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Abstract: Remote sensing techniques for shoreline extraction are crucial for monitoring changes in
erosion rates, surface hydrology, and ecosystem structure. In recent years, Convolutional neural
networks (CNNs) have developed as a cutting-edge deep learning technique that has been extensively
used in shoreline extraction from remote sensing images, owing to their exceptional feature extraction
capabilities. They are progressively replacing traditional methods in this field. However, most CNN
models only focus on the features in local receptive fields, and overlook the consideration of global
contextual information, which will hamper the model’s ability to perform a precise segmentation
of boundaries and small objects, consequently leading to unsatisfactory segmentation results. To
solve this problem, we propose a parallel semantic segmentation network (TCU-Net) combining
CNN and Transformer, to extract shorelines from multispectral remote sensing images, and improve
the extraction accuracy. Firstly, TCU-Net imports the Pyramid Vision Transformer V2 (PVT V2)
network and ResNet, which serve as backbones for the Transformer branch and CNN branch,
respectively, forming a parallel dual-encoder structure for the extraction of both global and local
features. Furthermore, a feature interaction module is designed to achieve information exchange, and
complementary advantages of features, between the two branches. Secondly, for the decoder part, we
propose a cross-scale multi-source feature fusion module to replace the original UNet decoder block,
to aggregate multi-scale semantic features more effectively. In addition, a sea–land segmentation
dataset covering the Yellow Sea region (GF Dataset) is constructed through the processing of three
scenes from Gaofen-6 remote sensing images. We perform a comprehensive experiment with the
GF dataset to compare the proposed method with mainstream semantic segmentation models, and
the results demonstrate that TCU-Net outperforms the competing models in all three evaluation
indices: the PA (pixel accuracy), F1-score, and MIoU (mean intersection over union), while requiring
significantly fewer parameters and computational resources compared to other models. These results
indicate that the TCU-Net model proposed in this article can extract the shoreline from remote sensing
images more effectively, with a shorter time, and lower computational overhead.

Keywords: double-branch; sea–land segmentation; GF-6; CNN; transformer; remote sensing

1. Introduction

A coastline refers to the boundary line or marginal area between the ocean or lake and
the land [1]. Different and debated are the definitions of coastline, because defining the
sea–land interface is neither conceptually nor physically simple; one of the conceptually
simplest is defined as the boundary between the land surface and the ocean surface [2], also
known as an instantaneous coastline, in the field of remote sensing application research.
The types of coastline are mainly divided into rocky coasts, sandy coasts, silty coasts,
biological coasts, and artificial coastlines. Coastline information is an important basis for
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the implementation of coastal zone protection and disaster management, the basis for
the development and use of marine resources, and an important territorial resource for
countries bordering the sea, and plays an significant role in the ecological safety of the
ocean [3]. However, at the same time, the extraction of the coastline is a very challenging
problem, because it is the land–water boundary of the multi-year average high tide, rather
than an instantaneous line [4]. Traditional shoreline extraction methods are mainly manual
measurements. However, manual surveying and mapping is associated with issues of labor
intensiveness and a lengthy surveying and mapping duration, which consequently lead to
a reduced efficiency. Additionally, the influence of human factors [5]; for instance, errors
introduced during the process of data collection and variations in subjective judgments and
drawing styles among different operators when delineating coastlines; results in disparities
in the depiction of the same coastline area on different maps. Collectively, these factors
will have an impact on the precise depiction of the coastline. In contrast, remote sensing
images have the advantages of a wide coverage, fast information acquisition, high data
reliability, fewer constraints caused by the weather, geographic environment and other
conditions, free access, etc., which can greatly reduce the cost of surveying and mapping
and, therefore, have been commonly used in agricultural development, sea monitoring,
and other fields [6,7]. Remote sensing technology has become the main technical means of
coastline research, and is widely used in the extraction and monitoring of coastlines.

Coastline extraction methods mainly include threshold segmentation methods [8],
edge detection algorithms, object-oriented methods, machine learning methods, and deep
learning methods [9]. The threshold segmentation method divides the pixels in an image
into two or more categories according to the pixel digital number values, so as to divide
the image into different regions. In remote sensing images, the spectral water index (SWI)
method is often used; i.e., based on the different reflectance properties of water bodies and
non-water bodies in the infrared and visible bands, we calculate certain combinations of
bands in the remote sensing image, to distinguish between water bodies and non-water
bodies. For example, there is the Normalized Difference Water Index (NDWI) [10] and the
Modified Normalized Difference Water Index (MNDWI) [11]. However, threshold-based
methods often require thresholds to be set manually, but different images often have large
differences, and it is likely that different thresholds will need to be set, making threshold
selection difficult and, thus, affecting the final shoreline extraction accuracy. In addition,
the coastline region has a complex terrain; there are shadows cast by the surrounding
terrain, clouds, vegetation, and other factors, meaning that considering only the spectral
differences to distinguish between land and water will make the accuracy lower. Image
edge detection algorithms, currently commonly used as edge detection models include
the Roberts operator [12], Sobel operator [13], Canny operator [14], and so on. However,
the coastline detected by such methods is highly affected by noise, and the noise causes
distortion in the edge detection results. Thus, the detected edges are not accurate enough.
At the same time, these methods are less efficient, and can only detect the significant
edges in the image, and the accuracy of the obtained boundaries is not high [4,15,16].
The object-oriented classification method combines pixels into objects, integrating their
interrelationships and spatial distributions, and thereby reducing the interference from
internal pixel information, and maximizing the utilization of image information. However,
due to the complexity of the steps, processing difficulties, and the difficulty of determining
the threshold value of image segmentation, it is difficult to use in a wide range of high-
resolution images with many features and information. Many machine learning algorithms
extract diverse information based on a variety of data, and use traditional machine learning
algorithms, such as random forest [17] or support vector machine (SVM) [18], to extract
the shoreline. These algorithms are able to extract the shoreline quickly and efficiently
compared to traditional methods. Traditional machine learning methods have certain
limitations. For instance, when manually extracting image features as input, and selecting
features, it is possible that the complex distinctions between the ocean and land cannot be
fully captured, thereby restricting the algorithm’s generalization ability and robustness.
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Furthermore, machine learning algorithms typically focus only on individual pixel features,
neglecting the spatial relationships and contextual information among pixels, leading
to insufficient smoothness and accuracy in the segmentation results. As a result, these
limitations result in a lack of precision in traditional machine learning methods when
extracting complex coastlines from high-resolution images [4,16,19].

