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Abstract: To implement Prognostics Health Management (PHM) for hydraulic pumps, it is very 
important to study the faults of hydraulic pumps to ensure the stability and reliability of the whole 
life cycle. The research on fault diagnosis has been very active, but there is a lack of systematic 
analysis and summary of the developed methods. To make up for this gap, this paper systematically 
summarizes the relevant methods from the two aspects of fault diagnosis and health management. 
In addition, in order to further facilitate researchers and practitioners, statistical and comparative 
analysis of the reviewed methods is carried out, and a future development direction is prospected. 
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1. Introduction 
Hydraulic systems are applied to all crucial mechanical equipment and play an irre-

placeable role in the field of industrial production and manufacturing [1]. As the “heart” 
of the hydraulic system, the hydraulic pump is responsible for converting mechanical en-
ergy into hydraulic energy and providing pressure oil for the system [2]. With the devel-
opment of the hydraulic industry, the structure of hydraulic pumps becomes more and 
more complex, and the probability of failure also increases; When it breaks down, it may 
cause the equipment controlled by the system to shut down for a long time, thus reducing 
the efficiency of the production process, bringing economic and safety problems, and even 
causing casualties in serious cases [3]. Therefore, it is of great practical significance to 
make reasonable and accurate fault diagnoses for hydraulic pumps; Under the premise of 
fault diagnosis, fault prediction, remaining service life prediction and health state detec-
tion can further master the safety of the hydraulic pump in operation, which is more con-
ducive to improving the flexibility of the system, so as to prevent the occurrence and de-
velopment of catastrophic faults in industrial systems, resulting in major losses. 

The fault diagnosis method of hydraulic pumps mainly uses different sensors to col-
lect different kinds of state monitoring signals of the hydraulic pump to analyze and re-
flect the change in the operating state of a hydraulic pump [4]. These state monitoring 
signals mainly include vibration signals [5], temperature signals [6], flow signals [7], and 
pressure signals [8], but other signals that can characterize the change of the operating 
state of the hydraulic pump also belong to the state monitoring signals [9]. Hydraulic 
pump fault diagnosis methods mainly include signal processing methods [10] and artifi-
cial intelligence methods [11], as well as mechanism analysis-based diagnosis methods 
[12]. The structural composition and operation mechanism of the hydraulic pump is com-
plex, so it is difficult to quantitatively diagnose the fault under the mechanism analysis 
method. In different operating states of the hydraulic pump, the state monitoring signals 
present different information, and it is feasible to diagnose faults according to the 
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information presented by the monitoring signals. With the development of artificial intel-
ligence, fault diagnosis can be carried out by analyzing the signal data information when 
the operating mechanism of the hydraulic pump is fuzzy. In the process of fault diagnosis, 
there are two crucial problems: one is which state monitoring signals are selected as char-
acteristic signals. The second is how to build a fault diagnosis model. On the premise of 
fault diagnosis, the “fault threshold” of various faults is extracted, and early fault predic-
tion, remaining service life prediction, and health state detection can be carried out for the 
hydraulic pump. In view of the above problems, more and more research and investiga-
tions have been conducted in recent years, but there is a lack of a timely summary of the 
developed methods. The purpose of this paper is to provide the latest research progress 
and application. 

This paper takes the hydraulic pump as the research object and analyzes the applica-
tion and development of hydraulic pump fault diagnoses in recent years. Collate the ar-
ticles on fault diagnosis and health management of various hydraulic pumps, and analyze 
and summarize the articles; Summarize the main causes of hydraulic pump failure; The 
methods used for fault diagnosis of hydraulic pumps are classified, and the paper evalu-
ation index is proposed to evaluate the selected articles; The methods used for fault pre-
diction, remaining service life prediction and health state detection of hydraulic pumps 
are described; Finally, the selected articles are statistically analyzed, and the research pro-
spect of hydraulic pump fault diagnosis is given. The research flow of this paper is shown 
in Figure 1. 

 
Figure 1. The research process of the paper. 

This paper is structured as follows. Section 1 explains the importance and challenges 
of hydraulic pump fault diagnosis for application. Section 2 introduces the research on 
hydraulic pump faults in published papers and summarizes the fault types. Section 3 pro-
poses the classification scheme of hydraulic pump diagnosis methods and summarizes 
the application of these methods. Section 4 briefly mentions the research and application 
of health management of hydraulic pumps. Section 5 makes a statistical analysis of the 
published papers and outlines future research trends. Section 6 gives a summary of this 
paper. 

2. Fault Analysis of Hydraulic Pump 
According to the different structures, hydraulic pumps can be divided into gear-type 

hydraulic pumps, vane-type hydraulic pumps, plunger-type hydraulic pumps, and 
screw-type hydraulic pumps. Although the components of various hydraulic pumps are 
different, their oil supply principle is the same, and they all belong to positive displace-
ment hydraulic pumps. Its working principle is essentially the change of the sealing vol-
ume, that is, the oil is sucked by the local vacuum formed by the gradual increase of the 
sealing volume on the side of the oil inlet of the hydraulic pump, and the oil is squeezed 
into the hydraulic system by the gradual decrease of the sealing volume on the side of the 
oil outlet. 
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After a certain period of normal operation of the hydraulic pump, its parts and com-
ponents will be gradually worn and damaged, or when the hydraulic pump operates un-
der abnormal conditions, various fault phenomena such as increased noise, increased vi-
bration, and decreased flow will occur. The failure of the hydraulic pump may be caused 
by excessive wear or damage to certain parts in the structure of the hydraulic pump, so 
the failure of the whole hydraulic pump can be studied from the study of certain parts. 

In the hydraulic pump, the rotation of the shaft drives the operation of the whole 
medium, so the shaft of the hydraulic pump is one of the research contents. Xu et al. [13] 
analyzed the cause of the driving shaft fracture by calculating the radial force of the driv-
ing shaft of the hydraulic gear pump and used the finite element analysis software Ansys 
to simulate and verify the correctness of the fault cause. Xiao et al. [14] used the life accel-
eration experiment to analyze the deterioration and failure of the shaft of the hydraulic 
gear pump, checked the static strength of the broken part, and analyzed the main reasons 
for the failure of the shaft. Shawkis et al. [15] analyzed the annular crack on the drive shaft 
of the high-pressure hydraulic screw pump and concluded that one of the reasons for the 
shaft fracture was fatigue caused by misalignment during the rotation bending process. 
Xu et al. [16] believed that the main reason for the fracture was the increase of rotation 
and bending load caused by low viscosity medium through the analysis of macro mor-
phology and microstructure, chemical composition, fracture metallography, and pump 
operation. Through the metallographic and fracture analysis of different parts of the hy-
draulic pump shaft, Yordanov B. et al. [17] can see the mixed characteristics in the mor-
phology of the damaged surface, and conclude that the oxidation of the shaft surface and 
the intergranular corrosion at the grain boundary are one of the reasons for the crack gen-
eration and fracture propagation. 

In the hydraulic pump, there are faults caused by other parts and hydraulic oil. Li et 
al. [18] analyzed the mechanics and microstructure of the broken pump housing of the 
hydraulic gear and found the main reason for the failure of the pump housing. Seker-
cioglu T. et al. [19] used hardness, chemical analysis, and metallographic examination to 
analyze the broken gear of the hydraulic gear pump, carried out geometric analysis of the 
gear of the hydraulic gear pump, and obtained the reason for the fracture of the gear of 
the hydraulic gear pump. Pflum et al. [20] used the pressure sensor to detect the detection 
signal in the narrow band frequency domain to analyze the spalling of the mechanical 
bearing of the hydraulic pump and the failure of the hydraulic gear pump. Hemati et al. 
[21] used signal processing technologies such as mechanical spectrum, envelope spec-
trum, and acceleration spectrum to conduct vibration analysis and signal processing of 
the hydraulic gear pump, and studied the failure of the hydraulic gear pump caused by 
the looseness of the bearing bush. Lee et al. [22] analyzed the characteristics of hydraulic 
oil, calculated the friction heat value, and analyzed the phenomenon that caused the fail-
ure to study the cause of the failure of the pilot check valve of the hydraulic pump caused 
by hydraulic oil pollution and leakage. Wang et al. [23] conducted the vibration fatigue 
test of the flameproof housing of the hydraulic pump regulator and analyzed the factors 
that caused the housing failure. 

