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Abstract: Since the shorelines are important geographical boundaries, monitoring shoreline change
plays an important role in integrated coastal management. With the evolution of remote sensing tech-
nology, many studies have used optical images to measure and to extract shoreline. However, some
factors limit the use of optical imaging on shoreline mapping. Considering that the airborne LiDAR
data can provide more accurate topographical information, there are some studies that have been
investigated using airborne LiDAR to map shorelines. However, a literature review that combines
airborne LiDAR with shoreline measurement and extracting methods has not yet been conducted.
The motivation of this paper is to present a narrative review of shoreline mapping by using airborne
LiDAR, including a laser scanning system, data availability, and current extraction techniques over
the past two decades. Therefore, we conducted a broad search and finally summarized more than
130 articles on airborne LiDAR technology for shoreline measurement and shoreline extraction.
We find that shoreline mapping by using airborne LiDAR still meets the challenge, such as objective
condition limitations, data availability limitations, and self-characteristic limitations. The current
method of shoreline extraction has a great potential to be improved; particularly when combined with
the emerging current state-of-the-art LiDAR point cloud processing techniques (e.g., deep-learning
algorithms), they will have a brighter future. This review paper provides an overview and the current
trend of shoreline mapping using airborne LiDAR, and points out the limitations, challenges, and
future opportunities. Moreover, it also can serve as a starting point for novices and experts to study
the shoreline mapping by using airborne LiDAR, which provides a scientific support for studying
shoreline changes.

Keywords: airborne LiDAR; laser scanning system; shoreline mapping; shoreline extraction

1. Introduction

Shorelines are the physical interface that separates the land from the ocean. This
interface is surrounded by a wealth of ocean resources. The desired economic development
forces most coastal countries around the world to exploit these ocean resources [1]. Ap-
proximately 50% of the population around the world lives within 100 km of a shoreline,
and aims to tap into these ocean resources along the shoreline for economic and social
benefits [2,3]. However, natural factors and excessive human intervention have caused
varying degrees of damage to coastal zones, making it somewhat vulnerable, especially the
evidence that has been demonstrated in shoreline changes.

Due to the dynamic changes of shorelines depending on the temporal and spatial
scale, the shoreline is not an invariable line. Thus, coastal scientists undertake studies to
analyze variability and erosion-accretion trends for shorelines. Traditional measurement
techniques such as ground surveys or aerial photogrammetry can be used for measuring
the coastal beach erosion to track fluctuations in shoreline position [4]. However, there
are some limitations of the traditional shoreline measurement, including limited spatial
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resolution, large expense, time-consuming, and the requirement of a large amount of well-
trained manpower [4–7]. With the progress of remote sensing technology, such as optical,
microwave, and Light Detection and Ranging (LiDAR) sensors, high precision coastal maps
can be obtained accurately and efficiently [4,8,9], which have been applied in practical
scenarios including the generation of accurate navigation charts, the determination of
marine boundaries, the monitoring of shoreline erosion and accumulation, and delineating
the intertidal zones, wetlands, and other coastal ecosystems [10,11].

In terms of shoreline measurement, optical satellite remote sensing and airborne
LiDAR have been widely used in modern surveying [12–19]. A comparison between
optical satellite remote sensing and airborne LiDAR is shown in Table 1. Optical satellite as
passive sensor technology requires daylight and optimal weather conditions for shoreline
measurement. Otherwise, the collection of optical images would be affected by adverse
weather conditions, such as haze, clouds, and poor light conditions [20]. Meanwhile, it may
be difficult to acquire suitable images for the study area due to the revisit of time, depending
on the operational cycle of the satellite [21]. In addition, most common optical images lack
vertical information [22], which cannot deal with the various tide-level results. Thus, the
shoreline extracted is instantaneous. When studying the trend of shoreline change, we
need to correct the instantaneous shoreline using the tidal level data. In addition, different
coastal types also can affect the accuracy of optical satellite imagery-derived shorelines
[23].

Table 1. Comparison of airborne LiDAR and optical satellite remote sensing.

Characteristic Airborne LiDAR Optical Satellite

System Sensor technology Active Passive

Performance

Spatial Resolution Relatively High Relatively Low
Dataset scale National and regional Global

Vertical accuracy High Low
Temporal resolution Low High

Operation Restriction
Lighting conditions Day and Night Daytime

Cloud condition No impact Impact
Terrain Condition No impact Impact

Data Type Point cloud Raster Imagery
Mapping Quality Spatial information Three-dimensional Two-dimensional

Shoreline extraction

Directly extract from
point cloud or

Image-processing
techniques

Visual interpretation
or image-processing

techniques

In contrast, airborne LiDAR, as an active remote sensing technology, has the advantage
of high speed and a high precision of measurement, and it is not affected by lighting condi-
tions [24]. More importantly, the real-time three-dimensional spatial information can be
highly automated and captured to support rapid deployment in the coastal zone, due to the
ability of LiDAR allowing for the observation of targets without terrain limitation [12,25].
For example, the U.S. Army Corps of Engineers has developed the SHOALS project to
map coastal areas in a large-scale region [26], and has developed the Coastal Zone Map-
ping and Imaging LiDAR (CZMIL) system to improve survey efficiency and system re-
liability in coastal areas [27]. Canada implemented a national LiDAR project called FU-
DOTERAM to assess topographic and bathymetric elevation characteristics in 2006 [28].
The latest news we collocted is that National Oceanic and Atmospheric Administration
(NOAA) has provided over 800 new coastal LiDAR datasets covering 1.4 million km2 in
2022 (https://www.opentopography.org/news/noaa-coastal-lidar-data-now-available-
academic-users-through-opentopography (accessed on December 8, 2022)). Moreover,
LiDAR technology has another advantage that can be used as a standalone measurement
device or that can combine with with other remotely sensed devices. However, it is a pity
that the temporal resolution of airborne LiDAR is closely related to the project requirements,

https://www.opentopography.org/news/noaa-coastal-lidar-data-now-available-academic-users-through-opentopography
https://www.opentopography.org/news/noaa-coastal-lidar-data-now-available-academic-users-through-opentopography
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where the operation time depends on the project period (Table 1). It is lower than that of
optical satellite remote sensing, which operates all day long and visits regularly, such as
SPOT [14].

The investigation of shoreline changes is one of the main applications using remote
sensed devices in coastal mapping. However, shorelines changes over time with the tidal
and complex coastal environment increase the difficulty of mapping in coastal areas. The
shoreline extracted from the airborne LiDAR data provides an efficient, highly accurate,
useful, and fast solution [29,30]. This is because it provides not only more accurate geomet-
rics information for the topography, but it also provides a richer radiometric information
such as the intensities from different channels, which help to better distinguish between the
water and land [24,31]. Although airborne LiDAR demonstrates the good performance of
shoreline measuring according to some studies [32–34], its main drawback is that it cannot
directly obtain the positions of shorelines due to it storing and organizing the data as un-
ordered discrete points which are also called point clouds [12]. Thus, how to appropriately
adopt and accurately use the airborne LiDAR data for shoreline extraction is an important
topic for monitoring shoreline changes, which is also the motivation of writing this review
article.