Advancements in computer technology and artificial intelligence have generated
considerable interest in the application of deep learning techniques, particularly in the
domain of computer vision, including, but not limited to, semantic segmentation [20] and
object detection [21]. In contrast to other approaches, deep learning models, specifically
those based on convolutional neural networks (CNNs) [22], have demonstrated a superior
capacity to handle intricate image features, and show robust self-learning capabilities. Long
et al. [23] proposed the use of a full convolution network (FCN) to solve the problem that
a traditional convolutional neural network (CNN) cannot directly handle variable length
inputs and outputs. They used convolutional layers instead of fully connected layers, and
used methods such as inverse convolution and up-sampling to reduce the feature maps,
which provided new ideas for those who came after them. On this basis, U-Net, proposed
by Ronneberger O et al. [24], has been extensively employed in the domain of medical
image segmentation. Its innovative architecture and the introduction of jump connections
bring new methods for image segmentation research. Furthermore, the domain of semantic
segmentation encompasses several classical methods, including SegNet [25], PSPNet [26],
the Deeplab series [20,27,28], HRNet [29], and so on. In addition, several researchers
have endeavored to integrate CNN methods into land and water segmentation in remote
sensing images, which has led to substantial enhancements in the accuracy of shoreline
extraction. Li et al. [30] proposed a model called DeepUNet, which is deeper than U-Net,
and improves the accuracy by 2% compared to U-Net. Shamsolmoali et al. [31] combined
the DenseNet [32] and ResNet [33] to develop RDUNet, which has a better classification
accuracy than DeepUNet, DenseNet, and other models. He et al. [34] combined the attention
mechanism with the classical UNet network to devise a novel segmentation network for
extracting glacial lakes in remote sensing images, which enhances the classification accuracy,
as well as achieving clearer boundaries compared to the traditional models.

However, traditional CNN methods capture detailed features of an image only from
a local scope, and do not determine the target boundaries from the global level, based
on the contextual information of the image. In recent years, Transformer [35] has been
migrated to computational vision tasks, showing amazing potential and value. By dividing
images into image patches, and applying a self-attention mechanism, global contextual
information can be utilized for classification, rather than just local features. This global
information processing gives Transformer an advantage over other methods when dealing
with large-scale images and complex scenes. The Vision Transformer (ViT), proposed by
Dosovitskiy et al. [36], is a transformer-based architecture developed for large-scale image
recognition tasks. The fundamental concept behind ViT is to divide the input image into a
series of image patches, considering each patch as an element in a sequence. These image
patches are transformed into corresponding embedding vectors, through a linear mapping
layer, and combined with position coding, to form the input to the Transformer model. By
processing these input embedding vectors through multiple Transformer encoder layers,
ViT is able to capture the global contextual information in the image and, thus, process im-
age tasks efficiently, with a relatively good performance. Several studies have modified the
architecture of ViT for dense prediction tasks. The Pyramid Vision Transformer (PVT) [37]
was the first transformer-based model to import the feature pyramid of CNNs. With the
pyramid structure capturing the multi-scale features, and the Transformer model achieving
global context modelling, PVT has shown a good performance in image classification tasks.
Later, a hierarchical attention mechanism was proposed in the Swin Transformer [38],
which performs attention computation at multiple scales, thus reducing the computational
and memory burden. It is able to handle large-size images with a good scalability and
efficiency, achieving an excellent image classification performance. Meanwhile, in the
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domain of semantic segmentation, segmentation transformers (SETR) [39] employ ViT as
a backbone to extract features, while the decoder uses progressive up-sampling to mit-
igate the noise problem. After four up-sampling operations to obtain the segmentation
results subsequently, semantic segmentation transformers (SegFormer) [40] achieved some
improvements on STER, by removing positional coding, and introducing convolutional
operations, while using a hierarchical encoder structure that outputs multi-scale features
and, finally, designed a lightweight decoder, to reduce the computational overhead. These
changes further improve its segmentation effect.

However, it has been pointed out [41–43] that results based on sheer transformer-
based segmentation networks are suboptimal, primarily because transformers are inclined
towards global modelling, and lack location awareness. Furthermore, due to the unique
self-attention mechanism, and absence of convolutional operations, in Transformer models,
they suffer from certain drawbacks in modeling spatial information, expressing local details,
preserving image invariance, and maintaining robustness. Consequently, these limitations
result in the disruption of image structure, and loss of information. Therefore, many
scholars have tried to design methods with better results, by combining the union of CNNs
and transformers. TransUNet [41] used a hybrid Vision Transformer structure to stack
CNNs and transformers sequentially as an encoder, while the decoder followed the classical
UNet, and achieved good results in medical image segmentation. He et al. [44] constructed
a novel parallel dual-branch encoder based on TransUNet, using Swin Transformer as
a secondary encoder, and the original hybrid Vision Transformer primary encoder, and
achieved good segmentation results on hyperspectral images. Chen et al. [45] put forth a
dual-branch parallel network for segmentation tasks. In the encoding part, ResNet50 and
Swin transformers serve as a dual-branch backbone, to capture the features from the input
images, followed by the complete fusion of the extracted information. A new fusion module
is proposed during the decoding process for multi-scale feature fusion. The experimental
results show that the network maximizes the advantages of both the backbone networks,
and improves the accuracy of semantic segmentation tasks related to buildings and water
bodies.

Inspired by these works, and in order to solve the problems of complex shoreline
extraction and fine water-body identification, in this study, we propose a new two-branch
parallel image segmentation network fusing CNN and Transformer, to achieve the accurate
segmentation of sea and land in multispectral remote sensing images. The paper primarily
contributes via the following four aspects:

• In this paper, we propose TCUNet, a parallel two-branch image segmentation network
fusing CNN and Transformer, to achieve a fine segmentation of land and sea in
multispectral remote sensing images.

• We design a new lightweight feature interaction module (FIM) to achieve feature
exchange and information flow in the dual branch, by embedding it between each
coding block in the dual branch, to minimize the semantic gap of the dual branch,
enhancing the global representation of the CNN branch, while complementing the
local details of the Transformer branch.

• We propose a cross-scale, multi-source feature fusion module (CMFFM) to replace the
decoder block in UNet, to solve the issue of feature inconsistency between different
scales, and achieve the fusion of multi-source features at different scales.

• Based on three Gaofen-6 satellite images produced in February 2023, we constructed a
sea–land semantic segmentation dataset, the GF dataset, covering the entire Yellow Sea
region of China, which contains 12,600 sheets, each with a size of 512 pixels × 512 pixels.
We have made it available for public use.

