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Abstract: Considering that the actual operating environment of UAV is complex and easily disturbed
by the space environment of urban buildings, the RoutE Planning Algorithm of Resilience Enhance-
ment (REPARE) for UAV 3D route planning based on the A* algorithm and artificial potential fields
algorithm is carried out in a targeted manner. First of all, in order to ensure the safety of the UAV
design, we focus on the capabilities of the UAV body and build a risk identification, assessment, and
modeling method such that the mission control parameters of the UAV can be determined. Then, the
three-dimensional route planning algorithm based on the artificial potential fields algorithm is used
to ensure the safe operation of the UAV online and in real time. At the same time, by adjusting the
discriminant coefficient of potential risks in real time to deal with time-varying random disturbance
encountered by the UAV, the resilience of the UAV 3D flight route planning can be improved. Finally,
the effectiveness of the algorithm is verified by the simulation. The simulation results show that the
REPARE algorithm can effectively solve the traditional route planning algorithm’s insufficiency in
anti-disturbance. It is safer than a traditional A* route planning algorithm, and its running time is
shorter than that of the traditional artificial potential field route planning algorithm. It solves the
problems of local optimization, enhances the UAV’s ability to tolerate general uncertain disturbances,
and eventually improves resilience of the system.

Keywords: resilience; risk assessment; three-dimensional route planning; A* algorithm; artificial
potential fields algorithm

1. Introduction

Rotor UAVs have the advantages of low-state coupling and flexibility in space attitude,
which greatly improves the work efficiency of the platform; thus, they are favored by
practitioners of high-altitude operations. Human-in-the-loop UAV systems have certain
capacity limitations. In some disturbed scenarios, the mis-operation of human pilots or
communication delays will cause the rotor UAV to make a wrong flight route, which is
obviously unreliable.

To solve the problems of autonomous anti-disturbance, obstacle avoidance and plan-
ning of UAVs, a variety of UAV-assisted algorithms for specific needs have been devel-
oped. Traditional UAV autonomous route planning algorithms mainly include the A*
algorithm [1–3], ant colony algorithm [4–7], simulated annealing algorithm [8–11], Particle
Swarm algorithm [12–14], artificial potential fields algorithm [15–19], etc. The A* algorithm,
represented by a small amount of calculations and fast speed, has difficulties ensuring the
safe operation of the UAV in an environment involving disturbance. The artificial potential
fields algorithm which is safe and controllable needs to calculate too many repulsion fields
in multiple complex obstacle scenes, and the calculation is complicated. When rotor UAVs
perform actual flight tasks among complex urban buildings, they are likely to face sudden
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strong winds, showers, etc. The displacement deviation caused by these external distur-
bances to the UAV makes the UAV deviate from the mission route. The anti-disturbance
performance of the traditional route planning algorithm is not strong, and it will deviate
from the expected route in the disturbance scenario, and it may collide with obstacles. Once
a rotor UAV collides, it often means serious consequences such as damage to the body and
an uncontrolled crash. The safety control of UAVs has attracted extensive attention, and
it has become necessary to study a route planning algorithm that considers both safety
and efficiency.

In order to realize the smooth operation of the UAV in the disturbance field, the
traditional artificial potential fields algorithm and some common improved A* algorithms
can make the UAV keep an extra safe distance from the obstacle in the disturbance scene.
Even if the UAV is disturbed and shows a tendency to deviate from the route, it can also
be returned to the route. When these algorithms are applied to the situations in which the
disturbance intensity changes at any time and the change intensity span is large, they may
cause insufficient or excessive correction, which will lead to security risks.

On the basis of improving the A* algorithm and the artificial potential fields algorithm,
this paper proposes the REPARE algorithm based on risk assessment, such that the UAV
can operate independently and safely. In the face of disturbance, UAVs identify risks,
assess the risks, counter the disturbance, and correct the route. When facing obstacles, they
dynamically avoid obstacles and plan routes. This fully reflects the UAV’s tolerance to
unstable factors, giving the system a certain resilience.

In the second section, this paper will introduce the UAV resilience and the process
of determining the UAV resilience implementation through disturbance analysis, risk
assessment and dynamic route planning. The third section presents the simulation results
and comparative validation of the REPARE algorithm.

The main significances of this paper are as follows:
1. This paper analyzes the common disturbance scenarios of the rotor UAV and the

force after the disturbance, and it realizes the resilience of the UAV’s navigation route
through the parallel guarantee of two sets of mechanisms.

2. The UAV risk identification, risk assessment and risk prediction models are designed
through the mechanism of determining a reasonable safety range, such that the UAV can
have a preliminary evaluation of the task risk and difficulty before flying and can correct
the resilience coefficient in advance.

3. Using the method of machine learning (XGBoost), the discrete degree of risk
distribution of the UAV’s route planning in the disturbed scene is predicted.

4. By adjusting the potential risk compensation penalty weight coefficient and by
dynamically adjusting the obstacle avoidance parameters, the UAV’s real-time variable
strategy route planning is realized.

