
sensors

Article

Investigation of Heterogeneity Sources for Occupational Task
Recognition via Transfer Learning

Sahand Hajifar 1 , Saeb Ragani Lamooki 2 , Lora A. Cavuoto 1 , Fadel M. Megahed 3 and Hongyue Sun 1,∗

����������
�������

Citation: Hajifar, S.; Lamooki, S.R.;

Cavuoto, L.A.; Megahed, F.M.; Sun,

H. Investigation of Heterogeneity

Sources for Occupational Task

Recognition via Transfer Learning.

Sensors 2021, 21, 6677. https://

doi.org/10.3390/s21196677

Academic Editors: Emad Shihab and

Omid Sarbishei

Received: 2 September 2021

Accepted: 4 October 2021

Published: 8 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial & Systems Engineering, University at Buffalo, Buffalo, NY 14260, USA;
sahandha@buffalo.edu (S.H.); loracavu@buffalo.edu (L.A.C.)

2 Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA;
saebraga@buffalo.edu

3 Farmer School of Business, Miami University, Oxford, OH 45056, USA; fmegahed@miamioh.edu
* Correspondence: hongyues@buffalo.edu

Abstract: Human activity recognition has been extensively used for the classification of occupational
tasks. Existing activity recognition approaches perform well when training and testing data follow
an identical distribution. However, in the real world, this condition may be violated due to existing
heterogeneities among training and testing data, which results in degradation of classification
performance. This study aims to investigate the impact of four heterogeneity sources, cross-sensor,
cross-subject, joint cross-sensor and cross-subject, and cross-scenario heterogeneities, on classification
performance. To that end, two experiments called separate task scenario and mixed task scenario
were conducted to simulate tasks of electrical line workers under various heterogeneity sources.
Furthermore, a support vector machine classifier equipped with domain adaptation was used to
classify the tasks and benchmarked against a standard support vector machine baseline. Our results
demonstrated that the support vector machine equipped with domain adaptation outperformed
the baseline for cross-sensor, joint cross-subject and cross-sensor, and cross-subject cases, while the
performance of support vector machine equipped with domain adaptation was not better than that
of the baseline for cross-scenario case. Therefore, it is of great importance to investigate the impact
of heterogeneity sources on classification performance and if needed, leverage domain adaptation
methods to improve the performance.

Keywords: occupational human activity recognition; domain adaptation; transfer learning;
wearable sensors

1. Introduction

The Operator 4.0 implementation has continued to grow at unprecedented rates. It
represents “a new design and engineering philosophy for adaptive production systems
where the focus is on treating automation as a further enhancement of the human’s physical,
sensorial, and cognitive capabilities” [1]. Legacy systems, cognitive healthcare, mainte-
nance and prediction, and machine-to-people (M2P) interaction based on operator position
are among the important applications of Operator 4.0 [2,3]. Among these applications,
cognitive healthcare involves healthy operator and smarter operator typologies [2]. Main-
tenance and prediction as well as M2P interaction based on operator position also require
smarter operator typology [2]. A healthy operator uses a wearable tracker by which his/her
health-related metrics are monitored and his/her sudden movements (e.g., fall of the opera-
tor) are detected [2,4–6]. Smarter operator, on the other hand, provides intelligent personal
assistant to the operator [2]. Thus, it is evident that human activity recognition (HAR)
can directly/indirectly facilitate realization of Operator 4.0 in a workplace. In particular,
in an Operator 4.0-compliant workplace, HAR is required to prevent potential threats
that adversely affect the safety and production quality through monitoring health-related
indicators and informing administrators when required [7,8].
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HAR has been extensively used in occupational environments. For instance, Nath et al. [9]
employed body-mounted smartphones to collect time-stamped motion data from construc-
tion workers and extract duration and frequency of labor-intensive activities, which were
then categorized into ergonomic risk levels. Similarly, Zhang et al. [10] used HAR to
manage and monitor floor-reinforcing steel workers, and eventually, control cost, quality,
progress, and safety through process management, i.e., positioning workers, material and
equipment. In another study, a wrist-worn wearable sensor was attached to the dominant
wrist of workers to detect assembly tasks performed by them [11]. This information can
then be used to provide proactive instructions or verify that all the required work steps are
performed [11].

However, in real-world applications, HAR performance can be adversely affected
by heterogeneity sources (e.g., variety of workers, different types of sensors) within a
certain occupation. This occurs when the unseen testing data (e.g., data from a subject
or a type of sensor) significantly differs from those used to train HAR models (e.g., data
from another subject or another type of sensor). Here, the focus is to investigate the impact
of potential heterogeneity sources on the HAR of a common set of activities, so that the
HAR of these activities can be generalized. The potential heterogeneities in occupation
settings include sensing heterogeneities, including sensor biases, sampling instabilities and
different sampling rates [12], environmental heterogeneities (for instance, heterogeneity
between controlled lab environment and real-world [13]), subject heterogeneities (for
instance, fitness level, gender and body structure heterogeneities [14]), and others that
may arise. In particular, cross-sensor heterogeneities can be resulted by modifications
in the configuration and type of sensors due to different preferences and requirements
by different subjects and workplaces, respectively [15]. Environmental heterogeneities
can be caused by variability of the individuals’ physical activities when performed in a
controlled lab environment versus in-the-wild [16]. Finally, subject heterogeneities exist, as
in practice, HAR methods are usually applied to unseen subjects with different fitness level,
gender and body structure [14]. Most of the existing literature either neglects to consider
these heterogeneities or investigates them individually, with a great emphasis placed on
cross-subject heterogeneity. Once the type of heterogeneity is identified and acknowledged
to be problematic for HAR, the next step is to take appropriate actions toward alleviating
the problem.

Depending on the heterogeneity, existing studies have used various approaches to
deal with the challenges discussed above, including active learning, deep learning, field
experiments and domain adaptation. Here, we will describe how active learning, deep
learning and field experiments can mitigate the heterogeneity issue, why their usability
is limited in an industrial environment, and elaborate on why domain adaptation is
more favorable.

Environmental heterogeneity and the wide range of task performance approaches by
different subjects negatively impacts the large-scale deployment of HAR systems [17]. Ac-
tive learning has been proposed to partially solve this problem by querying the tasks being
performed by new subjects/in new environments and generating customized models [17].
For example, heterogeneities in speed of walking, gestures and sleep habits may require
personalized models for individual users [18]. To this end, Hossain et al. [18] capitalized
on active learning to enhance the recognition of activities of daily living (ADLs), where
the users were actively queried for labelling the activities. The usability of active learning
would be limited for industrial environments due to the interfering nature of querying.
Firstly, HAR systems must continuously adapt to the new needs of fast-changing industrial
environments; therefore, repetitive queries can place a large burden on users [19]. Secondly,
excessive queries can distract workers and workplace distraction has an adverse impact on
hazard recognition, safety risk perception, and safety performance [20].

Due to outstanding success achieved by deep learning in image classification, re-
searchers have been motivated to transform time series data into an image structure, using
methods such as Recurrence Plot (RP), Markov Transition Field (MTF), and Gramian Angu-
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lar Fields (GAF), and approach the HAR problem from a computer vision viewpoint [21].
For instance, Abdel-Basset et al. [22] leveraged deep learning approaches to perform activ-
ity recognition using heterogeneous inertial sensors. Their proposed approach was able
to achieve accuracies of 98% and 99% when applied to two public heterogeneous HAR
(HHAR) datasets (i.e., HHAR UCI [23] and mHEALTH [24]). HHAR UCI and mHEALTH
datasets are comprised of 14,299,880 and 343,195 labeled ADL instances, respectively. Deep
learning algorithms require such huge datasets to learn latent patterns [25], which are
usually unattainable in industrial applications due to data scarcity.