2. Methods and Materials
2.1. Overall Network Structure

Most of the existing land and sea segmentation models use a convolutional neural
network as an encoder to achieve land and sea feature extraction from remote sensing



Remote Sens. 2023, 15, 4413 5 of 26

images. Despite being highly effective in local feature extraction, and significantly enhanc-
ing the network’s robustness in sea–land segmentation, CNNs extract image features by
reusing convolutional and pooling layers, but this results in a limited size of the model’s
receptive field. When dealing with large images, the convolution kernel needs to become
very large, which increases the computational cost and memory consumption. Convolu-
tional neural networks are, after all, only network structures that focus on local information,
and this computational mechanism leads to difficulties in capturing and storing global
information over long distances. Numerous transformer-based backbone networks have
emerged, integrating the self-attention mechanism to effectively capture global contextual
information, and address the limitations of CNN in recent years. However, compared to
CNN, transformer-based models cannot fully utilize the local features of the image.

To address this limitation, we propose a novel parallel semantic segmentation network
based on a transformer and CNN, to extract comprehensive global information and intricate
local details between the target and background for sea–land segmentation tasks. The
network architecture, as illustrated in Figure 1, comprises a CNN branch, a Transformer
branch, a feature interaction module (FIM) and a cross-scale multi-level feature fusion
module (CMFFM), which are described in detail below. Considering that the remote
sensing image in the GF dataset contains eight bands, in order to facilitate clear viewing,
we selected a specific image, and displayed a subset of bands. More specifically, bands 3, 4,
and 5 (Red, NIR, and SWIR-1) were selected as illustrative samples, as visually depicted in
Figure 1.
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2.2. CNN Branch

The CNN branch is devised to capture the local contextual information. It is structured
in a feature pyramid style, comprising five distinct layers, where the feature map resolution
of each subsequent layer is halved compared to the previous layer, and the number of
channels is doubled, accordingly. The resolution of the feature map decreases with the
increase of the number of network layers, while the number of channels increases. The first



Remote Sens. 2023, 15, 4413 6 of 26

layer is the stem module, which consists of a 7 × 7 convolutional kernel with the stride of
2, a batch normalization (BN) layer, and a ReLU activation function. An initial H ×W × C
remote sensing image is processed by the stem module, to obtain an H ×W × 16 feature
map, which is used for the image extraction of the initial local features, and the layers 2–5
are all composed of a number of Conv Blocks, as shown in Figure 2. Every Conv Block
comprises two bottleneck blocks. Each layer down-samples the input feature map, and
inputs it into the next stage and, finally, outputs a feature map with half the resolution, and
double the number of channels. Therefore, five hierarchical feature maps with different
scales are obtained through these five layers. The shape of the i-th layer feature map is
H/2i ×W/2i × Ci, where i ∈ {1, 2, 3, 4, 5}, and C1 = 16, Ci+1 = 2 × Ci.
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2.3. Transformer Branch

The transformer branch is devised to capture the global contextual information from
remote sensing images. PVT v2 [46], as the latest transformer backbone network, is de-
signed with overlapping patch embedding to encode the images, removes the fixed-size
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positional coding in the feed-forward network, introduces zero-filling positional coding,
and replaces the spatialreduction attention (SRA) [37]. With these three improvements,
PVTv2 can not only ensure the local continuity of image and feature maps, but can also
flexibly handle different scales of input signals, and control the computational complexity
within the linear range. Therefore, in this paper, PVT v2 is adopted as the encoder of the
Transformer branch for feature extraction, and its encoder module is shown in Figure 2.
Similarly to the CNN branch, the Transformer branch also employs the feature pyramid
structure to divide the whole branch into five layers. In the first level, the input image is
initially partitioned into overlapping patches of 7 × 7 dimensions. Subsequently, these
patches are fed into the Transformer encoding module, to acquire the first-stage feature
maps, which are transmitted to the next stages. The subsequent four-stage feature maps are
cut into overlapping 3 × 3-sized patches and, finally, five feature maps with different scales
and resolutions are obtained, which are consistent with the size and number of channels of
the CNN branch, facilitating interaction between the feature layers of both branches. To
mitigate the high computational burden associated with the self-attention mechanism in
Transformer encoders, PVT V2 proposes the linear spatial reduction attention (LSRA) as
a substitute for the traditional multihead attention (MHA) in Transformer encoders [35].
Similar to the MHA, the LSRA accepts the query Q, key K, and value V as input, and
produces refined features as the output. The distinguishing feature of the LSRA is that it
reduces the spatial scale of K and V before executing the attention operation, resulting in a
significant reduction in the computational and memory overheads. This is described in
Equation (1):

LSRA(Q, K, V) = Concat
(
head0, . . . , headNi

)
WO (1)

headj = Attention
(

QWQ
j , LSR(K)WK

j , LSR(V)WV
j

)
(2)

where Concat (·) represents the channel splicing operation, WQ
j ∈ RCi×dhead ,

WK
j ∈ RCi×dhead , and WO ∈ RCi×Ci are linear projection parameters. In addition, headi is

the attention value of the ith head in Stagei. LSR(·)represents the operation of reducing the
spatial dimensions of K and V, which is written as:

LSR(x) = GELU(Norm
(

Reshape(f(AvgPool(x, p) )WS
)
). (3)

Attention(Q, K, V) = Softmax

(
QKT
√

dhead

)
(4)

In contrast to traditional multi-attention operations, the LSRA utilizes average pooling
to decrease the spatial dimensions (h × w) to a constant size (p × p). As a result, the LSRA
significantly reduces the computational cost, and decreases the model memory footprint. To
be specific, when provided with an input of size h × w × c, the computational complexity
of the LSRA and the MHA can be expressed as follows:

O(LSRA) = hwp2c (5)

O(MHA) = h2w2c (6)

Here, p corresponds to the feature map size subsequent to pooling, which is fixed at 7.

2.4. Feature Interaction Module

We considered the problem of the feature differences between the feature maps in
the CNN branch and the patch-embedding features in the Transformer branch, as well as
aiming to better combine and utilize the global features extracted by the Transformer, and
the local features captured by the CNN. Inspired by Conformer [47], starting from stage
2, we embedded a feature interaction module in the middle of each bottleneck block and
Transformer encoding block, to realize the feature interaction of the dual branches, as shown
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in Figure 2. Firstly, the features from the CNN branch undergo a 1 × 1 convolution, to align
with the number of channels in the Transformer branch, while the features are regularised
using LayerNorm [48] and, finally, the features from the two branches are summed. In
this way, local features extracted from the CNN branch are gradually incorporated into
the Transformer block, complementing the local semantic information of the Transformer
branch. Similarly, when the features from the Transformer branch are fed back to the CNN
branch, the feature maps need to be aligned with the CNN feature maps, in terms of the
channel dimensions by 1× 1 convolution and, at the same time, the features are regularized
using BatchNorm, and the features of the two branches are finally summed, and such a
process achieves the advantages of the two-branch feature maps, in such a way that they
complement each other.

