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Abstract: With the continuous progress of development, deep learning has made good progress in 
the analysis and recognition of images, which has also triggered some researchers to explore the 
area of combining deep learning with hyperspectral medical images and achieve some progress. 
This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes 
the common medical hyperspectral imaging systems, and summarizes the progress of some emerg-
ing spectral imaging systems through analyzing the literature. In particular, this article introduces 
the more frequently used medical hyperspectral images and the pre-processing techniques of the 
spectra, and in other sections, it discusses the main developments of medical hyperspectral com-
bined with deep learning for disease diagnosis. On the basis of the previous review, tne limited 
factors in the study on the application of deep learning to hyperspectral medical images are out-
lined, promising research directions are summarized, and the future research prospects are pro-
vided for subsequent scholars. 
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1. Introduction 
Medical imaging refers to an imaging technology mainly used to assist in clinical 

work, often in the initial detection, treatment, and diagnosis of many diseases and the 
guidance of operations. Modern medical imaging mainly uses magnetic resonance imag-
ing (MRI), X-ray, optical coherence tomography (OCT), ultrasound, or a combination of 
several techniques. These modern medical imaging modalities have had a profound im-
pact on the diagnosis of diseases and have led to the development of more imaging tech-
niques for clinical examinations. Deep learning has made significant progress in other 
medical image processing, such as optical coherence tomography (OCT), a non-invasive 
imaging technique that scans the subject to obtain three-dimensional high-resolution im-
ages, mainly for fundus retinal imaging, etc. The main algorithms currently focus on con-
volutional neural networks, support vector machines (SVM), etc. However, most of these 
imaging techniques are expensive and can even be harmful to the human body. Therefore, 
it is important to obtain an inexpensive and non-invasive imaging technique for medical 
images. 

Hyperspectral imaging (HSI) originally originated from remote sensing and was 
used by NASA for various applications with richer spectral information as well as spatial 
information than conventional optical images. It has been broadly applied in diverse 
fields of remote sensing data [1,2], agriculture [3,4], image enhancement [5], horticultural 
protection [6,7], disaster monitoring [8], food safety and assessment [9,10], and medicine 
[11–13], showing its great potential. 
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The hyperspectral images consist of aligning various images in a narrow band of ad-
jacent wavelengths or spectra and reconstructing the reflection spectra of all pixels in that 
band to obtain three-dimensional hypercube data. The obtained spatially resolved spectra 
give access to diagnostic information about tissue physiology, morphology, and compo-
sition; thus, enabling the non-invasive observation of biopsies, histopathological and flu-
orometric analysis, and increased understanding of the biology of the disease. Hyperspec-
tral imaging is one of the developing imaging techniques in imaging modalities, and var-
ious spectral imaging systems have been investigated over the past decades to be used in 
the assessment of various biological organs and tissues. From the predominant and tradi-
tionally used whiskbroom, push broom, staring, and snapshot imaging systems devel-
oped to the fluorescent hyperspectral imaging systems, multispectral analysis, as well as 
separation techniques, have been implemented. The advantages of handheld hyperspec-
tral imagers that use single-image fast spectral capture and are capable of rapid imaging 
are also gradually being applied in research. Spectral imaging techniques in biomedicine 
have attracted more attention and have gained an important position in research. 

The application of medical hyperspectral imaging (MHSI) for the diagnosis of vari-
ous diseases has given rise to a variety of algorithms that combine with it to enable more 
accurate and efficient diagnosis and classification detection of various diseases. Machine 
learning (ML) typically employs data and statistical models that learn and recognize pat-
terns to accomplish particular tasks. In medical hyperspectral image (MHSI) processing, 
ML is mostly used in combination with MHSI for disease diagnosis and classification, 
detection, and segmentation of pathological images, including K-Nearest Neighbor [14] 
(KNN), Linear Discriminant Analysis [15] (LDA), and Support Vector Machine (SVM) 
methods. However, the MHSI application of deep learning (DL) methods has been in-
creasingly proposed [16] and studied by academics. It has produced positive results ever 
since the large-scale image classification challenge in 2012, when a network of CNNs was 
introduced on the ImageNet dataset and made significant progress. For example, a study 
in 2017 [17] used a convolutional neural network (CNN) to classify blood cells in MHSI, 
distinguishing red cells as well as white cells. In medical hyperspectral datasets, CNNs 
clearly outperform the conventional SVM in classification accuracy, demonstrating the 
huge promise of deep learning (DL) in this field [18]. 

Over the past decade, a number of pioneers in this field have assembled correlative 
references and compared the parameters of common medical-imaging techniques [19]. 
These studies illustrate the convenience that hyperspectral imaging brings to the field of 
medical bioengineering in comparison to traditional optical imaging methods, allowing 
for a greater wealth of information than was previously available. One study discussed 
the ongoing advancement of bio-medical hyperspectral systems and the parallel of the 
approaches to imaging and presented the current challenges [13]. This study presents a 
contributes to the extant literature by providing a well-balanced integration of academic 
opinion, and practical perspectives. Subsequent articles have combined techniques such 
as acquisition mode, spectral range, and spatial resolution, and measurement mode to 
classify MHSI. Methods for image analysis, as well as disease diagnosis and surgical guid-
ance, were also summarized [11]. Along with the growth of deep learning, it has attracted 
a lot of followers to study this type of field. Some authors have also made a summary of 
medical hyperspectral imaging in the field of deep learning and discussed the deep learn-
ing approach and how this approach is applied in the medical field [20]. 

However, the existing studies of hyperspectral medicine are fragmented and not 
comprehensive, while DL is rapidly emerging, and the related studies are complicated but 
lack a theoretical foundation. Therefore, a clear context is needed to link hyperspectral 
images, hyperspectral medicine, and DL. An overview of the development experience of 
other associated and also relatively mature research fields will provide a reference for 
later scholars to develop this nascent field. Through a review of relevant literature read-
ings, a synthesis of key technical insights from current research, and a revelation of major 
research trends in this field, this study intends to answer the following research areas: the 
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development of hyperspectral imaging systems; the mainstream architecture of deep 
learning for MHSI applications; and the problems addressed in medical diagnosis. 

With the development of DL in MHSI, more attention will be drawn to its application. 
It will have a remarkable influence on the medical field, especially on the diagnosis of 
diseases and the guidance of surgery. This paper introduces various imaging systems for 
hyperspectral imaging as well as the usage of deep learning to classify, segment, and de-
tect medical images and also gives a brief introduction to the application of hyperspectral 
imaging in medical applications. 

2. Hyperspectral Imaging Technology 
2.1. Imaging Principles and Techniques 

Hyperspectral imaging is a modality that combines imaging with spectroscopy. It 
usually covers a continuous part of the spectrum and provides continuous scanning im-
aging of tens or hundreds of spectral ranges at ultraviolet (UV), visible (VIS), infrared, and 
even mid-infrared wavelengths [12]. As illustrated in Figure 1, which contains both two-
dimensional spatial and one-dimensional spectral information, or as a superposition of 
several two-dimensional images [21]. It is possible to obtain the reflectance, absorption, or 
fluorescence spectra of every pixel in the image by this technique. It has a richer spectral 
band as well as a higher spectral resolution than conventional RGB images and grayscale 
maps. It can see changes in objects that are not visible with conventional imaging tech-
niques and captures minor spectral nuances in response to different pathological condi-
tions. 

 
Figure 1. Spectral data cube. 

The system mechanism of HSI is elucidated by the typical push broom hyperspectral 
system principle [11], as shown in Figure 2. First, a light source is irradiated to the spatial 
information and passes through the front lens into the slit, where different wavelengths 
of light are bent to varying degrees. Then, each pixel point in that dimension is shone on 
the detector through dispersion devices such as gratings and prisms to split the light into 
narrow spectral bands. Each row of sample space information is treated as a two-dimen-
sional image and imaged on the detector array. Moving through the plane by a mechanical 
push sweep, the HSI camera collects adjoining two-dimensional images, resulting in a 
hypercube with two spatial dimensions and one spectral dimension. 
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Figure 2. Schematic diagram of push-scan hyperspectral imaging system. 

2.2. Imaging System 
A typical medical hyperspectral imaging system can be categorized into: an optical 

acquisition instrument; spectral spectrometer; detector; system control; and data acquisi-
tion module [13]. Optical acquisition instruments indicate devices that produce images on 
a spectral spectrometer, such as a camera-like instrument that has a real image or a micro-
scope that has a virtual image. After collecting and summarizing, the HSI imaging systems 
for medicine are listed in Table 1. 

