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Abstract: This paper proposes a novel inverse method based on the deep convolutional neural
network (ConvNet) to extract snow’s layer thickness and temperature via passive microwave remote
sensing (PMRS). The proposed ConvNet is trained using simulated data obtained through conven-
tional computational electromagnetic methods. Compared with the traditional inverse method, the
trained ConvNet can predict the result with higher accuracy. Besides, the proposed method has
a strong tolerance for noise. The proposed ConvNet composes three pairs of convolutional and
activation layers with one additional fully connected layer to realize regression, i.e., the inversion
of snow parameters. The feasibility of the proposed method in learning the inversion of snow
parameters is validated by numerical examples. The inversion results indicate that the correlation
coefficient (R2) ratio between the proposed ConvNet and conventional methods reaches 4.8, while the
ratio for the root mean square error (RMSE) is only 0.18. Hence, the proposed method experiments
with a novel path to improve the inversion of passive microwave remote sensing through deep
learning approaches.

Keywords: machine learning; deep convolutional neural networks (CNNs); passive microwave
remote sensing (PMRS); inversion; dense medium radiative transfer (DMRT)

1. Introduction

As an important informative indicator for climate change, snowpack presents both
the surface energy and water balance in a certain region [1,2]. Passive microwave remote
sensing (PMRS) data have been widely employed to analyze snowpack because passive
microwave remote sensing schemes can be applied in various weather and can penetrate
clouds and snow [3,4]. Generally, the analysis and retrieval of snowpack by passive
microwave measurements is based on the physical scattering model, which can produce
both backscatter and brightness temperature measured from the physical parameters of the
snowpack [5–8]. In this inversion process, multiple scattering in passive microwave remote
sensing problems can be a dominant effect because the relation between remote sensing
measurements and the medium parameters is highly nonlinear [5–8]. In the last decades, the
research related to the inversion algorithm to obtain parameters of the snowpack by PMRS
data has developed rapidly [9,10]. However, these conventional inversion methods, such
as the conventional iterative method [11], Empirical formulas method [12] and artificial
neural network (ANN) method [13,14], often make the process computationally expensive
and even ill-posed [11–15].

The application of machine learning (ML) in advanced computational electromag-
netics, such as object monitoring [16], electromagnetic simulation [17–21] and field-circuit

Sensors 2022, 22, 4769. https://doi.org/10.3390/s22134769 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134769
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6113-2168
https://doi.org/10.3390/s22134769
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134769?type=check_update&version=1


Sensors 2022, 22, 4769 2 of 10

cosimulations [22,23], was initiated a long time ago. Machine learning methods aim to
derive the potential mapping disciplinarian by employing the same pattern’s training
data and predicting the new output. Due to recent blooming learning technologies, the
convolutional neural network (ConvNet) [24,25] has become one of the most significant
methods in deep learning-based applications, such as imaging processes [24,25]. Various
rough surface theory methods have been widely studied and applied in the simulation of
snow [26,27]. However, the inverse problem still faces the challenge of nonlinearity and
high computational complexity, which is still an open issue. In fact, machine learning meth-
ods such as conventional multiple layers artificial neural network (ANN) technique [14,28]
and support vector machine [29], have been used to inverse parameters of the snowpack
based on PMRS data. However, the inversion based on conventional machine learning
methods suffers from limited accuracy, even with complex structure [21,28,29].

In this paper, we propose the employment of a deep ConvNet for inverting snow pa-
rameters (the thickness t and the temperature T of the snowpack) from passive microwave
remote sensing measurements. The basic process is to use the input-output pairs generated
by the scattering simulation model to train the proposed deep ConvNet. Once the ConvNet
is trained, it can invert snow parameters (the thickness t and the temperature T of the snow-
pack) speedily and accurately from the measurements. The advantages of the proposed
method are: (1) High accuracy: the proposed inverse ConvNet model can provide results
with high accuracy, compared with support vector machine and conventional artificial
neural networks trained for the inversion of snow parameters from passive microwave
remote sensing [21,28,29]; (2) Simplicity: the training of the proposed deep ConvNet is
merely based on the data simulated numerically using computational electromagnetic
method, instead of using experimental measurement data; (3) High Noise Tolerance: the
proposed ConvNet is of strong anti-interference and its accuracy is high, even though
significant interference is added. Compared to the conventional artificial neural networks
(ANNs) and the support vector machine (SVM) method [21,28,29], the proposed deep
ConvNet can more efficiently map the relations between inputs and outputs, mainly by the
convolutional layer and activation layer [24,25]. Consequently, the correlation coefficient
(R2) of the ConvNet method can be about 4.8 times as large as that of SVM for inversing T.
Meanwhile, the root mean square error (RMSE) of the ConvNet method can be only 0.18 of
the ANN method for inversing t. A specific comparison between different approaches is
provided in Section 3.