5. Through the online real-time monitoring mechanism, the status of the UAV is
monitored in real time. After approaching the obstacle for a certain distance, the obstacle
avoidance module is turned on in time to maintain a sufficient safety distance. When
encountering unforeseen risk factors, there are still possibilities for readjustment, such that
the navigation route of the UAV is safer.

6. Through the Monte Carlo simulation, the resilience of RoutE Planning Algorithm of
Resilience Enhancement (REPARE) is verified.

2. Resilience Enhancement Design for UAV 3D Route Planning
2.1. UAV Resilience

UAV resilience [20,21] refers to the ability of the UAV auxiliary control system to
withstand, absorb, recover and improve in the face of external disturbances. When dis-
turbance occurs, the safe operation of the system is maintained by sacrificing part of the
operating efficiency and enhancing the safety capacity. For example, the UAV reduces
the maximum speed and the pitch angle. When the disturbance ends, the system returns
to its pre-accident performance. If the UAV auxiliary control system can meet the above
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description, it is said that the UAV auxiliary control system has resilience, which is referred
to as UAV resilience and which enables the UAV to take into account safety and efficiency
while ensuring the operation of the mission.

2.1.1. Ideas for the Realization of UAV Resilience

For an ideal scenario without disturbance, UAVs only need to fly in the order of
pre-set mission points to perform tasks. In common disturbance scenarios, pre-existing
route planning algorithms can achieve a certain degree of anti-disturbance. Under some
strong disturbance and strong loads, the risk may exceed the safety range of the UAV.
According to the disturbance intensity of external factors, the risk is quantified according
to the classification, which is beneficial to further research and optimization of the UAV
resilience design.

Figure 1 is the design block diagram of the resilience enhancement design of 3D route
planning when the UAV is subjected to external disturbances such as wind, a magnetic
field and rain.
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As is shown in Figure 1, when the disturbance occurs, the UAV identifies potential
security risks and uses the UAV’s two-layer security protection mechanism; that is, the
UAV refers to its own physical entity performance to determine a reasonable security range
mechanism and the UAV online real-time monitoring mechanism. The UAV describes the
safety boundary according to the mechanism of determining a reasonable safety range,
then dynamically adjusts the UAV route planning and obstacle avoidance parameters
according to the online real-time monitoring mechanism, and selects the appropriate route
resilience planning strategy for different levels of disturbance; thus, the resilience of the
UAV is enhanced.

2.1.2. UAV Risk Identification to Determine a Mechanism of Determining the Reasonable
Safety Range

The mechanism of determining the reasonable safety range of the UAV (safety range
insurance) is based on the UAV’s own physical entity performance, such as: maximum
ascent speed, maximum horizontal flight speed, maximum tilt angle, maximum wind
resistance level, maximum load and other constraints. Before the UAV is put into operation,
the test flight status information of the UAV under various experimental conditions is
collected, and the quantitative modeling and analysis of the degree of disturbance of the
UAV is carried out. The offset is used as a labeled dataset for training, and an analysis and
correction model of the offset after the UAV is disturbed is obtained. The model is finally
deployed on the UAV, and the difficulty of the task is predicted and judged according to
the task scene analysis so as to realize the UAV resilience route planning of each task.

UAV risk identification is the real-time input of the UAV based on prior inputs,
such as load, wind speed, rainfall and various sensors. Based on the comprehensive
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judgments of prior data and real-time data, the REPARE algorithm pre-sets the flight
strategy for this mission and completes the flight preparations according to the judgments
of risk assessment.

2.1.3. Dynamic Track Planning of Online Real-Time Monitoring Mechanism

When the system is running, the online real-time monitoring monitors the operating
status of the system online to ensure the real-time security of the system. It is mainly
composed of a basic controller, advanced controller and a monitor. The basic controller can
meet the basic control needs (baseline), and the advanced controller is better than the basic
controller in the security performance of the control object, but it also pays a certain price of
efficiency (trade-off). The monitor monitors the running status and selects the appropriate
controller for adaptation.

UAV dynamic route planning is a real-time monitoring of the disturbed field by the
UAV according to its own environment and sensors, and it adjusts the working intensity of
the obstacle avoidance module according to the needs for anti-disturbance.

2.2. Risk Assessment of Mechanisms for Determining Reasonable Security Scope

UAVs face different disturbances in different mission scenarios such as wind, rain,
sand, magnetic fields, etc. Its essence can be summarized as displacement offset disturbance
and load disturbance. In this paper, the application of the REPARE algorithm is illustrated
by taking the UAV flying in a windy and rainy building group, as an example.

2.2.1. Disturbance Analysis of UAV in Wind and Rain

The maximum ascent speed of the UAV is limited by the power of the engine. In
the Cartesian coordinate system, the ascent is in the same direction as the positive z-axis,
setting maximum lift as FzMax. All symbols and definitions can be found in Table A1 in the
Appendix A.