2.2.1. Acquisition Mode 
According to the acquisition methods [22] of hyperspectral systems for spectral as 

well as spatial information, hyperspectral systems are classified into four typical methods: 
whiskbroom; push broom; staring; and snapshot [13], as shown in Figure 3. 

(c)

λ

x
y

scan X
scan Y

prism

scan lens

linear array detector

(a) (b)

x
y

λ

entrance
slit

PGP

matrix detector

x
y

λ

matrix detector

 
Figure 3. Typical spectral imaging methods. (a) Whiskbroom. (b) Push broom. (c) Staring.  
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Whiskbroom imaging systems, also known as point-scan methods, typically employ 
a rotating scanning mechanism that sweeps a single point clockwise along the spatial di-
mensions (x and y) and spectral dimensions (λ). The signal to the biological tissue is se-
quentially passed through the swivel scanning mirror and the front optical system, and 
then the spectral spectrometer is spectroscopic and imaged on the CCD. The spectral im-
age data cube (x,y,λ) can be obtained by the spatial dimension (x and y) along with the 
spectral dimension (λ) obtained from the two-dimensional scene. 
1. Push broom 

The push broom imaging system is also known as the line-scan method. Unlike the 
point scan, the line scan can simultaneously scan to obtain the spatial information of the 
slit and sweep once for the spectral info of every spatial point. The biological tissue light 
signal will pass through the objective lens, the incident slit, the collimation module, and 
then the dispersive element to complete the spectroscopy and image on the CCD in turn. 

The CMOS push broom hyperspectral camera, TIVITA, is often used in medical bio-
logical tissue detection to generate HS images at a spectral resolution of 5 nm captured at 
a spectral range of 500–1000 nm spectral range, generating a 640 × 480 × 100 data cube 
with an acquisition time of about 6–7 s. It can also be used for RGB image reconstruction 
based on HSI. The diameter between the camera and the tissue depends on the objective 
lens, which is usually between 30–50 cm. For acquisition, the operating room lights are 
turned off to avoid interference from external light sources and installed on a mobile and 
agile medical system, as shown in Figure 4B and described by the following references in 
detail [23,24]. 

Push broom imaging usually acquires a greater amount of light than whiskbroom 
imaging, providing a longer exposure time and higher spectral resolution for the detector 
[25]. These two imaging systems do not display the spectral image in real time, which is 
derived from spectral calculations when the scanning of the corresponding points and 
regions is completed; 

 
Figure 4. Push broom TIVITA tissue camera, (A) schematic diagram of push broom spectroscopy 
system; (B) hyperspectral camera mounted on a medical vehicle [23]. 

2. Staring 
The staring-type imaging system, also called the spectral scanning method, can sim-

ultaneously capture a single-band two-dimensional grayscale image of complete spatial 
information with spectral data cubes obtained by sweeping the spectral domain in multi-
ple bands. The staring type uses filters such as liquid crystal tunable filters (LCTF) and 
acousto-optic tunable filters (AOTF) [26] to complete scanning of the spectrum, followed 
by a focusing optical system that is filtered to produce a narrow spectral band and imaged 
in the detector focal plane. Therefore, two-dimensional image information in one band is 
usually captured, and the information imaged in different bands is stacked to form an 
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image cube [27]. The cube constructed by wavelength scanning offers the merit of reveal-
ing spectral information in real-time, which is important for targeting and focalization 
[28]. Due to the short acquisition time, it is easy to couple with some optical instruments, 
such as cameras, endoscopes, or microscopes, and is widely used in biomedicine for de-
tecting ex vivo tissues, etc.; 
3. Snapshot 

Snapshot imaging systems can record spatial as well as spectral information on the 
detector in a single exposure area, and the snapshot mode does not require scanning in 
spatial and spectral dimensions, resulting in limited spatial as well as spectral resolution. 
Consequently, for a given CCD, spectral sampling can be compensated for by increasing 
the sampling space [29]. The snapshot imaging system differs from the whiskbroom, push 
broom, and staring modes in that the imaging regime does not require scanning to be 
imaged and can engage both remapped and scattered images to be imaged onto the CCD 
detector [30]. Thus, the obtained data, through direct and simple processing, can construct 
a spectral data cube. Nevertheless, the strength of this image is that it allows for rapid 
experiments and is usually suitable for rapid process studies, such as endoscopic inspec-
tion. 

Table 1. Application areas of hyperspectral imaging systems and medicine. 

Refer-
ence 

Spectral 
Range (nm) 

Spectral 
Resolu-
tion/nm 

Detector 
Spectral 

Spectros-
copy 

Acquisition 
Mode 

Applications 

[31] 450~900  
CRI Maestro imaging sys-

tem 
LCTF  Tumor margin classification 

[32] 430~680  
Monochromatic 

CCD-camera 
  In vivo tumors 

[33] 450~900 5 
CRI Maestro imaging sys-

tem LCTF  Head and neck cancer 

[34] 500 ~995 5 TIVITA Tissue Camera  Push broom Ex vivo kidneys classification 

[35] 350~1000 >1 
Micro-hyperspectral imag-

ing system 
PGP  Stomach Cancer Classification 

[17]   Silicon charge-coupled de-
vices 

LCTFs  Blood cell classification 

[36] 400~720  CCD LCTF  Blood cell classification 
[37] 500~1000 5 TIVITA Tissue Camera  Push broom Tissue classification 

[38] 400~1000 2~3 VNIR camera, HELICoiD 
demonstrator, Si CCD 

LCTFs Push broom Brain cancer detection 

[39] 430~920  
Hyperspectral line-scan 

camera (IMEC) 
 Push broom Colon cancer classification 

[40] 477~891  
SICSURFIS Spectral Im-

ager 
FPI Hand-held Skin Tumors 

[41] 450~950 8 Snapshot HS camera  Snapshot Skin Cancer 
[42] 400~1000 2.8 CCD  Push broom Breast cancer cell detection 

[43] 450~950  CRI Maestro imaging sys-
tem 

LCTF  Head and neck cancer 

[44] 500~1000 5 TIVITA Tissue Camera  Push broom Esophageal cancer classification 

[45]   Spatial-scanning hyper-
spectral endoscope (HySE) 

 Push broom Esophageal cancer 

[46] 450~950  CCD FPI Snapshot Skin feature detection 

[47] 400~1000 2.8 
Microscopic HS camera, 

CCD PGP Staring Brain cancer classification 
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[48,49] 450~900 5 CRI Maestro imaging sys-
tem 

LCTF  Head and neck cancer 

[50] 500~1000 5 TIVITA Tissue Camera  Push broom Surgical Instruction 
[51] 400~1000 2.8 CCD  Push broom Brain tissue 

[52] 486~700  
SnapScan hyperspectral 

camera   Head and neck cancer 

[53] 450~900  
CRI Maestro imaging sys-

tem, CCD LCTF  Head and neck cancer 

[54] 
400~1000 
900~1700  

 Hyperspectral cameras  Push broom Tongue tumor detection 

[55] 550~1000 7.5 CCD AOTF  Melanoma segmentation 
[56] 500~1000 5 TIVITA Tissue Camera  Push broom  
[57] 500~1000 5 TIVITA Tissue Camera  Push broom Tissue segmentation 
[58] 450~680  CMOS LCTF  Stomach Cancer Classification 
[59] 900~1700  InGaAs Hyperspec®  Push broom Stomach Cancer Classification 

[60] 450~950  
CRI Maestro imaging sys-

tem, CCD 
LCTF  Head and neck cancer 

[61] 510~900 6~10 Compact imaging system FPI Hand-held Diabetic skin complications 

[62] 500~1000 5 HSI Laparoscope 
Mono-

chromator Push broom 
Excised tissue reflectance meas-

urement 
Note: LCTF, liquid crystal tunable filter; PGP, prism-grating-prism; AOTF, acoustic-optical tunable 
filter; FPI, Fabry–Pérot interferometer. 