In addition to single-component failures, there are also some combined failures. By 
analyzing the structure and working principle of the external gear hydraulic pump, Zhang 
et al. [24] analyzed the failure of the external gear pump and proposed corresponding 
failure solutions. Das et al. [25] analyzed the microscopic cause of rapid wear of hydraulic 
pumps from the influence of the microstructure of hydraulic gear pump on the corrosion 
wear behavior of materials. Jiang et al. [26] carried out detailed statistics on various fail-
ures of screw pumps to analyze the failure modes of hydraulic screw pumps. Milović et 
al. [27] took the damage of the high-pressure three-screw oil pump in the regulating oil of 
the hydropower station as an example to analyze the failure of screw pump wear, thread 
tear, and filter blockage. Shang et al. [28] analyzed the failure and main causes of hydrau-
lic pump damage and proposed corresponding effective solutions. Hidayath et al. [29] 
comprehensively considered the hydraulic pump failure caused by hardware and 
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hydraulic oil. UłAnowicz et al. [30] established a simplified three-dimensional solid 
model of the cylinder piston assembly and gave the piston cylinder block, the inclination 
adjustment mechanism of the axial-flow hydraulic pump, and the fracture load model of 
the selected components of the pump, and discussed the actual damage of the axial piston 
pump. 

When studying hydraulic pump faults, there are methods based on mechanism anal-
ysis and modeling, software simulation, signal fusion, and artificial intelligence. Fabiś-
Domagała et al. [31] proposed the method of combining FMEA matrix analysis and Error 
Diagram to analyze the fault of the hydraulic gear pump and find out the factors causing 
the fault. Major et al. [32] proposed the fatigue failure finite element model of screw pump 
for the most serious fatigue fracture failure of a reciprocating screw of screw pump and 
carried out model simulation in Ansys. Ma et al. [33] established a simulation model of 
the hydraulic system by using AMESim software and analyzed the failure modes and 
mechanisms of key components in the system and their failure effects. Lee et al. [34] pro-
posed to use FMECA to carry out extensive fault analysis of hydraulic gear pumps and 
proposed to use MFCC combined with a random forest classifier (RFC) to extract features 
and identify faults of vibration signals. 

For the hydraulic pump failures studied in the above literature, it is concluded that 
the main reason for the failure of the hydraulic pump is the wear of the hydraulic pump. 
The wear of the hydraulic pump is divided into the situations shown in Table 1. 

Table 1. Wear classification. 

Wear Type Form Factor 

Friction wear 

The surface of the parts after manufacturing is always uneven when 
carefully observed with a magnifying glass. After the operation wear of 
the hydraulic pump, the metal particles fall off from the surface of the 
parts, and the uneven parts on the surface of the parts are relatively 

smoothed. If friction is continued later, deep marks or small-size wear 
will be produced. This kind of wear is normal natural friction wear. 

Abrasive wear 

According to the analysis of oil pollutants used in hydraulic pumps, 
more than 20% of the pollution particles are silica and metal oxides. 
These abrasive particles are the most serious components of pump 

parts wear. They are sandwiched between the surfaces of moving pair 
parts. When moving, they act as grinding sand, resulting in severe 

abrasive wear. 

Pit wear 

This is a kind of fatigue damage to hydraulic components. Under the 
action of alternating load, due to periodic compression and deformation, 
residual stress and metal fatigue will occur, resulting in tiny cracks on 
the parts, which will gradually cause small pieces of parts to peel off. 

Corrosive wear 
The surface of the hydraulic pump components is subjected to corro-

sive substances such as acids and moisture in the oil, and the metal sur-
face is gradually damaged. 

3. Failure Diagnosis Method 
The idea of hydraulic pump fault diagnosis based on condition monitoring signals is 

to collect the condition monitoring signals by sensors, then use signal processing methods 
to pre-process the collected status monitoring parameters, and then combine the fault di-
agnosis model to diagnose faults. In this investigation, based on the correct signal acqui-
sition process, the hydraulic pump fault diagnosis methods are divided into the following 
three categories: 
(1) Fault diagnosis based on a single signal; 
(2) Fault diagnosis based on multi-signal; 
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(3) Other diagnostic methods. 

3.1. Fault Diagnosis Based on Single Signal 
At present, among the fault diagnosis methods based on a single signal, the vibration 

signal is the most widely used condition monitoring signal as the feature input of the fault 
diagnosis model. This is because once the internal parts of the pump fail, it usually causes 
changes in the characteristics of the load state structure and other characteristics, so the 
vibration response of the pump structure will change. Through the measurement of struc-
tural vibration signals, and relying on the principle of signal analysis, specific fault infor-
mation is extracted, and the fault diagnosis is realized by artificial intelligence or signal 
analysis. Additionally, a few are based on other types of state monitoring signals such as 
sound signals. In the methods of hydraulic pump fault diagnosis, there are two main cat-
egories: the method of hydraulic pump fault diagnosis based on signal processing and the 
method of hydraulic pump fault diagnosis based on artificial intelligence. 

3.1.1. Fault Diagnosis Based on Vibration Signal 
(1) Method based on signal processing 

The vibration signal has been proven to be useful for fault diagnosis of hydraulic 
pumps, but it contains noise, interference, and other information without fault character-
istics. Therefore, it is necessary to use effective signal processing methods to extract avail-
able fault information from vibration signals. The following article has conducted some 
research on noise removal of vibration signals. 

Yu et al. [35] proposed an EWT-VCR fusion method based on EWT and VCR to deal 
with the nonlinear, multi-frequency, and noise data of vibration signals. Jiang et al. [36] 
used the method of combining EEMD and PCC to denoise the collected hydraulic pump 
vibration signals, converted the denoised data into snowflake images by using the sym-
metric polar coordinate method, and converted the obtained images into gray level co-
occurrence matrix, and used the fuzzy c-means algorithm for fault diagnosis. In view of 
the problem that the vibration signal of the hydraulic pump will be polluted by stronger 
Gaussian and non-Gaussian noise, Zheng et al. [37] proposed using PSE to extract fault 
information, effectively highlighting fault features and suppressing noise pollution. Wang 
et al. [38] studied the DCT denoising method and the CNC denoising method in view of 
the serious noise problem in the vibration signal of the hydraulic pump. Finally, CNC 
denoising was adopted, and then HHT was used to extract the fault information of the 
signal. In order to reduce noise and other interference, Sun et al. [39] carried out local 
feature scale decomposition for high-frequency harmonic correction of vibration signals 
and proposed discrete cosine transform high-order spectrum analysis algorithm to extract 
singular entropy as the degradation feature of hydraulic pumps. Liu et al. [40]. proposed 
a new rough set fault diagnosis algorithm for hydraulic pumps guided by PCA, aiming at 
the characteristics of fuzzy fault features and low signal-to-noise ratio of hydraulic 
pumps, using WA for noise reduction processing, extracting effective fault features, using 
PCA method for dimensionality reduction and decoupling correlation analysis of these 
features, using rough set theory to establish a knowledge base of diagnosis rules. Hou et 
al. [41] proposed a WPD-based denoising method for hydraulic pump fault feature ex-
traction to solve the problem that the feature signal is weak and covered by noise. Wang 
et al. [42] introduced the idea of WNC denoising in view of the problems of the DCT de-
noising method, proposed a CNC denoising method, and extracted fault features from the 
output signal by HHT, effectively solving the problem of missing vibration signal compo-
nents. 

Under the actual conditions, the fault information of hydraulic pumps is still rela-
tively poor, so it is necessary to solve the problem of fault diagnosis under the condition 
of poor information. Jia et al. [43] proposed a fault diagnosis method based on SPIP and 
HMM in order to realize fault diagnosis in the case of poor information. This method 
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converts vibration signals into symbol sequences as feature sequences of hidden Markov 
models, uses genetic algorithms to optimize the symbol space division scheme, and then 
uses hidden Markov models for fault diagnosis. In view of the shortage of single-scale 
arrangement entropy when measuring the complexity of vibration signals on a single 
scale, Wang et al. [44] proposed an MPE entropy value and MMPE. The analysis results 
of the measured vibration signals of hydraulic pumps verified the effectiveness and supe-
riority of this index as a fault feature of hydraulic pumps. Aiming at the problem of poor 
detection of fault signals of the hydraulic pump in the early stage, Yu et al. [45] proposed 
a method of using EWT to decompose the vibration signals of three channels, then defin-
ing VCR to divide the weights of components to form a single signal, and using HT to 
demodulate the characteristic frequency to achieve fault detection of the hydraulic pump. 
Deng et al. [46] proposed a fault diagnosis method based on EMMD and Teager energy 
operator demodulation to solve the problem of weak early fault vibration signals of the 
hydraulic piston pump. 