Considering the disturbance in the direction of gravity, for example, when the UAV
is flying in rainy days, the pressure Pr will be generated when the raindrops fall on the
UAV’s body. The effective area of the UAV’s body which can be hit by the rain is Sr, and
the falling speed of the raindrops is Vr. The raindrops rebound after falling on the fuselage
of the UAV, the momentum loss of rainwater is ηr. Within unit time t, the amount of
precipitation is Hr, and the density of the rainwater is ρr. In the end, the vertical force of
the rain when the UAV is flying in the rain is Fr, and the resilience coefficient fulfilling the
flight safety of the UAV is δr.

Fr = PrSr =
HrρrVr(1− ηr)

t
(1)

Setting the UAV self-weight as Guav, UAV load as Gs, and vertical disturbance force as Fr:

FzMax > δr(Guav + Gs) + Fr (2)

According to the weather forecast, the forecasted average wind speed
→

VµF and max-

imum wind speed
→

VMaxF of the day can generally be known as prior knowledge. The
average wind speed per unit time tw measured by the UAV sensor in the current flight envi-

ronment is
→

VµS. According to the comprehensive consideration of the predicted wind speed
and the measured wind speed, the larger value is taken as the basis for the instantaneous
risk assessment.

Vres = Max(|
→

VµF|, |
→

VµS|) (3)



Sensors 2022, 22, 2151 5 of 19

The maximum speed that the UAV can reach in a no-wind state is
→

Vuav. When the
UAV’s flight speed relative to the ground

→
v meets the mission required speed Vd, the

equation is as follows:
→
Vd ≤

→
v =

→
VwMax +

→
Vuav (4)

The force in the horizontal direction of the UAV according to the air resistance formula
is calculated:

Fhmax =
1
2

CρaSw
→
Vd (5)

C is the air resistance coefficient, ρa is the air density, and Sw is the equivalent area of
the UAV in contact with the wind.

Through the calculation, the disturbance force perpendicular to the ground FzMax and
the disturbance force in the horizontal direction Fhmax can be obtained, and the data records
of previous missions can be collected for risk prediction.

2.2.2. Disturbance Classification Model Based on Gaussian Distribution

According to the current scene of the UAV performing the task, the obstacle avoidance
parameters will be set according to the prior data prediction, and the obstacle avoidance
parameters at this time are macro parameters. When the UAV hovers in the air, the
displacement difference per unit time is ∆S, and the disturbance force calculated in real
time is F. After a large number of repeated experiments, the disturbance force F can be
simulated to approximately fulfill the Gaussian distribution.

Let n(x) denote the probability density function of the one-dimensional shift x under
the σ level of risk and µ level of disturbance.

n(x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
(6)

As shown in Figure 2, according to the Pauta criterion, the results of the random test
were standardized to obtain the standard deviation σ. Generally, only if the random result
is within three standard deviation 3σ offsets, that is, within the probability interval of 99.7%,
we consider that the result of the random experiment contains only random errors and no
gross errors.
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In the research on the universal requirements of UAV resilience, as long as the offset
of the UAV after disturbance is within 3σ (the green filled part), we consider it to meet the
resilience requirements.

Among them, according to different σ risk levels, an image is drawn for the offset
difference per unit time ∆S, which is shown in Figure 3. When more than 99.7% of the
probability of the disturbance force is within the interval, it can be considered safe. We
can see from the safety discriminant point that different risk levels have different offsets to
fulfil safety.
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2.2.3. Disturbance Risk Prediction

The extreme value of the disturbance force received by the UAV is difficult to measure
in a short period of time. It needs to be estimated using a forecast. In a Gaussian distribution-
based disturbance force model, it is influenced by the value of σ. By combining traditional
weather forecasting and machine learning, we used the UAV’s previous flight data as a
dataset and trained the UAV with offset prediction models such as temperature, humidity,
atmosphere, wind, wind direction and solar radiation intensity. For the preprocessed
samples, tabulation, and label separation, 4/5 (5864) were randomly selected for training the
model, and the remaining 1/5 (1466) were used as the test set. The Ridge algorithm of Linear
model was selected. Ridge regression is a biased estimation regression method dedicated
to collinear data analysis. GaussianNB algorithm of Naive Gaussian Bayesian classifier
and XGBClassifier method of XGboost are the Gradient Boosting Decision Tree’s additive
model improvement based on the idea of boosting ensemble learning. The predicted results
were compared with the original data, and the accuracy rates were 9.424%, 59.426%, and
72.852%, respectively. The results are shown in Figure 4. We selected the model trained by
the best XGBClassifier.
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According to the prediction result, the discrete degree of risk distribution σ in the
disturbance force distribution model was determined by rounding up.