2.2.2. Fluorescence Hyperspectral Imaging System 
The CRI Maestro (Caliper Life Sciences, Inc. (Nasdaq: CALP), United States of Amer-

ica) Hyperspectral Imaging System [53,63,64] allows the acquisition of hyperspectral im-
ages of in vitro surgical specimens. Spectral scans were usually performed using a liquid 
crystal tunable filter (LCTF) and a 300-W photocatalytic xenon light source (Cermax-type, 
300-Watt, Xenon light source, Excelitas Technologies Corp, America) [65]. The system 
combines multispectral imaging and its analysis to acquire each pixel point in the spec-
trum range from visible through near-infrared. Combined with the spectral information 
from the object, it achieves multispectral analysis, separation, and other techniques to be-
come an in vivo fluorescence imaging technique with high accuracy and sensitivity. 

2.2.3. Handheld Hyperspectral Imaging System 
Unlike traditional push broom hyperspectral imagers, handheld hyperspectral im-

agers use fast spectral capture of a single image and are capable of rapid imaging. The 
small form factor and simple operation reduce the complexity of handling common im-
aging. 

Raita-Hakola et al. [66] presented the SICSURFIS handheld hyperspectral imaging 
system [40], as shown in Figure 5. It is a compact, handheld, piezoelectrically driven me-
tallic mirror-based Fabry–Pérot interferometer (FPI) hyperspectral imager. It consists of a 
prototype handheld piezoelectric metal-mirror FPI hyperspectral imager, an RGB sensor, 
and an LED light source. The light source is a series of three purposely selected nine LEDs 
that can deliver light in the range of white to 940 nm. It is almost as fast as the snapshot 
spectral imager adapted to complex skin surfaces, and allows for stereoscopic imaging by 
tilting at given angles. The imager thus provides spectral images at different angles for 
photometric stereo calculations, allowing for skin surface modeling on each captured 
wavelength. As shown in Figure 5, left below, the mode, spectral separator, and LED of 
the spectral imager’s HSI are all independently controllable and can be configured arbi-
trarily and efficiently by software. 
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Figure 5. SICSURFIS handheld hyperspectral imaging system [40]. The article [66] describes the 
principle and testing of the first phase of a three-stage pilot of this imaging system, focused on the 
intricate skin surface. The device is still a prototype and ongoing refinement is needed before it can 
be used for clinical applications. 

Besides the SICSURFIS handheld hyperspectral imaging system described above, an-
other one is the compact imaging system [61,67]. This imaging system is built on a hyper-
spectral snapshot camera and uses FPI to provide a spectral resolution of 6–10 nm in a 
wavelength spectrum of 500–900 nm. As shown in Figure 6, this system can image ran-
domly selected skin areas, where (a) is the detection of the skin of the palm of the hand 
and (b) is the detection of the dorsum of the foot in diabetic patients. 

 
Figure 6. Compact handheld hyperspectral imaging system [61]. The proposed imaging system [67] 
was designed to enable quantitative diagnosis and visualization of human skin. This includes 2-
dimensional mapping of skin chromophores, mapping of hemo–oxygen dynamics, and assessment 
of skin perfusion. 

3. Medical Hyperspectral Image Analysis 
Analysis of acquired hyperspectral images, especially medical hyperspectral images, 

can extract important information about diagnosis and treatment from some tissues and 
cells and is therefore very important for medical diagnosis and clinical applications. At 
the same time, since hyperspectral images usually also contain visible spectra and hun-
dreds of spectral bands, they are regarded as a hypercube, which provides rich spectral 
information for image analysis and has the advantage of high spatial and high resolution 
to obtain more useful information, but at the same time, due to the high dimensionality, 
it is also more difficult to analyze, which can lead to data redundancy and dimensional 
disaster. Band selection can solve the problem of dimension disaster to a certain extent. 
Table 2 shows a comparison of the six band selection methods. Table 3 lists the image 
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preprocessing operations used in the literature; Table 4 lists the deep learning architectures 
used in the literature. 

3.1. Image Pre-Processing with Spectra  
3.1.1. Normalization 

After the acquisition of hyperspectral data, since the data have factors such as high-
level dimensionality, intra-image band redundancies, and instrument noise, they need to 
be processed by some common preprocessing algorithms to obtain the hyperspectral data, 
which removes unnecessary noise. 

The hyperspectral radiation observations are normalized to eliminate the spectral in-
homogeneity and dark current effects of the illumination device. Spectral features based 
on uniform reflectance will be obtained for feature extraction. First, the raw radiation data 
are converted to normalized reflectance [68–70] using (1): 

𝐼 =
𝐼 − 𝐼

𝐼 − 𝐼
 (1)

where 𝐼  is the acquired normalized reflectance; 𝐼  is the original HS image; 𝐼  
is the white reference image; and 𝐼  is the dark reference image acquired using the 
acquisition system. 

One of the most popular normalization techniques is Standard Normal Variate 
(SNV). SNV is usually applied to resolve scattering effects caused by the presence of par-
ticles of different sizes on the surface of an object, to reduce the inhomogeneity of the 
particles, and to resolve the effects caused by the NIR diffuse reflectance spectrum. SNV 
usually deals with one of the spectra, and its Equation (2) shows the transformed spec-
trum: 

𝑥 =
𝑥 − �̅�

∑ (𝑥 − �̅�)
(𝑚 − 1)

 

where �̅� = ∑ ; m is the number of wavelength points; k = 1, 2, ..., m. 

3.1.2. Smoothing Denoising 
Spectral noise is present in the discovery of spectral features, and the HS sensor has 

a poor response across some bands, which should be removed. Smoothing filters are then 
used to filter the HS data [71] to diminish the random spectral noise in the remaining 
spectral bands. Smoothing filtering is the simplest and most effective method to eliminate 
noise, and algorithms such as window shifting and least squares are usually used, in 
which Savitzky–Golay [72] smoothing can greatly preserve data characteristics such as 
relative extremes and widths and accomplish smooth denoising of the original spectrum. 

3.1.3. Wave Selection 
The choice of waveband [73] is an important tool and probably the most effective and 

direct method that can alleviate hyper-spectral data redundancy. It aims to pick a tiny 
subset from the hyperspectral bands, i.e., to select some information-rich and distinctive 
features from the original hyperspectral image cube, which reduces the calculated cost 
and maintains the physical characteristics of the bands [74]. 

The selection of hyperspectral bands in the current study is broadly divided into six 
types: ranking-based; search-based; clustering-based; sparsity-based; embedded learning-
based; and hybrid scheme-based [74]. Since clustering algorithms only consider the re-
dundant information of spectral bands and ignore the amount of information in the subset 
of bands, Wang et al. [75] developed a new method to select bands by an adaptive 
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subspace partitioning strategy and achieved good results in terms of accuracy as well as 
efficiency. Sun et al. [76] proposed rapid and potential spectral bands for low-rank sub-
space clustering selection, with higher classification accuracy and lower computational 
cost as the end result. 

Table 2. Comparison of six band selection methods. 

 Principle Advantages Disadvantages 
Differences and Similari-

ties 

Ranking-
based 

Use a suitable function to 
quantify the amount of 

information in each 
band, and then select the 
top subset of bands ac-

cording to their im-
portance 

Low computational com-
plexity and fast execu-
tion of calculations for 

larger hyperspectral da-
tasets 

Correlation between 
bands is often not con-

sidered 

Search-based, sparsity-
based, and embedding-
learning band selection 

methods are all optimiza-
tion problems with objective 

functions; ranking-based 
and clustering-based band 
selection methods are all 

based on the importance of 
bands. And all band selec-
tion methods are designed 
to select the combination of 

bands with high infor-
mation content, low correla-

tion between bands, and 
best class separability. 

Search-
based 

The optimization prob-
lem of the criterion func-
tion is a multi-objective 
optimization to find the 
optimal frequency band 

Only individual bands 
are considered, ignoring 

the entire subset of bands 
optimized 

Computationally inten-
sive and difficult to ap-

ply in practice 

Clustering-
based 

The representative subset 
of frequency bands in the 
cluster of the component 

group 

Entire subset of bands 
can be optimized; less af-

fected by noise; simple 
algorithm 

Poor robustness, easy to 
fall into local optimal so-

lutions 

Sparsity-
based 

Obtaining representative 
bands by dealing with 

sparsely constrained op-
timization problems 

Can reduce the complex-
ity of hyperspectral data 
processing; reduce stor-

age space; improve 
model interpretability 

Difficulty in automating 
model applications; un-
certainty in model pro-

cessing performance 

Embedded 
learning-

based 

Optimize the objective 
function of a specific 

model and select the ap-
propriate spectral band 

Avoids repetitive train-
ing of the learner for 
each subset of bands 

Performance-dependent 
parameter tuning and 

difficult objective func-
tion construction 

Hybrid 
scheme-

based 

A synthesis of several 
band selection algo-

rithms 

Can find the best combi-
nation of frequency 

bands to get the least 
number of useful bands 

Algorithm complexity 

3.1.4. Feature Dimensionality Reduction 
Feature downscaling, in other words, feature extraction, is also an important tool. 