In the process of feature extraction of vibration signal, the original primary method 
has some limitations, so it needs to be improved. Zheng et al. [47] proposed an IEWT-
based signal processing method for hydraulic pump fault diagnosis in view of the serious 
over-decomposition problem of EWT. Jiang et al. [48] proposed a method of hydraulic 
pump fault signal demodulation based on LMD and IAMMA. Li et al. [49] proposed a 
hydraulic pump fault feature extraction method based on MCS and RE. According to the 
maximum relational entropy criterion and the progressive fusion strategy, a relative en-
tropy algorithm was established to fuse the initial features into new degraded features. 

Some comparison methods and processing of vibration signals from different angles 
can still play a role in fault diagnosis of hydraulic pumps. Gao et al. [50] compared and 
analyzed the two fault diagnosis methods of WT and spectrum analysis, and concluded 
that when analyzing the same vibration signal dataset, the diagnosis ability of the method 
based on WT was more accurate. Sun et al. [51] proposed a fault diagnosis method for 
hydraulic pumps based on a fusion algorithm that processes vibration signals successively 
through LCD and DCS to improve the characteristic performance of signals. Siyuan et al. 
[52] proposed a hydraulic pump fault diagnosis method based on PCA of Q statistics, 
which uses normal vibration signals to establish a principal component model and then 
compares it with the test samples obtained by Q statistics to diagnose faults. Wang et al. 
[53] proposed a fault diagnosis method based on WP and MTS. This method performs 
WPT on the collected vibration signals, removes redundant features by the Taguchi 
method, extracts principal components, and then uses an MD-based calculation method 
to diagnose hydraulic pump faults. Chen et al. [54] proposed a hydraulic pump fault di-
agnosis method based on compression sensing theory, which uses the original vibration 
signal of the hydraulic pump to construct a compression dictionary matrix, uses the 
Gaussian random matrix to compress the vibration monitoring data of the hydraulic 
pump and uses a SOMP algorithm to reconstruct the test data. Tang et al. [55] proposed a 
fault diagnosis method for hydraulic pump fault under variable load in order to solve the 
problem of dynamic characteristic analysis of hydraulic pumps, which collects vibration 
signals and uses the axial RMS trend gradient for fault diagnosis. 

The fault diagnosis methods of hydraulic pumps based on signal processing have 
their own limitations, such as time domain analysis, which is easy to cause misjudgment 
when the fault is serious, has large randomness, and is not suitable for non-stationary 
signals; Frequency domain analysis cannot reflect time characteristics and is not sensitive 
to early faults; The multi-sensor information fusion method has some limitations, such as 
the difficulty of sensor configuration and management, and the complexity of fault infor-
mation fusion algorithm design. 
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(2) Methods based on artificial intelligence 
Although the signal processing method of vibration signal can effectively extract and 

express the fault information of hydraulic pumps, the speed and accuracy of its method 
to diagnose the fault of hydraulic pumps are not ideal. However, with the rapid develop-
ment of artificial intelligence, more and more intelligent algorithms and models can 
quickly diagnose faults, and the self-learning ability of artificial intelligence makes the 
accuracy of diagnosis algorithms and models a high level. Therefore, the artificial intelli-
gence method combining the signal processing method based on vibration signal feature 
extraction with the artificial intelligence diagnosis algorithm and model is more effective. ① Artificial intelligence method based on neural network 

With the generalization ability of a neural network, more and more neural network 
models are applied to fault diagnosis of hydraulic pumps. The fully connected neural 
network has the ability of self-learning and searching for optimal solutions at high speed. 
It has the advantages of high accuracy and rapidity in the fault diagnosis of hydraulic 
pumps. Gao et al. [56] proposed a fault diagnosis method based on EMD and NN. Sun et 
al. [57] proposed a hydraulic pump fault diagnosis method based on ITD and softmax 
regression, which uses ITD to process the vibration signal of the hydraulic pump and 
trains the softmax regression model to diagnose possible fault modes. Ding et al. [58] used 
LMD to process the collected vibration signal data of the hydraulic pump to form a feature 
vector, trained the Softmax regression model with the reduced features, and obtained the 
fault diagnosis model of the hydraulic pump. Jikun et al. [59] proposed a fault diagnosis 
method for hydraulic pumps based on WPT and SOM-NN. This method uses WPT to 
extract features from vibration signals, and SOM-NN trains through normal samples and 
fault samples to diagnose faults when they occur. 

Although a fully connected neural network has high accuracy, it needs a lot of train-
able variables, which is prone to model overfitting, and model convergence speed needs 
to be improved. The convolutional neural network can further extract the features of the 
input through the convolution kernel, and the trainable parameters of the model are 
greatly reduced by sharing the convolution kernel. Tang et al. [60] proposed an intelligent 
fault diagnosis method for hydraulic pumps based on CNN and CWT, which uses CWT 
to convert the original vibration signal into image features, and establishes a new deep 
convolutional neural network framework that combines feature extraction and classifica-
tion, and can further improve the convergence speed of the model by optimizing the 
CNN’s hyperparameters. Zhu et al. [61] proposed an improved AlexNet intelligent fault 
diagnosis method based on WPA combined with changing the network structure, reduc-
ing the number of parameters and computational complexity. Tang et al. [62] proposed a 
normalized convolutional neural network (NCNN) framework based on a batch normal-
ization strategy for feature extraction, and then used a Bayesian algorithm to automati-
cally adjust the model hyperparameters. BP neural network was used for fault diagnosis 
based on synchronous noise wavelet transform of vibration signals. Yan et al. [63] pro-
posed a simple 7-layer CNN network setting method based on a base-period to realize 
fault diagnosis of hydraulic pumps. Zhu et al. [64] improved the core size and number 
based on the standard LENet-5 model, added a batch normalization layer to the network 
architecture, and built a PSO-Improve-CNN fault diagnosis model based on vibration sig-
nals by automatically optimizing the model’s hyperparameters through PSO. Tang et al. 
[65] established an adaptive CNN hydraulic pump fault diagnosis model using Bayesian 
Optimization hyperparameters based on the Gaussian process by taking the time-fre-
quency image of the vibration signal after CWT as input data. Tang et al. [66] converted 
the vibration signal into an image through CWT, preliminarily extracted effective features 
from the converted time-frequency image, built a CNN model to achieve fault diagnosis, 
and realized the visualization of simplified features by using T-DSNE. 

In addition, there is also a new neural network model based on the improved func-
tions in the neural network. Luc et al. [67] proposed a CPRBF-NN composed of multiple 
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parallel-connected RBF subnets in combination with chaos theory and applied the pro-
posed method in combination with vibration signals to fault diagnosis of hydraulic 
pumps. Huijie et al. [68] proposed to integrate the RELU activation function and Dropout 
strategy into SAE to directly train and identify vibration signals, forming a SAE-based 
fault diagnosis method for hydraulic pumps. Du et al. [69] proposed a method to extract 
17 time-domain features of vibration signals, analyzed the sensitivity of features to the 
failure to select sensitive feature parameters, built a neural network diagnosis model, and 
formed a hydraulic pump fault diagnosis method based on sensitivity analysis and PNN. 
Dongmei et al. [70] took the vibration data as the input and the failure mode matrix as the 
target output to obtain a PARD-BP-based fault diagnosis method. ② Artificial intelligence method based on a support vector machine 