Indeed, this topic has been researched since the late 1990s [35], while unfortunately,
an overview of shoreline extraction from airborne LiDAR point cloud data has not been
seen. Meanwhile, there are also some questions that have not been answered, such as
what sensor could be used, which dataset can be assessed, what technologies have been
available, and what opportunities and challenges will be faced in the future for shoreline
extraction. Therefore, the objectives of this review paper are to:

1. Provide an overview and the general trend of airborne LiDAR systems used in
shoreline mapping.

2. Review in detail the current approaches for mapping the shoreline from airborne
point clouds.

3. Identify the limitations and challenges for shoreline mapping using airborne LiDAR,
and provide future potential directions for this topic.

2. Review Approach

This paper collects the publications of shoreline extraction performed on airborne
LiDAR data, including both the instantaneous shoreline directly retrieved from point
clouds, and the “true” shoreline position calculated based on the LiDAR-derived DEM
and shoreline indicators (more details will be provided in the Section 4) according to the
time span between 2000 and 2022. We not only focused on the peer-reviewed research
articles, but we also reviewed the technical reports released by the organizations from the
government.

Our search was based on three groups of keywords linked with the operator AND,
and within the group, we used the keywords with the operator OR: (a) Keywords of the
shoreline included shoreline, coastline, shore area, and coastal area; (b) Keywords of applied
tasks included mapping, extracting, extraction, measure, monitoring, and management;
and (c) Keywords of LiDAR systems included airborne LiDAR, airborne laser scanning,
airborne laser topographic, and bathymetric scanning.

There are a total of 1436 publications that are related to shoreline and airborne LiDAR
that were collected by searching the database of Google Scholar and Web of Science. Firstly,
we removed 632 duplicated articles. After that, the we selected the rest of the literature,
carefully based on the relevance of the title and abstract. Sometimes, we accessed the
full paper to determine the selection. Then, we actively considered the studies regarding
sensors from different airborne LiDAR, and used different methods to extract the shoreline
from airborne LiDAR data during the examination progress. Meanwhile, the literature was
excluded that: (a) focused only on shoreline or LiDAR, (b) shoreline extraction only from
remote sensing image without fusion with airborne LiDAR data, and (c) the studies not
involving the extraction of shorelines from airborne LiDAR data.
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After irrelevant literature were excluded, a total of 134 studies were selected according
to a high degree of relevence that linked with shoreline extraction derived from airborne Li-
DAR. To help the readers to more easily capture the whole image of shoreline mapping via
the airborne LiDAR system, we organized the review article into the following sections. In
particular, the airborne LiDAR systems development, the dataset availability, shoreline map-
ping methods, and current limitations and challenges of airborne LiDAR for shoreline map-
ping are reviewed and discussed. We also provide some state-of-the-art methods of LiDAR
point cloud processing which have the potential to improve the shoreline mapping domain.
Finally, several promising directions for future shoreline mapping by using airborne LiDAR
are highlighted.

3. Airborne LiDAR Systems Development and Datasets Availability for
Shoreline Mapping

Airborne LiDAR consists of a series of components, of which there are three core pieces
of equipment, namely, laser scanning system, differential GPS/GNSS, and Inertial Measure-
ment Unit (IMU). This system allows for the instant collection of a three-dimensionality
(3D) point cloud by capturing the reflectance energy emitted by the sensor [36–38].

As the most important equipment of airborne LiDAR, the laser ranging system makes
it easy to be operated both day and night, which undertakes the role of sending and
receiving laser signals. It can detect and record laser energy in different ways, including
discrete-return, full-waveform, and photon-counting. Although the theory of laser was
first introduced by Townes and Schawlow in 1958 [39]; it was not widely used until
the 1990s. This development allows airborne LiDAR as an ideal choice for measuring
shoreline environmental parameters, especially for the topography, ground objects, and
vegetation classification in both surface and submerged areas [40]. More stable data of
shoreline measurement (e.g., datum-derived contours) from airborne LiDAR are obtained
than in High Water Line (HWL) measurements from aerial photographs, which benefit
by being not subject to the effects of short-term fluctuations in wave energy and water
level [41].

3.1. Airborne Laser Topographic and Bathymetric Scanning System for Shoreline Measurement

Currently, there are two major types of airborne LiDAR systems that are commonly
used in shoreline area surveys, including the airborne laser topographic scanning system
(ALT) and the airborne laser bathymetric scanning system (ALB). Tables 2 and 3 summa-
rized the development of airborne laser scanning systems, including ALT and ALB, which
were used in shoreline mapping and monitoring applications.

With the development of the ALT, the accuracy of the data has been improved (Table 2).
Many studies have confirmed that shoreline extracted from the ALT can actually deliver
a satisfied and accurate shoreline position, and also be suitable for larger scale shoreline
extraction projects [42–45]. Recently, the Optech Pegasus has updated a sensor with
horizontal and vertical accuracy, respectively, at 16 cm and 5–20 cm, at 1200 m Above
Ground Level (AGL), providing better detection results between the ground and the water
surface [46,47].

Compared to traditional measurement techniques, shoreline positions generated using
ALT are sufficiently accurate and support further analysis [48–52]. They have the ability
to collect the cross-environmental profiles of coastal topography [12,39,53,54]. White et al.
[51] introduced that there are less requirements for the tide window to conduct shoreline
surveys using the ALT. Moreover, practices have proven that the ALT can easily approach
areas that are difficult to access [55]. This capacity has made it possible to conduct annual
high-resolution shoreline surveys [56]. However, there are some cases that show that ALT
may not be able to make some detections in specific areas, such as immersed lands, jetties,
and very shallow water [50].

The ALT provides very detailed terrain information, but its lasers cannot penetrate the
water surface itself. Considering the features of coastal areas, and with the development of
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airborne LiDAR technology, it was able to integrate more advanced sensors for collecting
more accurate and informative point clouds from different wavelengths, such as Optech
CZMIL and Riegl VQ-880G for measuring shoreline characteristics [24,57,58]. The ALB
commonly employs two laser rangefinders with different wavelengths, near-infrared (NIR)
and green [59], as shown in Table 3. The measuring principle of the ALB is the NIR beam,
which can measure the land and water surface [59], and the green beam can penetrate the
water [60] and is reflected back from the seabed or lakebed, as shown in Figure 1. The
measuring depth can vary over a range of 25–70 m, depending on the different systems [57].
ALB is becoming a fundamental tool for coastal scientists within coastal studies, due to its
bathymetric ability to distinguish topographic (high density) and bathymetric (low density)
LiDAR points, providing the elevation data that are critical to producing datum-based
shoreline, and that are suitable for measuring the features in coastal areas [13,25].

Figure 1. Diagram of waveform reflected from ALB.

With the requirements of both the academic and industrial fields, ALB is being con-
stantly updated and upgraded. The upgraded ALB makes a great contribution to improving
the accuracy of shoreline measurement. Since 2000, many researchers have proposed vari-
ous methods and sensors to perform shoreline measurements by using ALB (Table 3). For
instance, NASA has built a new ALB called “EAARL” in 2001, which uses a 532 nm green
laser with full waveform and an across-track scan pattern, and an RGB digital camera and
a color infrared multispectral camera installed [61]. Some researchers have used EAARL-
generated datasets to extract a shoreline without tide coordination [62–64], and the result
was demonstrated to have better performances than ATM [62].