However, feature extraction is the transformation of the primitive hyperspectral data by 
a linear or nonlinear mapping into lower dimensions, and the effective information is re-
tained for subsequent analysis. Examples of typical methods involve principal component 
analysis (PCA) [77,78], linear discriminant analysis (LDA) [79], minimum noise fraction 
(MNF), and independent component analysis (ICA). 

The principal component analysis has been the best-used method to decrease the di-
mensionality of hyperspectral features, improving interpretability without losing much 
information. It is a statistical technique that retains the maximum amount of information 
and eliminates redundant noise and data. The MNF transform is intrinsically two simul-
taneously cascaded PCA transforms designed to decrease spectrum dimensionality and 
separate noise out of image data. ICA enables spectral features that are as separate as 
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possible, which is also a useful extension of principal component analysis. The critical idea 
in the independent component analysis is to assume that the data are amalgamated line-
arly across a set of individual sources and decompose them in terms of the statistical in-
dependence of the cross-information measures. 

Table 3. Methods of image pre-processing. 

N
orm

alization 

Sm
oothing D

e-
noising 

W
ave Selection 

Feature D
im

ension-
ality R

eduction 

C
alibration 

R
em

arks 

[43] Normalized reflec-
tance spectra 

     

[31] Normalized reflec-
tance spectra 

     

[33] 
Normalized reflec-

tance spectra      

[63] 
Normalized reflec-

tance spectra 
    Glare Removal 

[34] 
Normalized reflec-

tance spectra 
Savitzky–Golay 

smoothing 
   

Manual background seg-
mentation, automatic re-
gion of interest (ROI) se-

lection 
[80]    PCA   

[35]  
Savitzky–Golay 

smoothing  PCA  
First-order derivation for 
spectral dimension pre-

processing 
[17]    PCA   
[36]    PCA   
[37] SNV      
[81] SNV      

[82] 
Normalized reflec-

tance spectra 
  PCA   

[38] 
Normalized reflec-

tance spectra 
  

Fixed Reference t-
Distributed Sto-

chastic Neighbors 
Embedding 

 

HySIME noise filtering 
and extreme noise band 

Removal and spectral av-
eraging 

[83] 
Normalized reflec-

tance spectra   PCA   

[39] 
Normalized reflec-

tance spectra   PCA   

[84]     
Shannon en-

tropy 
 

[40]      Machine learning pre-pro-
cessing 

[85] 
Normalized reflec-

tance spectra 
  PCA  

Singular Spectrum Analy-
sis (SSA) 
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[41] Normalized reflec-
tance spectra 

Smoothing filter 
noise processing 

    

[86]    PCA   

[31] 
Normalized reflec-

tance spectra      

[42] 
Normalized reflec-

tance spectra      

[87] 
Normalized reflec-

tance spectra 
Smoothing filter 
noise processing 

    

[88]    ICA  K-means 

[43] 
Normalized reflec-

tance spectra 
     

[44] 
Normalized reflec-

tance spectra      

[45] 
Normalized reflec-

tance spectra      

[89] 
Normalized reflec-

tance spectra 
     

[90] 
Normalized reflec-

tance spectra 
 ACO   

Band Selection for Ant 
Colony Optimization 

(ACO) 
[91]    PCA   

[46] 
Normalized reflec-

tance spectra 
  PCA   

[47]     

Ratio between 
original Image 
and reference 

image 

 

[48] 
Normalized reflec-

tance spectra 
     

[51] 
Normalized reflec-

tance spectra 
  PCA   

[52]    PCA   

[49] Normalized reflec-
tance spectra 

Smoothing filter 
noise processing 

    

[53] 
Normalized reflec-

tance spectra      

[54]    PCA   
[55]    PCA   
[56]  Median Filter     

[57] Normalized reflec-
tance spectra 

Savitzky–Golay 
smoothing, gauss-
ian filtered spatial 

smoothing 

 PCA  Outlier removal, back-
ground recognition 

[92] 
Standard normaliza-
tion transformation 

Gaussian filtered 
spatial smoothing     

[59] 
Normalized reflec-

tance spectra 
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[60] 
Normalized reflec-

tance spectra 

3-order median 
filter, curvature 

correction 

GFP 
bands re-

moval 
  Background removal 

[61] 
Normalized reflec-

tance spectra      

[62] 
Normalized reflec-

tance spectra 
     

3.2. Classification 
The categorization of medical highlight images (MHSI) represents an area where 

medical analysis was first applied, and now MHSI is becoming increasingly popular for 
medical diagnostic applications. Hyperspectral images with high resolution can provide 
richer spectral features for classification tasks, and this technique is mostly used for cancer 
detection and classification as well as for cell classification [93]. Previously traditional ma-
chine learning methods were often used for classification of medical hyperspectral im-
ages, ML uses data and statistical models for learning and recognition tasks and can make 
decisions with supervision or unsupervised. For example, Torti et al. [82] first used a su-
pervised classification algorithm consisting of PCA, SVM, and KNN for classification and 
then used it in combination with a K-mean clustering algorithm (K-means) for the final 
weighted classification to correctly classify normal and cancerous tissues; Fabelo et al. [38] 
used a combination of supervised as well as unsupervised methods, using SVM for su-
pervised pixel classification, then taking a t-Stochastic Neighbors Embedding dimension-
ality reduction algorithm, and finally the segmentation maps generated by combining un-
supervised clustering were accurately identified at the margins of the neoplasms. 

DL is a deep neural network-based approach. Compared with ML, DL does not need 
to set the features manually, and obtains great learning ability by increasing the number 
of layers of the network and calculating the weight parameters automatically, and then 
continuously learning the features of various data. As an end-to-end network model, it 
has advantages in image processing and is widely used in the classification of hyperspec-
tral images. In traditional machine-learning algorithms for classification, the features for 
classification are represented by a one-dimensional vector. In contrast, HSI is multidimen-
sional data consisting of two-dimensional image information and one-dimensional spec-
tral information, and the amount of information contained in images at different wave-
lengths is different. Each image element is composed of hundreds of spectral bands, con-
taining rich spectral features. So, it is necessary to downscale the multidimensional data 
during processing; then, the final extracted features will only contain spectral information, 
and spatial information will be ignored. Therefore, more and more scholars focus on the 
dual branch structure of simultaneous extraction of spatial as well as spectral features. 
Using deep learning methods, one can not only extract features in the spatial dimension 
by convolution but also have the convolution kernel slide into the spectral dimension to 
extract high-level spectral features. This method of simultaneous extraction of spatial in-
formation from hyperspectral images along with spectral features makes the extracted 
information richer and makes operations such as classification more accurate. 

In contrast to the use of deep learning in other fields, the maturation of deep learning 
for MHSI has taken some time. Earlier, MHSI used artificial neural networks to classify 
cancer, and Nathan et al. [83] used an algorithm combining hyperspectral imaging with 
machine learning, i.e., using support vector machines (SVMs) and artificial neural net-
works (ANNs) to distinguish between different types of cancer. 