Support vector machine (SVM), which originates from statistical learning theory, can 
be used for supervised learning, unsupervised learning, and semi-supervised learning, 
and it has an outstanding ability for both linear and nonlinear signals. Casoli et al. [71] 
collected vibration signals and used them to extract features for fault diagnosis, reduced 
the obtained features to reduce the amount of calculation, and used them to train different 
types of support vector mechanisms to build hydraulic pump fault diagnosis models. Tian 
et al. [72] proposed a fault diagnosis method based on WPT, SVD, and SVM. Lu et al. [73] 
proposed a new method for hydraulic pump fault diagnosis that combines EEMD and 
SVR models. This method uses a combination of GA and grid search to optimize the pa-
rameters of SVM. Fei et al. [74] proposed a fault extraction method combining WPA, FE, 
and LLTSA, and then proposed a hydraulic pump fault diagnosis method combining 
SVM. Niu et al. [75] proposed a hybrid fault diagnosis method for hydraulic pumps that 
combines the RNS algorithm and SVM. Zhao et al. [76] proposed that CEEMD is used to 
decompose the signal, then STFT and TFE are used to extract the fault features, and multi-
class SVM is used to diagnose the fault of the hydraulic pump. Hu et al. [77] proposed the 
SS-SVM fault diagnosis algorithm, which constitutes a multi-fault classifier for hydraulic 
pump fault diagnosis. This method requires only a few fault data samples for training the 
classifier and has strong fault diagnosis ability in the case of small samples. Tian et al. [78] 
proposed a degradation feature extraction method for hydraulic pumps based on ILCD and 
MF, and input the degradation feature into BT-SVM for fault diagnosis of hydraulic pumps. ③ Artificial intelligence method based on a limit learning machine 

In essence, the limit learning machine maps the input feature data to the random 
space and then uses the least square linear regression. Its advantages are that the hidden 
layer does not need iteration, the learning speed is fast, and the generalization perfor-
mance is good. Li et al. [79] proposed a comprehensive fault diagnosis method for hy-
draulic pumps based on MEEMD, AR spectral energy, and WKELM method. Ding et al. 
[80] proposed a fault diagnosis method combining EWT, PCA signal processing method, 
and ELM. Liu et al. [81] proposed a time series dynamic feature extraction method based 
on CEEMDAN and CMBSE, based on a hydraulic pump fault diagnosis method combin-
ing t-SNE and WOA-KELM was proposed. Lan et al. [82] proposed an intelligent fault 
diagnosis method for hydraulic pumps based on WPT, LTSA, EMD, LMD multiple signal 
processing technology, and ELM identification technology. 
④ Artificial intelligence method based on fuzzy theory 

The structure of the hydraulic pump is complex, and the causes of the failure of the 
hydraulic pump cannot be completely divided, which has certain fuzziness. Therefore, 
the fuzzy set and membership function of the hydraulic pump can be constructed, and 
the fault of the hydraulic pump can be diagnosed using the method of fuzzy theory. Wang 
et al. [83] proposed a method to capture the degraded characteristic signal of SIE and then 
used the vibration signal combined with the FCM algorithm to build a hydraulic pump 
fault diagnosis method. Wang et al. [84] proposed a rough set method for mechanical fault 
diagnosis, which extracts the spectral features of vibration signals as the attributes of 
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learning samples, and uses a set of decision rules obtained from the upper and lower ap-
proximation of decision classes as a rough classifier. Wang et al. [85] extracted diagnostic 
features from the spectrum of vibration signals, processed the spectrum representing a 
variety of different fault states using fuzzy membership function, and made fuzzy com-
prehensive discrimination according to anti-fuzzy diagnostic rules, thus realizing correct 
diagnosis of different fault spectra. Mollazade et al. [86] studied a new method of hydrau-
lic pump fault diagnosis based on vibration signal PSD combined with DT and FIS. 

The method based on a neural network is to extract fault features by signal pro-
cessing, then use a neural network as the fault diagnosis model, that is, the fault mode 
analysis after fault signal processing, so as to realize the nonlinear mapping from fault 
symptoms to fault causes. The diagnosis reasoning process of this method is not clear and 
the diagnosis explanation is not intuitive. The fuzzy reasoning method is suitable for deal-
ing with uncertain and incomplete information in pump fault diagnosis. Its disadvantage 
is that it is difficult to establish complete rules and membership functions, and its learning 
ability is poor. 

3.1.2. Fault Diagnosis Based on Other Signals 
In addition to the frequent vibration signals, some other condition monitoring signals 

also contain fault information about the hydraulic pump, and the new monitoring signals 
are accompanied by new analysis methods, which makes the fault diagnosis methods of 
the hydraulic pump more diversified. Shengqiang et al. [87] proposed a KPCA fault diag-
nosis method based on the sound signal, described the feature extraction of the acoustic 
signal, and used the KPCA method to diagnose the hydraulic pump fault in view of the 
unsuitable use of the hydraulic pump vibration sensor and the limitations of the fault di-
agnosis method based on vibration signal processing. Jiang et al. [88] proposed a fault 
diagnosis method for an axial piston hydraulic pump based on the combination of the 
MFCC feature extraction method and ELM. The MFCC voiceprint feature of the processed 
sound signal is extracted from the acoustic signal, and the ELM model is established for 
fault diagnosis. Based on the standard LeNet, Zhu et al. [89] used PSO to automatically 
select the hyperparameters of the diagnosis model and built a PSO-CNN hydraulic pump 
fault diagnosis model with acoustic signals as input. 

Tang et al. [90] used CWT to obtain the time-frequency characteristics of the pressure 
signal, set the initial hyperparameters to establish a deep CNN, and then used the Bayes-
ian optimization method to realize automatic learning of the main important hyperpa-
rameters to build an adaptive CNN-based hydraulic pump fault diagnosis method. Wang 
et al. [91] used FEMD to decompose the pressure signal and then extracted useful fault 
information from the signal through RE. This method also has a good ability to suppress 
noise. Liu et al. [92] proposed to use the instantaneous angular speed (IAS) signal obtained 
by the equal angle method to diagnose the hydraulic pump fault under non-stationary 
conditions. 

The four major wear faults of hydraulic pumps summarized in the literature research 
are classified as Fault I: friction wear faults; Fault II: abrasive wear fault; Fault III: pit wear 
fault; Fault IV: corrosive wear fault. In addition, it further evaluates the paper from the 
following points: 
Index I: enhance fault characteristics; 
Index II: optimization of fault diagnosis algorithm; 
Index III: adapt to strong noise environment; 
Index IV: high diagnostic accuracy. 

The above four types of faults and four types of evaluation indicators are applicable 
to this chapter. The application of fault diagnosis based on a single signal is shown in Table 2. 
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Table 2. Fault diagnosis method based on a single signal. 