2.5. Cross-Scale Multi-Level Feature Fusion Module

After five stages of the backbone network, the model extracts multi-layer features with
global contextual information. Similar to FPN-like networks, low-level features contain
coarse-grained information with a relatively high resolution; high-level features contain
fine-grained information, but with a relatively low resolution. While in the decoding stage,
traditional UNet models often employ the simple upsampling of high-level features, to
match the spatial scale of low-level features, followed by concatenation. However, the
simple upsampling only makes the feature size of the high and low layers consistent; it
cannot eliminate the corresponding error between the high- and low-layer feature pixels.
Consequently, this approach falls short in resolving spatial misalignment between features,
resulting in substantial information loss, and adversely affecting the overall performance of
the model [49]. In addition, this operation easily generates semantic gaps, which lead to the
occurrence of situations such as the omission of small water bodies, and the misclassification
of shadow targets. To solve the above problems, we design a cross-scale, multi-source
feature fusion module, to replace the decoder block in UNet.

As shown in Figure 3, for two feature maps with different scales and channel numbers
as inputs to the module, we assume that the high-level input features are Xh, and the low-
level input features are Xl, whose sizes are 2C × H ×W and C × 2H × 2W, respectively,
where C represents the number of channels of the feature map, and H and W are the height
and width. To ensure that the high-level features include the same channels as the low-level
features, a 1 × 1 convolution operation is initially applied to Xh. Then, inspired by Li et
at. [49] and Huang et al. [50], we put the high-level and low-level features into a designed
feature calibration module, so that we could obtain the spatially dimensional aligned high-
and low-level features Xh2 and Xl1 (both of the sizes C × 2H × 2W). Subsequently, the
high- and low-level features are summed, to obtain the fusion feature Xf. For the fusion
feature, we perform the attention mechanism along the spatial and channel dimensions,
respectively, to obtain the spatial weight Ms and the channel weight Mc, and then we sum
the outputs of the two to obtain the output Xf1, and then we obtain the weights via the
sigmoid activation function. The output variables Xh3 and Xl2 are generated via multiplying
the weight coefficients s and (1 − s) with Xh2 and Xl1, respectively, which are then summed
to obtain the final feature map Xout. The above process can be expressed as a series of
equations:

Xl1, Xh2 = FAM
(

Xl, f1×1(Xh)
)

(7)

Xf = Xl1 + Xh2 (8)

Xf1 = CAM(Xf) + SAM(Xf) (9)

s = sigmoid(Xf1) (10)

Xout = Xl1·(1− s) + Xh2·s (11)
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where f1×1() denotes the 1 × 1 convolution layer, while the abbreviations FCM, CAM,
and SAM, respectively, denote the feature calibration module, channel attention module,
and spatial attention module. For further details regarding these modules, please refer to
Sections 2.5.1–2.5.3 of this paper.
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2.5.1. Feature Calibration Module

In semantic segmentation tasks, low-level features contain abundant spatial informa-
tion, but are limited in terms of semantic information, while high-level features exhibit the
opposite characteristics, being abundant in semantic information, but lacking in contex-
tual and spatial details. In the decoder stage, the challenge lies in how to effectively fuse
multi-scale hierarchical semantic features, to obtain rich spatial and semantic information
for pixel classification. Previous works have explored this issue [24,26,51,52]. However,
many of these works often overlook a crucial problem, which is the feature misalignment
issue across different scales.

The problem of feature misalignment refers to the misalignment or mismatch between
features caused by differences in the receptive field sizes and resolutions at different scales.
This may lead to issues such as blurry boundaries and misclassification of objects in the
segmentation results. The main cause of feature misalignment across multiple scales lies
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in the up-sampling and down-sampling operations used in the models. During scale
transformations, the up-sampling and down-sampling operations employed may introduce
misalignment in feature maps. For example, the interpolation method used during up-
sampling may introduce positional offsets, while down-sampling may result in a loss of
information and blurring effects.

To address the issue of the semantic and spatial misalignment of features on different
scales, this study proposes a feature calibration module (illustrated in Figure 4). Specifically,
the high-level and low-level features are first passed through individual 1× 1 convolutional
layers to adjust their dimensions, followed by up-sampling of the high-level features to align
with the low-level features. Subsequently, the concatenated feature maps are processed by
a 3 × 3 convolutional layer, to reduce the number of channels to four, which represent the
offset maps of the high-level and low-level features in the x and y directions, as shown in
Equation (12).

∆l, ∆h = f3×3
(

cat
(

f1×1(Fl), Up(f 1×1(Fh))
))

(12)

where cat(·) represents the concatenation operation, and f3×3(·) is the 3 × 3 convolutional
layer, f1×1(·) is the 1 × 1 convolutional layer, Up(·) denotes the up-sampling operation, and
∆l, ∆h represent the offset map (size H ×W × 2) of the low- and high-level features.
 

2 

 

Figure 4. The structure of the Feature Calibration Module.

After obtaining the offset map between the high- and low-level feature maps, we
then perform a warp operation (as shown in Figure 5) on the semantic flow field of the
two features, which is described in Equation (13):

Warpc
hw =

H

∑
h′=1

W

∑
w′=1

Fc
h′w′ ·max

(
0, 1−

∣∣h + ∆y − h′
∣∣)

·max(0, 1− |w + ∆x −w′|)
(13)

where Fc
h′w′ is the value of the position of the original feature at the spatial level (w′, h′, c),

and h, w are the height and width of the output feature map (e.g., for high-level features,
h = 2× h′, and for low-level features, h = h′). ∆y, ∆x are the offset of the offset map obtained
from the feature map in Equation (12) on the y, x axes, i.e., on the height and width.
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Finally, two feature maps are obtained after calibration, with consistent height and
width dimensions for both (i.e., generating the feature maps with a size of H ×W × C for
both).

2.5.2. Channel Attention Module

Inspired by the human visual system, attention mechanisms [35] have been introduced
into neural networks, to learn more relevant features. In neural networks, attention mech-
anisms calculate weights for each feature map in a layer, allowing the model to capture
critical information more effectively. Building on the work of Liu et al., a channel attention
sub-module was designed (as shown in Figure 6) to model the interdependencies between
channels in the fused features. To determine the variance between channels, and infer
their relative importance, a scaling factor γ was introduced into the calculation of batch
normalization (BN) [53], as shown in Equation (14).