Recently, convolutional neural networks (CNNs) have been largely used for the clas-
sification of MHSI. Huang et al. [36] 2018 proposed the extraction of deep features of 
MHSI using CNNs combined with Gabor filters, called the GFCNN model, to enhance the 
classification of hemocytes under small samples. In subsequent years, Huang et al. [80] 
further applied MGCNN, an in-depth convolutional network with a Gabor filter 
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classification framework, to classify blood cells. Wei et al. [86] constructed an EtoE-Net 
model consisting of a two-channel CNN with pixel-by-pixel mapping between the origi-
nal MHSI as well as the main band images to form globally fused features. Global as well 
as local features were extracted in the dual-channel CNN, and multiple features were ex-
panded and connected into a superposition vector for fusion. Ultimately, this model has 
the highest classification performance when compared with traditional machine learning 
methods. Wang et al. [84] presented a deep-hyper 3D convolutional network that com-
bined 3D-CNN with a 3D attention module in an ultra-deep network for leukocyte classi-
fication. The experimental outcomes demonstrated the highest accuracy by placing the 
attention module at the final layer of the network to classify. Besides the categorization of 
cells, there are so many medical image classification applications using deep learning in 
the case of some cancer diagnoses, and most studies have used hyperspectral imaging 
with convolutional neural network (CNN) classifiers for cancer cell classification 
[31,33,35,42,85,91,94]. For example, Sommer et al. [34] classified nephrons by using CNNs 
based on HSI data, specifically by residual neural networks (ResNet). Li et al. [58] used a 
deep learning architecture with ResNet34 on fluorescent hyperspectral images for the 
classification of gastric cancers, and the model achieved classification accuracy, specific-
ity, and sensitivity of more than 96%. Bengs et al. [32] investigated in vivo tumor category 
classification challenges of a more challenging nature using HSI and various deep-learn-
ing approaches. A more efficient convolutional gated recurrent unit (CGRU) was used to 
descend a three-dimensional hyperspectral cube. A CNN following a densely connected 
convolutional neural network (DenseNet) was then used to handle the two-dimensional 
data for final classification. Grigoroiu et al. [45] are implementing online classification of 
data from HSI endoscopy by CNN to stain and analyze different disease stages of the pig 
esophagus as well as the human esophagus. Spatially distinct colors were shown and val-
idated the properties of deep learning algorithms using color-based classification meth-
ods, showing that pixel-level classification is possible for hyperspectral endoscopic data 
with 18 pure color spectra, reflecting the great potential of CNNs offering color categori-
zation in real-time endoscopic HSI. 

The U-net network is the most used and effective network in the medical area. It was 
initially used only for image segmentation, but later it was gradually used for classifica-
tion and detection. Since this network is not applicable to the analysis of hyperspectral 
images, Manifold et al. [95] came up with the U-within-U-Net (UwU-Net) framework, 
which can classify, segment, and predict orthogonal imaging patterns using various hy-
perspectral imaging techniques. Prediction of multiple drug locations in rat liver tissue 
imaging was performed by an external U-Net processing spectral information and inter-
nal U-Net processing spatial information. 

3.3. Detection 
Medical hyperspectral images are usually less used in detection and have more po-

tential for development. Usually, in clinical medicine, detection in pathological images is 
something that can be used in the future as a key part of the diagnosis. One of the papers 
used a combination of wavelet transform features as well as machine learning, mentioning 
the use of a discrete wavelet transform (DWT)-based feature classification method [60]. 
The average spectra of blocks of pixels of the same size were extracted from cancerous as 
well as normal tissues, respectively, as the original spectra, and a support vector machine 
(SVM) was used to classify the original data as well as the extracted wavelet features. A 
tumor mask was generated for the images to distinguish between detecting cancerous as 
well as normal tissues, and experiments showed better discrimination of overlapping 
spectra based on wavelet feature classification. 

Usually, MHSI applies a CNN network to apply pixel-level classification of medical 
hyperspectral images to the detection of tumors. There are more detections of head and 
neck cancers where a two-stream convolutional model [96], with spectral as well as struc-
tural branches, was used to detect the hyperspectral data of tongue squamous cell 
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carcinoma obtained from scanning and divided into three regions as tumor, healthy mus-
cle, and epithelium, and finally, the results of the two-stream model outperformed the 
pure spectral and pure structural methods. Beng et al. [97] advanced a technology to de-
tect in vivo pharyngeal cancer by inputting spectral dimension stacking into a Dense-
Net2D-MS network used by DenseNet-Blocks with 3D convolutional blocks connected to 
extract spatial–spectral information. Finally, we detected tumors and healthy tissues after 
classifying the results using global average pooling (GAP) and classification layers. On 
the other hand, Halicek et al. [48] used an inception-v4 CNN architecture and introduced 
a gradient-like activation mapping algorithm to investigate the detection capability with 
hyperspectral images for cancer detection. It was shown that HSI could help surgeons and 
pathologists detect tumors in glands. In another paper, a single-stream U-net architecture 
composed of stacked visible (VIS) and near-infrared (NIR) light was applied [54] to 
achieve real-time segmentation of hyperspectral imaging in surgery. For the first time, 
deep-learning semantic segmentation of HSI data was used for tumor detection, and ex-
periments demonstrated the importance of NIR spectroscopy for tumor capture. 

In addition to this, it was also used in the detection of other diseases. Examples in-
clude breast cancer cell detection through the development of a hyperspectral imaging 
microscope and deep learning software for digital pathology applications [42]. A manual 
local feature detection method and the feature detection method grounded in deep learn-
ing were adopted for detecting features below the skin surface, demonstrating the ability 
of the system to track skin features and that the deep-learning skin features were detected 
and localized better than the local manual features [46]. 

3.4. Segmentation 
During medical image segmentation, mostly outlines are sketched out in the image 

so that the outline of some organs or important parts can be clearly seen as a reference. 
This operation is important to distinguish some organs in the human body, such as the 
brain, etc., for medical diagnosis. In recent years, there has been less segmentation for 
medical hyperspectral images, but the article method is relatively new. 

An investigation used a hybrid machine learning, and HSI approach [57] applied to 
tissue segmentation for image-guided surgery of the liver as well as the thyroid, and seven 
machine learning models were performed. For each model except U-Net, spatial analysis 
was performed at three levels: no-spatial analysis; single-scale analysis; and multi-scale 
analysis. The experimental results for the liver showed that U-Net could identify tissues 
with high accuracy and achieve optimal segmentation performance. SVM with RBF com-
bined with multi-scale spatial analysis obtained suboptimal performance. In the tissue 
recognition of HSI data of the thyroid, LR combined with multi-scale spatial analysis seg-
mented with the highest efficiency. Garifullin et al. used dense full convolutional net-
works (Dense-FCNs) combined with the SegNet model [98] to jointly segment retinal ves-
sels, optic discs, and macula using hyper-spectral retinal images and also experimented 
on RGB images. The comparison showed that the spectra can provide some additional 
information about the visual disc and macula and improve recognition performance. 

The U-Net architecture is mostly used in medical segmentation, and the main novelty 
of this architecture is the combination of equal up-sampling layers as well as down-sam-
pling layers, on which most segmentation networks are nowadays improved. Trajanovski 
et al. [99] segmented squamous cell carcinoma tumors in a U-Net network by randomly 
selecting 100 patches of 256 × 256 size from each patient’s dataset to be fed into the U-Net 
network. Due to the selection of larger patch blocks, the spatial background occupies a 
larger area and provides better performance than pixel-level spectral and structural meth-
ods while demonstrating the importance of infrared spectroscopy for the analysis. After 
that, a single-stream U-Net composed of stacked visible light along with infrared light 
was published again, confirming the importance of infrared spectroscopy [54]. To make 
full use of spectral features in 3D hyperspectral data, Wang et al. [55] proposed Hyper-
Net, a 3D full convolutional encoding and decoding network for the segmentation of 



Sensors 2022, 22, 9790 16 of 29 
 

 

hyperspectral pathology images of melanoma. To preserve the fine features lost due to 
depth, a dual path was used in the final encoding part with the addition of extended con-
volutional fast extraction of low-resolution fine-grained features, which significantly im-
proved the segmentation accuracy. Seidlitz et al. [56] combined the visceral tissue oxygen 
saturation (StO2), near-infrared perfusion index (NPI), tissue water index (TWI), and tis-
sue hemoglobin index (THI) of organic correlation images were overlaid on the cube input 
model. The neural networks were trained in each of the three input networks according 
to the studied data granularity levels (pixel-based, super pixel-based, patch-based, and 
complete image-based). The study demonstrated that the unprocessed HSI data have 
great advantages in organ segmentation. 

In subsequent studies, there is the embedding of a transformer into the coding part 
of U-Net [100] and applying it in the segmentation of images, which can learn the dense 
correlation between bands. Having the benefits of both transformers and U-Net, it is more 
capable of segmenting medical images. However, the acquired information is susceptible 
to the influence of uncorrelated bands. Therefore, a sparse scheme is introduced to form 
the spectral transformer SpecTr, which is experimentally shown to be superior to 3D-UNet 
and 2D-UNet. 

Table 4. Summary of common deep learning architectures and methods. 