Furthermore, commercial companies (e.g., Optech, Riegl, and Leica) keep design-
ing and upgrading their products (Table 3). Experts have successfully conducted shore-
line extraction and monitoring studies using datasets collected by CZMIL [15,27,65].
More advanced ALB have been engineered by more companies, such as Leica Chiroptera
II (Leica Geosystems AG, Switzerland) and Riegl VQ-880G (RIEGL Laser Measurement
Systems GmbH, Austria). Webster [58] indicated that the Leica Chiroptera II has the ability
to monitor subtle changes in coastal areas. Madore et al. [66] have tested that the Reigl
VQ-880G can successfully aid with large-scale coastal surveys, providing more seamless
datasets for transitional areas between topography and bathymetry.
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3.2. Datasets Availability in Coastal Areas

Under the environment of more and more governments, organizations, companies
willing to share, and open data, more and more countries provide the airborne LiDAR
data online. After broadly searching, we summarized some available datasets in Table 4.
The main resources of this table are from OpenTopography (https://www.opentopograp
hy.org/ (accessed on December 8, 2022)), and the government websites. These datasets
are usually initiated by national or regional projects, and are conducted by the lower-level
municipal governments or organizations such as provinces or states. For example, the
province New Brunswick is in the eastern coastal area of Canada, and Airborne Lidar
data were collected from 2015 to 2018 within the province, which fully covered the coastal
area of the whole province and is open access. (https://geonb.snb.ca/li/ (accessed on
December 8, 2022)).

https://www.opentopography.org/
https://www.opentopography.org/
https://geonb.snb.ca/li/
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Table 2. A summary of the airborne laser topographic scanning system (ALT) used in shoreline-related studies.

Year Sensor Laser Range Pulse Repetition
Frequency Vertical Accuracy Horizontal

Accuracy Operation Altitude Related Studies

1996 ATM 1064 nm 10 kHz 0.15 m 0.8 m Typically 400–800 m
Coastal mapping and
monitoring [13,42,45],

shoreline extraction [43,44]
1998 Optech ALTM 1210 1100 nm Max 10 kHz 0.15 m 0.8 m Up to 1.2 km Shoreline mapping [41]

1999 Optech ALTM 1225 1024 nm Max 25 kHz 0.15 m Up to 2 km Coastal application [67] and
shoreline extraction [56,68]

2000 Optech ALTM 1233 1100 nm Max 33 kHz

Coastal application [67],
Shoreline changes and
features extraction [32],

Beach segmentation [69],
Inland water boundary

extraction [21]

2002 Optech ALTM 2050 1064 nm Max 50 kHz 0.15 m (1200 m
AGL) Up to 2 km Shoreline mapping [62,70]

2003 Optech ALTM
30/70 1064 nm Max 70 kHz 0.15 m (1200 m

AGL)
1/2000 × altitude

(1σ) Up to 3 km
Shoreline mapping [55],

coastal erosion and accretion
[71]

2004 Optech ALTM 3100 1064 nm Max 100 kHz 0.15 m (1200 m
AGL)

1/5500 × altitude
(1σ) Up to 3.5 km Coastal mapping [50] and

shoreline extraction [49,51]

2008 RIEGL Q680i-D 1550 nm Max 400 kHz 0.02 m (1σ)
(250 m AGL)

Up to 1.6 km
Shoreline extraction [72,73]
and volumetric changes of

soft cliff coast [74]

2012 Optech Pegasus
HA500 1064 nm Max 500 kHz 0.05–0.2 m (1σ) 1/7500 × altitude

(1σ) Up to 5 km Shoreline extraction [46,47]

Some parameters of ALT are referenced from Shan and Toth [57], Bakuła [75], García-Quijano et al. [76], Pfennigbauer and Ullrich [77].
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Table 3. A summary of airborne laser bathymetric scanning system (ALB) used in shoreline related studies.

Year Sensor Laser Range Pulse Repetition
Frequency Depth Accuracy Vertical Accuracy Horizontal

Accuracy Operation Altitude Related Studies

2001 EAARL 532 nm 3–10 kHz 5–10 cm <1 m Nominal 300 m
Shoreline mapping

[62,63], coastal
monitoring [64]

2003 Optech SHOALS
1000T 532 nm + 1064 nm Max 10 kHz

√
0.52 + (0.013 × depth)2

m
2.5 m (1σ) 200–400 m

Seafloor mapping
[78], shoreline
mapping [62]

2006 Optech SHOALS
3000T-H 532 nm + 1064 nm 20 kHz 0.25 m (1σ) 0.25 m (1σ) 2 m (1σ)

1/500 × altitude (1σ)
300–400 m

Coastal mapping
[79] and shoreline

extraction [80]

2010 Optech CZMIL 532 nm + 1604 nm 10 kHz (green), 70
kHz (infrared)

√
0.32 + (0.013 × depth)2

m, 2σ, 0–30 m
0.15 m (2σ) 1 m (2σ) Nominal 400 m, up

to 1 km

Coastal mapping
and monitoring

[15,27,65]

2015 Leica Chiroptera II 515 nm + 1064 nm 35 kHz (green), 500
kHz (infrared) 0.15 m 2 cm (1σ) 0.20 m (1σ)

(400 m AGL)
400–600 m, up to 1.6

km

Coastal mapping
[58] and shoreline
monitoring [81])

2018 Riegl VQ-880G 532 nm + 1064 nm Max 550 kHz

√
0.32 + (0.013 × depth)2

m
10 cm Max 800 m Coastal mapping

[66]
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Table 4. A summary of available airborne LiDAR datasets in coastal area.

Country Data Format Spatial
Resolution Surveyed Year Coverage Additional Note Reference

Australia Airborne
LiDAR-derived DTM 5 m 2001–2015 45,000 km2

Cover Australia’s
populated coastal zone;

floodplain surveys
within the Murray
Darling Basin, and

individual surveys of
major and minor

population centers.

https://www.ga.gov.au/

Canada Airborne LiDAR point
clouds 1–2 m 2013–present

Partially covered eastern
coastal area and Great

Lakes area

Provincial-based
nationwide project

covering most major
cities.

https://open.canada.ca/

Japan Airborne LiDAR point
clouds Just launched 35,000 km of coastline Map of the Sea Project

launched in 2022
https://www.jha.or.jp/en/jha/ (accessed on

December 8, 2022)

Scotland Airborne LiDAR point
clouds 4 points/m 2 2011–2021 More than 45,078 km2 in

total area
5 phases, covering the

partial coastal area
https://remotesensingdata.gov.scot (accessed on

December 8, 2022)

USA Airborne LiDAR point
clouds 0.15–3 m 1999–present

Fully covered inland
USA coastal area and

Great Lakes area,
partially covered Alaska

Surveyed by the U.S.
Army Corps of

Engineers, NOAA, and
U.S. Geological Survey

https:
//coast.noaa.gov/digitalcoast/data/jalbtcx.html

(accessed on December 8, 2022)

New
Zealand

Airborne LiDAR point
clouds 1 m 2010–present More than half coastal

line
Still ongoing to collect

the data

https://www.linz.govt.nz/products-services/dat
a/types-linz-data/elevation-data/provincial-gr

owth-fund-LiDAR-data-collection-now-progress
(accessed on December 8, 2022)

https://www.ga.gov.au/
https://open.canada.ca/
https://www.jha.or.jp/en/jha/
https://remotesensingdata.gov.scot
https://coast.noaa.gov/digitalcoast/data/jalbtcx.html
https://coast.noaa.gov/digitalcoast/data/jalbtcx.html
https://www.linz.govt.nz/products-services/data/types-linz-data/elevation-data/provincial-growth-fund-LiDAR-data-collection-now-progress
https://www.linz.govt.nz/products-services/data/types-linz-data/elevation-data/provincial-growth-fund-LiDAR-data-collection-now-progress
https://www.linz.govt.nz/products-services/data/types-linz-data/elevation-data/provincial-growth-fund-LiDAR-data-collection-now-progress
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Another example is the Scotland LiDAR project, which was conducted for five phases
(still ongoing). Phase I was initialed by the Scottish Government, Scottish Environmental
Protection Agency (SEPA), and Scottish Water, collaboratively. Phase 3 was initially cap-
tured by Fugro for the Scottish Power Energy Network (www.spatialdata.gov.scot (accessed
on December 8, 2022)). The collaboration between the cross-functional organizations to
collect the dataset may occur because the cost of collecting airborne LiDAR data is relatively
high. Similarly, we have also noticed that well-developed countries such as the USA, where
LiDAR data have fully covered the coastal area nationwide, have more open airborne
LiDAR-based data of the coastal area. Therefore, even though the airborne LiDAR has
demonstrated the ability and advantage in shoreline mapping tasks, data availability is
still a challenge.