Bout = BN(Bin ) = γ
Bin − µB√

σ2
B + ε

+ β (14)Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 26 
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In Equation (14), µB and σB, respectively, represent the mean and standard deviation of
batch B, while β denotes the bias term. The channel attention module weights, denoted as
Mc, can be obtained by reversing Equation (14) using Equation (15), where γ is the scaling
factor for each channel, and Wγ = γi

∑j=0 γj
represents the proportion of the scaling factor

for each channel among all the channels. A higher value indicates that the corresponding
channel requires more attention, while a lower value suggests that the model should assign
less attention to that channel.

Mc = sigmoid(Wγ(BN(F1))) (15)



Remote Sens. 2023, 15, 4413 12 of 26

2.5.3. Spatial Attention Module

For the spatial attention module, as shown in Figure 7, we directly pass the feature
map through three convolutions, followed by BN and ReLU after each convolution, and the
first and last of the three convolutions are 1 × 1 convolutions for channel transformation,
similar to the structure in the bottleneck. In the middle is a 3 × 3 dilation convolution,
which is used to enlarge the receptive field without increasing the computational overhead.
The introduction of dilated convolution and the ability to obtain more context information
are of great help in providing spatial modeling. Finally, the spatial weight Ms is obtained
through the sigmoid function, as shown in Formula (16).

Ms(F)= sigmoid
(

f1×1
2

(
f3×3
1

(
f1×1
0 (F)

)))
(16)

where f3×3(·) denotes a 3 × 3 two-dimensional dilated convolution, and f1×1(·) denotes a
1 × 1 two-dimensional convolution.
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2.6. Loss Function

Cross-entropy (CE) loss and Dice loss are commonly utilized as the predominant
loss function in the semantic segmentation of remote sensing images. However, these
loss functions and their variants are based on region similarity, and may lead to a poor
performance when dealing with imbalanced classes, as well as small objects and edge
details in images. In the task of land–water segmentation, there are often many small
segmentation targets in the image, such as lakes, ships, islands, buildings, and clouds.
Moreover, the water–land boundary in the image is often jagged and difficult to distinguish.
The use of only the Dice loss or CE loss is insufficient to address these issues.

Therefore, in this study, we incorporated the boundary loss function [54] to address
the problem of edge detail handling and small object recognition in water–land semantic
segmentation. The formula for computing the boundary loss is as follows:

LB =
1
N

N

∑
i=1

d(B(yi),B(ŷi)) (17)

where LB denotes the boundary loss function,yi is the ground truth label of pixel i, and
ŷi is the predicted label of pixel i by the model. The distance function d measures the
dissimilarity between two boundaries, with N representing the whole number of pixels. To
address the challenges of small object recognition and edge detail handling in land–water
semantic segmentation, we propose a hybrid loss function L that integrates the boundary
loss function with the CE loss. Specifically, the proposed loss function L is defined as
follows:

L = p·Lce + (1− p)·LB (18)

Lce represents the CE loss function, and p is a weighting coefficient. Through experi-
ments, we set p to 0.8 in this study.
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3. Results
3.1. Study Area and Dataset

For this study, the Chinese coastline on the Yellow Sea was chosen as the designated
study area. The image data utilized in this study were acquired from the China Center for
Resources Satellite Data and Application (CCRSDA; http://www.cresda.cn, accessed on
15 April 2023). Specifically, we acquired three remote sensing images from Gaofen-6 (GF-6),
captured in February 2023, with a spatial resolution of 16 m, and eight spectral bands. All
the GF-6 images utilized in this study were of the Class 1A product type, characterized by
a high quality and an absence of cloud cover, and provided complete coverage of the entire
Yellow Sea area (see Figure 8 for further details). A detailed summary of the GF-6 images is
presented in Table 1. Subsequently, we preprocessed the original image with radiometric
calibration and atmospheric correction and, ultimately, generated remote sensing images
suitable for further research purposes.
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Table 1. GF6/WFV data.

Project GF6/WFV Data

Wavelength range/um

B1(Blue): 0.45~0.52

B2(Green): 0.52~0.59

B3(Red): 0.63~0.69

B4(NIR): 0.76~0.90

B5(SWIR1): 0.69~0.73

B6(SWIR2): 0.73~0.77

B7(Purple): 0.40~0.45

B8(Yellow): 0.59~0.63

Spatial resolution/m 16

Width/km 864.2

In the image of the study area, the part of the sea–land boundary to be used to construct
the GF dataset was selected, and sea–land segmentation was carried out. Initially, due
to the excessive width of the original GF6 WFV images, and the presence of overlapping
regions between the three images, we cropped these three images, while preserving the
Yellow Coast as fully as possible, to reduce the difficulty of the task. Please refer to Figure 8
for specific details. Then, the clipped image was divided into two categories: ocean and
land. To improve the efficiency of the training, we selected only those cropped images that
contained both ocean and land, and obtained 2100 images and 2100 labels, all of which
were 512 pixels × 512 pixels in size.

In cases where the network model requires an insufficient number of training samples,
data augmentation becomes a crucial step in enhancing the network’s invariance and
robustness. In order to increase the data volume of the experimental dataset, five data
expansion methods, such as horizontal flip, vertical flip, diagonal mirror, local cropping and
magnification, and image sharpening, are used to increase the image quantity of the dataset.
Finally, the GF dataset we constructed contained 12,600 images, which were subsequently
partitioned into training, validation, and test sets, in a random 7:2:1 ratio.

3.2. Experimental Details and Evaluation Metrics

All experiments were performed on a workstation running Windows 10 with an
NVIDIA GeForce RTX 3090 graphics card, and using the deep learning framework Pytorch
(2017). All models were trained with an initial learning rate of 0.001, and AdamW [48],
with a momentum term of 0.9 and a weight decay of 0.01, was selected as the optimizer to
optimize the network model. Additionally, to speed up the training, we set the batch size
to 16, and the epoch number to 100. The poly method is used to dynamically adjust the
learning rate. The formula is expressed as follows:

li = lbase ×
(

1−
epoch i

epoch max

)0.9
(19)

where li is the current learning rate, lbase is the base learning rate set to 0.001, epochi is the
current number of iterations, and epochmax is the maximum epoch set to 100.

In this paper, three metrics normally utilized in semantic segmentation are used to
verify the effectiveness of the model, namely the pixel accuracy (PA), mean intersection
over union (MIoU), and F1-score. Based on the associated confusion matrix, the PA, MIoU,
and F1 are calculated as

PA =
∑K

k=1 TPk

∑K
k=1(TPk + FPk + TNk + FNk

) (20)
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MIoU =
1
K

∑K
K=1 TPk

(TPk + FPk + FNk)
(21)

F1 = 2×
precisionk × recallk
precisionk + recallk

(22)

where TPk, FPk, TNk, and FNk represent the true positive, false positive, true negative, and
false negative values for the kth class, respectively. In addition, precisionk = TPk

TPk+FPk
and

recallk = TPk
TPk+FNk

are the precision and recall rates for the k classes, respectively.