Year 
Faults Studied 

Signal Used Method Used 
Index Evaluation 

Reference Fault 
I 

Fault 
II 

Fault 
III 

Fault 
IV 

Index 
I 

Index 
II 

Index 
III 

Index 
IV 

2005   √  Vibration WT+MRA (multi-resolution analysis) √   √ [50] 
2006 √  √  Vibration fuzzy logic principle+Spectrum analysis   √  [84] 
2008 √    Vibration RNS+SVM  √   [75] 
2008  √ √  Vibration WA+PCA √  √  [69] 
2008 √   √ Vibration PSD+DT+FIS √ √   [86] 
2009 √  √  Vibration WPD   √  [41] 
2011 √  √  Vibration PCA    √ [52] 
2011 √  √  Vibration CPRBF  √  √ [67] 
2011  √ √  Sound KPCA   √  [87] 
2012 √  √  Vibration WP+MTS  √   [53] 
2012 √  √  Vibration SSSVN √ √   [77] 
2013  √  √ Vibration EMD+NN √  √  [56] 
2013 √   √ Vibration Spectrum analysis + rough set theory   √  [85] 
2014 √ √   Vibration PARD-BP  √   [70] 
2014  √ √  Vibration WPT+SOM  √  √ [59] 
2015 √ √   Vibration WPT+SVD+SVM √  √  [72] 
2015  √ √  Vibration RELU-Dropout+SAE  √   [68] 
2015 √  √  Vibration LMD+Softmax √   √ [58] 
2015   √  Vibration SIE+FCM  √   [83] 
2015 √  √  Vibration SOMP+compressive sensing theory  √   [54] 
2015 √    Vibration LMD+IAMMA √ √   [48] 
2015 √  √  Vibration EMD+CEEMD+STFT+TFE+SVM √  √  [76] 
2015  √ √  Vibration DCT+CNC+HHT √  √  [38] 
2016 √  √  Vibration ITD+Softmax    √ [57] 
2016 √ √  √ Vibration 7-layer CNN  √   [63] 
2016  √ √  Vibration HFHLCSD+BSS+DCTS+DCTHSE √  √  [39] 
2016  √ √  Vibration WNC+CNN+HHT √  √  [42] 
2016 √    Vibration ILCD+MF+BT-SVM √  √  [78] 
2017 √  √  Vibration sensitivity analysis+PNN √   √ [69] 
2017   √  Vibration EEMD+GA+SVR  √  √ [73] 
2018  √   Vibration LCD+DCS √    [51] 
2018   √  Vibration SPIP+HMM  √   [43] 
2018 √  √  Vibration WPA+FE+LLTSA+SVM √ √   [74] 
2018 √ √   Vibration WPT+LTSA+EMD+LMD+ELM    √ [82] 
2019 √    Vibration EWT+VCR √  √  [35] 
2019 √    Vibration EMMD+Teager √    [46] 
2019   √  Vibration FFT   √  [71] 
2019 √  √  Sound MFCC+ELM √ √   [88] 
2019 √  √  Vibration IEWT  √   [47] 
2019 √  √  Vibration MCS+RE √    [49] 
2020 √  √  Vibration EWT+PCA+ELM √  √  [80] 
2020 √ √   Vibration CWT+CNN √ √   [60] 
2020 √    Vibration EWT+VCR+HT √    [45] 
2020  √   Vibration PSE √    [37] 
2020  √ √  Pressure FEMD+RE √  √  [91] 
2020  √ √  Vibration CWT+CNN+T-DSNE √ √   [66] 
2021 √    Vibration MEEMD+AR+WKELM √ √   [79] 
2021 √  √  Vibration CEEMDAN+CMBSE+t-SNE+WOA-KELM  √ √ √ [81] 
2021 √  √  Vibration WPA+AlexNet-CNN  √   [61] 
2021 √  √  Vibration PSO-Improve-CNN √ √   [64] 
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2021 √    Angular velocity IAS+NST   √  [92] 
2021 √  √  Vibration EEMD+Pearson √  √  [36] 
2021 √  √  Vibration RMS √    [55] 
2022 √  √  Vibration NCNN+Bayes+BP  √   [62] 
2022 √  √  Vibration WT+Bayes+CNN  √   [65] 
2022  √ √  Pressure CWT+Bayes+CNN  √   [90] 
2022  √ √  Sound CNN+PSO  √   [89] 

3.2. Fault Diagnosis Based on Multiple Signals 
The fault information contained in the current single signal processing is limited. In 

order to increase the collection of fault information, the characteristic signals of multiple 
signals can contain more and higher dimensional fault information, which is conducive 
to improving the accuracy of fault diagnosis of hydraulic pumps and introducing more 
innovative ways for fault diagnosis of hydraulic pumps. 
(1) Method based on signal processing 

The essence of the multi-signal hydraulic pump fault diagnosis method is to process 
each input signal separately, and then use a certain fusion method to fuse the feature in-
formation contained in the multi signals, so that the extracted fault information is enough 
to diagnose the fault state. Liu et al. [93] proposed a fault diagnosis method for hydraulic 
gear pumps based on EEMD and the Bayesian network. This scheme is a method based 
on multi-source information fusion. Compared with the traditional fault diagnosis 
method using only EEMD, this method can comprehensively utilize all useful information 
other than sensor signals. Lu et al. [94] proposed a multi-source information fusion fault 
diagnosis method based on D-S evidence theory, which uses a fuzzy membership function 
to construct the basic probability assignment of three evidence bodies. Based on the accel-
eration, power consumption, flow, and pressure signals under different states, Buiges et 
al. [95] used the collected signals to compare with the normal state signals for fault diag-
nosis. Przystupa et al. [96] considered displaying the changes of pressure and flow on FFT 
and STFT spectrum to realize the application of short-time Fourier transform to fault di-
agnosis of hydraulic pumps under different operating conditions. Ma Z. et al. [97] estab-
lished a variable rate inverse gaussian process model to describe the deterioration behav-
ior of the pump, and proposed a Bayesian statistical fault diagnosis method for pressure 
and flow degradation data analysis. Ruixiang et al. [98] used pressure spectrum signal, 
temperature signal, and motion signal as diagnostic features, and then used information 
fusion technology to diagnose hydraulic pump faults. Du et al. [99] proposed a hierar-
chical clustering fault diagnosis scheme that distinguishes obvious faults through single 
signal processing of vibration and flow and uses data fusion technology to find fuzzy in-
formation. Zengshou et al. [100] proposed an information fusion diagnosis method based 
on improved D-S evidence theory and space-time domain. Du et al. [101] proposed a clus-
tering diagnosis algorithm based on statistical ARPD in the diagnosis method based on 
vibration, flow, and pressure signals. Fu et al. [102] studied the relationship between the 
Bayesian network algorithm and the fault components of the hydraulic pump and then 
used the Bayesian network algorithm to diagnose the fault when the simulation data of 
vibration, pressure, temperature, and flow are incomplete. 
(2) Methods based on artificial intelligence 

Similar to intelligent methods in Section 3.1, the multi-signal hydraulic pump fault 
diagnosis method is divided into neural network-based method, classifier-based method, 
and migration learning-based method. 
① Artificial intelligence method based on neural network 

In the structure of neural networks, the number of neurons in the input layer often 
exceeds one, so the multi-signal input is compatible with the multi-input characteristics 
of the input layer of the neural network structure. 
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The convolutional neural network has exceeded the discrimination ability of human 
eyes in the accuracy of image recognition, so the digital signal of the hydraulic pump can 
be converted into an image signal for the convolutional neural network to diagnose the 
fault of the hydraulic pump. Tang et al. [103] proposed an intelligent fault diagnosis 
method based on the adaptive learning rate of a neural network to diagnose different fault 
types by using CWT to convert the three original signals of vibration signal, pressure sig-
nal, and sound signal into two-dimensional time-frequency images, and using adaptive 
learning rate strategy to establish an improved deep CNN model. Taking the vibration 
signals and pressure signals of hydraulic pumps as the analysis objects. Jiang et al. [104] 
proposed a fault diagnosis algorithm for hydraulic pumps based on EWT and one-dimen-
sional CNN and deployed the one-dimensional CNN model to the cloud platform to 
achieve real-time fault diagnosis based on the cloud platform. When based on one-dimen-
sional input signals, there is also a high-precision neural network structure to improve the 
accuracy of hydraulic pump fault diagnosis. An RBF neural network adopts a linear opti-
mization strategy and has fast learning speed and can approach any nonlinear function 
with arbitrary accuracy. Zuo et al. [105] built a hydraulic pump fault diagnosis method 
based on RBF neural network, which takes the pump shell vibration signal and pumps 
outlet pressure pulse signal as input characteristics. 

There is also PNN with RBF neural network function, which is a neural network 
based on Bayesian decision rules. Zuo et al. [106] built a hydraulic pump fault diagnosis 
method based on PNN, which takes the pump casing vibration signal and pump outlet 
pressure pulse signal as input characteristics. Dong et al. [107] used WPT to extract the 
main fault information contained in the power signal in the historical data, combined with 
the parameters such as force, oil pressure, casing pressure, and dynamic liquid level to 
build the fault feature vector, established the PNN model, obtained the mapping relation-
ship between the fault feature vector and the fault form through training the model, and 
diagnosed the fault form to be entered according to the fault feature vector to be entered. 
Jiao et al. [108] collected vibration signals and pressure signals to establish a fault diagno-
sis model based on EMD and PNN. Li et al. [109] proposed a hydraulic pump fault diag-
nosis method based on the combination of kernel principal components and PNN. This 
method uses KPCA to reduce the dimension of multi-source data and then diagnoses the 
fault mode through the PNN network. 
② Classifier based approach 

The function of a classifier is to classify chaotic targets into different categories ac-
cording to different input signals. In the fault diagnosis of hydraulic pumps, the input 
signal mapped faults can be classified by the classifier to diagnose the faults. Lakshmanan 
et al. [110] proposed a hydraulic pump fault diagnosis method that takes the pressure 
signal, flow signal, and torque signal of the pump as original real-time data for feature 
extraction, and inputs them into SVM after CWT. Jiang et al. [111] used the decision tree 
to build a random forest model, trained six continuous variables of the hydraulic screw 
pump system as input characteristics, and built a hydraulic pump fault diagnosis method 
based on the random forest model. Hu et al. [112] built a multi-fault diagnosis system 
based on data fusion according to the D-S evidence theory and used DMM to build a fault 
diagnosis feature with a basic probability assignment function, ensuring the objectivity of 
reliability distribution evaluation.  
③ Methods based on Transfer Learning 

In order to generalize the ability of the model, the trained model parameters can be 
migrated to the new model to help train, which can make the initialization performance 
of the model higher, the promotion rate faster, and the convergence better. Miao et al. 
[113] used CEEMD and SVD to decompose pressure signal, vibration signal, and flow 
signal to construct feature vectors and built a hydraulic pump fault diagnosis method 
through a TrAdaBoost migration learning algorithm. He et al. [114] proposed a migration 
learning algorithm based on deep MFAM and designed a multi-signal fusion module that 
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assigns weights to vibration signals and acoustic signals, improving the dynamic adjust-
ment ability of the method. 