4. Comparing Shoreline Extraction Methods from Airborne LiDAR Data
4.1. Shoreline Indicators

As a key step in shoreline monitoring, extracting the shoreline position plays an
important role for understanding shoreline changes. Since the coastal zone environment
is complex, shorelines to be extracted automatically, efficiently, and accurately have been
investigated by many studies. However, there is a question that needs to be defined before
extracting a shoreline, what is the shoreline, before extracting the shorelines.

Theoretically, the shoreline has been defined as the continuous boundary between the
water body and the land. However, this definition in practice is a challenge to apply. This is
because this boundary can vary over a wide diversity of indicators and changes over time,
such as tidal level and geomorphologic aspect [2,4]. In practice, scientists often use shoreline
indicators as a proxy feature to represent the “true” position for the shoreline [26], because
shorelines are only meaningful when they are studied from the spatiotemporal sense [2],
otherwise it is just a line. Boak and Turner [4] list 45 shoreline indicators to promote the
shoreline to be extracted, and categorizes them in three features: (a) features that can be
manually interpreted from the remotely sensed data (e.g., dry/wet line, HWL), (b) features
based on tidal datum indicators (e.g., Mean High Water (MHW) or Mean Lower Low Water
(MLLW)), and (c) features extraction from remotely sensed data using algorithms such as
classification and segmentation techniques. These features can be selected according to the
research purpose, available data sources, and other factors related to the target. Toure et al.
[2] summarized seven types of indicators to use in coastal monitoring and survey, that can
reflect the environment modification in coastal areas based on the study results of Boak
and Turner [4], and argues that it is not necessary to be too sensitive to local conditions for
fluctuations [2].

Based on the literature of what we collected, there are two kinds of shoreline indicators
that can be extracted from the airborne LiDAR data. One is the boundary between the
water and land at the captured time such as the instantaneous water line [30,48]. Another is
the line as a proxy shoreline feature (e.g., MHW) derived from the Digital Elevation Model
(DEM) with a high resolution and high quality [41,43,44]. The following section focuses on
the specific shoreline extraction methods.

4.2. Shoreline Extraction Methods

As one of the most efficient and reliable technologies for collecting terrain data,
airborne LiDAR has become a fundamental application for mapping the shoreline [43].
However, airborne LiDAR can be used as a data source for shoreline extraction, but the
“true” position of shoreline features (e.g., MHW, MLLW) cannot be visually interpreted
from LiDAR data using the human eye [26].

Therefore, according to Section 4.1, it is presented that the shoreline feature can be
extracted using different processing technologies; we summarized different shoreline
extraction methods by mainly categorizing them into two groups (Table 5), which respec-
tively involve the shoreline indicators that we have distinguished. One cost-effective
way to capture the changing morphology of the shoreline is to obtain a proxy shore-

www.spatialdata.gov.scot
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line feature (e.g., MHW) via DEM derived from laser scanning provided by airborne
LiDAR [9,82,83]. Another approach is to extract the boundary (water or land) directly
from that generated from the point clouds data at the captured time using classifica-
tion techniques [30,48]. Figure 2 directly presents the process of shoreline mapping by
using airborne LiDAR. We note that the shoreline can be extracted based on the genera-
tion of DEM or not, no matter what shoreline indicator was selected. In the early stage
of studying shoreline extraction, shoreline extraction methods based on DEM genera-
tion were the main methods from 2002 to 2010. Subsequently, a trend of diversification
have been demonstrated for the shoreline extraction methods. Table 5 also provides a
comparison of these methods. However, these methods have both advantages and dis-
advantages, and they need to be chosen according to the specific object of the study.
In addition, using the pre-processing method (e.g., noise reduction and correction) to
improve the quality of shoreline extraction is necessary, but it is not the priority in this
paper, and related literature can be referred to for details [46,84,85].

Notes: The dark cyan box indicates that it is necessary to refer to tidal data during the
process of shoreline extraction.

Figure 2. Flow diagram of the mainstream shoreline extraction method.
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Table 5. Compared the representative method of shoreline extraction.

Methods Source Data Pro Cons Accuracy Horizon
Error

Vertical
Error

Shoreline
Indicators/

Types/Features

CSP
[44]

Rapid estimation of objective,
Large-scale coastal change

extracts any elevation datum or
elevation-based definition of
shoreline after profiles have

been created

Tedious and time-consuming to
analyze individual profiles,

closed profiles spacing, high
tides, large waves, storm surge,

and run-up may obscure the
location of the vertical datum

1.5 m
(horizon) 0.42 m 0.15 m

Shoreline at low
tide/Sandy
shorelines/

MHW

EGTP
[86,87]

DEM generated
from LiDAR Point

cloud

More robust, more independent,
lower percentage of transects

lost, less sensitive to noise and
outliers, more continuous way

and efficient to represent
shorelines and complex shapes,

less labor than CSP

Mean sea level,
curved and

closed coastal
features

CLM
[41]

Easy, high accuracy, no
considered transect, profiles

Numerous manual editing, low
efficiency, curve fragmentation 0.2 m HWL, MHW,

MHHW

Original method
[43]

Avoiding curve fragmentation,
reduce manual editing, high

accuracy

Complicated DEM construction,
time-consuming, inherited

errors from DEM construction,
only extracted a certain tidal

datum

4.5 m
(horizon) 0.8 m 0.15 m MHHL

Binary image
segmentation

Upgraded method
[52]

Image (land and
sea) generated from
DEM derived from
LiDAR point cloud

More robust, efficient and
universal, less labor 0.9 m 0.18 m High/Low tide

lines

Morphological operators
[73]

Easy to operate, significantly
decreased influence of artificial

structures on the shoreline
extraction

MHW
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Table 5. Cont.