Sometimes studies are more concerned about the situations that subjects experience in
their natural environment and thus a field experiment is preferred [26]. A field experiment
is performed in the wild and the activities performed in this type of experiment are a
good representation of real-world activities [9]. Moreover, the participants are allowed to
perform the activities at their own comfortable pace [9]. HAR based on field experiments
has been particularly promising in the areas of healthcare and nursing care facilities [27,28].
However, one must be cautious when performing field experiments because the lack of
control and failure of accurately characterizing the field environment may adversely affect
the generalizability of the study [29]. Moreover, the results of field and lab-based testing
have been shown to be comparable under favorable operational conditions [30,31].

Alternatively, unsupervised domain adaptation (UDA) has gained increasing popular-
ity in HHAR [32,33]. UDA can transfer the information learnt from an annotated source
data (training data) to an unannotated target data (test data) such that time-consuming
data recollections can be eliminated [34]. Here, the source data and target data correspond
to different subjects/sensors/environments, dependent on the heterogeneity sources. We
want to build an HAR approach that can generalize in the heterogeneous settings, e.g.,
from one sensor to another or from a lab environment to the wild, based on UDA. Owing
to its unsupervised nature, UDA does not require any querying for labelling the activities
from target data and consequently, does not place any additional burden on subjects.

Existing literature has shown that UDA is effective for reusing existing knowledge to
classify a set of ADLs and sport activities performed by heterogeneous subjects, sensors
and environmental situations [35,36]. In a sports dataset that included walking, jogging,
cycling, going upstairs and going downstairs, UDA resulted in at least 4.8% and 9.3%
improvements in the classification accuracies of cross-subject and cross-sensor scenarios,
respectively [36]. In an ADL context comprised of sitting, standing, walking and running
activities, a multi-source UDA method achieved 2.0% improvement in the cross-subject
classification accuracy [37]. In these and related studies, accuracy improvements usually
varied based on the type of the heterogeneity under study.

To promote the transferability of activity recognition models in classifying a common
set of activities under heterogeneity sources, there is a lack of a comprehensive study of
potential heterogeneities in an occupational context and their impact on HAR performance.
This study aims to analyze four potential heterogeneities in the occupational context of
electrical line workers (ELWs), including cross-sensor, cross-subject, joint cross-sensor and
cross-subject, and cross-scenario heterogeneities. We focus on ELWs, as they are often lone
workers lacking direct supervision, where an automatic monitoring is of great importance.
Here, we elaborate on these heterogeneities to address four research questions:

1. Cross-sensor:
1.1. Can the information learned from an existing wearable sensor be directly used

to perform activity recognition for the same set of activities collected by a new
wearable sensor?

1.2. If the answer is no, can we transfer the information learned from the existing
wearable sensor to the new one and use the new wearable sensor to classify the
activities that were detectable by the old sensor?

This transferability eliminates the need for collecting a large amount of data on new
sensors and retraining machine learning algorithms when any changes or updates
occur in configuration of the system, such as replacing a sensor.
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2. Cross-subject:
2.1. Can the models trained using a set of activities performed by a limited number of

subjects be used to recognize the same set of activities for a new unseen subject?
2.2. Can (and by how much can) the performance of activity recognition be improved

by transferring the information learned from existing subjects (or a subset of
existing subjects) to a new subject?

Answering these questions will inform us of whether (and how) we can circumvent
collecting labelled data from every single new subject, which is burdensome and in
some cases, infeasible.

3. Cross-sensor and cross-subject: How does a combination of cross-sensor and cross-
subject heterogeneities impact the model performance for classifying a common set of
activities?
This question focuses on the more complex scenario that more than one potential
heterogeneity sources exists, and whether the information can be transferred.

4. Cross-scenario: Can (and how can) the information learned for classifying a common
set of activities from a controlled lab experiment be applied/transferred to a real-
world environment?
Most activity recognition experiments are performed in a controlled lab environment;
however, the environmental situation of a real-world scenario might be different
from that of a controlled lab experiment. For instance, in lab research, a subject
might be asked to consecutively ascend and descend a ladder with a certain num-
ber of repetitions in order to facilitate the data collection and annotation (labelling)
process. However, in a real-world environment, sporadic occurrences of ascending-
descending repetitions are more common. Answering this question focuses on how
such heterogeneities impact the performance of activity recognition.

To address these questions, we will capitalize on transfer learning and compare it to
the case of applying standard machine learning models. Figure 1 presents an overview
of our framework in three phases. In Phase I, the occupational environment of electrical
line workers is simulated, along with the mentioned heterogeneities. In Phase II, the
classification is performed using a DA-based classifier and a conventional classifier and
the two methods are benchmarked against each other. Finally, in Phase III, decision makers
rely on the comparative analysis results obtained from Phase II to take actions.

In particular, in Phase I, the simulated experiment involves fine motor skill activities,
such as electrical panel work, overhead tasks and typing on a computer, and gross motor
activities, such as hoisting a weighted bucket from a mezzanine/ladder, lowering and
lifting a box, pushing a cart and ascending and descending a ladder, which are commonly
performed by electrical line workers, along with activities of daily living such as sitting,
standing and walking. The sources of heterogeneities include cross-sensor heterogeneity,
such as bias between different sensors and inconsistent sampling rates, cross-subject
heterogeneity, such as variations in lifestyle and health status of the subjects, joint cross-
sensor and cross-subject heterogeneity, and cross-scenario heterogeneity, such as variations
in dispersion and duration of the tasks. Triaxial acceleration data were collected from
two wristbands, Empatica E4 and Maxim, worn by 18 subjects. For the cross-scenario
(environmental heterogeneity), we simulated two lab experiments called “separate task
scenario” and “mixed task scenario” (see more details in Section 3.1, Figure 2). The design
of the separate task scenario is similar to that of most activity recognition experiments,
where each task is performed separately and then followed by the next task. On the other
hand, the mixed task scenario was designed to mimic a real-world environment, where the
tasks were performed sporadically and spread over the time of the experiment as single
repetitions (for repetition-based tasks) and for shorter durations (for time-based tasks).
The separate task scenario experiment will be used to answer questions 1–3, while both
experiments will be used to answer question 4.

In Phase II, we use a UDA method, geodesic flow kernel (GFK), to transfer the infor-
mation from the source domain (e.g., one subject/one sensor type/separate experiment) to
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the target domain (e.g., another subject/another sensor type/mixed experiment) for all
four questions. The time-frequency features of the wearable sensors, calculated based on
discrete wavelet transform were input to GFK. When multiple subjects are involved (as in
questions 2 and 3), we use the Rank of Domain (ROD) metric to determine which existing
subjects would give us the best performance on the new unseen subject without needing to
run the GFK algorithm and building classifiers [38].

In Phase III, given the identified significant heterogeneity sources (second column in
Phase III of Figure 1), one would use DA to alleviate the heterogeneity issue and improve
performance. If the heterogeneity is not significant (first column of Phase III in Figure 1), a
conventional classifier can be used to recognize the activities. Finally, if a factor other than
heterogeneity negatively impacts the activity recognition performance (third column of
Phase III in Figure 1), further root cause analysis is needed to identify the harmful factor.