2.2.4. Comprehensive Condition Discrimination Processor

According to the training model, the UAV can fuzzily predict the offset of the UAV
after disturbance to determine the safety boundary, which has certain reference significance,
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but the offset of the fuzzy prediction is not necessarily accurate. If the actual offset does not
reach the resilience range threshold adjusted by the UAV, it is fortunate that the UAV only
wastes some operational efficiency, and there is no safety risk. Once this offset exceeds the
resilience threshold of the UAV’s regulation, then the UAV faces a safety risk. Therefore,
we made a comprehensive conditional discrimination processor to determine whether to
improve the resilience coefficient ξ according to the discrimination results.

2.3. Dynamic Route Planning of Online Real-Time Monitoring Mechanism

Through the design concept of an online real-time monitoring mechanism, the idea
of UAV resilience is realized. Based on the combination of the improved A* algorithm
and artificial potential fields algorithm, the potential risk compensation penalty weight
ω of the UAV 3D flight route planning algorithm is adjusted in real time according to
the comprehensive judgments of disturbance force and traction force, so as to realize the
real-time variable strategy route planning of UAV.

2.3.1. Track Planning Based on Improved A* Algorithm

As shown in Figure 5, the 26 nodes around the UAV are the ring nodes, with the UAV
as the central point. The ring nodes that precisely cover the width of the UAV’s fuselage
are the inner ring nodes, and the ring nodes that are required for the UAV to maintain safe
operation in a disturbance scenario are the outer ring nodes. Obviously, the outer ring
nodes cover a wider area than the inner ring nodes.
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The traditional A* route planning algorithm is simple to calculate and fast to run,
which is ideal for use on small UAVs with limited computing power. Its algorithm flow
chart is shown in Figure 6.
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However, the traditional A* route planning algorithm cannot maintain a safe distance
from the obstacle, thus it is improved to meet the requirement of a safe distance.

In order to ensure the safety of the UAV, it is required to maintain the minimum safe
distance between the UAV and the environmental obstacles, that is, the safety area Dmin.
Let the current environment disturbed with the UAV’s route offset be ξ, and the diameter
of the UAV itself be Duav, when the minimum safe distance Dmin fulfills the Formula (7):

Dmin ≥ ξ +
1
2

Duav (7)

It can be considered that the UAV maintains a minimum safe distance Dmin to meet
the needs of UAV resilience.

In the improved A* algorithm, the cost of the nodes around the UAV is calculated and
sorted through the cost function, and the point with the lowest cost is selected as the next
path point. Let the start point be (xs, ys, zs), the target point be (xe, ye, ze), and the UAV
currently be at (xi, yi, zi), (s < i < e). This paper uses the Euclidean distance to calculate
the estimated cost h(i) of the UAV’s distance from the target point:

xi,e = xi − xe
yi,e = yi − ye
zi,e = zi − ze

(8)

h(i, e) = Deuc(i, e) =
√

xi,e
2 + yi,e

2 + zi,e
2 (9)

g(s, i) =
n=i−1

∑
n=s

Deuc(n, n + 1) (10)

g(s, i) represents the cumulative path cost from the starting point to the ith node;n is
an independent variable. In order to maintain a certain distance from obstacles and fully
consider the potential safety hazards caused by nearby obstacles to the UAV, the improved
A* algorithm modifies the total cost function T(n) in the traditional A* route planning
algorithm to make sure that if the UAV does not hit the obstacle, even if it is close to the
obstacle, there will be a compensation penalty O(s, i). When the UAV chooses the strategy
of bypassing the obstacle as much as possible, it avoids the situation of flying close to the
obstacle, so as to realize the UAV’s resilience. The total cost function T(n) of the improved
UAV at the current position T(i) is set as follows:

T(i) = g(s, i) + h(i, e) + O(s, i) (11)

O(s, i) = g(s, i)Oriskω (12)

Orisk is the potential risk discrimination coefficient. When the UAV’s monitor detects
that the outer ring wayfinding point coincides with the obstacle, it is 1, and it is 0 when there
is no coincidence. Deuc is the Euclidean distance, and ω is the potential risk compensation
penalty weight, which is adjusted according to the degree of disturbance. The larger the
value, the more safety strategy the UAV will focus on when making route-finding decisions,
and the greater the distance reserved for obstacles. On the contrary, it is more focused on
the quick strategy, and the reserved distance is smaller. The final total cost function T(i) is
organized as follows.

T(i) =

[
n=i−1

∑
n=s

Deuc(n, n + 1)

]
·(1 + Oriskω) +

√
xi,e

2 + yi,e
2 + zi,e

2 (13)

It can be seen that the control risk parameter Orisk of the potential risk discrimination
coefficient ω is a fixed value set before the start of the task, and it cannot be adjusted at any
time during the operation of the UAV. For this reason, we introduce the idea of artificial
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potential fields algorithm to improve it. By constructing a repulsion function that describes
the risk level, the UAV is guided to maintain a safe distance from obstacles.