Methods Source Data Pro Cons Accuracy Horizon
Error

Vertical
Error

Shoreline
Indicators/

Types/Features

Several image-processing
algorithms

[42] Hyperspectral
images and LiDAR
point cloud

Solve the coastal mapping
complexity

0.1 m
(vertical)

Multisource
approach

fusion
MSA
[48]

High accuracy for man-made
structures

Only extracts to instantaneous
shorelines

2 m
(horizon);

0.3 m
(vertical)

Instantaneous
shoreline

Based on tidal estimation
[88]

Aerial images and
LiDAR point cloud

Obvious effect to extract sandy
and rock shoreline

Poorly effective at extracting
argillaceous shoreline

HWL/sandy/rock/
muddy

shorelines

SVMs
[72]

Effective, higher accuracy, better
performance

1 m
(horizon);

0.15 m
(vertical)

MHW/MLW/MLLW

Intensity-based method
[32]

Intensity value

Robust system, can exploit
natural geometry of shorelines Beach

ASM
[89]

Fast, stabilized, adaptive,
irregular polygons, not need

build triangulation or shorten

Manual small target for inerratic
shoreline, easy to misjudge
(such as ships point clouds)

Fuzzy clustering
[47]

SAR image and
LiDAR intensity

values

Parameters without defined by
users Data quality would be decreased 0.7 m

(Vertical)

A rasterization method
[90]

LiDAR Point cloud

Decline error, convenience,
highly efficient, extracts other

supplementary shorelines
without DEM constructed

Mean High
Water Springs

Minimum-cost boundary model
[30]

Without any imagery
information and human

interaction, minimum-cost
model

Boundary points algorithm
[91]

Suitable for shoal and muddy
shorelines, robust Non-automatic extraction

Shoal and
muddy

shorelines
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4.2.1. Based on Proxy Shoreline Features

Proxy shoreline features refer to shorelines extracted from the LiDAR-derived high-
accuracy and high-density DEM. DEM usually can be represented through numerous
models, such as the regular grid (usually square grid), the triangular irregular network
(TIN), and the contour line model [92]. These models can be generated from different
interpolation methods, including Inverse Distance Weighted (IDW) or Kriging.

The study of coastal areas using DEM generated from LiDAR data can be traced back
to the late 1990s. Woolard and Meredith have investigated the topography changes in North
Carolina, which are based on DEM generated from LiDAR data, including changes of sand
dunes, and shoreline changes caused by hurricanes [93,94]. However, their results cannot
fully represent and understand the terrain characteristics of beaches and sand dunes, and
the morphological changes of shorelines, due to their DEM resolution being too coarse [83].
However, these studies provide a good idea for extracting shoreline from DEM. Subse-
quently, these methods of shoreline extraction from DEM generation have attracted the
interest of many experts to explore [41–43,73,95,96]. The representative methods are includ-
ing the cross-shore profiles (CSP), contouring line method (CLM) and the binary image
segmentation (BIS).

Utilizing these methods to obtain shoreline position is inferred from elevation values
provided by the LiDAR-derived DEM, the values of which need to be referred to the tidal
datum surface [72,84,97,98]. This can overcome biases or horizontal shifts for the positions
of shorelines caused by different tidal levels [99], which are associated with using a wet/dry
line (visual feature) on aerial photographs as a proxy shoreline feature [26]. However, due
to the existence of different reference systems in practice, LiDAR data and tidal datum
should be converted to a common coordinate system (e.g., NAVD 88) by using VDatum.
The newest version is VDatum 4.5.1. Details can be found in NOAA (https://coast.no
aa.gov/digitalcoast/tools/vdatum.html (accessed on December 15, 2022)). As a vertical
datum transformation tool developed by NOAA, VDatum allows users to vertically trans-
form geospatial data among a variety of ellipsoidal, orthometric, and tidal datums [100].
VDatum provides a bridge to link DEM and tidal datum, which becomes the cornerstone of
new ways to obtain shoreline information and supports efficient coastal management [98].

On the other hand, using these methods of extraction that are based on DEM may
have issues such as the filtering of LiDAR data, interpolation methods, the resolution of
DEM, and others, which still need to be paid more attention to during DEM generation [85].
For example, the accuracy of DEM decreases when the LiDAR point clouds are interpolated
into a regular grid using the DEM segmentation method [101]. It is worth to note that
the DEM precision is also affected by the spatial resolution and the terrain complexity.
Especially in coastal zones, it can easily cause geometric distortion and large shoreline
extraction errors, due to the abrupt topography changes. Dong et al. [101] argues that
the conventional interpolation algorithms for DEM generated cannot retain topographic
features. They proposed a method to extract shorelines with topographic constraints from
LiDAR point clouds data [101]. The method reduces the errors when interpolating regular
grids by constructing constrained Delaunay triangles. It also accelerates the shoreline
smoothing problem associated with the elevation correction of the airborne LiDAR point
clouds [101].

The Cross-Shore Profiles
At the beginning stage of studying on shoreline extraction from airborne LiDAR,

an objective technique called the Cross-Shore Profile (CSP) was first developed to extract
shoreline position based on the profiles of DEM derived from airborne LiDAR using
Stockdon [44]. The main step is the use of a linear regression to fit the elevation information
of a point cloud on each foreshore profile. The position of the shoreline is identified by
connecting the shoreline points on the individual profiles, which is the intersection of the
water levels and regression lines. However, some errors should still be considered and
minimized while using the CSP method. For example, due to the sea wave run-up, it may
contaminate the airborne LiDAR data in the foreshore area [44].

https://coast.noaa.gov/digitalcoast/tools/vdatum.html
https://coast.noaa.gov/digitalcoast/tools/vdatum.html
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At present, the CSP method has been the basis of many studies conducted on shoreline
extraction [45,49,102–108]. However, a disadvantage of the CSP method is its tedious-
ness and how it is time-consuming during the analysis process, especially for analyz-
ing the closer profile spaces [43,109]. Therefore, the CSP method has been modified
and upgraded by some researchers to adapt to the different requirements. For example,
Ruggiero and List [110] provide a CSP-based method to evaluate proxy datum shorelines
bias on a regional scale for shorelines change research, which was first time for evalu-
ating the uncertainty of the HWL caused by water level fluctuations. This has obvious
implications for the study of shoreline change at long time and spatial scales, due to the
quantification of the uncertainty of the shoreline position [110].

Compared to the CSP, Aguilar et al. [86] and Luque et al. [87] strongly recommend
the use of the Elevation Gradient Trend Propagation method (EGTP) using an iterative
grid-based data technique, as an alternative to the CSP method for mapping shorelines.
EGTP shows a lower percentage of transects lost, and it is more robust. Moreover, it is less
sensitive to noise and outliers, and performs well when dealing with very curved and even
closed coastal features. Its implementation steps are firstly to extrapolate grid points of
unknown heights using the elevation gradient trend of every grid point computed. Until
the new grid points just exceed or are below the selected tidal datum, the process would
be stopped and repeated. Next, the shoreline is plotted by connecting the boundaries that
separate the grid points, until the complete shoreline is mapped.

The Contouring Line Method
Robertson et al. [41] developed a simple method called the contouring line method

(CLM). It was a similar approach to the CSP, but the difference is that the CLM is a method
based on local tide levels to track specific elevation to extract the shoreline. Shorelines
can be contoured from a zero value derived from the water line, which are obtained from
the results of subtracting the tidal datum from DEM. This method is easily implemented
by maintaining a high extraction accuracy and allowing for an analysis of the entire
shoreline position without the transect profiles [41,52]. Moreover, its extracted results
are more rigorous than the wet/dry line of shoreline indicators from aerial photography,
due to the elimination of the ambiguity present in the boundary [68,96,111,112]. This
method produces excessively noisy or broken shorelines during the contouring process.
The processing results should be corrected because of the vertical error that is derived
from coastal terrain (slopes beach) measurement [41]. Therefore, manual editing and re-
digitizing are required to dispose of erroneous shoreline in order to keep and to refine the
shorelines [41,96,97].