Phase I: Experimental Data Collection

Electrical 

Line Worker

Recording

Task 

Annotation

Simulating the Potential Heterogeneity
DA-based Classifier

Conventional Baseline 

Without DA

DA-based 

classifier 

benchmarked 

against a baseline

Phase II: Analysis

𝐹1𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ≥ 𝐹1𝐷𝐴
&

𝐹1𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is acceptable

𝐹1𝐷𝐴 > 𝐹1𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
&

𝐹1𝐷𝐴 is acceptable

𝐹1𝐷𝐴 & 𝐹1𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 not acceptable 

Phase III: Decision Making

No action is needed. DA is required.
Investigate other reasons affecting the 

performance.

Heterogeneity Sources

Cross-sensor

Cross-subject

Cross-scenario (lab vs. reality)

Before DA After DA

Figure 1. An overview of the proposed framework (F̄1Baseline and F̄1DA represent overall F1 score
obtained from a SVM classifier and a SVM classifier equipped with DA, respectively.)
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Typing on a 
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Walking
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Lowering and lifting 

a box (1 rep, 10 kg)

Pushing a cart 
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Standing

(30 sec)

Ascending a 

ladder (1 rep)

Hoisting on  a ladder 
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Descending a 
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Electrical 

panel  (30 sec)

Pushing a cart
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a) Separate Task Scenario

Time

Time

b) Mixed Task Scenario

Figure 2. The timeline of experimental tasks.
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2. Background and Literature Review
2.1. Domain Adaptation

DA allows solving a machine learning problem in the target (test) domain by using the
data in the source (training) domain, when these domains have heterogeneous but related
distributions [39]. Therefore, DA obviates the need for costly data labelling and retraining
machine learning models when dealing with a new unseen domain [39]. Within the field
of DA, there are two main types of approaches: semi-supervised and unsupervised. The
major difference between the two types of DA is that semi-supervised DA requires a limited
number of the target data to be labelled [40–43]. Unsupervised DA, on the other hand, does
not need any observation from the target data to be labelled [44–47]. We limit our focus
to unsupervised DA because in our problem setting no activity labels are available for a
new unseen subject. Three major approaches have been adopted to solve unsupervised
DA. The first approach solves unsupervised DA by aligning the feature distributions in the
source domain with the target domain using a certain metric [48,49]. The second approach
solves the same problem through selecting the observations from the source domain or
reassigning weights to them [50,51], while the third approach aims to learn a specific
feature space transformation that can map the distribution of the source domain to that
of the target domain [52,53]. Due to the heterogeneities inherent in HAR, DA has gained
increasing attention in this field. We review HAR based on DA studies in Section 2.2.

2.2. HAR Based on Domain Adaptation

As discussed in the introduction, HAR based on DA studies can be categorized
according to the type of heterogeneity under study. To be more precise, here, we review the
most related ones to our work, including cross-sensor and cross-subject heterogeneities.

For cross-sensor DA, deep DA has been widely used, which can be categorized into
two categories, i.e., discrepancy measurement and adversarial learning [36] (please note
that an adversarial learning approach may also employ discrepancy measures). For the
former, Akbari and Jafari [15] developed an unsupervised DA algorithm based on deep
learning that aims to minimize the distributional discrepancy between two sets of features
extracted from two wearable sensors. Their algorithm only used the source data (smart-
watch/smartphone) and a limited number of unlabelled samples from the target data
(smartphone/smartwatch) and was able to outperform the state-of-the-art DA algorithms
when applied to an ADL dataset (HHAR dataset). While for the latter, Zhou et al. [36]
proposed a novel adversarial deep domain adaptation framework that first determines
and selects the most relevant source datasets and then obtains the sensor invariant features.
To achieve a cross-sensor problem setting, they considered 4 different devices, includ-
ing Huawei Watch, Huami Watch, Mi Band and Huawei Nexus, and showed that their
algorithm was able to improve the classification accuracy of gesture and sports activities.

HAR often suffers poor transferability from one subject to another. Therefore, cross-
subject DA has been the concern of several studies focusing on two categories of discrepancy
measurement and adversarial learning. For discrepancy measurement, Hosseini et al. [54]
and Zhao et al. [55] studied deep features and shallow features, respectively. In particular,
Hosseini et al. [54] employed a deep DA approach equipped with a Mean Maximum
Discrepancy (MMD) discrepancy loss to transfer ADL recognition models learned based
on adult subjects to children. They demonstrated that the F1 score of their proposed
approach was 9.0% lower than the F1 score of a supervised baseline, which was more
promising than an unsupervised baseline without DA with a 25.2% reduction in F1 score.
Similarly, Zhao et al. [55] used the MMD discrepancy loss, but at a finer granularity. In
particular, they tackled this problem by developing a 3-step algorithm called local domain
adaptation (LDA). In their algorithm, firstly, the activities were grouped into multiple
high-level clusters. Secondly, each cluster from the source domain and its corresponding
cluster from the target domain were aligned in a low-dimensional subspace. Finally,
the labels of the target domain were predicted using the features in a low-dimensional
subspace. They verified the effectiveness of LDA by applying it to two widely-used ADL
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and sports datasets. For deep adversarial DA, Zhou et al. [36] and Chakma et al. [37]
studied multi-source setting using two different approaches. Zhou et al. [36] employed
an adversarial deep DA approach to transfer the models between different groups of
subjects, where the subjects were grouped based on sex, age and body mass index (BMI).
They developed a domain relevance calculator that can select the best source domain
for adaptation. Their proposed approach resulted in at least 4.8% improvement in the
classification accuracy. Chakma et al. [37] proposed a deep Multi-source Adversarial
Domain Adaptation (MSADA) framework that extracts a feature representation in which
all of the domains (multiple sources and one target) become as relevant as possible. Unlike
Zhou et al. [36], their approach is capable of learning a domain invariant feature across
multiple domains, rather than selecting the best source. They showed that MSADA
approach achieves 2% improvement in accuracy when applied to the cross-person problem
of OPPORTUNITY dataset [56] with four ADLs. Finally, Ding et al. [57] carried out a
study on unsupervised DA between different subjects by comparing several discrepancy
measurement and adversarial learning state-of-the-art DA algorithms. They found that the
MMD method developed by Pan et al. [58] is the most appropriate method for HAR.

We have summarized the areas, heterogeneity sources, source data, target data and
accuracy improvement results from a number of studies that applied DA to HAR in Table 1.
It should be noted that some studies had also focused on cross-position heterogeneity (sen-
sors placed on different positions). The information related to cross-position heterogeneity
are excluded from Table 1, as they are irrelevant to our work. In Table 1, “source-only
model” represents a model which is directly trained based on source data.

Table 1. A summary of human activity recognition studies using domain adaptation.

