1/2, and RADARSAT-2, likely 
contributed to this increase. 

• Wheat and corn were the most studied crops, reflecting the importance of these two 
crops to global acreages and food supply. In addition, biophysical parameters for rice 
have been retrieved with higher mean and median accuracies when compared to 
other crops. 

• Significant variances were observed in the retrieval of crop parameters associated 
with almost all crops. These variances may be related to the variety of remote sensing 
sensors and methodologies exploited by researchers. 
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• Among the three crop biophysical parameters studied the most (i.e., LAI, dry and 
wet biomass), LAI was estimated with higher accuracy. The results showed that cou-
pling spaceborne remote sensing data with airborne data led to improved accuracy. 
Moreover, the results revealed that combining multispectral and SAR sensors pro-
vided higher accuracy for crop biophysical parameter estimation when compared to 
retrievals based solely on SAR or optical sensors. 

• Historical access to data from a wide range of optical sensors has led to significant 
use of VIs extracted from visible, NIR, and SWIR in agriculture monitoring. 

• The NDVI has had a long history in agricultural monitoring and mapping, which is 
reflected in this meta-analysis. It is the most studied vegetation index for retrieving 
crop parameters, such as the leaf area index (LAI), dry biomass, and wet biomass. 

• The most widely used platforms in agricultural studies were spaceborne, airborne, 
and ground-based platforms, respectively. Data from Sentinel-2 (51) has been most 
frequently exploited for this application. Despite the dominance of satellite observa-
tions, data acquired by UAVs (57) and ground-based platforms (45) were also fre-
quently exploited. Finally, more research was conducted using optical sensors than 
SAR and LiDAR sensors. 

• Because of the more limited availability of multi-frequency SAR data, a significant 
gap in multi-frequency analysis is observed. Most studies utilized single frequency 
data because of challenges in the availability of data at more than one SAR frequency. 
Several studies concluded that greater access to data gathered using multiple SAR 
frequencies would significantly benefit agricultural research and applications devel-
opment. 

• Based on our results, using a combination of satellite and airborne platforms deliv-
ered better accuracy. 

• Generally, our assessments showed that high-resolution optical data delivered 
higher accuracy. TerraSAR-X, RapidEye, and WorldView provided better accuracy 
than other remote sensing satellite sensors. 

• The results showed that linear regression was the most frequently used method to 
estimate crop biophysical parameters. Among parametric methods, exponential and 
polynomial regression methods showed great potential in crop parameter estima-
tion. The results also revealed that from 2010, non-parametric methods were increas-
ingly used to predict crop parameters and provided comparatively better accuracies. 
A comparison between non-parametric and parametric methods showed that the av-
erage accuracy of non-parametric algorithms is generally higher than parametric re-
gression methods. The highest accuracy among non-parametric methods was re-
ported using random forest (RF). 
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