The application of multi-signal-based fault diagnosis is shown in Table 3. 

Table 3. Fault diagnosis method based on multiple signals. 

year 
Faults Studied 

Signal Used 
Index Evaluation 

Reference Fault 
I 

Fault 
II 

Fault 
III 

Fault 
IV 

Index 
I 

Index 
II 

Index 
III 

Index 
IV 

2002   √  Information fusion technology √    [98] 
2010  √ √  Hierarchical clustering analysis √  √  [99] 

2011 √  √  Improved DS evidence theory and spatiotem-
poral information fusion 

 √ √  [100] 

2012 √  √  D-S+DMM √  √  [111] 
2013  √ √  Clustering diagnosis algorithm based on ARPD √ √   [101] 
2013 √ √   MFAM+Transfer learning  √   [113] 
2014  √ √  PNN    √ [105] 
2014 √    RBF-NN √   √ [104] 
2015 √  √  EEMD+Bayes+NN √ √   [93] 
2017 √  √  DS evidence theory √    [94] 
2017  √ √  EMD+PNN √   √ [107] 
2019 √  √  Inverse gaussian model + Bayes optimization  √  √ [97] 
2020 √   √ PCA √    [95] 
2020  √  √ STFT+FFT √    [96] 
2020 √  √  SVM+Multilayer Perceptron(MLP) √    [109] 
2020 √    Stochastic forest neural network    √ [110] 
2020 √  √  Singular value decomposition + transfer learning √ √   [112] 
2020 √    Reliability analysis + Bayesian network  √   [102] 
2021 √    CNN based on improved adaptive learning rate  √  √ [103] 
2021  √ √  KPCA+PNN  √   [108] 
2021  √ √  CNN+EWT+WISE-PaaS √ √   [114] 
2022 √  √  Wavelet packet analysis+PNN √   √ [106] 

3.3. Other Fault Diagnosis Methods 
Whether it is based on signal processing or artificial intelligence, it is based on the 

data-driven fault diagnosis method of hydraulic pumps. This method realizes fault diag-
nosis of a hydraulic pump by using the mapping relationship between digital signal and 
fault and does not describe the mechanism function of fault in detail. Some studies have 
proposed new knowledge or concepts based on the relationship between non digital sig-
nal information and hydraulic pump fault mapping [115–119].  

On the basis of an accelerated life test, Guo et al. [120] proposed a dynamic grid tech-
nology to simulate the internal flow field of hydraulic pumps in detail. On the basis of 
film thickness analysis, Ma et al. [121] put forward a hydraulic pump diagnosis method 
based on elastohydrodynamic lubrication model analysis by comprehensively consider-
ing structural parameters, working condition parameters, and material performance pa-
rameters. In view of the multi-crack fault of the hydraulic gear pump gear, Zhao et al. 
[122] established the vibration wavelet finite element calculation formula of complete gear 
and cracked gear, studied the fault diagnosis of blind source separation and particle 
swarm optimization algorithm, and correctly diagnosed the location of multiple cracks of 
the gear. 
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3.4. Centrifugal Pump Fault Diagnosis Method 
The above content is mainly a detailed analysis of the fault diagnosis method of the 

hydraulic pump, and as a centrifugal pump that also transports liquid, it is also of com-
parative significance to analyze it. In centrifugal pumps, it is necessary not only to identify 
the fault but also to discover the severity of the failure and classify it.  

Muralidharan et al. [123] used the DWT to calculate the wavelet characteristics of the 
vibration signal, used rough sets to generate rules, and used fuzzy logic to classify. Sak-
thivel et al. [124] used the C4.5 decision tree algorithm to extract statistical features from 
vibration signals in good and fault states for fault diagnosis. Muralidharan et al. [125] 
studied the vibration-based fault diagnosis method of a monoblock centrifugal pump and 
found the best wavelet suitable for single-block centrifugal pump fault diagnosis by cal-
culating and comparing. Nagendra et al. [126] used two different machine learning tech-
niques, SVM and ANN, for centrifugal pump fault diagnosis. It was found that the ma-
chine learning method based on ANN combined with chi-square and XGBoost feature 
ranking techniques is superior to the SVM. Wang et al. [127] proposed a centrifugal pump 
fault diagnosis method based on CEEMD-sample entropy (SampEn) combined with RF. 
Based on the characteristic evaluation of the information ratio combined with principal 
component analysis, Ahmad et al. [128] proposed a new Ir-PCA method. The compari-
son results found the method was superior to existing advanced methods in terms of fault 
classification accuracy. ALTobi et al. [129] used MLP and SVM to classify the six fault 
states and normal states of the centrifugal pump. Therefore, an MLP hybrid training 
method based on the combination of Back Propagation (BP) and Genetic Algorithm (GA) 
was proposed.  

3.5. Fault Diagnosis Block Diagram 
Based on the fault diagnosis methods proposed in the above literature, I have sum-

marized the following fault diagnosis block diagram, as shown in Figure 2. Since there are 
many types of diagnosis methods and many expand on the basic methods, I just list the 
basic methods for reference. 

 
Figure 2. Fault diagnosis block diagram. 

4. Fault Prediction and Health Management 
On the basis of fault diagnosis, appropriate prediction and analysis methods can be 

used to achieve fault prediction. Furthermore, for the health management of the whole 
life cycle of the hydraulic pump, the remaining service life of the hydraulic pump can be 
predicted and the whole process of health status monitoring of the hydraulic pump can 
be studied. 

4.1. Fault Prediction 
To maintain the stable operation of the hydraulic pump in its whole life cycle, the 

failure prediction of the hydraulic pump can predict the failure that will occur in the early 
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stage of the failure, so as to timely repair the failure in the early stage of low cost and 
reduce the expansion of loss. The methods of hydraulic pump fault prediction can be 
roughly divided into two parts, intelligent prediction, and non-intelligent prediction. 

The non-intelligent prediction method refers to that the prediction method has no 
self-learning ability. In short, the non-intelligent prediction method does not use mechan-
ical learning or neural network, which makes the usability of this method relatively weak. 
Gomes et al. [130] used the empirical model of degradation evolution combined with Kal-
man filter technology to predict the failure of hydraulic pumps, and successfully pre-
dicted two-time series from actual operation to failure data. Amin et al. [131] developed 
an online health monitoring system for hydraulic pumps by using feature extraction, a 
fuzzy reasoning system, and knowledge fusion technology. Bykov et al. [132]described 
the analysis of the state data set of the hydraulic system and tried to diagnose the failure 
in the valve switching mode, so as to further study the possibility of predicting the failure. 
Ma et al. [133] analyzed the key failure modes of aircraft hydraulic pumps based on oper-
ation and maintenance statistics and proposed a failure prediction method based on 
multi-source information fusion. Lisowski et al. [134] constructed a function-component 
matrix (EC) and a component-failure matrix (CF) by using the quality method and then 
multiplied the two matrices to obtain a function-failure EF matrix containing potential 
failure information, thus realizing the failure prediction of hydraulic pumps. 