Reference Area Heterogeneity
Source

Source and Target Data Accuracy Improvement

[15] ADL Different Sensors Source: Smart watch (phone)
Target: Smart phone (watch) 1

46.9% over the source-
only model

[57] ADL
and sport
activities

Different subjects Source: Subject X
Target: Subject Y

23.3% over the source-
only model per their first
experiment

[54] ADL Different ages Source: Adult
Target: Children

16.2% improvement in
F1-score over the source-
only model

[36] Gesture
and sport
activities

1. Different sensors
2. Different subjects

1. Source: Sensor X
Target: Sensor Y
2. Source: Group X (based on
age, sex. and BMI)
Target: Group Y (based on age,
sex, and BMI)

1. 27.7% over source-
only model
2. 19.9% over source-
only model

[55] ADL
and sport
activities

Different subjects Source: Subject(s) X
Target: Subject(s) Y 2

4.7% over source-only
model

[37] ADL Different subjects Source: Subjects X and Y
Target: Subject Z 3

2.0% over source-only
model

1 Either Source: Smart watch and Target: Smart phone or Source: Smart phone and Target: Smart watch;
2 Subject(s) Y represents Subject Y (one subject) or Subjects Y (a group of subjects); 3 Subjects X and Y represent
two subjects and Subject Z represents one subject.

From Table 1, it is clear that the existing literature mostly focuses on ADL and sport
activities and there is a lack of a comprehensive study of potential heterogeneities in an
occupational environment. In particular, most studies have considered different subjects,
where the improvements are often modest (2.0% and 4.7%) and sometimes notable due to
grouping subjects into more heterogeneous groups.

3. Methods
3.1. Experimental Design and Data Collection

The experimental sessions were designed to simulate common activities of ELWs.
ELWs often work at work sites where lone work may occur and direct supervision is not
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feasible. Serious injury and fatality (SIF) hazard potentials that these lone workers may
encounter include sudden illness, such as heart attack, occupational injuries, such as fall
from an elevation, electrocution and slips or falls, and contributing factors to loss, such
as high voltage and confined spaces [59]. Thus, the HAR approach developed by this
study has an enormous potential to reduce injuries in ELWs. Furthermore, a subset of
the tasks performed by ELWs are commonly explored in the context of both ADL and
occupational HAR studies. This should make our results potentially generalizable to
studies/applications where only a subset of our tasks are required.

To simulate ELWs’ tasks, we considered two groups of subjects, Group 1 and Group 2,
each including 10 subjects (their anthropometric information is summarized in Table 2).
Group 1 simulated the activities of ELWs through a scenario called separate task scenario
and Group 2 performed the same activities using two scenarios of separate task scenario
and mixed task scenario (the two groups had two subjects in common). Group 1 was used
to study cross-sensor, cross-subject, and cross-sensor and cross-subject heterogeneities.
Group 2 was used to evaluate cross-scenario heterogeneity, since Group 2 performed both
separate and mixed task scenarios. The experimenters completed training and received
project approval from University at Buffalo Institutional Review Board (IRB) and written
informed consent was provided by all of the subjects.

The subjects were equipped with an Empatica E4 wristband (Empatica, Boston, United
States, we call it Sensor 1) and a Maxim wristband (Maxim Integrated, San Jose, United
States, we call it Sensor 2) on the wrist of their dominant hand to collect triaxial acceleration.
We prefer acceleration-based measurements to biometric-based measurements, such as
heart rate, as changes in biometric measurements are often delayed compared to the task
start time [60]. Thus, biometric-based information is not considered suitable for detecting
short duration tasks, which are commonly performed by electrical line workers. The
sampling rate of Sensor 1 was 32 Hz and Sensor 2 collected the acceleration components at
unevenly spaced timestamps which is common for wearable sensors [36]. Subjects then
performed either the separate and mixed task scenarios as shown in Figure 2. For the
mixed task scenario, the subjects kept repeating the circuit for 1 h, with in total around
7 replications. The Sensor 1 and Sensor 2 used Bluetooth to connect to a smartphone in
the pocket of the subject and a tablet in the proximity of the subject, respectively. The data
collection for Sensor 1 was operated by the Empatica E4 realtime Android app, where the
data were stored in the device and transmitted to the cloud at the end of the experiment,
while the same task for Sensor 2 was operated by a separate Android app. The start and
end of each activity was annotated by an observer during the experiment.

Table 2. Summary of anthropometric information for the subjects. The values in columns 3–5 are the
average. (standard deviation)

Group Gender Count Age Body Mass (kg) Height (m)

1 Male 6 26.83 (4.30) 87.45 (18.70) 1.81 (0.10)
Female 4 21.25 (4.55) 57.88 (19.12) 1.59 (0.05)

2 Male 6 26.67 (3.30) 81.53 (18.03) 1.80 (0.07)
Female 4 21.00 (1.22) 59.12 (14.71) 1.62 (0.08)

3.2. Data Pre-Processing

Both Sensor 1 and Sensor 2 measure continuous gravitational force (g) exerted to
each of the three axes. The measurement unit of Sensor 1 is g/64 (64 is equivalent to
1g), while the measurement unit of Sensor 2 is 1g. Both units were converted to 1 m/s2

to be consistent. As mentioned in Section 3.1, the sampling rate of Sensor 1 was 32 Hz,
while Sensor 2 did not have a constant sampling rate over time. A linear interpolation
was applied to the measurements of Sensor 2 to obtain a sampling rate of 32 Hz and deal
with the sampling rate inconsistency. Linear interpolation was also helpful to deal with
the missing data issue that occurred for Sensor 2. However, the interpolation was not
carried out when the length of missing part was more than 1 s to avoid generating valueless
synthetic data.
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The non-overlapping fixed-size windowing technique was then employed to segment
the labelled acceleration data, due to its efficiency and simplicity [61]. A window length
of 10 s, equivalent to 320 acceleration datapoints, was considered for the segmentation of
acceleration data collected from Group 1, as it was practical in our case and has been shown
to result in accurate predictions [62]. The acceleration data from Group 2 were segmented
using a window length of 4 s, equivalent to 128 acceleration datapoints, since the mixed
task scenario performed by Group 2 involved single repetitions of the repetition-based
activities, and in many cases a single repetition was shorter than 10 s (the same windowing
was used for the separate task scenario data collected from Group 2 for consistency).

3.3. Feature Extraction

Discrete wavelet transform (DWT) was employed to obtain the time-frequency domain
features, as DWT has been shown to produce better results compared to time domain and
frequency domain features when applied to a similar dataset [62]. In particular, following
Lamooki et al. [62], a Daubechies-4 (d4) wavelet with 5 levels was used to decompose the
segmented triaxial signals into scaling and wavelet coefficients. To reduce the number
of input variables, 12 statistics, including mean, root mean square (RMS), mean absolute
deviation (MAD), standard deviation (SD), minimum, maximum, median, 25th percentile,
75th percentile, entropy and number of zero- and mean- crossings were obtained for the
wavelet coefficients in all 5 levels and for the scaling coefficients in the last level. The
statistics calculated for the triaxial signals were then concatenated to create the time-
frequency features with a length of 216. Finally, a standardization was applied to the
time-frequency features, where the features were centered and scaled to have mean = 0
and standard deviation = 1. An overview of the feature extraction procedure applied to a
10-second window is presented in Figure 3.

Figure 3. An overview of the feature extraction procedure.

3.4. Geodesic Flow Kernel for Domain Adaptation

Here, we used GFK to project the original features into a low-dimensional subspace.
Unlike principal component analysis (PCA), GFK can project source and target features
to common subspaces that inherit characteristics of both domains. A very important
advantage of the GFK method is that it is equipped with a built-in automatic source
selection procedure based on a metric, called rank of domain (ROD), which can be very
helpful for selecting the subjects that are more likely to adapt well to the target subject.
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Furthermore, unlike other conventional DA approaches, such as transfer component
analysis (TCA) and subspace alignment (SA), the only parameter of the GFK method can be
tuned automatically. Here, we present a brief introduction and refer the interested reader
to Gong et al. [38] for more details.