The remainder of this article is organized as follows: In Section 2, the passive mi-
crowave remote sensing, the snowpack model, and dense media radiative transfer (DMRT)
model formulation is briefly reviewed, followed by a description of the proposed deep
ConvNet structure. Then, the training process of the proposed ConvNet for snow parame-
ters inversion is described. In Section 3, numerical examples are provided to present the
validity and precision of the proposed method, which are also compared with the results
obtained by the conventional artificial neural network. Finally, the conclusion is given in
Section 4.

2. Formulations
2.1. Snow Model and DMRT Model for PMRS

The model of the microwave emission behaviour for multilayer snowpacks is shown
in Figure 1. It has been demonstrated that dense medium radiative transfer (DMRT) shows
high validity and efficiency [30]. Thus, the input-output pairs for training ConvNet are
generated by utilizing DMRT based on the quasicrystalline approximation (QCA) in this
research. The DMRT formulas for PMRS could be simplified by amending these formulas
for active microwave remote sensing because of the azimuthal symmetry. The standard
formulation of the DMRT in the multilayer dielectric medium can be expressed as:
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Herein, I(θ, z) denotes the specific intensity of horizontal and vertical polarizations,
which is independent of the azimuthal angle φ. κe and κa are the extinction coefficient and ab-
sorption coefficient respectively. The phase matrix P is simplified by using 1–2 frames [28,31].
T means the transmissivity matrices from ground to snow and from snow to snow. Comb-
ing the boundary conditions [30], these differential equations could be analyzed in the
whole layers. The details of solving these equations could be found in [30,32], and it is
demonstrated that the results of the multilayer QCA/DMRT agree well with the CLPX
ground measurement [32]. In this paper, the input medium physical parameters of DMRT
are: (1) snowpack thickness t; (2) physical temperature T of the snowpack. From these
parameters, the brightness temperature Bv in vertical polarization and Bh in horizontal
polarization at various observation angles could be simulated by the above model.

Figure 1. Model microwave emission behavior for multilayer snowpacks.

2.2. Deep ConvNet Architecture

In our approach, the ConvNet model is utilized to inverse the thickness t and the
temperature T of the snowpack from its corresponding brightness temperature Bv in vertical
polarization and Bh in horizontal polarization. These arrays of brightness temperature
Bv in vertical polarization and Bh in horizontal polarization can be measured by passive
microwave remote sensing based on DMRT numerical simulation. In fact, the brightness
temperature Bv and Bh indicate the feature information of snow [30,32]. In the training
process, the thickness t and the temperature T of the snowpack are utilized as outputs to
our deep ConvNets. Their corresponding brightness temperature Bv and Bh are employed
as the inputs in the proposed framework.

Typical ConvNets [24,25] consist of four types of layers: input layers, convolutional
layers, pooling layers and fully-connected layers. By stacking these layers together, the
proposed ConvNet architecture is formed. As the typical deep neural networks, ConvNet
can make use of data in the form of spatially focused images [21,33]. The specific architec-
ture of the proposed ConvNet is presented in Figure 2. Because of the strong capability of
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ConvNet, our approach can convert the brightness temperature Bv in vertical polarization
and Bh in horizontal polarization with more substantial interference into the corresponding
thickness t and the temperature T of the snowpack.

Figure 2. ConvNet architecture for the inversion of snow parameters.

2.3. Data Preparation and ConvNet Training

Considering the requirement for the massive number of input training data is chal-
lenging to yield via actual observations, we employ numerical simulation to obtain the
input data for the training process of the proposed ConvNet. By PMRS of snowpack based
on DMRT numerical simulation, both the brightness temperature Bv in vertical polarization
and Bh in horizontal polarization are measured under incident angle θinc evenly distributed
within [6◦, 75◦], and form the ’field-data’ [Bv, Bh] with the size of 70× 2, as is presented
in Figure 3. Considering the interference in the actual application scenario, the random
noise with signal-to-noise ratio (SNR) up to 0 dB is added to the measured the brightness
temperature ’field-data’ [Bv, Bh] to form the input training data, while [t, T] of the snowpack
is utilized as outputs to our deep ConvNets.