3.3. Performance Comparison of Different Band Combinations

The GF6 image is a typical multispectral remote sensing image. Compared with the
traditional RGB image, multispectral images contain a significantly greater amount of
information, due to their higher number of bands (the GF6 has eight bands). This paper,
firstly, discusses the effectiveness of different band combinations in sea–land segmentation.
According to Yu et al. [55] and Mou et al. [56], we selected ten common three-band and
all-band combinations, and compared their performance differences on sea–land semantic
segmentation. Details of the comparison experiment of band combination are presented in
Table 2.

Table 2. Comparison of results of different band combinations on the GF dataset.

Band Combination PA (%) MIoU (%) F1 (%)

B1 + B2 + B3 96.52 91.12 95.30
B1 + B4 + B5 96.81 92.23 95.36
B2 + B3 + B4 96.95 92.64 95.58
B2 + B3 + B5 96.21 91.81 94.88
B3 + B4 + B5 96.99 92.78 95.67
B3 + B4 + B8 96.64 92.07 95.27
B3 + B5 + B7 95.89 89.56 94.32
B4 + B5 + B6 96.69 92.19 95.33
B4 + B6 + B7 96.31 91.28 94.82
B5 + B6 + B7 96.88 92.36 95.43

All-bands 97.52 93.53 96.63

As seen in Table 2, bands 3, 4, and 5 (Red, Nir, and Swir-1) outperformed the other nine
bands in the sea–land segmentation task. However, the effect of the all-band combination
is better than that of all the three-band combinations. This shows that the eight different
bands can contain more spatial and spectral information, and that the complementary
information is more advantageous in the task of sea–land semantic segmentation.

3.4. Ablation Study
3.4.1. Performance of Feature Interaction Module

To assess the performance of the FIM, this article conducted ablation research to
validate the effectiveness of the module design. We divided the experiment into three
scenarios: (1) only using CNN branches as encoders; (2) using only transformer branches as
encoders; (3) the method proposed in this article, to use dual branches and, simultaneously,
use FIM as encoders. For the decoder part, we uniformly used the designed CMFFM. The
outcomes of the experiment are presented in Table 3.
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Table 3. Results of the module ablation experiments. The best results are in bold.

Method Encoder PA (%) MIoU (%)

TCU-Net

CNN 96.02 92.01

Transformer 95.89 91.95

CNN + Transformer + FIM 97.52 93.53

Table 3 reveals that the segmentation accuracy using only the Transformer branch
as the encoder is the worst, with an MIoU of 91.95% and a PA of 95.89%, while the
segmentation accuracy using only the CNN branch is not high, with an MIoU of 92.01%
and a PA of 96.02. There is a certain gap between the segmentation accuracy of the two
branches and the FIM as the encoder. This shows that simply using a CNN or Transformer
branch as the encoder has certain defects in feature extraction, and cannot integrate image
spatial information, semantic information, and global context information well. After the
introduction of the FIM as the information exchange bridge between the two branches,
the missing local and global information perception ability between the two branches is
enhanced, the information exchange and complementary function are perfectly realized,
and the feature extraction ability of the whole model is greatly enhanced.

3.4.2. Performance of Cross-Scale, Multi-Level Feature Fusion Module

In order to evaluate the performance of the cross-scale, multi-level feature fusion
module, we verified the effect of the module for small targets and edge extraction in images.
In this paper, we use TCU-Net as a baseline to perform ablation experiments on the Yellow
Sea sea–land semantic segmentation dataset.

The results of the experiment are shown in Table 4. Through comparing the feature
fusion strategies, we find that the simple up-sampling and jump join, as in the original
UNet, can not fully fuse semantic features of different scales and levels. Through using the
proposed CSMFF module, the PA, MIoU, and F1-score are improved by 0.51%, 0.31%, and
0.36%, respectively, on the test set. Simultaneously, the number of parameters of the CSMFF
module designed in this paper is reduced by 0.68 M, compared with the jump connection of
the original UNet, which further upgrades the efficiency of the model in processing images.

Table 4. Results of the module ablation experiments.

Method Decoder PA (%) MIoU (%) F1 (%) Params (M)

TCU-Net
UNet 96.91 93.01 96.02 2.4 M

CSMFF 97.52 93.53 96.63 1.72 M

The visualization results from the experiment are shown in Figure 9. In order to show
the difference in the prediction results between the two decoders more directly, blue boxes
are used to highlight the positions where the model shows differences in the prediction
image. It is evident that the TCUNet using the decoder of the original UNet performs
poorly on the sea–land boundary and the small water body when predicting the picture,
because the shallow feature and the deep feature are spliced only using up-sampling and
the jump connection, and semantic gaps are easily generated, resulting in the situation
whereby the small water body is missed, and the shadow target is misclassified. Using the
CSMFF module designed in this paper as a decoder can effectively improve the detection
of small objects and the definition of boundaries in the land–sea segmentation task, so that
the classification results of the model are more accurate.
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3.5. Contrast Experiment

To more accurately evaluate the performance of the model proposed in this paper, we
compare our model with some excellent models commonly found in the field of seman-
tic segmentation, including UNet, Deeplabv3+, DANet [51], Segformer, SwinUNet [57],
TransUNet, ST-UNet, and UNetformer [58]. The first three methods are CNN networks,
Segformer and SwinUNet are pure vision sensor methods, and TransUNet, ST-UNet, and
UNetformer are hybrid models that combine CNNs with sensors. The TransUNet encoder
adopts the serial form of standard ViT and ResNet, and the decoder is the same as UNet; ST-
UNet improves the encoder part on the basis of TransUNet, using a dual-encoder structure
with a Swin transformer and CNN in parallel, while UNetformer uses ResNet18 as the en-
coder, and develops an efficient global–local attention mechanism to construct transformer
blocks in the decoder, as the decoder. In addition, the backbone of Deeplabv3+ and DANet
is ResNet50, that of Segformer is MiT-B1, and the backbones of other models are set by the
original authors. In addition, according to the experiment in 3.3, for UNetformer, which
only accepts three-band image input (its backbone is the officially packaged ResNet18), we
chose the band combination of bands 2, 3, and 5 as its input data, while the other models
used the full-band combination (8 bands) as their input data. To ensure the fairness of the
experiment, no models were pre-trained. The experiments were carried out under the same
conditions, and the specific implementation details are shown in Section 3.2. of this paper.
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The quantitative analysis results of the GF dataset are shown in Table 5, and the best results
of each evaluation index are highlighted in bold.