2.3.2. Improved Resilience Algorithm Based on Artificial Potential Fields Algorithm

The traditional artificial potential field route planning algorithm is safer compared
with the traditional A* algorithm, which reserves a safe distance. However, it is computa-
tionally intensive, runs slowly, and tends to fall into local optimization when encountering
notch-type obstacles, resulting in the UAV being trapped in the obstacles and wander-
ing indefinitely. The flow chart of the traditional artificial potential field route planning
algorithm is shown in Figure 7.
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The traditional artificial potential field method is adopted.
The core idea of the artificial potential fields algorithm is to construct the traction

function of the distance and the traction force between the UAV and the target point,
and the repulsion function of the distance and the repulsion force between the UAV and
the obstacle discriminating point. The two functions are compared after weighing the
coefficients. In this paper, based on the resilience algorithm, the concepts of traction Ftra
and repulsion Frep are added to dynamically balance the resilience force. The coordinates
of the obstacle node are (xo, yo, zo):

Ftra = −∆Utra = −ktra·Deuc(i, e) (14)

Frep = −∆Urep =

{
krep·

(
1

D(i,o) −
1
R

)
·
(

1
D(i,o)

)2
(D(i, o) ≤ Dmin)

0 (D(i, o) > Dmin)
(15)

Once the UAV monitor detects that the obstacle node coincides with the wayfinding
point of the UAV outer ring, it means that the obstacle node has entered the UAV risk
identification area. The resultant force of traction force Ftra, repulsion force Frep, disturbance
force perpendicular to the ground Fz, disturbance force in the horizontal direction Fh, and
load force G is calculated, where ϑF and ϑG are the weighting factors of the disturbance
force and load. The final resultant force of the UAV is Ff in.

Ff in = Ftra + Frep + ϑF(Fz + Fh) + ϑG(Guav + Gs) (16)
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According to the size of the resultant force, whether the UAV is close to the obstacle
is determined.

The pseudo code of the REPARE algorithm program is as follows (Algorithm 1),

Algorithm 1: Route Planning of Resilience Enhancement.

Input 1: Coordinates of the initial node and the target node 1
Input 2: Current disturbance field level 2
Output: List of coordinates of planned route 3
Choose the appropriate distance ξ according to the disturbance field level 4
Create Open-list and Close-list 5
Put the initial node into the Open-list 6
Repeat 7
If Open-list is empty 8

Break 9
Else 10

Add a ring of coordinates of the current node to the Open-list 11
Traverse the outer ring coordinates of the current ring node 12
The sensor records the current disturbance force Fz Fh 13

If Crash=Ture (the outer ring nodes meet obstacles) 14
Calculate tractive and repulsive forces Ftra Frep 15

Orisk = 1 16
Ff in = Ftra + Frep + ϑF(Fz + Fh) + ϑG(Guav + Gs) 17

Else 18
Orisk = 0 19

Ff in = Ftra + ϑF(Fz + Fh) + ϑG(Guav + Gs) 20
Calculate the total cost of each node in the inner ring 21

Put the current node into the Close-list 22
If the current node is the target node 23

Break 24
If the current node has adjacent nodes 25

Add adjacent nodes to the Open-list 26
Return list of nodes planned 27

3. Experimental Verifications
3.1. Experimental Environment

In order to verify the feasibility of the REPARE algorithm, based on the Python lan-
guage environment, a simulated environment for UAV operation was built by autonomous
coding, and the total range of the map was 100 × 100 × 100 m. Through five buildings of
different shapes, a complex urban building complex was simulated. The obstacle location
information is shown in Table 1. The authors used the following hardware configura-
tion: Intel Xeon W-2225 4.10 GHz CPU, 32 GB memory. The experiment was run in the
Win10 system.

Table 1. Distribution of obstacles.

No. Coordinate of Nodes Color

1
(70,15,0), (60,15,0), (60,45,0), (70,15,65), (95,35,0), (70,35,0),

(60,15,65), (60,45,65), (95,45,0), (95,45,65), (95,35,65), (70,35,65),
(65,15,70), (65,40,70), (90,40,70)

Peach puff

2 (10,15,0), (10,55,0), (35,55,0), (35,15,0), (10,15,60), (10,55,60),
(35,55,60), (35,15,60), (22,25,65), (22,45,65) Cyan

3 (70,60,0), (70,80,0), (90,80,0), (90,60,0), (70,60,80), (70,80,80),
(90,80,80), (90,60,80), (75,65,90), (85,65,90), (85,75,90), (75,75,90) Green

4 (15,65,45), (10,75,45), (50,95,45), (55,85,45), (15,65,60), (10,75,60),
(50,95,60), (55,85,60) Blue

5 (45,55,0), (48,53,0), (50,55,0), (50,60,0), (48,62,0), (45,60,0), (45,55,95),
(48,53,95), (50,55,95), (50,60,95), (48,62,95), (45,60,95), (48,58,99) Yellow
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3.2. Deployment Algorithms