Assume that φ(0) and φ(1) are two points on Grassmann manifold corresponding to
source and target data. Let PS, PT ∈ RD×d be two sets of basis of the subspaces belonging
to the source and target domain, respectively, and RS ∈ RD×(D−d) be the orthogonal
complement of PS, where d denotes the dimensionality of the subspace. Using the canonical
Euclidean metric for the Riemannian manifold, a geodesic flow can be constructed between
φ(0) and φ(1) as

φ(t) = PSU1Γ(t)− RSU2Σ(t), (1)

where t parameterizes a smooth curve between φ(0) and φ(1) and U1 and U2 are two
orthonormal matrices obtained by the following singular value decompositions,

P>S PT = U1ΓV>, R>S PT = −U2ΣV>. (2)

Γ and Σ are d × d diagonal matrices with diagonal elements cosθi and sinθi for
i = 1, . . . , d. In particular, θi represent principal angles between PS and PT :

0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θd ≤ π/2 (3)

Principal angles quantify the overlapping degree of subspaces (we refer the interested
reader to Drmac [63] for more details on principal angles). Furthermore, Γ(t) and Σ(t) are
diagonal matrices with diagonal elements cos(tθi) and sin(tθi), respectively,

The geometric flow φ(t) embeds the data in Riemannian manifold and represents the
incremental changes between source and target data. Let x be a feature vector from the
source domain. φ(t)>x projects x to the subspace φ(t). If t is close to 1, then the projected
feature vector will resemble more the target domain, and vice versa for t close to 0. Hence,
this projection would result in a set of features that inherit characteristics of both source
and target domains. Consequently, a classifier which learned from the projected source
features would perform well on the target features.

The selection of t or which set of t still remains a concern and Gong et al. [38] sug-
gests to include all of them. Projecting the feature vectors into all subspaces [φ(0)>, . . . ,
φ(t)>, . . . , φ(1)>]>x is explicitly not achievable, and Gong et al. [38] proposed an ap-
proach robust to any variation that inclines to either the source or the target or in between.
Computationally, two feature vectors xi and xj are projected into φ(t) for a continuous t
from 0 to 1 and then concatenated into infinite-dimensional feature vectors z∞

i and z∞
j . The

inner product between z∞
i and z∞

j gives the geodesic-flow kernel,

〈z∞
i , z∞

j 〉 =
∫ 1

0
(φ(t)>xi)

>(φ(t)>xj)dt = xiGxj, (4)

where G ∈ RD×D is a positive semidefinite (PSD) matrix. This operation can reduce the
computational burden thanks to the kernel trick [38]. The conventional ML algorithms
then apply this kernel to obtain domain-invariant low-dimensional representations. In our
case, we use support vector machine (SVM) as a classifier.

An advantage of the GFK method is that it does not require any parameter tuning
and its only free parameter d can be automatically selected using a subspace disagreement
measure (SDM). To calculate SDM, the PCA subspaces of source data, target data and
combined source and target data, PCAS, PCAT and PCAS+T are calculated. By intuition, if
the two datasets resemble one another, then all three subspaces should be similar on the
Grassmannian. The SDM exploits this notion and is formulated using the principal angles:

D(d) = 0.5[sinαd + sinβd], (5)
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where αd and βd represent the d-th principal angle between PCAS and PCAS+T and be-
tween PCAT and PCAS+T , respectively. A small value of D(d) denotes small values of
αd and βd, which indicates that PCAS and PCAT are well-aligned at the d-th dimension.
Gong et al. [38] adopted a greedy algorithm to perform this optimization and select d.

Finally, Gong et al. [38] developed an ROD metric, which is used to determine which
datasets would result in the best adaptation to the target data without performing the
domain adaptation and training the classifiers. In particular, ROD is computed for a pair of
domainsR(S, T) and two domains with a lower ROD are more likely to adapt well. Due
to space limitation, we refer the interested reader to Gong et al. [38] for deeper details and
rigorous mathematical analysis on ROD. Figure 4 gives an illustration of the methodology,
where the cross-sensor case is used as an example.

I) Acceleration Data II) Windowing III) Feature Extraction IV) Features After DA (GFK)

Source Acc. Data (Empatica)

Target Acc. Data (Maxim)

Source Windowed 

Acc. Data
Source 

Features

Source 

Features 

After DA

Target 

Features 

After DA

SVM Classifier

Before DA
After DA

Target Windowed 

Acc. Data

Target 

Features

𝑁𝑆: Number of source windows

𝑁𝑇: Number of target windows

Preprocessing

Preprocessing

Figure 4. An illustration of the methodology for the cross-sensor case.

4. Results
4.1. Cross-Sensor

For each subject from Group 1, the data collected from Sensor 1 and Sensor 2 were
considered to be source data and target data, respectively. GFK was applied to the source
and target data, which resulted in the representations of two datasets in a lower dimension.
SVM was then employed to learn a classifier based on the transformed source data and
applied to predict the labels associated with the transformed target data. On the other hand,
our benchmark method assumes that the source data are not distributionally different
from the target data. Thus, in this case, the SVM method was directly applied to train the
classifier and predict the labels related to the target data.

We present the results for task-specific F1 scores, overall F1 score and overall accuracy
for different subjects in Table 3 (SX-DA represents the results for the X-th subject when a DA
is applied prior to using the SVM, while SX shows the results when no DA is employed).
For the benchmark method (without DA), sometimes no value has been reported for the
F1 scores associated with some of the tasks. In those cases, those specific tasks were
fully misclassified. From overall F1 score and overall accuracy results, it is clear that DA
improves the classification performance. In particular, the accuracy improvements for
different subjects ranged from 0.08 to 0.42 with an average of 0.29.
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Table 3. Cross-sensor classification performance. Abbreviations: EP: electrical panel, H: hoisting, Ld:
ladder, Lf: lifting; OH: overhead; P: pushing; St: sitting; Sd: standing; Tp: typing; W: walking (For
some of the cases, “-” has been reported as task-specific F1 score, which means that the denominator
of the precision or recall for that specific case was zero.)

Task-Specific F1 Score in the Test DataSubject EP H Ld Lf OH P St Sd Tp W F̄1 ¯Acc.