Table 5. Comparison of all the methods in metrics. Training Time represents the time spent by the
model in processing the training and validation sets during training; Inference Time represents the
time spent processing the test set when the model makes predictions.

Method Backbone PA
(%)

MIoU
(%)

F1
(%)

Params
(M)

FLOPs
(GMac)

Training
Time (s)

Inference
Time (s)

UNet [24] - 96.95 92.15 95.96 31.04 218.9 695 86.28
Deeplabv3+ [28] ResNet50 96.87 91.98 95.77 40.36 70.22 385 77.28

DANet [51] ResNet50 96.68 91.52 95.52 49.61 205.37 680 85.44
Segformer [40] MiT-B1 97.16 92.71 96.18 13.69 13.49 375 78.48
SwinUNet [57] Swin-Tiny 96.88 91.95 95.92 27.18 26.56 505 84.36
TransUNet [41] ViT-R50 97.07 92.41 96.03 100.44 25.5 810 106.26

ST-UNet [44] - 97.23 92.99 96.34 160.97 95.41 915 135.54
UNetformer [58] ResNet18 97.15 92.67 96.15 11.72 11.73 235 73.44

TCUNet - 97.52 93.53 96.63 1.72 3.24 445 87.78

The results show that the TCUNet proposed in this paper is superior to the other eight
models in its PA, MioU, and F1-score. Overall, the combination of CNN and Transformer
worked slightly better than the visual Transformer method, and the CNN-based method
showed the worst classification accuracy, but there was no significant difference between
the nine methods. This shows that the CNN-based model has some limitations in describing
global dependencies. In the CNN method, the effect of UNet is the best, that of Deeplabv3
+ is the second best, and the effect of DANet is the worst. This may be due to the fact
that UNet adopts a feature pyramid-like structure in the decoder, which fuses the five
layers of semantic features extracted by the backbone network through jumping links;
it can be applied to the sea–land segmentation of high-level semantic information and
detail information. However, Deeplabv3 + uses hole convolution and an ASPP module
to integrate multi-layer semantic features, which is too simple, and not good for the
fine segmentation of object edges and details. DANet’s encoder only uses the high-level
semantic features of the backbone network for classification, meaning that it can not
make full use of the shallow semantic features, and the classification effect is the worst.
Among the Transformer models, TCUNet is the best, ST-UNet is the second, Segformer
and UNetformer have the same classification accuracy, slightly better than TransUNet, and
SwinUNet is the worst.

Figure 10 shows the segmentation results for all the methods in the six test images.
Looking at Figure 10, we can see that TCUNet performed better on segmentation than
the other eight models, especially in the blue-rectangular-box-labeled area. As can be
seen from these test charts, the proposed method shows the best segmentation effect
compared with the other models. Faced with complex types of shorelines (farmed ponds,
ports, small rivers), our networks can still clearly delineate boundaries. At the same
time, in the edge details and small target recognition, compared with other methods, our
network segmentation is better. This shows that our network model can solve the problems
of missed detection and misclassification in low contrast areas and small water bodies
with a complex background, and effectively improve the problems of pixel classification,
small target extraction, and boundary blur, meaning that the effect of classification is
more accurate.
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In order to evaluate the segmentation efficiency of all the models, we also list the
number of parameters, the computational complexity, and the time spent on training and
reasoning of each model in Table 5, where “M” represents one million parameters, and
“GMac” stands for the billion times a model performs a floating-point multiplication and
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addition operation in the course of a single forward propagation. The model proposed
in this paper is only 1.72 M and 3.24 GMac, far lower than the other eight models. This
is because the two-branch structure used in this paper greatly enhances the ability of the
model to extract semantic features, so we set the number of channels in the first stage
of the model to 16 (that is, greatly reducing the width of the network) without affecting
the performance of the network. In terms of the training and prediction efficiency, the
training time of TCUNet is 89 s per epoch, and the inference time is 14.63 s, which ranks
medium among all models. The lightweight model UNetformer runs much faster than other
networks. This may be because the hybrid structure of the CNN and transformer in TCUNet
slows down the running efficiency of the model, and there are many LN and GELU [59]
functions in FIM, which are far less optimized via the graphics card than the convolution
and ReLU operations of a traditional CNN. This will cause TCUNet to be slower when
processing images. Although the above two issues may limit the application of TCUNet in
some scenarios (such as on small mobile devices), TCUNet is still valuable in exploring
the role of the transformer and CNN combination in sea–land semantic segmentation in
remote sensing images.

4. Discussion
4.1. Comparison of Model Effects on Different Satellite Sensor Images

Various satellite sensors can collect different remote sensing images in the same
geographical area. In order to verify the adaptability of our model to different satellite
images at different time periods, we selected a Landsat 8/OLI remote sensing image of
the Yellow Sea region in October 2019, to verify the portability of the model. The OLI
sensor has a total of 9 bands, with bands 1–7 and 9 having a spatial resolution of 30 m, and
band 8 having a panchromatic resolution of 15 m. The detailed information is listed in
Table 6. In order to ensure that the number of bands in the data is consistent with GF6/WFV,
this article will perform image fusion on the first seven bands and panchromatic bands
after some preprocessing steps, such as radiation calibration and FLAASH atmospheric
correction. Finally, an 8-band image, with a resolution of 15 m, was obtained. As with
the GF6 image, we selected part of the sea–land boundary, to construct a Landsat dataset
for validation experiments. After cropping and labeling, 112 images and labels were
obtained; all images had a size of 512 pixels × 512 pixels. Subsequently, we used five data
expansion methods, including horizontal flipping, vertical flipping, diagonal mirroring,
local cropping, and zooming in, and image sharpening, to increase the number of images
in the dataset, resulting in 672 images and labels.

Table 6. Landsat8/OLI data.

Project Landsat 8/OLI

Wavelength range/um

B1(Coastal aerosol): 0.43~0.55

B2(Blue): 0.45–0.51

B3(Green): 0.53–0.59

B4(Red):0.64–0.67

B5(NIR): 0.85–0.88

B6(SWIR1): 1.57–1.65

B7(SWIR2): 2.11–2.29

B8(PAN): 0.50–0.68

Spatial resolution/m 15

Width/km 185

Without training and parameter adjustments, we directly predicted the 672 images
using the model weights trained in 3.5, exploring the land and sea segmentation effects
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of each model on remote sensing images of the same area from different satellites and at
different time points. The experimental results are shown in Table 7. The indicators of
TCUNet in the PA, F1-Score, and MIoU are 95.46%, 95.19%, and 90.84%, respectively, which
are much higher than those of the other nine models.