Refer-
ences Architecture Methods Detailed method Applications 

 

M
L 

C
N

N
 

3D
 C

N
N

 

2D
 C

N
N

 
D

enseN
et 

R
esN

et 
U

N
et 

A
lexN

et 
FC

N
 

C
lassification 

D
etection 

Segm
entation 

  

[31]   √ √      √   2DCNN + 3DCNN + Inception CNN Head and neck cancer 

[101]  √        √   CNN extracts topological embeddings, 
and in using binary classification 

 

[32]     √     √   
DenseNet classification after dimension-

ality reduction using convolutional 
gated cyclic units 

In vivo Tumors 

[33]   √ √      √   3D CNN and 2D inception CNN Head and neck cancer 
[63]  √        √   CNN classifier Head and neck cancer 
[34]      √    √   KidneyResNet consisting of Resnet-18 Ambient infusion 

[80]  √        √   Combining modulated Gabor 
and CNN in the MGCNN framework 

Red blood cells 

[35]  √ √       √   Spectral-Spatial-CNN with 3D convolu-
tion 

Stomach Cancer 

[17]  √        √   
CNN training with different patch sizes 

after PCA dimensionality reduction Red blood cells 

[36]  √        √   Gabor filter and CNN Red blood cells 
[37]  √        √   CNN Tissue classification 

[81] √  √       √   
Compare the classification performance 

using (RBF-SVM), MLP, and 3DCNN 
Stomach and Colon 

Cancer 

[82] √         √   
Combining PCA, SVM, KNN classifica-

tion with K-means for final weighted 
voting classification 

Brain tumor 

[83] √         √   
SVM combined with ANN for classifica-

tion 
Identification of cancer 

cells 
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[39]   √ √      √   
HybridSpectraNet (HybridSN) com-

posed of 3D CNN and 2D CNN in spec-
tral space 

Colon Cancer 

[84]   √       √   
3D CNN combined with 3D attention 

module for deep hypernetworks White blood cells  

[40]  √        √   
SICSURFIS HSI-CNN system composed 

of SICSURFIS imager and CNN 
Skin disease 

[85] √         √   Stacked auto encoder (SAE) Tongue coating 
[93]  √        √    White blood cells 
[41] √         √   K-means and SAM Skin disease 

[86]  √        √   
Two-channel deep fusion network EtoE-

Fusion CNN for feature extraction 
White and red blood 

cells 

[42]    √      √   
Mapping RGB to high broad-spectrum 

domain with 2D CNN classification Breast cancer 

[95]       √   √   

The external U-Net handles spectral in-
formation, and the internal u handles 

spatial information, making up the 
UwU-Net classification 

Drug position 

[18]  √        √   
Regression-based partitioned deep con-

volutional networks Head and neck cancer 

[94] √  √ √      √   
1D, 2D, 3D CNN, RNN, MLP, SVM for 

comparison Blood Classification 

[87]    √ √  √   √   
U-Net, 2D CNN, 1D DNN combined 

with classification 
Brain cancer 

[43]  √        √   
Extracting image elements into patches 

into CNN 
Head and neck cancer 

[44] √         √   
RF, SVM, MLP and K-Nearest Neighbor 

Comparison Esophageal Cancer 

[45]  √        √   Pixel-level classification Head and neck cancer 

[89] √       √  √   AlexNet combined with SVM 
Corneal epithelial tis-

sue 

[90]   √ √      √   Hybrid 3D-2D network for extracting 
spatial and spectral features 

Brain cancer 

[91]  √        √   
CNN with support vector machine 

(SVM), random forest (RF) synthetic 
classification 

Tissue classification 

[102] √         √   LDA Septicemia 
[48]  √        √   CNN architecture for inception-v4 Head and neck cancer 

[103]  √        √   CNN architecture for inception-v4 Head and neck cancer 
[51]    √      √   2D CNN classification Brain cancer 

[52] √         √   
RF, logistic regression, SVM compara-

tive classification 
Head and neck cancer 

[58]      √    √   ResNet34 Stomach Cancer 
[92] √         √   RF, SVM, MLP Colon Cancer 

[59] √         √   PCA downscaling, Spectral Angle Map-
per (SAM) 

Stomach Cancer 

[60] √         √   
Discrete Wavelet Transform (DWT) 

based feature extraction, SVM Head and neck cancer 

[96]  √         √  Dual-stream convolution model Tongue Tumor 
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[97]   √        √  
DenseNet-Blocks combined with 3D 
CNN to extract spatial spectral infor-

mation 
Head and neck cancer 

[46]  √         √  CNN with Deep Local Features (DELF) Skin Features 

[49]  √         √  
CNN and SVM + PCA + KNN are used, 

respectively 
Head and neck cancer 

[99]       √     √ Select the channel and use U-Net Head and neck cancer 

[55]       √     √ 
3D full convolutional network with ex-

tended convolutional fast and fine-
grained feature dual path 

Melanoma 

[100]       √     √ 

The encoding part of U-Net uses trans-
former to extract the spectral infor-

mation and convolution to extract the 
spatial information jointly 

Carcinoma of bile duct 

[56]  √          √ 
Pixel-based, superpixel-based, patch-

based, and full image-based data are fed 
into the CNN and U-Net, respectively 

 

[57]       √     √ 
Seven machine learning models and U-

Net were used for the study, respec-
tively 

Image-guided surgery 

[98]         √   √ SegNet and dense full convolutional 
neural networks are used 

Eye diseases 

3.5. Conclusions 
Through the process of reading and organizing the literature, we conclude that there 

are some common machine learning and deep learning models in the medical hyperspec-
tral field that can be used many times and show good results. In the models of classifica-
tion and detection, most of them are improved by using common CNN and Resnet, espe-
cially 2D CNN, 3D CNN, and 2D CNN combined with 3D CNN, to extract spatial and 
spectral features in hyperspectral images. In image segmentation tasks, mostly the classi-
cal U-Net’s full convolutional network, are used in a variant to obtain more efficient mod-
els. 

In the literature, the network models use the Inception multiscale processing module, 
the 3D attention module, the transformer, the Gabor filter, the discrete wavelet transform 
(DWT), and the dilated convolution block (DCC) to enhance the feature extraction. These 
are also some good research directions that can be of great help in subsequently improv-
ing the model’s performance. 

When calculating the error between the predicted and true values of a model, the loss 
functions of cross-entropy loss, SoftMax loss, R-square, root mean squared error (RMSE), 
and mean squared error (MSE) are usually used to measure the degree to which the model 
fits the data. 

4. Medical Hyperspectral Image Application Area 
4.1. Medical Diagnosis 

As the resolution of hyperspectral medical images has increased, most of the main-
stream research methods now use a combination of spectral features of hyperspectral im-
ages and spatial features, which not only extracts the rich spectral information of hyper-
spectral images but also integrates the extraction of texture structure and detailed infor-
mation of the images, which greatly improves the classification accuracy. Optical imaging 
for cancer detection is presented since lesions lead to changes in cell morphology and 
cause changes in absorption, scattering, and fluorescence properties. So, optical tissue 
characterization can conversely supply worthy diagnostic messages. HSI can obtain 
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broad-area images of tissues, improving diagnostic accuracy when diagnosing conditions 
such as stomach, breast, cervical, skin-like diseases, and head and neck. In Table 5, differ-
ent methods for medical hyperspectral image application areas and a comparison of the 
different achievements are presented. 

4.1.1. Stomach Cancer 
Most studies in the last decade or so can play a key part in early cancer detection, and 

tumor detection can help doctors diagnose cancer and dissect malignant tumor areas 
when they can be at a safe margin. 

Liu et al. [59] used a NIR-HSI system to capture hyperspectral images of gastric tissue 
and extracted the average spectrum and normal deviation of normally pixeled and post-
cancerous image pixels. The dimensionality of the hyper-cube values was squeezed using 
principal component analysis (PCA), and six were selected as the optimal wavelengths. 
In addition, the normal and cancerous tissue were categorized using a spectral angle map-
per (SAM), and eventually the SAM achieved a classification index of 90% accuracy. 

Collins et al. [81] performed detection experiments using the support vector machine 
with radial basis function kernel (RBF), MLP, and 3DCNN approaches on data containing 
12 colon cancer patients as well as 10 esophageal cancer patients, respectively. The final 
experimental results show that 3DCNN performs better on both datasets. It is also pro-
posed that the use of interactive decision thresholding can be applied in future surgical 
procedures and be used with high value to improve the classification performance. 