S1 0.81 1.00 0.22 0.72 0.58 0.98 - 1.00 0.65 1.00 - 0.76
S1-DA 1.00 0.96 0.93 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.97

S2 0.90 1.00 0.94 0.70 0.87 0.96 0.90 0.91 1.00 - - 0.87
S2-DA 1.00 1.00 0.94 0.84 0.97 1.00 1.00 1.00 0.97 0.86 0.96 0.95

S3 0.85 0.41 0.68 0.50 0.87 - - 1.00 0.46 0.52 - 0.56
S3-DA 1.00 0.98 0.98 0.98 1.00 0.58 0.97 1.00 0.71 0.97 0.92 0.92

S4 0.94 0.90 0.21 0.47 1.00 0.88 - 0.86 0.60 - - 0.62
S4-DA 1.00 1.00 0.80 0.78 1.00 1.00 0.74 1.00 0.79 1.00 0.91 0.90

S5 1.00 0.73 0.15 0.47 1.00 0.98 - 1.00 0.67 - - 0.63
S5-DA 1.00 1.00 0.99 1.00 1.00 0.98 0.90 1.00 0.92 1.00 0.98 0.98

S6 0.80 0.77 0.35 0.70 1.00 0.59 - 0.97 0.67 - - 0.64
S6-DA 1.00 0.96 0.94 0.96 1.00 1.00 0.58 0.97 0.77 1.00 0.92 0.93

S7 0.45 0.09 0.75 0.58 1.00 - - 0.97 0.43 - - 0.54
S7-DA 1.00 0.95 0.95 0.89 1.00 1.00 0.94 1.00 0.94 0.90 0.96 0.96

S8 0.52 0.91 0.85 0.09 1.00 - 0.21 0.73 0.65 0.11 - 0.63
S8-DA 1.00 0.91 0.96 0.88 1.00 0.91 1.00 1.00 0.91 1.00 0.96 0.96

S9 0.76 0.89 0.60 0.57 1.00 0.91 - 0.86 0.62 - - 0.65
S9-DA 0.94 0.95 0.96 0.90 1.00 0.98 1.00 0.90 1.00 0.97 0.96 0.96

S10 1.00 0.13 0.85 0.62 1.00 0.67 - 1.00 0.64 0.58 - 0.70
S10-DA 1.00 0.92 0.89 0.76 1.00 0.90 1.00 1.00 0.97 1.00 0.94 0.93

4.2. Cross-Subject

Here, we only used the data collected from Sensor 1 worn by Group 1 subjects. For
each subject, we considered them to be the target data and the remaining subjects to be the
potential source data. The ROD metric was then employed to determine the k subjects from
the potential source data that are most adaptable to the target data. In particular, the ROD
metric was calculated for the target data paired with any remaining subject. The potential
source subjects associated with the k lowest RODs were considered to be the source data.
For the benchmark method, those k subjects were selected randomly. Then, similar to the
cross-sensor case, a DA integrated with an SVM was used to predict the target labels and
compared with the benchmark method, which only used the SVM.

The results for k = 5 are presented in Table 4 and the results of a sensitivity analysis
for the effect of k are illustrated in Figure 5. In Table 4, the ¯ROD column shows the average
of all of the ROD values associated with each subject, where a lower value of ¯ROD for a
specific target subject indicates that its selected source subjects are more adaptable to that
target subject. Based on Table 4, using DA generally improves the overall accuracy and
overall F1 score. However, the improvements in the cross-subject classification are not as
large as those of cross-sensor classification. In particular, the accuracy improvements for
different subjects ranged from −0.03 (a negative value indicates decrease in the accuracy)
to 0.13 with an average of 0.02. Moreover, both DA and without DA methods did not
perform well when applied to Subject 7. We could have guessed this poor performance
even without performing the DA and learning the classifier because the highest ¯ROD is
related to Subject 7, which indicates that the selected source subjects associated with Subject
7 can not be well-adapted to that subject.

Finally, Figure 5 shows how k impacts the average of the accuracy and F1-score over all
of the tasks and all of the subjects. To obtain the average of the F1-score, we had to ignore
the cases where no values had been reported for the F1 scores associated with some of the
tasks (due to misclassifying all of the observations associated with those tasks). Table 5
shows the number of those excluded cases for each k and method. Based on Figure 5, for
different values of k, DA always achieves higher accuracies and higher F1 scores compared
to the method without DA and a moderate value of k is sufficient for DA to achieve its
highest F1 score.
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Table 4. Cross-subject classification performance. Abbreviations: EP: electrical panel, H: hoisting, Ld:
ladder, Lf: lifting; OH: overhead; P: pushing; St: sitting; Sd: standing; Tp: typing; W: walking (For
some of the cases, “-” has been reported as task-specific F1 score, which means that the denominator
of the precision or recall for that specific case was zero.)

Task-Specific F1 Score in the Test DataSubject EP H Ld Lf OH P St Sd Tp W
¯ROD F̄1 ¯Acc.

S1 1.00 1.00 1.00 0.98 1.00 1.00 0.90 1.00 0.92 0.97 - 0.98 0.98
S1-DA 1.00 1.00 0.95 0.92 1.00 1.00 0.94 1.00 0.94 1.00 0.019 0.98 0.97

S2 0.94 0.98 0.63 0.66 0.94 1.00 0.90 0.97 0.89 1.00 - 0.89 0.86
S2-DA 0.97 1.00 0.66 0.72 1.00 0.94 1.00 1.00 0.97 1.00 0.015 0.93 0.89

S3 1.00 0.93 0.98 0.92 1.00 0.96 1.00 0.97 1.00 0.94 - 0.97 0.97
S3-DA 1.00 0.98 0.98 0.98 1.00 0.98 1.00 1.00 0.97 1.00 0.019 0.99 0.99

S4 1.00 0.95 0.96 0.94 1.00 1.00 1.00 1.00 1.00 1.00 - 0.99 0.98
S4-DA 1.00 1.00 0.94 0.91 1.00 1.00 0.94 1.00 0.94 1.00 0.018 0.97 0.97

S5 1.00 1.00 1.00 1.00 1.00 0.98 0.94 1.00 0.90 1.00 - 0.98 0.99
S5-DA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.018 1.00 1.00

S6 1.00 1.00 0.99 0.98 1.00 1.00 0.92 1.00 0.90 1.00 - 0.98 0.98
S6-DA 1.00 0.98 0.99 1.00 1.00 1.00 0.97 1.00 0.97 1.00 0.022 0.99 0.99

S7 0.36 0.86 0.83 0.71 0.52 0.15 0.86 - 0.94 1.00 - - 0.67
S7-DA - 0.76 0.90 0.73 0.45 0.48 0.83 0.74 0.77 1.00 0.047 - 0.72

S8 1.00 0.14 0.92 0.58 1.00 0.90 0.79 1.00 0.84 1.00 - 0.82 0.83
S8-DA 1.00 0.94 0.94 0.86 1.00 0.97 1.00 1.00 1.00 1.00 0.020 0.97 0.96

S9 0.92 0.98 1.00 0.84 0.90 1.00 1.00 0.80 1.00 1.00 - 0.94 0.94
S9-DA 0.80 1.00 0.99 0.83 0.90 1.00 1.00 0.80 0.92 1.00 0.017 0.92 0.93

S10 0.97 1.00 0.95 0.89 1.00 0.90 1.00 0.97 0.97 0.87 - 0.95 0.95
S10-DA 0.94 1.00 0.81 0.82 1.00 0.88 1.00 1.00 0.94 1.00 0.017 0.94 0.92

Figure 5. Impact of k on overall accuracy and overall F1 score in cross-subject classification.

Table 5. The number of excluded cases to obtain overall F1 score for cross-subject classification
(totally, there were 10 Subjects× 10 Tasks = 100 Cases for each method).

Method k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
No DA 4 1 2 2 1 1 1 2 1

DA 2 0 1 2 1 0 1 1 1

4.3. Cross-Sensor and Cross-Subject

For each subject from Group 1, the data collected from Sensor 2 for that specific
subject was considered to be the target data and the data collected from Sensor 1 for the
remaining subjects was used as the potential source data. The selection of source subjects
was performed similar to the cross-subject case (based on ROD metric and random selection
for DA method and without DA method, respectively) and a DA integrated with an SVM
was benchmarked against an SVM.