The CLM was used by a number of experts because it was widely employed in GIS
and mapping software packages [51,55,56,95]. However, the method still has the potential
to be optimized during the process of shoreline extraction [43]. Liu [113] and Liu et al. [84]
combined a series of operations to optimize the procedure of shoreline extraction to obtain
a highly accurate contourline and to avoid tedious and complex human interventions,
including (a) constructing different grids on zero contour values, (b) selecting a line with
a length threshold, and (c) using a smooth algorithm to smooth the shoreline in the final
stage.

The Binary Image Segmentation
To minimize manual intervention, Liu et al. [43] proposed a substantial technical im-

provement through a method based on binary image segmentation (BIS) to automatically
extract shorelines from airborne LIDAR data. This is the first application for extracting
shorelines from airborne LiDAR by using the image-segmentation technique. It segments
the DEM generated from airborne LiDAR into a binary image (land and water pixels)
through the intersection of the DEM and tidal datum surface, and then extracts shorelines
with spatial detail and continuity through morphologic operation. This method was quan-
tified and evaluated based on Monte Carlo simulation, which outperforming conventional
aerial photography within 4.5 m at a 95% confidence level [43].
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However, Yu et al. [90] argues that it is complex and time-consuming for the filtering
classification from the LiDAR point cloud and the process of the DEM generated, while
using BIS to extract the shorelines. This method can only extract shoreline based on a
certain tidal datum, but other auxiliary shoreline elements cannot be extracted, such as
zero-meter isobaths or a low water line [90]. Zhang et al. [52] improved this method,
allowing to for the extraction of a preliminary high and low tide line through the generation
of a digital surface model (DSM) to intersect the surface of a water body derived from
the tidal data. Considering the invalid values of DSM near the low water line (LWL) due
to the LiDAR beam not being able to penetrate into water, a mobile trend surface fitting
method was adopt to extrapolate DSM near LWL to extract shorelines more accurately [52].
More robust, efficient and universal techniques are proposed in their method. Meanwhile,
it is also beneficial for HWL and LWL extraction, with less manual labor. However, the
studies claimed there are several problems that could be investigated: (a) how to classify
automatically for coastal zone and artificial coast; (b) using interpolate DSM or DEM to
retain topographic features; (c) if the interest areas were large enough, it is worth discussing
whether this method is suitable for extracting high and low tide lines [52].

Unfortunately, the above-mentionedmethods are unable to extract complex shorelines,
or they may lead to misclassification [72]. Therefore, Yousef et al. [73] developed a multi-
steps approach for using morphological operators to deal with the complex shorelines. It
has the following steps: (a) using a nonparametric regression method to estimate missing
elevations within the DEM data; (b) abnormality detection for reducing outliers and noises;
c) utilizing a constrained morphological operations (open and close) to deal with the broken
branches and land regions [72,73]. Compared to the study of Liu et al. [43], this method is
easy to operate, significantly decreasing the effect from artificial structures (e.g., bridges,
fishing piers, and docks) on shoreline extraction.

To sum up, although shoreline extraction methods based on DEM generated by
LiDAR data promoted the development of shoreline extraction technology, there are some
controversies. For example, the error of shoreline extraction would be affected by the
error in generating DEM. Therefore, some shoreline extracting methods without generating
DEM have been developed. For example, in order to avoid errors due to the process of
generating DEM, Yu et al. [90] proposed a rasterization method to extract shorelines (Mean
High Water Line), finding that those directly rasterized from LiDAR point clouds can
obtain much smoother coastal terrains. The advantage of this method is the removal of
high-frequency noise from point cloud data using the requantification of elevation values
at the first pre-processing step. Moreover, with the demand of data precision and volume
increasing, this method has simplified the process of shoreline extraction without DEM
generation, especially for the point cloud data with high precision and density.

4.2.2. Based on an Instantaneous Shoreline

An instantaneous shoreline refers to shorelines extracted from the boundary between
the water and land. One advantage of using this shoreline indicator is that it does not
need to correspond to any tide-coordinated water levels [7]. Under the context, if the
fusion of data from other remote sensing devices is not considered, boundary classification
techniques were employed to extract the shoreline, which is similar to the segmentation
of the boundary of the water and land from the pixel image. One way to extract an
instantaneous shoreline is based on the intensity value classification method, and another
is through the use of boundary process techniques for point clouds (Figure 2).

Intensity data is a value that represents the return strength of the laser beam. The
intensity does not represent the true terrain radiance from the terrain, but it can be used
for feature detection and classification [32]. With the dimensional reduction method, the
3D point cloud data are converted into a 2D image. This means that in the rasterization
process, the intensity data are converted to intensity images. Compared to the processing
of 3D point clouds, the processing of shoreline extraction via an intensity image is more
convenient and simple. [32] developed a robust framework to mine the image of shoreline
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extraction through intensity values from airborne LiDAR via cross-shore profile lines. The
results were confirmed to be useful for coastal monitoring especially for the extraction
and classification of coastal features. [89] proposed a fast, stable, highly accurate, and
automatic extraction of shorelines based on the Alpha Shapes Model (ASM) algorithm
without generating DEM. However, this method still has some defects on the regular small
artificial target (e.g., the dock), which need to be further corrected using regular methods
or manual editing. During the process of classification, it is also easy to misjudge the
point clouds of ships on the surface to the dock, resulting in an incorrect extraction of the
shoreline.

Furthermore, the ALB waveform algorithm as an alternative method for extracting
shoreline in coastal zones provides support without the available tidal datum/information
[80]. This paper attributes the ALB waveform algorithm to an intensity-based method, due
to the waveform being a time series based on the received intensity value. Pe’eri et al. [80]
compared six different waveform algorithms to distinguish land and water, and all algo-
rithms were confirmed as having successful results. However, the best–performing algo-
rithm was only for the IR saturation algorithm, and the worst for the red standard deviation
algorithm [80].
Although these algorithms provide results with a high degree of accuracy, there are still
some problems (low efficiency and inconvenience) for engineering applications [114]. Zhao
et al. [114] proposed a fast and simple water-land classification using the elevation thresh-
old interval of water surface points under the context of engineering application, which
has a classification accuracy of greater than 98%. However, for the high classification
accuracy requirement, the ALB waveform algorithms were still recommended to be uti-
lized [114]. Compared to the method of shoreline extraction with the generation of DEM,
the method through the use of intensity data is less well studied for shoreline extraction.
However, some factors that would affect the intensity measures need to be concerned, such
as variations in path length, object density, beam divergence, and others.

Although the above-mentioned methods have made a contribution to the efficiency of
shoreline extraction, the extracted process may lose some information and precision in the
2D spatial environment [30]. Therefore, boundary process techniques have been developed
to directly extract shoreline from point clouds data. Xu et al. [30] proposed a new series of
multi-steps to extract shorelines directly from LiDAR point clouds in a three-dimensional
spatial environment, which can avoid any human interaction and retain the original spatial
information. As a major contribution of this method, the global minimum cost model
and the use of the energy function to calculate the cost of the boundaries are proposed
[30]. The results from this research had a good performance for five typical scenarios,
achieving over 92.5% completeness and over 90.7% correctness [30]. Li et al. [91] puts
forward an new algorithm using boundary points to segment the position of LiDAR point
clouds to extract shorelines, especially for shoal and muddy environments in a coastal zone.
Compared to the CLM, the result of this method using a boundary points algorithm has
a better performance, with lower standard deviation (0.1656) and variance (0.0274) than
CLM (0.2116 and 0.0448) [91]. The boundary points algorithm not only enriches the method
of shoreline extraction, but it also has a great potential to deal with mapping different types
of shorelines.