Hu et al. [35] built a classification model with an efficient joint CNN to extract tumor 
deep-spectrum spatial features that facilitate classification. Based upon those differences 
between gastric cancer organization and regular tissue microscopic hyperspectral fea-
tures, experiments were conducted on a 30-patient dataset of stomach cancer hyperspec-
tral data. It was demonstrated that the simulation model’s classification rate of both can-
cerous and natural tissues was more than 97% in accuracy, as well as sensitivity and spec-
ificity of gastric cancer tissues. 

Li et al. [58] used a fluorescence hyperspectral imaging technique that can obtain 
spatial as well as spectral information about tissues. They also used a deep learning archi-
tecture combined with a spatial–spectral classification method to classify the obtained flu-
orescence hyperspectral images into non-cancerous lesions, precancerous lesions, and 
gastric cancer groups, and the accuracy, specificity, and sensitivity of the classification 
were all above 96%. 

4.1.2. Brain Cancer 
The most important aspect of cancer surgery in the brain is the accurate excision of 

the tumor part, which preserves the maximum amount of healthy tissue to ensure the 
postoperative safety of the patient. Fabelo et al. [87] employed a deep learning-related 
approach to process highly spectral images of living brain tissue to determine where the 
tumor is located, which can guide the surgeon in operation. Furthermore, the proposed 
visualization system can be adjusted at any time and can find the best classification thresh-
old suitable for surgery. Manni et al. [90] they investigated techniques to identify tissue 
types during surgery and proposed a hybrid 3D–2D CNN architecture based on deep 
learning-extracted spatial to spectral features to classify normal brain tissue in a live HS 
image dataset along with glioblastoma tissue. In experiments, it has been shown that the 
2D–3D hybrid network has greater precision in the detection of both tumors, vasculature, 
and healthy ones. 

Ortega et al. [51] processed sections of human brain tissue by hematoxylin and eosin 
(H&E) staining and automatically distinguished glioblastoma (GB) from non-tumor tissue 
on the sections using HSI and a convolutional neural network (2D-CNN). Experiments 
were also performed on 13 patients, and the test shows that the mean sensitivity and ei-
genvalues of the automatic detection of pathological sections using convolutional neural 
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networks on HSI images were higher than those of RGB, indicating the potential of HSI 
for histopathological analysis. 

4.1.3. Head and Neck Cancer 
Premature detection of brain tumors in the head and neck is critical to patient sur-

vival. Endoscopy is usually used to diagnose disease in the larynx. However, because of 
the differences in spectral characteristics before and after cancerous lesions, non-invasive 
detection was performed employing a hyper-spectral imager.  

Maktabi et al. [44] assessed four supervised classifying of algorithms in their experi-
ments: random forest; SVM; MLP; and K-nearest neighbor. HSI recordings of esophageal 
gastrectomy procedures in 11 patients distinguished between malignant tumors and 
healthy tissue. The ultimate goal is to obtain real-time tissue recognition techniques in 
esophagectomy and gastric pull-up procedures. 

Zhou et al. [52] developed a novel polarization hyperspectral imaging technique. 
Normal regions and cancerous regions were distinguished on the Suomy red (H&E) 
stained head and neck cancer tissue sections. A machine learning framework was used 
for image classification as well. The outcomes reveal that the SVM classifier has shown 
the greatest classification precision for both the raw polarized hyperspectral data and the 
synthetic RGB image data. 

Jeyaraj et al. [18] employed a partitioning deep-learning network based on regression 
for the diagnosis of oral cancer. Two chunking layers were used to label and classify re-
gions of interest in hyperspectral images, and the final classification results were of higher 
quality than conventional diagnostics. 

Halicek et al. [63] used a CNN categorizer for the classification of HSI on resected 
squamous cell cancer, goiter, and healthy tissue samples of the head and neck. It was also 
validated by hand annotation by a pathologist specializing in head and neck cancer. Initial 
results on 50 sufferers show the promise of HSI with DL for automated histological tag-
ging of surgical markers in head and neck patients. Halicek et al. [103] used a DL approach 
rather than ROI to categorize an entire tissue specimen, using a convolutional network 
(CNN) to rapidly classify tissue at the carcinoma margins and normal tissue. Further, the 
potential of HSI-based label-free imaging methods for squamous cell carcinoma detection 
was investigated for surgical SCC detection. Both CNN and SVM + PCA + KNN were used 
to generate SCC prediction probability maps [49], respectively, to investigate the infor-
mation provided by hyperspectral imaging and ML and CNN in head and neck cancer 
detection and to investigate the limitations of HSI-based and SCC detection.  

4.1.4. Skin Cancer 
Leon et al. [41] combined supervised and unsupervised methods to automatically 

segment the HS map into normal tissue together with pigmented skin lesions (PSL) by a 
K-means algorithm, and subsequently fed the segmented PSL pixels into a classification 
framework to classify them as benign as well as malignant tumors. This initial research 
illustrates in this preliminary study the possibility of the HSI technique to help distinguish 
benign and malignant PSL for dermatologists in routine clinical practices utilizing live 
non-invasive handheld devices. 

Lindholm et al. [40] utilized a novel hand-held SICSURFIS spectral imager in a study 
to offer detailed spectral–spatial data. A novel SICSURFIS HSI-CNN system was pro-
posed to effectively distinguish between abnormal and benign skin pathology (melanoma, 
pigmented nevi, dermatomal nevi, basal cell carcinomas, and squamous cell carcinomas), 
with good results even for complex skin surfaces. 

4.1.5. Eye Diseases 
Hadoux et al. [104] identified a noninvasive method for retinal imaging. Due to the 

significant innate ocular reflectance across individuals and within individuals, between 
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retinal locations, pristine retinal reflectance spectra are useless for differentiating between 
cases and controls. So, the major axis for spectral variances within groups was removed, 
and the greatest discrepancy that could be observed among reflex spectra for cases and 
controls was observed at shorter wavelengths. This method plays an important role in 
screening for Alzheimer’s disease. 

4.1.6. Colon Cancer 
Colon cancer is the second most prevalent cancer globally, in addition to being the 

second cause of cancer-related mortality. Some localized, primary as well as early-stage 
colon cancers are mainly treated by complete removal of the tumor. 

Jansen-Winkein et al. [92] used various machine learning methods in parallel with 
statistical analysis to assess the potency of HSI to distinguish the mucosa of a healthy 
colon adenoma from colorectal cancer. The experiments used the hyperbolic tangent func-
tion as the activation layer in a neural network to test the supervised classification frame-
work RF/SVM with multilayer perception (MLP). Spatially informative classification was 
achieved on HSI data using a Gaussian filter with 96% accuracy in classifying mucosal 
cancer tissue. 

Manni et al. [39] used the already proposed 3D-CNN in spectral space as well as the 
Hybrid Spectra Net (HybridSN) structure of 2D-CNN for classification in six isolated 
specimens for detection. It ended up with a slightly higher average AUC than the ResNet-
based CNN and 3D-CNN. It was also shown that the HybridSN-CNN classification 
method can be used as an innovative technique for detecting colon cancer tissues and for 
image-guided colon cancer surgery. 

Table 5. Comparison of different methods in the field of medical hyperspectral image applications 
and different achievements. 

References Applications Different Methods Different Achievements 
  Machine Learning Deep learning Accuracy Sensitivity 

[59] 

Stomach cancer 

SAM  90%  
[81]  3DCNN 93%  
[35]  CNN 97.57% 97.19% 
[58]  ResNet 96.5% 96.6% 

[87] 
Brain cancer 

 U-Net, 2D CNN, 1D 
DNN 

94%  

[90]  3D + 2D CNN 80%  
[51]  2D CNN 88% 77% 

[44] 
Head and neck 

cancer 

Random forest, SVM, MLP, 
and K-nearest neighbor  63%(SVM) 69%(SVM) 

[52] SVM  93.5%  
[18]  Regression-deep CNN 94.5% 94% 
[63]  CNN 96.4% 96.8% 
[41] 

Skin cancer 
K-means, SAM   87.5% 

[40]  CNN  93% 
[104] Eye diseases     
[92] 

Colon cancer 
MLP   86% 

[39]  3D + 2D CNN  88% 

4.2. Conclusion 
HSI is still a developing medical imaging modality that can provide spatial and spec-

tral information about some tissue samples. It reflects the quality features such as the size 
and shape of these samples, as well as their internal texture structure and composition 
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differences, and these rich features provide room for the development of deep learning in 
medical hyperspectral imaging. Its non-invasive nature also plays a huge role in surgical 
guidance. 