The comparative results for k = 5 are given in Table 6. The accuracy improvements
for different subjects ranged from 0.07 to 0.39 with an average of 0.24. Similar to the
cross-subject case, the DA method (also the benchmark) does not show a good performance
when applied to Subject 7 due to the lower adaptability of the selected source subjects to
Subject 7. Moreover, ¯ROD values for different subjects ranged from 0.030 to 0.051 with
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an average of 0.036, which were higher than those of cross-sensor case (ranging from
0.015 to 0.047 with an average of 0.021). This result makes sense because adaptation for a
cross-sensor and cross-subject (simultaneously) case should be harder than that of just the
cross-subject case.

Finally, Figure 6 and Table 7 represent the sensitivity analysis based on different values
of k. It is evident that DA always improves the overall accuracy and the overall F1 score
and a low value of k (around 3) is sufficient for the DA method to achieve its highest
accuracy and F1 score.

Table 6. Joint cross-sensor and cross-subject classification performance. Abbreviations: EP: electrical
panel, H: hoisting, Ld: ladder, Lf: lifting; OH: overhead; P: pushing; St: sitting; Sd: standing; Tp:
typing; W: walking (For some of the cases, “-” has been reported as task-specific F1 score, which
means that the denominator of the precision or recall for that specific case was zero).

Subject Task-Specific F1 Score in the Test Data ¯ROD F̄1 ¯Acc.EP H Ld Lf OH P St Sd Tp W
S1 0.67 0.63 0.63 0.56 0.94 0.44 - 1.00 0.67 - - - 0.61

S1-DA 1.00 1.00 1.00 1.00 1.00 1.00 0.52 1.00 0.76 1.00 0.039 0.93 0.94
S2 1.00 1.00 - 0.46 0.94 0.61 - 0.74 0.67 0.55 - - 0.59

S2-DA 0.92 1.00 0.86 0.84 0.97 0.98 0.69 1.00 0.77 1.00 0.030 0.90 0.90
S3 0.13 0.93 0.99 0.84 0.72 0.22 - 1.00 0.48 - - - 0.67

S3-DA 0.83 1.00 0.97 0.93 0.89 0.83 0.97 1.00 0.81 1.00 0.031 0.92 0.93
S4 0.92 0.52 0.89 0.75 1.00 0.95 - 1.00 0.60 1.00 - - 0.81

S4-DA 1.00 1.00 0.92 0.84 1.00 1.00 0.94 1.00 0.92 1.00 0.031 0.96 0.96
S5 0.61 0.97 0.90 0.85 1.00 0.30 - 1.00 0.58 0.97 - - 0.77

S5-DA 0.89 1.00 0.95 0.93 0.97 0.88 0.97 1.00 0.91 1.00 0.031 0.95 0.95
S6 0.96 1.00 0.96 0.88 0.97 1.00 - 0.97 0.67 0.87 - - 0.88

S6-DA 1.00 1.00 0.92 0.86 1.00 1.00 0.87 0.97 0.89 1.00 0.032 0.95 0.95
S7 0.12 0.32 0.76 0.56 0.53 - - - 0.63 0.52 - - 0.43

S7-DA - 0.80 0.89 0.70 - 0.30 0.97 0.97 0.79 0.90 0.051 - 0.70
S8 0.89 0.33 0.84 0.56 0.94 1.00 - 1.00 0.65 - - - 0.72

S8-DA 0.88 0.45 0.84 0.96 1.00 0.83 0.97 1.00 0.97 0.94 0.031 0.88 0.89
S9 0.76 0.67 0.95 0.59 1.00 0.67 - 0.84 0.67 - - - 0.69

S9-DA 0.88 0.97 0.98 0.89 1.00 0.98 0.94 0.89 0.89 1.00 0.041 0.94 0.94
S10 0.27 0.63 0.48 0.63 0.65 - - 0.76 0.63 - - - 0.49

S10-DA 0.69 0.98 0.89 0.91 1.00 0.80 0.83 1.00 0.71 0.94 0.044 0.87 0.88

Figure 6. Impact of k on overall accuracy and overall F1 score in cross-sensor and cross-subject
classification

Table 7. The number of excluded cases to obtain overall F1 score for cross-sensor and cross-subject
classification.

Method k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
No DA 32 20 23 21 19 19 15 16 16

DA 5 1 1 0 2 0 2 4 3
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4.4. Cross-Scenario

In this case, the data collected from Sensor 1 worn by Group 1 were considered to be
source data (separate task scenario) and the data collected from Sensor 1 worn by Group
2 were considered to be target data (mixed task scenario). As described in Section 3.1,
the design of the separate task scenario followed the conventional activity recognition
experiments, where the tasks were performed separately. On the other hand, mixed task
scenario aimed to mimic a more realistic scenario, where the tasks were spread over
the experiment.

Table 8 shows the results related to an SVM method equipped with DA benchmarked
against an SVM without DA (the typing task was excluded here because it was not per-
formed in the mixed task scenario). It is clear that DA does not improve the overall accuracy
or overall F1 score.

Table 8. Cross-scenario classification performance. Abbreviations: EP: electrical panel, H: hoisting,
Ld: ladder, Lf: lifting; OH: overhead; P: pushing; St: sitting; Sd: standing; W: walking.

Task-Specific F1 Score in the Test DataMethod EP H Ld Lf OH P St Sd W F̄1 ¯Acc.

No DA 0.64 0.94 0.91 0.90 0.95 0.84 0.97 0.98 1.00 0.90 0.93
DA 0.53 0.93 0.82 0.90 0.94 0.84 0.93 0.93 0.99 0.87 0.90

5. Discussion
5.1. Summary of the Main Contributions

In this paper, we examined the potential heterogeneities in the occupational environ-
ment of ELWs and their impact on HAR algorithms, which is a prerequisite for promoting
transferability of activity recognition models. We designed an experimental lab study to
assess four research questions that pertain to transferability of activity recognition mod-
els in (1) cross-sensor, (2) cross-subject, (3) joint cross-sensor and cross-subject, and (4)
cross-scenario heterogeneities.

Cross-sensor. We have shown that the information learned from a specific wearable
sensor can not be directly used to perform activity recognition based on a new wearable
sensor. First, there were inconsistencies between different sensors in measurement units
and sampling rates. Further, there was missing data in the acceleration data collected
from Sensor 2. In the preprocessing step, we resolved these preliminary inconsistencies
using basic statistical techniques, such as interpolation. Second, the features extracted
from the source data were distributionally different from those of the target data. The
comparative analysis shown in Table 3 confirms this distributional heterogeneity, as a
domain adaptation prior to an SVM could increase the classification accuracy by at least
0.08 (and on average 0.29) compared to when an SVM without DA is employed. This result
is in accordance with Zhou et al. [36], where their deep domain adaptation framework
could increase the classification accuracy by at least 0.04 (and on average 0.28) compared to
an SVM baseline in cross-sensor classification of gesture and sport activities. Therefore, it
is of utmost importance to assess the cross-sensor heterogeneity when a change or update
occurs in the configuration of the activity recognition system and, if needed, employ a DA
method to maintain a good performance.