The procedures of producing training data are formulated into the following two steps:
(1) the brightness temperature is firstly calculated from the different thickness t and the
temperature T of the snowpack by DMRT model, where the values of t and T are within
t ∈ {16 cm, 18 cm, . . . , 44 cm} and T ∈ {250 K, 252 K, . . . , 270 K}, respectively. (2) the
random noise with signal-to-noise ratio (SNR) up to −10 dB is added to the brightness
temperature computed in (1) to form one group of input of the proposed ConvNet, while
the output is the corresponding t and T. 5000 groups of the brightness temperature ’field
data’ [Bv, Bh] with noise and the corresponding accurate [t, T] are used as inputs and
outputs of the proposed ConvNet. All simulation computation is done on snow-covered
ground with the flat bottom surface and with known parameters: grain diameter is 0.1 cm,
snow density in gm/cc is 0.276, QCA stickiness parameter is 0.1, the ground temperature
is 270 K and the frequency of measurement microwave is 18.7 GHz.
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Figure 3. (a) the brightness temperature Bv in vertical polarization and Bh in horizontal polarization
with t = 30 cm and T = 260 K; (b) the ’field-data’ [Bv, Bh] as the input of ConvNet.

As shown in Figure 2, the convolutional and activation layer units operate to grasp
the input characteristics. In the convolutional layer, we pick the filters (kernel) with a
one-dimension (1D) size. Such a 1D kernel has broadly been used in processing text natural
language and predicting stock [34,35]. Table 1 presents the number of Convolutional layers
and kernel. In addition, the size and the stride of the kernel are detailed. For the output,
i.e., the predicted thickness t and the temperature T of the snowpack, a fully-connected
layer is adopted for the prediction, which is fed by the activation layer unit. Herein, the
loss function is defined by the half mean squared error between the actual label and the
predicted one, i.e., the output of the fully-connected layer. Our proposed approach is
benchmarked via the Deep Learning Toolbox in Matlab 2018b [36]. Here, the Adaptive
Moment Estimation (Adam) optimizer is selected to optimize the half mean squared error
loss function. This is because, compared with other optimizers like Stochastic Gradient
Descent (SGD) [37], the Adam optimizer can navigate through the loss surface more
successfully. Notably, the learning rate, a hyper-parameter in the proposed framework, can
be used to control training error. We set the learning rate as 0.01. In addition, to avoid the
over-fitting issue, L2 regularization is used for the improvement of prediction accuracy [38].
All the training is implemented with the full batch.

Table 1. ConvNet architecture.

Type Filter
Number Filter Size Stride Input Size Output Size

Convolution 10 4× 1 [2 1] 70× 2× 1 34× 2× 10
ReLu 34× 2× 10 34× 2× 10

Convolution 20 3× 1 [2 1] 34× 2× 10 16× 2× 20
ReLu 16× 2× 20 16× 2× 20

Convolution 30 2× 1 [2 1] 16× 2× 20 8× 2× 30
ReLu 8× 2× 30 8× 2× 30
Fully-

connected
Regression

480 2
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3. Numerical Examples

In this section, the trained Convnet is used to predict the thickness t and the tem-
perature T of the snowpack. In total, 150 groups of the measured brightness tempera-
ture ’field-data’ [Bv, Bh] with (SNR = 0 dB) noise calculated by different the thickness
and the temperature [t, T] of the snowpack were used as inputs of our trained ConvNet,
where the values of t and T are within t ∈ {17 cm, 19 cm, . . . , 43 cm} and T ∈ {251 K,
253 K, . . . , 269 K}, respectively.

The comparison of the prediction of t and T and the actual values is presented in
Figure 4a,b respectively. It can be indicated that the predicted data points of both t and T
are closely distributed around the straight line Y = X. Evidently, the proposed ConvNet can
effectively realize inversion of the thickness t and the temperature T of the snowpack even
under big interference. According to Figure 4a, the correlation coefficient

(
R2) between the

predicted and actual t is even 0.9964, while the root mean square error (RMSE) of them is
only 0.3869. Thus, despite noise, the proposed ConvNet can predict the thickness t under
much high accuracy.

Figure 4b shows that the change tendency of the snow temperature T in Figure 4b
is similar to that of the snow thickness t in Figure 4a. From Figure 4b, the correlation
coefficient (R2) between the predicted T and the actual T is 0.8380, while the root mean
square error (RMSE) of two sets of T is 1.7873. The inversion prediction of T closed to
the scope of trained values has more error than the prediction away from the scope of
trained values. This is simply because the predicted values are limited in the scope of
trained values. As the values of inverted parameter are close to the end of the scope,
those inaccurately predicted values shift toward the other end [21]. In our deep ConvNet
approach, the thickness t and the temperature T can be inverted simultaneously at the
nearly equivalent accuracy by the same deep network rather than two separated networks.