However, because of the fact that the advancement of deep learning is still at the 
stage of theoretical development and technical exploration in HSI image processing, its 
application in deep-learning hyperspectral medical diagnosis is limited by the bottleneck 
of HSI image processing. How to extract richer information at high spectral resolution and 
spatial resolution without losing some detailed information. It represents a challenge to 
be tackled in spectral image processing. It is also important to be able to acquire target 
information quickly and produce diagnostic results since it takes a lot of time from the 
preprocessing operation of hyperspectral images to the deep learning architecture and 
final results. As HSI continues to evolve, more experimental studies refine the algorithm 
and ensure the accountability of HSI analysis for routine clinical use. 

5. Discussion 
5.1. Hyperspectral Medical Image Processing vs. Hyperspectral Medical Image Diagnosis 

The article discusses some commonly used hyperspectral imaging systems, and in-
troduces the four main methods of spectral imaging: whiskbroom; push broom; staring; 
and snapshot, and now the new handheld hyperspectral imaging systems. Some common 
image pre-processing methods are summarized, and the uses of deep learning to classify, 
detect, and segment hyperspectral images are discussed. Finally, a brief summary of hy-
perspectral applications in the medical field is given. 

Most researchers seek to achieve the best performance of deep learning methods and 
neural network architectures in a given domain. However, looking at the majority of med-
ical image competitions, it is apparent that relying only on accurate model structures to 
obtain good analysis results is one-sided. In addition, different data pre-processing meth-
ods and data enhancement techniques are also necessary to obtain good scores. Therefore, 
the pre-processing of hyperspectral images is the most significant step in conducting the 
research and analysis of hyperspectral images. Since hyperspectral images are acquired 
in a high number of bands, the images contain a lot of useful information but also cause 
the images to contain superfluous information such as background and electrical noise, 
which makes the analysis of the images difficult. Therefore, most studies perform image 
preprocessing and spectral preprocessing before using the information from the images. 

Although some common methods of the image, as well as spectral preprocessing, are 
discussed in the paper, some limitations of these methods exist in the application process, 
and the most suitable methods should be investigated in continuous practice. In the pro-
cess of data collection, new preprocessing methods for Fourier transform and wavelet 
transform were found, which were capable of frequency domain and time domain con-
version and showed good performance in analysis. These new data pretreatment methods 
provide a useful direction for future research in data analysis and a good basis for research 
development in other fields as well. 

5.2. Challenges and Opportunities 
The majority of current research has shown that spectral images can better extract 

diagnostic data of relevant tissue physiological, morphological, and compositional infor-
mation. Although there is potential for the early diagnosis of diseases, there are still many 
limitations to the research that hinder the advancement of deep learning in the medical 
domain. 

Firstly, research on medical images in deep learning has been conducted by fewer 
teams and in a narrower scope. Most of the research is to classify cells or some tissue 
samples by CNN to determine whether they have cancer or not. The development of some 
advanced algorithms can more accurately distinguish the categories of tissues, and the 
research in this area is still slow to develop in terms of applications. 
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Secondly, there is an extreme lack of data for the analysis of medical images in deep-
learning applications. There are often limitations in the calibrated datasets, resulting in 
poor training and classification performance of experiments, and some publicly available 
datasets are scarce and small, and high-quality data calibration is lacking. Although this 
problem can be solved by data augmentation, there is a risk of overfitting. Nowadays, 
most of the general computer vision tasks are solved by applying smaller filters at a 
deeper level or by hyperparameter optimization. 

Finally, most of the hyperspectral acquisition devices are now relatively large, with 
fewer applications for some handheld devices, and their application to deep learning, 
combined with algorithms for real-time medical analysis, has yet to be developed. With 
the maturity of the technology, it can realize the convenient situation where the analysis 
of tissue cases can be more quickly and safely applied in the clinic. 

Although there are many problems that hinder the development of this field, as tech-
nology continues to develop, more and more teams will devote themselves to research in 
the field of medical hyper-spectroscopy and build more complete databases to develop 
more convenient and efficient imaging spectrometers. In addition, more scholars will 
study the method of combining spectral imaging with other biomedical imaging. This will 
make the analysis more comprehensive and help to interpret the parameter information 
of different biological tissues to replace the traditional diagnostic equipment. 

Therefore, in the process of summarizing and integrating the articles, we should 
choose some meaningful articles and methods to describe and synthesize so that they can 
be more representative and provide some directions for later researchers. However, theo-
retical research is indispensable, and practical applicability is also important for the evo-
lution of the field. Publicly available datasets facilitate the aggregation of research results. 
It is not surprising that studies in brain cancer diagnosis and diabetic podiatry have shown 
that complete, labeled datasets can increase the attention of researchers in this direction. 
It is expected that easily extractable data labels will become more readily accessible in the 
future. 

In this review, a large volume of literature was collated, and through the examination 
of different focuses, some existing studies were divided into different categories, and the 
articles were summarized in different sections to present a clear framework that reflects 
the development of HSI and the development of the combination of different technolo-
gies. This development occurred through the research on the application of HSI in clinical 
analysis and operation guidance, to the analysis and judgment of medical HSI images 
combined with machine learning, and finally to the applications of deep learning. An in-
creasing number of scholars have devoted themselves to this research, which has also 
greatly advanced the development of this field. 

5.3. Datasets 
Most of the authors did not give public experimental data and codes due to privacy 

or medical ethics’ principles. However, there are still a few institutions that provide rele-
vant datasets. Although there are some hyperspectral image data belonging to animal tis-
sues, it is useful to promote the research of algorithms and models. We have listed the 
collected public datasets whenever possible. 
1. HSI Human Brain Database 

Website: https://hsibraindatabase.iuma.ulpgc.es/ (accessed on 19 March 2018) 
The links allow the download of the hyperspectral images of in vivo human brain 

employed in the paper [38]. This dataset has been used in several papers and is currently 
the most popular hyperspectral public dataset; 
2. MALDI rat liver anticancer drug spiked-in dataset (imzML) 

Website: https://www.ebi.ac.uk/pride/archive/projects/PXD016146 (accessed on 11 
June 2019) 
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3. The Hyperspectral SRS and Fluorescence data 
Website: https://figshare.com/articles/dataset/hs_SRS_fluo_images_zip/13497138 

(accessed on 29 December 2020) 
The links allow the download of the hyperspectral SRS and corresponding organelle 

fluorescence images used in training deep-learning prediction models using U-within-U-
Net. 

Links 2 and 3 are from reference [95]. The authors also shared the source code: 
Source code: https://github.com/B-Manifold/pytorch_fnet_UwUnet (accessed on 29 

December 2020) 
4. A clinically translatable hyperspectral endoscopy (HySE) system for imaging the gas-

trointestinal tract 
Website: https://www.repository.cam.ac.uk/handle/1810/270691 (accessed on 17 Jan-

uary 2018) 
The links allow the download of the raw and processed data of simulation and ex-

periments in the paper (a clinically translatable hyperspectral endoscopy (HySE) system 
for imaging the gastrointestinal tract). This dataset was obtained from reference [61]; 
5. Parallel Implementations Assessment of a Spatial–Spectral Classifier for Hyperspec-

tral Clinical Applications 
Website: https://ieee-dataport.org/open-access/dataset-parallel-implementations-as-

sessment-spatial-spectral-classifier-hyperspectral (accessed on 17 May 2022) 
The links allow the download of HS images taken from dermatological interventions. 

This is a very new dataset provided by Himar Fabelo et al. (the authors of references 
[38,42,47,49,51]);  
6. Microscopic Hyperspectral Choledoch Dataset 

Website: https://www.kaggle.com/datasets/ethelzq/multidimensional-choledoch-
database (accessed on 12 December 2017) 

The links allow the download of a dataset for both microscopy hyperspectral and 
color images of cholangiocarcinoma. This dataset is presented in reference [100]. Due to 
the upload space limitation, providers only uploaded part of the data. The original files 
are located here: http://bio-hsi.ecnu.edu.cn/. This dataset requires a request to obtain all 
data; 
7. Multispectral Imaging Dataset of Colorectal tissue 

Website:https://figshare.com/articles/figure/Multispectral_Imaging_Dataset_of_Col-
orectal_tissue/6224957/1 (accessed on 5 June 2018) 

The links allow the download of images of two benign abnormality classes along 
with normal and cancerous classes. The dataset consists of four classes, each represented 
by infra-red spectrum bands in addition to the visual spectrum bands. This dataset is pre-
sented in reference [51]. 
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