4.2.3. Based on Multisource Data Fusion

The complex coastal environment and human-related factors increase the difficulty
of shoreline mapping. Sometimes, the real shape of the shoreline cannot be reflected by
optical satelite remote sensing images, and the pixels are separated by land and ocean [115].
This problem can be avoided by using LiDAR. However, considering the limitations of
airborne LiDAR, researchers no longer have to rely on airborne LiDAR as the only device
to study coastal areas. LiDAR data can fuse digital images from other data sources, such as
satellite remote sensing, and high-resolution or multispectral facilities (camera) equipped
using airborne platform. Their aerial images or hyperspectral images (HSI) can be combined
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with DEM generated from point cloud data to extract shoreline [42,72]. This allows for the
combination of two-dimensional (2D) images from optical remote sensing (or data from
other sensors) with three-dimensional (3D) airborne LiDAR point cloud data [55,72].

Multi-source data fusion provides support for obtaining high quality and more re-
liable coastal geospatial information. In the early 21st century, Lee and Shan [116], and
Elaksher [42] researched coastal mapping by fusing LiDAR data and optical images (multi-
spectral images or hyperspectral images). Although the focus of the research at that
moment was on how to classify the elements from merging optical and laser datasets,
these efforts have made contributions to updating the shoreline mapping techniques.
Subsequently, applications in the coastal zone through multi-source data fusion have
become a hot topic, especially for shoreline extraction [88,115,117,118].

Strictly speaking, multisource data fusion is not a specific methological concept, ba-
cause it depends on the number of remotely sensed devices. Thus, this method is separated
out with red dotted lines in Figure 2. It has an advantage in that it can flexibly select
shoreline indicators according to different research purposes. For example, in order to au-
tomate the extracted shoreline from the challenge shoreline (e.g., tidal marsh and vegetated
shoreline in coastal areas), Sukcharoenpong et al. [119] uses a multi-phase active contour
segmentation technique to extract the shoreline, which fuses HSI and the DEM derived
from airborne LiDAR data. The spectral information from the HSI can be efficiently used to
obtain an accurate initialization of the active contour segmentation technique, which signifi-
cantly reduces the total computational process of the method [119]. Lee et al. [48] presented
a method of Mean Shift Algorithm (MSA) to extract shorelines from airborne LiDAR, which
combines the color information of the aerial orthophotos. The main step of the MSA method
is to classify the water surface and land in the LiDAR point clouds, based on the homoge-
neous characteristics of the elevation and the distributed color information of the water
surface [48]. The results from the MSA method have a better performance and accuracy
(0.5 m) on man-made objects than on nature shorelines (1.5 m) [48]. However, it should
be noted that the shorelines extracted using the MSA are the instantaneous shorelines. In
addition, the intensity data also can be combined with other remote sensing techniques
to extract shorelines. Demir et al. [47] developed a method for automatically extracting
lake shorelines in fuzzy clusterings, which consists of fusing Sentinel-1A SAR data with
intensity values from airborne LiDAR. Its advantage is that parameters definition for the
Sentinel-1A data is not required by the user, avoiding any additional interaction. To the
contrary, its downside is that the quality of the data degrades when converting datasets to
raster by using the mean-shift method [47].

On the other hand, fusing LiDAR and other devices provides an opportunity to use ML
to extract shoreline features. Yousef et al. [72] is the first one to present a novel algorithm
by using support vector machines (SVMs) to effectively classify water and land to extract
shoreline by fusing DEM derived from LiDAR and their corresponding coverage of aerial
images. This method allows the MHW shorelines to be extracted without reference to a
tidal datum, but other shorelines (e.g., Mean Low Water) also can be extracted if the tidal
datum exists [72]. Compared with the average error (4.92 m) from Yousef and Iftekharuddin
[120], Lee et al. [48], and Yousef et al. [72], the SVMs method has a better performance, and
the average error of the shoreline position is 2.37 m [48,72,120]. They also utilize SVM to
extract shorelines from the LiDAR data that were not fused with aerial images. The results
showed that the average error (2.81 m) was slightly higher than 2.37m [72]. The results
are showing that SVM has a better performance and accuracy than the morphological
approach based on fusing LiDAR data and its corresponding aerial images. However, the
morphological method is recommended for use when data are only available from LiDAR
[72]. Other literature also prove that the extraction results combining airborne LiDAR and
aerial orthophoto images are more accurate than those of using individual data sources
[121].
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5. Discussion

In this paper, we reviewed publications investigating shoreline mapping using air-
borne LiDAR point clouds, with a particular emphasis on the research with LiDAR-derived
shorelines. The most common two objectives are: extracting the features (land and water)
from point cloud via segmentation and classification techniques, to acquire the instanta-
neous shoreline, and generating more accurate LiDAR-derived DEM to calculate the “true”
shoreline using shoreline indicators. The literature demonstrates that a large number of
airborne LiDAR systems have already been applied in shoreline mapping. However, there
are still some limitations and challenges that need to be figured out.

Although airborne LiDAR has brought the development of shoreline research tech-
nically, it is still facing many challenges. For example, Li et al. [122] figured out that the
results of shoreline extraction from airborne LiDAR are affected by some factors, such as
point density, noise, reflective intensity, spatial resolution, and so on. We summarized the
main factors affecting shoreline survey and extraction in three categories, including (a)
objective condition limitation, (b) data availability limitation, and (c) self-characteristic
limitation (Table 6).

Table 6. Main Limitation of Shoreline Mapping by Using Airborne LiDAR.

Limitations Factors Illustration

Objective condition
Weather condition Fog, heavy precipitation, strong glare,

and other situations [123–125]
Area of interest terrain

feature Beach slope [51]

Data availability

Cost Relatively expensive and depends on
government-funded open data

Project-based data
acquisition

Low update frequency, updated data
only in some areas

Self-characteristics

Huge data volume
A fraction of this vast data volume is
only available to be used in related

studies [126]

Typical errors

Aircraft attitude measurements,
positioning errors, IMU attitude errors,
laser scanner error aperture errors, and

lever arm offset errors [127]

In the first category, several sources can affect the accuracy of airborne LiDAR sur-
veying data. As an active remote sensing device, airborne LiDAR has a high sensitivity
to weather conditions that can interfere with the laser pulses (Table 6). Especially for
coastal areas, different weather condition would increase the uncertainty of absolute error
for shoreline extraction. White et al. [51] stated an additional viewpoint that claims that
different topographic features also increase the uncertainty of absolute error for the final
shoreline level accuracy in survey sites. In addition, the accuracy and reliability of the DEM
derived from airborne LiDAR may be affected by the rise of waves, where it is possible
to contaminate the signals of airborne LiDAR due to the relatively gentle slopes in the
intertidal zone [43].