The traditional A* route planning algorithm, the traditional artificial potential field
route planning algorithm, and the REPARE algorithm are deployed in the disturbance-free
scenario, as shown in Figures 8–10. The red line represents the route that the UAV finds
autonomously deploying the route planning algorithms. Comparing the routes of the
three algorithms, one is to find that the UAV routes deployed with the traditional A* route
planning algorithm and REPARE algorithm are similar in distance, and the UAV routes
deployed with the traditional artificial potential field route planning algorithm are farther
away. In the disturbance-free scenario, the UAV deployed with REPARE algorithm reduces
the work intensity of the obstacle avoidance module, and a more reasonable and efficient
route can be planned.
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The starting and target points are randomly generated, and after a large number of
repeated experiments, the average running time and distance of the three algorithms are
compared, and they are normalized by the parameters of the traditional artificial potential
field route planning algorithm. The comparison results are shown in Table 2.

Table 2. Comparison of the three algorithms’ average time and distance.

Algorithm Route Distance Time

Traditional A* route planning algorithm 0.952 0.558
Traditional artificial potential field route planning algorithm 1 1

REPARE 0.973 0.655

The REPARE algorithm is deployed in the environment. Such intrinsic parameters
such as UAV deadweight and load are pre-set. The external disturbance parameters are
wind, rain, magnetic field, etc. Subjecting the UAV to disturbance forces under different
loads creates a tendency to deviate from the course. The trend is corrected by the REPARE
algorithm according to the local conditions. Compared to the UAVs deployed with the
traditional A* route planning algorithm and the traditional artificial potential field route
planning algorithm as a control group, the UAVs deployed with the traditional A* algorithm
do not reserve a safe distance and will collide once they are disturbed. A crash is shown
as the red “X” in Figure 11. The UAVs deploying the traditional artificial potential field
route planning algorithm and the REPARE algorithm have the ability to resist disturbance.
Among them, the REPARE algorithm leaves a smaller safety margin because the algorithm
identifies less intensity of disturbance, which can reduce the safety requirements and
improve the efficiency of the UAV operation.

In particular, when the UAV deploying the traditional artificial potential field route
planning algorithm is too close to a notch-type obstacle (peach puff), a local optimization
problem arises, and the UAV trembles infinitely in the notch at the spot represented by the red
”X” and cannot avoid the obstacle, as is shown in Figure 12. The REPARE algorithm can avoid
local optimization problems by introducing the Open-list of the A* algorithm. The routes of
the UAV deploying the traditional artificial potential field route planning algorithm and the
REPARE algorithm in the disturbance scenario are shown in Figures 13 and 14.



Sensors 2022, 22, 2151 13 of 19

Sensors 2022, 22, x FOR PEER REVIEW 13 of 19 
 

 

traditional A* route planning algorithm and the traditional artificial potential field route 
planning algorithm as a control group, the UAVs deployed with the traditional A* algo-
rithm do not reserve a safe distance and will collide once they are disturbed. A crash is 
shown as the red “X” in Figure 11. The UAVs deploying the traditional artificial potential 
field route planning algorithm and the REPARE algorithm have the ability to resist dis-
turbance. Among them, the REPARE algorithm leaves a smaller safety margin because 
the algorithm identifies less intensity of disturbance, which can reduce the safety require-
ments and improve the efficiency of the UAV operation. 

 
Figure 11. UAV route deploying traditional A* route planning algorithms in disturbance scenarios. 

In particular, when the UAV deploying the traditional artificial potential field route 
planning algorithm is too close to a notch-type obstacle (peach puff), a local optimization 
problem arises, and the UAV trembles infinitely in the notch at the spot represented by 
the red ”X” and cannot avoid the obstacle, as is shown in Figure 12. The REPARE algo-
rithm can avoid local optimization problems by introducing the Open-list of the A* algo-
rithm. The routes of the UAV deploying the traditional artificial potential field route plan-
ning algorithm and the REPARE algorithm in the disturbance scenario are shown in Fig-
ures 13 and 14. 

 
Figure 12. Deployment of local optimization of traditional artificial potential field route planning 
algorithms. 

Figure 11. UAV route deploying traditional A* route planning algorithms in disturbance scenarios.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 19 
 

 

traditional A* route planning algorithm and the traditional artificial potential field route 
planning algorithm as a control group, the UAVs deployed with the traditional A* algo-
rithm do not reserve a safe distance and will collide once they are disturbed. A crash is 
shown as the red “X” in Figure 11. The UAVs deploying the traditional artificial potential 
field route planning algorithm and the REPARE algorithm have the ability to resist dis-
turbance. Among them, the REPARE algorithm leaves a smaller safety margin because 
the algorithm identifies less intensity of disturbance, which can reduce the safety require-
ments and improve the efficiency of the UAV operation. 

 
Figure 11. UAV route deploying traditional A* route planning algorithms in disturbance scenarios. 