Table 7. The results of all methods on the Landsat datasets.

Method PA (%) MIoU (%) F1 (%)

UNet 64.63 41.55 61.25
Deeplabv3+ 91.75 83.82 91.13

DANet 88.23 76.84 86.72
Segformer 80.88 67.83 80.63
SwinUNet 81.04 68.03 80.96
TransUNet 75.10 60.60 74.92

ST-UNet 84.82 73.41 84.65
UNetformer 90.17 80.20 88.89

TCUNet 95.46 90.84 95.19

In addition, for the segmentation results of Landsat images, as shown in Figure 11,
in order to visually verify the segmentation effect of each method, this article uses blue
boxes to highlight the positions where the model shows differences in the predicted image.
It can be clearly seen that without pre-training, Deeplabv3+, UNeformer, and DANet
perform well. However, it can be seen from the graph that these models cannot perform
the precise segmentation of water and land, and there is a phenomenon of misclassification
and missing segmentation for small targets, such as ships, islands, and ponds. However,
the segmentation results of Segformer, TransUNet, and SwinUNet are not satisfactory, and
cannot accurately complete land and sea segmentation. They can only roughly distinguish
between water and land. U-Net cannot perform land and sea segmentation in Landsat
8 images. This indicates that U-Net struggles to extract water bodies from different remote
sensing images across sensors, despite its excellent performance in medical images. The
TCUNet method proposed in this article can extract the coastline at different times, across
sensors. The accuracy of the extraction results meets the extraction requirements.

4.2. Performance under Different Parameter Settings

In this paper, we continue to explore the sea–land segmentation task, by setting
different parameters, to test the segmentation performance of the model. The experimental
results are shown in Table 8.

Table 8. Performance under different parameter settings. E represents the dimension of the first stage
of the Transformer branch. C represents the number of channels in the first layer of the CNN branch,
and D represents the number of Conv blocks and Transformer blocks in stages 2–5.

E C D PA (%) Params

16 16
[2,2,2,2] 96.92 1.04 M

[3,4,6,3] 97.52 1.72 M

46 32
[2,2,2,2] 97.06 7.07 M

[3,4,6,3] 97.46 8.50 M

92 64
[2,2,2,2] 97.42 20.43 M

[3,4,6,3] 97.56 33.51 M
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As can be seen from Table 3, increasing the number of dual-branch channels in the
first stage (stages 2–5 have twice as many channels as the previous stage, as described in
Section 2.2, i.e., they deepen the width of the network) does not significantly improve the
segmentation performance of the model, but the parameters and complexity of the model
have increased by tens of times. On the contrary, through keeping the number of model
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channels constant, and increasing the number of double-branch encoder modules in layers
2–5 (i.e., increasing the depth of the network), the segmentation precision of the model is
obviously improved, and the parameters of the model did not increase significantly.

In response to the aforementioned phenomenon, we speculate that our proposed
model, which combines a CNN and Transformer, exhibits a considerably enhanced ability
in feature extraction compared to conventional CNN networks. Consequently, each layer
of the model does not require too many channels (i.e., the width of the network does not
need to be too wide) to obtain sufficient rich information. Correspondingly, increasing
the number of channels in each layer of the network does not significantly improve the
segmentation accuracy. However, network depth enhancement can enable the model to
learn deeper feature information, and more complex representations of the image. As a
result, enhancing the depth of the model is more effective in improving the accuracy of
land and sea segmentation, in comparison with increasing the width of the module, while
it also contributes to a reduction in the computational overheads.

Therefore, combining the network complexity and the model segmentation accuracy,
we set the channel number of the first stage model to 16, and set the number of encoder
blocks in layers 2–5 of the network to 3, 4, 6, and 3, respectively.

4.3. Limitations of the Model and Future Prospects

This paper presents a TCU-Net model specifically designed for the extraction of the
shoreline from multispectral remote sensing images. Compared with the latest CNN and
Transformer methods, the proposed model achieves a better segmentation accuracy with
fewer model parameters and computational resources.

However, due to the inherent computational demands of the parallel dual-branch
encoder structure and the Transformer model, despite efforts to reduce the model’s com-
putational overhead through narrowing the network width and designing lightweight
decoder structures, optimal results in terms of training and inference speed have not been
achieved in this study. Future research will focus on further optimizing the model archi-
tecture, while ensuring a robust segmentation accuracy. This will involve the design of
more efficient model structures and effective training strategies, aiming to alleviate training
complexity and difficulty.

5. Conclusions

In order to achieve the high-precision segmentation of sea–land boundaries and
coastline extraction from remote sensing images, a lightweight two-branch parallel network
model combining CNN and Transformer is designed for sea–land segmentation in remote
sensing images.

Specifically, in the encoding process of the algorithm, the CNN branch and the Trans-
former branch are used to extract the local semantic features and the global spatial features
of the multi-spectral remote sensing image. At the same time, we design a feature interac-
tion module (FIM) which is embedded between each corresponding two-branch coding
block, serving as a bridge module to fuse the local features from the CNN branch and
the global representation from the Transformer branch, to realize information interaction
between the twobranches’ features. For the decoder part, we designed a cross-scale, multi-
source feature fusion module (CMFFM) to replace the original UNet encoder module,
achieving the successful integration of low-level semantic and high-level abstract features,
and improving the network’s ability to capture information flows. For CMFFM, the module
is first replaced via up-sampling using a feature calibration module, which can reduce the
semantic differences between the “corresponding” pixels of images at different scales. At
the same time, a channel attention module and spatial attention module are introduced to
obtain channel and spatial attention weights, using two branches with different scales for
the fused features, so that the model can capture the spatial and band information of the
image, and realize the successful integration of low-level semantics and high-level abstract
features. Finally, the fused multi-scale features are obtained. In this study, we generated
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a dataset, named the GF dataset for sealand segmentation in the Yellow Coastline region,
using three GF-6 remote sensing satellite images. Subsequently, an extensive series of
comprehensive experiments was conducted, to evaluate the segmentation performance and
efficiency of TCUNet in comparison to other existing semantic segmentation networks on
this dataset. The experimental results demonstrate that TCUNet has a better segmentation
effect than other classical semantic segmentation networks, highlighting its superiority and
effectiveness. Furthermore, we also discussed the application of the model on different
band combinations and different remote sensing sensor images. In summary, this study
provides a new method for extracting the coastline from remote sensing images accurately
and effectively.

In our future research, we will continue to refine our model, collect multi-spectral
satellite remote sensing images taken by different satellites, at different band settings
and spatial resolutions, improve the application scope of the model and the accuracy
of shoreline extraction, and then expand the research area, to achieve the extraction of
shorelines in other sea areas.
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