From Section 3.2, we have figured out that data availability in coastal areas is a
challenge. Although airborne LiDAR technology has been well developed over two decades
and has highly reduced the cost of laser sensors due to collaboration between organizations,
the cost of using airborne LiDAR data is still relatively expensive [128] (Table 6). Most
data sources of the shoreline survey by using airborne LiDAR are mainly obtained from
government-funded open data or regional projects (Table 4). Even with the dataset in
United States, which has the largest amount of airborne LiDAR dataset, the dataset can
only be updated once a year for some areas according to the official website of NOAA.
In addition, the heavy equipment makes the acquisition of airborne laser scanning data
difficult. For example, the total weight of the Optech CZMIL is 360 kg and the use of the
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CZMIL for survey projects has specific requirements for the type of aircraft. Operational
flights are also limited by the weather conditions. For all of these reasons, data availability
and applicability limit the widespread use of airborne LiDAR for shoreline detection.

As for the third category, a large volume of point clouds data and survey errors are
the major limiting factors (Table 6). One of the most valuable features of airborne LiDAR
is the high density of the point cloud, which allows more valuable spatial information
about the target to be stored [57]. Although this feature allows a huge data volume for the
storing and processing of large-scale data acquisitions [129], a fraction of this vast data
volume is only available to be used in related studies [126]. Moreover, the errors of airborne
LiDAR data are another challenge during shoreline survey, such as typical errors [127] as
shown in Table 6, which should affect the accuracy of DEM. In additon, there are still more
factors that can affect the data accuracy. For example, the travel tie of laser as well as the
GPS/GNSS accuracy can be affected by increasing the temperature and water vapor in the
atmosphere [130].

Although these limitations exist in shoreline mapping when using airborne LiDAR, it
is believed that this problem can be effectively addressed with the continuous upgrading
of measuring equipment and processing methods.

The upgrade of airborne LiDAR sensors allows for improved quality of the data source.
Currently, more advanced airborne LiDAR sensors are or will be released, such as single-
photon LiDAR and multispectral airborne LiDAR [31], which can support and improve
the shoreline extraction application. Morsy et al. [18] examined that it is possible to uses
the spectral indexes from multispectral LiDAR to improve the land-water classification.
Shaker et al. [33] proposed an automatic method to classify land and water via intensity
data collecting using Teledyne Optech Tian. This study demonstrated that multispectral
LiDAR intensity data has the ability to improve the classification results for distinguishing
different land-water scenarios, including man-made shore, natural shore, shore with land
depression, and an inland river [33]. Due to a lack of shoreline data, these studies only test
the inland shore situations. However, they can demonstrate that multispectral airborne
LiDAR can be used and enhances future coastal shoreline extraction missions. In terms
of the processing methods, we find that the widely used methods to extract shorelines
are based on DEM generation, especially the method of BIS and multisource data fusion.
However, the point clouds data from airborne LiDAR are enormous when conducting
the long-term shoreline monitoring of a large area. In this context, the current shoreline
extraction methods do not look very efficient.

In recent years, ML and DL algorithms have become hot approaches in different
fields and have been shown a potential capability in solving various coastal problems
in the environmental and ecological fields [131], especially in dealing with the studies
that require a large volume of data, such as long-term temporal and spatial scales. Some
researchers have used ML to extract shoreline from optical satellite images. Bayram et al.
[132] applied the Random Forest Method to extract shoreline with uncluttered results,
which was a pixel-based method. However, features are required to be manually defined
in ML, and the accuracy of recognition is influenced by expertise and expert experience
[133,134]. Moreover, data-driven thresholds are highly customized in most methods during
the process of output results, which means that these methods of shoreline extraction
mentioned above cannot be generalized to all datasets under different conditions. Therefore,
it is worth further discussing more efficient and convenient processing methods to extract
shoreline from airborne LiDAR data, such as DL-based methods.

DL-based algorithms have been exploited as the most advanced method for studying
remote sensing at present, especially for its capacity for dealing with the numerous amounts
of data produced daily by airborne LiDAR. Its concept originated from the study of artificial
neural networks, aiming to establish a mechanism to simulate human brain learning data
features. Deep-learning methods can be utilized to any study area after the architecture
has been trained [135]. In the case of shoreline extraction studies, some experts have used
DL-based algorithms to extract the shoreline from optical satellite images [10,135,136].
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With these foundations from optical images, it is theoretically feasible to extract
shoreline from airborne LiDAR data using a DL-based algorithm. Meanwhile, considering
the inherent nature of airborne LiDAR, there are still more challenges to using DL-based
algorithms to extract shoreline, such as occlusions caused by blindside, noise, or unintended
points, and irregular points [137]. The irregular, unstructured, and disordered nature of
LiDAR point clouds are considered to be the most significant challenge in the application
of DL. The irregularity of point clouds makes them uneven in the sampled scene, which
leads to some areas with dense points, whereas sparse in other areas [138]. Moreover, the
LiDAR point clouds have the characteristics of irregularity and disorder, which can affect
the distance between two adjacent points [139].

DL-based algorithms can help researchers to effectively improve the use of large
amounts of airborne LiDAR point cloud data. However, the DL-based methods usually
require a large amount of training data. In the current situation, acquiring sufficient training
data is still a huge challenge. However, more and more countries have started to collect or
are still collecting the airborne LiDAR data on a national scale or in a coastal area, such as
Japan and Canada, as mentioned in Section 3.2. Since more datasets will be available in
the future, DL-based methods of shoreline extraction from airborne LiDAR could be new
opportunities in coastal management.

6. Conclusions

The shifting and changes of shorelines has been a key issue for scientists due to the
continuous occurrence of natural factors and human activity in the coastal region in recent
years. Understanding the change of shoreline is very important with regard to coastal
hazard assessment and integrated coastal management. Therefore, it is very important to
measure and to process shoreline data accurately and efficiently. We presented a narrative
review of the process of shoreline measurement and extraction, combined with airborne
LiDAR during the last two decades.

First, we provide a summary of the use of laser scanning systems of airborne LiDAR
to study shorelines in coastal areas, including the ALT and the ALB. In particular, the
parameters of airborne LiDAR sensors used in shoreline survey are summarized and
compared, which can be intuitive for knowing the development of airborne laser scanning
systems used in coastal studies. We believe this summary table will be friendly in assisting
those who need relevant information. This is followed by a presentation of the summary of
almost all mainstream methods of shoreline extractions, including the CSP, the CLM, the
BIS, multisource data fusion, and other methods combined with boundary extraction, the
data of which are from the shoreline survey, using airborne LiDAR laser scanning systems.
We summarize these methods into the two types of shoreline extraction methods based on
our collected literature: one is the line derived from airborne LiDAR point clouds such as
instantaneous shoreline, and another is the line derived from DEM generated by airborne
LiDAR data, such as MHW. Additionally, we discuss the limitations of airborne LiDAR for
shoreline mapping, including objective condition limitation, data availability limitation,
and self-characteristic limitation, as well as the future challenges and opportunities for
shoreline extraction based on DL technology.

We can note that the problem of data availability in coastal area is a main challenge that
has still not been adequately solved since the limitations of the cost, region, and program
projects. Another challenge is that when coastal management and research are facing the
monitoring of long-term shoreline changes by using airborne LiDAR, due to its advantage
of high resolution and elevation information, the shoreline will be extracted from a huge
amount of point clouds data, and the processing in each temporal phase will be repeated,
which does not seem very intelligent. However, these methods offer a foundation and
future opportunities for extracting shoreline based on DL algorithms. In the future, the
analysis and processing of the point cloud data from airborne LiDAR using DL-based
algorithms should be actively explored, to improve the efficiency and quality of extracting
the shoreline from LiDAR data, so that unnecessary repeated operations are reduced.
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