In particular, when the UAV deploying the traditional artificial potential field route 
planning algorithm is too close to a notch-type obstacle (peach puff), a local optimization 
problem arises, and the UAV trembles infinitely in the notch at the spot represented by 
the red ”X” and cannot avoid the obstacle, as is shown in Figure 12. The REPARE algo-
rithm can avoid local optimization problems by introducing the Open-list of the A* algo-
rithm. The routes of the UAV deploying the traditional artificial potential field route plan-
ning algorithm and the REPARE algorithm in the disturbance scenario are shown in Fig-
ures 13 and 14. 

 
Figure 12. Deployment of local optimization of traditional artificial potential field route planning 
algorithms. 
Figure 12. Deployment of local optimization of traditional artificial potential field route planning
algorithms.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 13. UAV route deploying traditional artificial potential field route planning algorithms in 
disturbance scenarios. 

 
Figure 14. UAV route deploying REPARE algorithm in disturbance scenarios. 

3.3. Risk Assessment of UAVs 
The larger the actual load of the UAV is, the more kinetic energy the UAV has to be 

paid when adjusting the sailing speed, altitude and attitude. To take a civil light quadrotor 
UAV as an example, according to the kinetic energy classification, the load and disturb-
ance wind speed can be obtained as follows in Table 3. It should be noted that: 

1. The level of “no disturbance” means no wind conditions, not absolutely no wind, 
but the wind speed is low, which has little impact on the UAV. It only needs to be consid-
ered in the case of an extreme load of the UAV. 

2. Under severe disturbance, it is possible that the equivalent mass of the disturbance 
force in the z-axis direction (heavy rain) exceeds the maximum load of the UAV. Thus, the 
flying stops. 

Table 3. Schematic representation of the degree of adjustment of the resilience system. 

Load/Disturbance Dead Load Light Load Moderate Load Heavy Load 

No disturbance 
Resilience system shuts 

down 
Resilience system shuts 

down 
Lower resilience factor 

Intermediate resilience 
factor 

Figure 13. UAV route deploying traditional artificial potential field route planning algorithms in
disturbance scenarios.



Sensors 2022, 22, 2151 14 of 19

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 13. UAV route deploying traditional artificial potential field route planning algorithms in 
disturbance scenarios. 

 
Figure 14. UAV route deploying REPARE algorithm in disturbance scenarios. 

3.3. Risk Assessment of UAVs 
The larger the actual load of the UAV is, the more kinetic energy the UAV has to be 

paid when adjusting the sailing speed, altitude and attitude. To take a civil light quadrotor 
UAV as an example, according to the kinetic energy classification, the load and disturb-
ance wind speed can be obtained as follows in Table 3. It should be noted that: 

1. The level of “no disturbance” means no wind conditions, not absolutely no wind, 
but the wind speed is low, which has little impact on the UAV. It only needs to be consid-
ered in the case of an extreme load of the UAV. 

2. Under severe disturbance, it is possible that the equivalent mass of the disturbance 
force in the z-axis direction (heavy rain) exceeds the maximum load of the UAV. Thus, the 
flying stops. 

Table 3. Schematic representation of the degree of adjustment of the resilience system. 

Load/Disturbance Dead Load Light Load Moderate Load Heavy Load 

No disturbance 
Resilience system shuts 

down 
Resilience system shuts 

down 
Lower resilience factor 

Intermediate resilience 
factor 

Figure 14. UAV route deploying REPARE algorithm in disturbance scenarios.

3.3. Risk Assessment of UAVs

The larger the actual load of the UAV is, the more kinetic energy the UAV has to be
paid when adjusting the sailing speed, altitude and attitude. To take a civil light quadrotor
UAV as an example, according to the kinetic energy classification, the load and disturbance
wind speed can be obtained as follows in Table 3. It should be noted that:

Table 3. Schematic representation of the degree of adjustment of the resilience system.

Load/Disturbance Dead Load Light Load Moderate Load Heavy Load

No disturbance Resilience system shuts
down

Resilience system shuts
down Lower resilience factor Intermediate resilience

factor

Mild disturbance Lower resilience factor Lower resilience factor Intermediate resilience
factor

Advanced resilience
factor

Moderate disturbance Intermediate resilience
factor

Intermediate resilience
factor

Advanced resilience
factor

Advanced resilience
factor

Heavy disturbance Intermediate resilience
factor

Advanced resilience
factor Grounded Grounded

1. The level of “no disturbance” means no wind conditions, not absolutely no wind,
but the wind speed is low, which has little impact on the UAV. It only needs to be considered
in the case of an extreme load of the UAV.

2. Under severe disturbance, it is possible that the equivalent mass of the disturbance
force in the z-axis direction (heavy rain) exceeds the maximum load of the UAV. Thus, the
flying stops.

We selected three representative route results to demonstrate the UAV resilience
decision under different loads and different risks.

As shown in Figure 15, in the case of mild disturbance and light load, it can be seen
that the UAV has a certain tremor when it is disturbed, can respond in time, hardly deviates
from the route, and runs fast.