Figure 4. Inverted result of (a) the thickness and (b) the temperature of the snowpack by the proposed
ConvNet method.

Moreover, we compare the ConvNet inversion result of t and T with that predicted
from conventional artificial neural network (ANN) [28], to demonstrate the capability of
our deep ConvNet. Conventional ANNs depend on neural unit and hidden layer to fit the
relationship between input and output, and have to make use of a large number of neural
units to handle the relatively complicated relationship between input and output [28]. The
architecture of used ANN has three layers: input, hidden-layer, and output layer. There
are 20 hidden-layer units of hyperbolic tangent basis function. The BPNN is implemented
using Matlab 2018b with Deep Learning Toolbox [36]. For this case, the increase of ANN
hidden layer or its units do not lead to the great improvement of accuracy, but leads to
the increase of unexpected computation cost and degrades its efficiency. As shown in
Figure 5a,b, the correlation coefficient

(
R2) between the predicted t and actual t is 0.9321

while R2 between two sets of T is as small as 0.3332. Besides, the root mean square error
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(RMSE) of the predicted t and actual t arrives at only 2.1036, and RMSE of two sets of T
reaches 3.5625. Therefore, the estimation accuracy of the ConvNet is higher than that of the
conventional ANN by comparing Figures 4 and 5.

Furthermore, the SVM method is also used to invert the t and T [21,29]. As is pre-
sented in Figure 6a,b, R2 between the predicted t and actual t is 0.9667, while RMSE of
them is as small as 0.6232. Besides, R2 and RMSE between two sets of T are 0.1749 and
6.4291, respectively. Thus, as is shown in Figure 6, the estimation accuracy of the SVM is
undoubtedly lower than both the proposed ConvNet and conventional ANN. In addition,
both the proposed deep ConvNet and conventional ANN can simultaneously invert the
t and T, while the SVM model has to make use of two different models to undertake
the inversion.

Figure 5. Inverted result of (a) the thickness and (b) the temperature of the snowpack by the
conventional ANN method [14,28].

Figure 6. Inverted result of (a) the thickness and (b) the temperature of the snowpack by the SVM
method [21,29].

As presented in Figures 3–6, the proposed deep ConvNet can utilize PMRS data with
significant noise to extract the features and retrieve t and T. The deep ConvNet employs
data in the form of spatially focused images to discover recognization and imaging [21,26].
Thus, despite huge noise and abstract PMRS data, the performance of the deep ConvNet
could be much better than the other two methods. The overall performance of the three
methods is also shown in the Table 2. It is evident that the proposed deep ConvNet can
inverse t and T with the largest R2 and the smallest RMSE among the three methods. While
R2 of the ConvNet method can be about 4.8 times as large as that of SVM for inversing T,
RMSE of the ConvNet method can be only 18% of that of ANN method for inversing t. In
this study, we have focused on thickness and temperature, while other parameters could be
added to the proposed deep ConvNets. We aim to do this in future studies. Also, extremes
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of the working ranges of thickness and temperature as well as the lower boundary of SNR
in the anti-interference simulation could be included in future research.

Table 2. Performance Comparison.

R2 RMSE R2
DConvNet

R2
RMSEDconvNet

RSME

DConvNet 0.9964 0.3869
t ANN 0.9321 2.1036 1.0690 0.1839

SVM 0.9667 0.6232 1.0307 0.6208

DConvNet 0.8380 1.7873
T ANN 0.3332 3.5625 2.5150 0.5017

SVM 0.1749 6.4291 4.7913 0.2780

4. Conclusions

To sum up, a novel inversion method is proposed to extract the layer thickness and
temperature of snowpack by using the deep convolutional neural network (ConvNet). The
proposed ConvNet consists of three pairs of convolutional and activation layers, following
one additional fully connected layer to the inverse of snow parameters. The training
of the proposed deep ConvNet is based on simulated data obtained through a dense
medium radiative transfer equation (DMRT). The training data also considers the possible
interference in a real application scenario. The trained deep ConvNet can inverse the
layer thickness and temperature of snowpack within an acceptable accuracy range, which
indicates its capacity for anti-interference. Numerical examples indicate the validity of
the proposed deep ConvNet for the inversion of parameters of the snowpack. Compared
with the conventional artificial neural network and support vector machine, the trained
ConvNet can predict the result with higher accuracy. The proposed ConvNet method opens
a novel path for deep learning application to passive microwave remote sensing.
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