Intelligent prediction methods mainly include prediction methods with self-learning 
ability using neural networks or machine learning. To improve the accuracy of fault pre-
diction, Li et al. [135] proposed a hydraulic pump fault prediction method based on BE 
and DBN, which is based on the DBN model of constraint limit RBM as a prediction model 
and introduces QPSO to search the optimal value of the initial parameters of the network. 
Xu et al. [136] analyzed the cause and mechanism of hydraulic pump degradation due to 
wear, established a degradation model through joint simulation of Simulink and 
AMESim, and predicted the failure of the hydraulic pump using a multi-step SVM algo-
rithm. Ding et al. [137] proposed a fault prediction method based on logistic regression 
that obtains a hydraulic pump fault prediction model by LMD processing of the pump 
vibration signal, feature reduction using PCA, and training the LR model with the re-
duced features. Tian [138] used the method of combining EEMD and SEOS to envelope 
demodulate the vibration signal of the hydraulic pump, and then used WPA to extract the 
fault features, to establish a hydraulic pump fault prediction model combining WPA and 
SVM. Sun et al. [139] proposed a multi-channel vibration signal fusion method based on 
DCS. This method takes the synthetic spectral entropy as the feature and uses the ex-
tracted feature to establish an ESN model for prediction, which can be used for fault pre-
diction of hydraulic pumps. 

4.2. Prediction of Remaining Useful Life 
During the normal use of the hydraulic pump, the remaining useful life of the current 

hydraulic pump can be predicted in time, and the working condition of the hydraulic 
pump can be adjusted in time through the working time, which is conducive to extending 
the normal useful life of the hydraulic pump. The remaining useful life prediction meth-
ods of hydraulic pumps can be roughly divided into two categories, data-driven methods 
and model-driven methods. 
① Data-driven approach 

The data-driven methods can be divided into neural network methods and non-neu-
ral network methods. Lee et al. [140] constructed HI through vibration signal and pressure 
signal, and trained a Bi-LSTM neural network using different performance indicators for 
RUL prediction of hydraulic pumps. Wang et al. [141] used DCAE to characterize the vi-
bration data of hydraulic pumps, constructed HI to determine the degradation state, and 
input the health index as a tag into the RUL prediction model based on the Bi-LSTM net-
work. Guo et al. [142] used VMD, Hilbert, and FA to process the vibration data of the 
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hydraulic pump, established the degradation evaluation index, trained the Trainbr-
RBFNN model with the degradation evaluation index, and obtained the RUL prediction 
model for the hydraulic pump.  

The non-neural network method can still achieve the RUL prediction of hydraulic 
pumps. Yu et al. [143] proposed a MAAKR method for information fusion, using 3B-
Spline with monotonic constraints to build Hi, and using the MCPF method to monoton-
ically update the random coefficients of the model to achieve RUL prediction of hydraulic 
pumps. Tongyang et al. [144] proposed an AOPF prediction method to improve the long-
term prediction accuracy of RUL and used the MCS method to estimate the posterior 
probability density function of the future state of the hydraulic pump. Li et al. [145] pro-
posed a new method for RUL prediction of hydraulic pumps based on KPCA and JITL. 
This method uses WT to extract features, KPCA to fuse features, and constructs an RUL 
prediction method based on k-VNN and JITL methods. 
② Model-driven methods 

The data-driven method is to use the data information to map the tag of the target 
fault of the hydraulic pump through the processing and analysis of the data. This method 
completely bypasses the professional knowledge of the hydraulic pump and only has the 
mapping relationship from input to output. Based on the model-driven approach, starting 
from the expertise of hydraulic pumps, mathematical explicit relationships are con-
structed. Geng et al. [146] proposed a life assessment method that combines SMOTE algo-
rithm, KS test, and cumulative damage theory. The SMOTE algorithm is used to solve the 
imbalance problem between sample groups, and KS is the classic method for evaluating 
the goodness of fit. Zhonghaim et al. [147] obtained the fatigue life of the piston by using 
DLDR through the analysis of the actual load spectrum of the hydraulic piston pump and 
simulated the fatigue life of the piston by using the finite element analysis software. Wang 
et al. [148] described the performance degradation model with the Wiener process, pre-
dicted the remaining useful life (RUL) of the pump, estimated the initial parameters of the 
wiener process by MLE using the EM algorithm, estimated the drift coefficient of the wie-
ner process by recursive estimation using Kalman filter method and calculated the RUL 
of the pump according to the performance degradation model based on wiener process. 
Wang et al. [149] used the contaminant sensitivity theory of the hydraulic system to derive 
the mathematical explicit relationship between oil pollution and the useful life of the pis-
ton pump and predicted the useful life of the piston pump under certain pollution condi-
tions using a group of experimental data. Sun et al. [150] proposed an improved IG pro-
cess model to describe the wear degradation of hydraulic pumps and used Monte Carlo 
integration and EM algorithm to estimate the model parameters.  

4.3. Health Status Detection 
The real-time health monitoring of the hydraulic pump can diagnose whether the 

operating state of the hydraulic pump is healthy at each time, which is conducive to the 
timely adjustment of the hydraulic pump in response to emergencies and the management 
and use of the hydraulic pump.  

The detection of the health state of the hydraulic pump is not limited to the detection 
of the fault state, so the amount of data required is very large. A neural network can 
achieve considerable effect in processing large sample data. According to different health 
states of hydraulic pumps, Shaowu et al. [151] proposed that after collecting vibration 
signal data of hydraulic pumps, STFT, WT, and Wigner-Will distributions are used to 
form time-frequency maps, and then CNN is used to classify and identify time-frequency 
images of different volumetric efficiencies of hydraulic pumps, so as to monitor the health 
status of hydraulic pumps. Lin et al. [152] proposed that according to the distribution of 
the information entropy of the characteristic parameters of the hydraulic pump, various 
state characteristic parameters can be obtained to characterize the contribution of the hy-
draulic pump in health, so as to realize the fusion of various characteristic parameters, 
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and then use the grey theory to detect the health state of the hydraulic pump. Hancock et 
al. [153] researched and developed a method to decompose the vibration signal of vertical 
hydraulic pumps using WPA, and input the characteristic signal into the adaptive neuro-
fuzzy inference fault detection system for pump health state detection. Succi et al. [154] 
take the fundamental pumping frequency and its harmonics as the input features of the 
neural network model and use the multilayer neural network model of back propagation 
and Kohonen feature map to detect the health state of the hydraulic pump.  

There are also some studies that use non-neural network methods, which can also 
achieve the purpose of detecting the health state of hydraulic pumps. Zhouf et al. [155] 
proposed a WOA-based RSDD method to extract feature parameters, which combined 
with the modified hierarchical amplitude aware displacement entropy MHAPE to form a 
health state detection method for hydraulic pumps. Gao et al. [156] proposed a health 
diagnosis method for hydraulic pumps based on WPD and WCRA and developed a health 
detection system based on WPD residual analysis. Shapping et al. [157] used the method 
of combining WPD and Hilbert envelope demodulation to eliminate the interference effect 
of radial and axial acceleration signals, replaced Shannon entropy with NE for state iden-
tification, and proposed a WPNE-based method for identifying the health state of hydrau-
lic pumps. 

5. Analysis of the Summary Paper 
5.1. Statistical Analysis 

Figure 3 shows the statistics of different research directions of hydraulic pump faults 
in recent years in the literature listed in this paper, and it can be seen that the mainstream 
research direction is still a fault diagnosis. Equipment fault diagnosis technology has de-
veloped to today and has become an independent interdisciplinary comprehensive infor-
mation processing technology, it is based on reliability theory, cybernetics, information 
theory, and system theory as the theoretical basis, modern test instruments and computers 
as a means, combined with the special laws of various diagnostic objects and gradually 
formed a new discipline, so it is loved by many scholars for research. 

 
Figure 3. Different research directions of hydraulic pump faults. 

Figure 4 shows that among the fault diagnosis methods of hydraulic pumps based 
on single signals, the fault diagnosis method uses vibration signals to diagnose the faults 
of hydraulic pumps, which is the first choice for most studies at present. More than 90% 
of scholars in the selected articles use vibration signals.  

With the development of fault diagnosis algorithms in recent years, more and more 
research on hydraulic pump fault diagnosis has been carried out, which is almost a 
straight-line trend. As shown in Figures 5 and 6, it can be concluded from the analysis of 
the two figures that the research on fault diagnosis of hydraulic pumps will continue to 
increase in the future. With the development of detection signals from simplicity to com-
plexity, it can be seen that the research of single signal fault diagnosis is more than that of 
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multi-signal methods. However, with the development of signal fusion technology, the 
research of multi-signal fault diagnosis is also increasing year by year. 