As shown in Figure 16, in the case of mild disturbance and heavy load, the load of the
UAV has almost reached the limit of the driving force of the UAV; the response speed is
obviously slow, the running speed is reduced, the route correction time increases, but the
distance from the obstacle still remains at the same safe distance, and the running speed
is slow.

As shown in Figure 17, in the case of heavy disturbance and light load, the UAV needs
more driving force to counteract the disturbance. Compared with the case of heavy load
and mild disturbance, the operating speed is increased to counteract the disturbance. At
the same time, a larger safety margin is left, and the running speed is moderate.
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A comparison of the minimum safe distances of UAVs deployed with the REPARE
algorithm for different disturbance scenarios is shown in Table 4.



Sensors 2022, 22, 2151 16 of 19

Table 4. Comparison of minimum safe distance under different disturbance scenarios.

Condition Resilience Factor Minimum Safe Distance

light load and mild disturbance Intermediate 3.5
heavy load and mild disturbance Advanced 4.5
light load and heavy disturbance Advanced 5.5

3.4. Monte Carlo Simulation Verification

In the simulated environment, after a random disturbance was generated using the Monte
Carlo method, the offset of the UAV was recorded and classified: an offset perpendicular to
the ground direction ξver, and an offset parallel to the ground direction ξhor.

According to this theory, we extended the independent variable to two dimensions.
The offset perpendicular to the ground ξver and the offset parallel to the ground ξhor
were used as independent variables, and the probability Pjoint of occurrence was the
dependent variable.

A two-dimensional distribution was obtained:

f(ξver, ξhor) =

(
2πσ1σ2

√
1− ρ2

)−1
exp

[
− 1

2(1− ρ2)

[
(ξver − µ1)

2

σ1
2 − 2ρ(ξver − µ1)(ξhor − µ2)

σ1σ2
+

(ξhor − µ2)
2

σ22

]]
(17)

A three-dimensional coordinate system was established to form an “offset-probability”
heat map. As shown in Figure 18, the safety domain determined according to the RE-
PARE algorithm is drawn according to the disturbance offset predicted in this paper at
the place marked by the red circle, which meets the requirements of the Pauta criterion.
Therefore, we think that the UAV resilience adjustment 3D route planning algorithm based
on risk assessment and artificial potential fields optimization designed in this paper is safe
and reliable.
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4. Conclusions

In order to solve the real-time route safety planning problem of the rotor UAV in
the disturbed complex three-dimensional scene, this paper was based on the traditional
A* algorithm and the artificial potential fields algorithm and was combined with such
concepts as the resilience system, the mechanism of determining a reasonable safety range,
and the mechanism of online real-time monitoring. In this paper, a resilience enhancement
algorithm REPARE for the 3D route planning of rotor UAVs suitable for flying in a complex
urban environment of buildings was proposed. Taking a high-risk scene operation in wind
and rain as an example, the simulation and calculational analysis of the whole process
of resilient route planning were carried out. The experimental results showed that in the
disturbed complex building environment, the UAV deployed with the REPARE algorithm
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is better than the traditional algorithm. It is more efficient and safer, and it enhances the
resilience of the UAV.

The present algorithm also has limitations. When the map accuracy was moderate, in
a 100 × 100 × 100 m map, whose minimum map unit was 1 m, the global operation time
was low. If the accuracy of the map increased, the amount of operations would increase
significantly. Future work can continue to optimize the algorithm to calculate the route in
steps as needed for flights during UAV operation.
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Appendix A

Table A1. Symbols that appear in this article.

Symbol Meaning

Fr vertical force of the rain
Pr pressure by raindrops
Sr effective area of the UAV’s body
Hr amount of precipitation
ρr density of the rainwater
Vr speed of the raindrops
ηr momentum loss of rainwater
t rain’s unit of time

FzMax max driving force of the UAV along the Z-axis
δr resilience coefficient fulfilling the flight safety

Guav UAV self-weight
Gs UAV load
→

VµF forecasted average wind speed
→

VMaxF maximum wind speed
tw wind’s unit of time
→

VµS current wind speed measured by UAV
Vres speed of resilience
→
Vd mission required speed
→

Vuav maximum speed that the UAV can reach in a no-wind
→
v UAV’s flight speed relative to the ground

Fhmax max force in the horizontal direction of the UAV
C air resistance coefficient
ρa air density
Sw equivalent area of the UAV in contact with the wind
σ level of risk
µ level of disturbance
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Table A1. Cont.

Symbol Meaning

n(x) probability density function of the one-dimensional shift
Dmin minimum safe distance of UAV
Duav diameter of the UAV

ξ UAV’s route offset
h(i, e) estimated cost of the UAV’s distance from the target point
g(s, i) cumulative path cost from the starting point to the ith node
O(s, i) compensation penalty
T(n) total cost function
Ftra traction force
Frep repulsion force
ϑF weighting factors of disturbance
ϑG weighting factors of load
Ff in final resultant force of the UAV
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