Cross-subject. The comparative analysis summarized in Table 4 demonstrated that
the models directly trained (without DA) using a limited number of subjects could be used
to recognize the activities of a new unseen subject with an acceptable level of accuracy.
However, on average, the classification accuracy was improved by 0.02 through applying
DA and transferring the information from a subset of the pre-existing subjects, selected
by ROD, to a new subject. The accuracy improvement in this case was not as large as that
for the cross-sensor case. This result conforms with the accuracy improvement results
reported in the literature for cross-subject heterogeneity. For example, Zhao et al. [55] and
Chakma et al. [37] achieved accuracy improvements of 0.05 and 0.02, respectively. Hos-
seini et al. [54] and Zhou et al. [36], however, had reported higher accuracy improvements
for cross-subject heterogeneity, as there were higher heterogeneities between their subjects
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in source data and target data. In particular, Hosseini et al. [54] had grouped the subjects
into adults and children and Zhou et al. [36] had grouped the subjects by age, body mass
index (BMI), and sex.

In this case, the correlation between overall accuracy and ¯ROD was−0.83. Gong et al. [38]
used ROD for image classification and demonstrated that “ROD correlates well with
recognition accuracies on the target domains and can reliably identify the best source
domains to adapt” (a lower ROD indicates stronger adaptability of the source domain to
the target domain). The significant correlation value obtained in this case confirms the
usability of ROD metric in the source selection process of activity recognition. Therefore,
one can use ROD to select a limited number of source subjects among many subjects and
avoid less adaptable subjects. In addition to improving performance, it is computationally
more efficient to select a few subjects that are likely to adapt well to the target subject,
rather than trying each one [38]. This advantage can promote developing fast-response IoT
wearable sensors, which are essential for people working in hazardous environments [64].

As mentioned in Section 4.2, DA did not perform well when applied to Subject 7 and
we could have foreseen this bad performance without performing the DA and prediction,
as the ¯ROD value related to this subject is higher compared to other subjects. Although
our approach attempts to select the most adaptable subjects as source data, it was hard to
find subjects that could be well-adapted to Subject 7. Based on our recorded demographic
information, Subject 7 was a female who was 163 centimeters tall and weighed 44 kilograms.
Her BMI was 16.56 kg/m2, which was lower than other subjects. Therefore, the resulting
poor performance could be explained. Given a higher number of subjects, we expect that
a clustering approach based on ROD metric could have improved the accuracy for this
specific subject and the overall accuracy of our approach.

Joint cross-sensor and Cross-subject. The results of the joint cross-sensor and cross-
subject case were along the same lines of when we dealt separately with the cross-sensor or
cross-subject cases, apart from the fact that simultaneous existence of two heterogeneities
made the problem harder. The accuracy improvement resulting from DA ranged from
0.07 to 0.39, with an average of 0.24. The average of ¯ROD values was 0.036, which was
higher than the 0.021 observed in the cross-sensor case. This result indicates that when
two heterogeneities co-existed, the adaptation was harder. After DA, the overall accuracy
averaged over all of the subjects was 0.90, which was lower than the average overall
accuracy of cross-sensor (0.95) and cross-subject (0.93) cases. Similar to the cross-subject
case, a meaningful correlation between ¯ROD and obtained overall accuracies (−0.74) and a
high ¯ROD value for Subject 7 confirms the usability of ROD metric as a source selection
approach. In summary, leveraging DA methods is of great importance when dealing with
a joint cross-sensor and cross-subject situation.

Cross-scenario. We demonstrated that the information learned from a controlled lab
experiment (separate task scenario) can be directly applied to another scenario, which is
more similar to the environment of a real-world workplace from task dispersion viewpoint
(mixed task scenario). In particular, Table 8 shows that both accuracy and F1 score are ac-
ceptable before DA and decrease after DA. This result indicates that the new representation
of the features in a lower dimension is not more informative than the original features and
results in destruction of important information. We conclude that there is not a significant
heterogeneity between separate and mixed task scenarios. This conclusion is in agreement
with Hong et al. [31], who showed that the accuracy of their ADL recognition for field
(in-home) and lab studies were comparable.

5.2. Limitations and Suggestions for Future Research

There are a few limitations that must be noted for this work. First, our lab experiment
was not designed to overexert the subjects and induce fatigue in them. In laborious jobs,
there is a possibility that the distribution of the extracted features changes over time due
to fatigue, which may impact the performance of activity recognition. To investigate this,
one can relax the distributional stationarity assumption and assume that target data not
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only differ from source data, but differ from it in a continually progressing manner. For in-
stance, Hoffman et al. [65] developed a continous manifold based adaptation approach for
scene detection with gradually changing lighting. A similar approach can be employed to
examine the impact of fatigue on classification, as fatigue usually evolves in an incremental
way. Second, in our mixed task scenario, the activities were spread over the time of the ex-
periment to imitate the situation of a real-world workplace. However, there might be other
heterogeneity sources apart from dispersion of activities that can impact the performance
of activity recognition, such as environmental factors. Thus, a more comprehensive study
is required to identify other factors and examine how they can impact the performance of
activity recognition.

Finally, we present three suggestions for future study. First, studies should investigate
how HAR can benefit from an ROD-based clustering approach. The conventional belief
is that demographically similar subjects would show similar activity patterns; however,
Hong et al. [31] demonstrated that their approach, called single-personalization (SP),
performed better than others that rely on subjects’ demographic information for classifying
their activities. In particular, they showed that the subjects who matched each other based
on SP were often demographically different. An ROD-based clustering method can group
subjects into clusters, where the subjects within each cluster are more likely to have similar
activity patterns. Second, real-time activity recognition is more favorable than offline
activity recognition from a safety monitoring perspective. However, real-time DA is a
challenging task, as DA requires adequate information about distribution of target domain,
which is not available at the beginning of a real-time monitoring. For instance, some
classes are absent at the beginning of the monitoring, which poses a serious challenge
to DA. Real-time DA has been studied in multiple works [34,65,66] and is worthy of
consideration in activity recognition. Third, unlabeled activities are important to consider.
One way to deal with this issue is to treat unlabeled activities as a null class. However,
this is challenging from a data collection viewpoint, as the null class should contain a
wide range of activities, which are dissimilar to other existing activities. Thus, real-time
classification of occupational activities when null activities exist can be an interesting
direction of future work.

6. Conclusions

While wearable sensors offer favorable opportunities for activity recognition and
monitoring of occupational workers, the performance of activity recognition remains
a concern due to a number of real-world heterogeneities. In this work, we aimed to
investigate the impact of four heterogeneity sources (cross-sensor, cross-subject, joint
cross-sensor and cross-subject, and cross-scenario heterogeneities) on activity recognition
performance of a common set of activities in electrical line workers. To that end, a support
vector machine classifier equipped with a domain adaptation method was benchmarked
against a standard support vector machine baseline. In addition, a metric, rank of domain,
was used for the first time to automatically determine which existing subjects as training
set would give us the best performance on a new unseen subject. Our results demonstrated
that cross-sensor, cross-subject, and joint cross-sensor and cross-subject heterogeneities
had an adverse impact on activity recognition performance, where domain adaptation
alleviated the adverse impact and improved the accuracy. Cross-scenario heterogeneity,
on the other hand, did not show any harmful impact on classification accuracy. We also
uncovered the effectiveness of the rank of domain metric and verified its interpretability.
We believe that our work can pave the way for applying activity recognition to real-world
occupational environments, where heterogeneities exist.
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