 
Figure 4. Single signal scale. 

 
Figure 5. Development trend of single signal articles. 

 
Figure 6. Development trend of multi-signal articles. 

Figure 7 shows the proportion of signal processing and artificial intelligence, which 
shows that diagnosis methods based on artificial intelligence are more and more popular. 
Although the signal processing methods are developing year by year, most of the research 
focuses on the composite method of signal processing methods to deal with fault charac-
teristics and human intelligent algorithms to build diagnosis models. 
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Figure 7. The ratio of signal processing to artificial intelligence. 

5.2. Discussion on Future Development 
This paper summarizes the application of hydraulic pump fault research, but there 

are some inevitable omissions. To sum up, through the statistical analysis of the selected 
documents, it can be concluded that in the actual environment, it is difficult to obtain high-
quality fault data from a single signal and extract the fault information contained. On the 
contrary, the multi-signal method is useful because it contains more information. The ar-
tificial intelligence method is useful because it has high feasibility in dealing with complex 
situations (such as compound faults). In order to better promote the development of hy-
draulic pump fault diagnosis, the following aspects can be carried out in the future: 
(1) Because of the weak signal features in the early stage of fault, it is difficult to extract 

fault features, so fault feature extraction is still a direction that needs further explo-
ration. Because of the powerful function of the deep learning method, fault feature 
extraction based on the deep learning method will be an important research direc-
tion.  

(2) Although multi-data signals contain more information, the efficient information fu-
sion methods for multi-data signals are still insufficient, so more efficient information 
fusion methods are also the direction to be further explored.  

(3) From the statistical analysis of the review papers, it can be concluded that the diag-
nosis method of artificial intelligence will become mainstream. However, each intel-
ligent method also has defects, and the combination of multiple intelligent methods 
can be used to fill the defects, such as reverse neural networks combined with multi-
layer perceptrons. 

6. Conclusions 
Fault diagnosis is the key to the health management of hydraulic pumps. It can im-

prove the reliability of the hydraulic pump from the aspect of the data signal, and signif-
icantly reduce the risk of operation collapse and catastrophic failure. In recent years, the 
research on hydraulic pump fault diagnosis has been very active, but there is a lack of 
systematic analysis and summary of the developed methods. In order to make up for this 
gap, this paper systematically summarizes the relevant methods from the two aspects of 
fault diagnosis and health management. Finally, through the statistical analysis of the lit-
erature, some development prospects in this field are pointed out, which provides refer-
ence and guidance for researchers and practitioners to further carry out and apply rele-
vant research. Nowadays, with the rapid development of machine learning algorithms 
and deep learning, data and signal-based methods are becoming the main direction in the 
future. The same trend applies to feature extraction methods. Therefore, the powerful 
ability of machine learning algorithms, especially deep learning algorithms, obviously has 
great potential in the future. 
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Nomenclature 
AOPF Adaptive-Order Particle Filter 
AR Autoregressive 
BE Bispectrum Entropy 
BI-LSTM Bi-Directional Long-Short Term Memory 
BT-SVM Binary Tree Support Vector Machine 
CEEMD Complementary Ensemble Empirical Mode Decomposition 
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 
CMBSE Composite Multi-Scale Basic Scale Entropy 
CNC Cosine Neighboring Coefficients 
CNN Convolutional Neural Network 
CPRBF-NN Radial Basis Function Network In Conjunction With Chaos Theory 
CWT Continuous Wavelet Transform 
DBN Deep Belief Network 
DCAE Deep Convolutional Autoencoder 
DCS Discrete Cosine Transform–Composite Spectrum 
DCT Discrete Cosine Transform 
DLDR Double Linear Damage Rule 
DT Decision Trees 
EEMD Ensemble Empirical Mode Decomposition 
ELM Extreme Learning Machine 
EM Expectation Maximization 
EMD Empirical Mode Decomposition 
EMMD Extremum Field Mean Mode Decomposition 
ESN Modified Echo State Networks 
EWT Empirical Wavelet Transform 
FA Factor Analysis 
FCM Fuzzy C-Means 
FE Fuzzy Entropy 
FEMD Fast Empirical Mode Decomposition 
FFT Fast Fourier Transform 
FIS Fuzzy Inference System 
FMEA Failure Mode And Effects Analysis 
FMECA Modes, Effects, And Criticality Analysis 
GA Genetic Algorithm 
HHT Hilbert–Huang Transform 
HMM Hidden Markov Model 
HT Hilbert Transform 
IAMMA Improved Adaptive Multiscale Morphology Analysis 
Ir-PCA Informative ratio-Principal component analysis 
IEWT Improved Empirical Wavelet Transform 
IG Inverse Gaussian 
ILCD Improved Local Characteristic-Scale Decomposition 
ITD Intrinsic Time-Scale Decomposition 
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JITL Just In Time Learning 
KPCA Kernel Principal Component Analysis 
KS Kolmogorov-Smirnov 
K-VNN K-Vector Nearest Neighbor 
LCD Local Characteristic-Scale Decomposition 
LLTSA Liner Local Tangent Space Alignment 
LMD Local Mean Decomposition 
LR Logistic Regression 
LTSA Local Tangent Space Alignment 
MAAKR Modified Auto-Associative Kernel Regression 
MCPF Monotonicity-Constrained Particle Filtering 
MCS Monte Carlo Simulation 
MD Mahalanobis Distance 
MEEMD Modified Ensemble Empirical Mode Decomposition 
MF Multi-Fractal Spectrum 
MFAM Multi-Signal Fusion Adversarial Model 
MFCC Mel-Frequency Cepstral Coefficient 
MHAPE Modified Hierarchical Amplitude-Aware Permutation Entropy 
MLE Maximum Likelihood Estimation 
MLP Multilayer Perceptron 
MMPE Mean Of Multi-Scale Permutation Entropy 
MPE Multi-Scale Permutation Entropy 
MTS Mahalanobis–Taguchi System 
NCNN Normalized Convolutional Neural Network 
NE Norm Entropy 
NN Neural Network 
PARD Pruning Algorithm Based Random Degree 
PCA Principal Component Analysis 
PCC Pearson Correlation Coefficient 
PHM Prognostics And Health Management 
PNN Probabilistic Neural Network 
PSD Power Spectral Density 
PSE Power Spectral Entropy 
PSO Particle Swarm Optimization 
QPSO Quantum Particle Swarm Optimization 
RBF Radial Basis Function 
RBM Boltzmann Machine 
RE Relative Entropy 
RFC The Random Forest Classifier 
RMS Root Mean Square 
RNS Real-Valued Negative Selection 
RSDD Resonance-Based Sparse Signal Decomposition 
RUL Remaining Useful Life 
SAE Stacked Autoencoders 
SEOS Smoothed Energy Operation Separation 
SIE Spatial Information Entropy 
SMOTE Synthetic Minority Over-Sampling Technique 
SOM-NN Self-Organizing Mapping Neural Network 
SOMP Stagewise Orthogonal Matching Pursuit 
SPIP Symbolic Perceptually Important Point 
SS-SVM Sphere-Structured Support Vector Machines 
STFT Short Time Fourier Transform 
SVD Singular Value Decomposition 
SVM Support Vector Machine  
SVR Support Vector Regression 
T-DSNE T-Distributed Stochastic Neighbor Embedding 
TFE Time-Frequency Entropy 
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T-SNE T-Distributed Stochastic Neighbor Embedding 
VCR Variance Contribution Rate 
VMD Variation Mode Decomposition 
WA Wavelet Analysis 
WCRA Wavelet Coefficient Residual Analysis 
WKELM Wavelet Kernel Extreme Learning Machine 
WNC Wavelet Neighboring Coefficients 
WOA Whale Optimization Algorithm 
WOA-KELM Whale Optimization Algorithm Kernel Extreme Learning Machine 
WP Wavelet Packet 
WPA Wavelet Packet Analysis 
WPD Wavelet Packet Decomposition 
WPNE Wavelet Packet Norm Entropy 
WPT Wavelet Packet Transform 
WT Wavelet Transform 
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