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Abstract: With the advent of the era of big data information, artificial intelligence (AI) methods have
become extremely promising and attractive. It has become extremely important to extract useful
signals by decomposing various mixed signals through blind source separation (BSS). BSS has been
proven to have prominent applications in multichannel audio processing. For multichannel speech
signals, independent component analysis (ICA) requires a certain statistical independence of source
signals and other conditions to allow blind separation. independent vector analysis (IVA) is an
extension of ICA for the simultaneous separation of multiple parallel mixed signals. IVA solves the
problem of arrangement ambiguity caused by independent component analysis by exploiting the
dependencies between source signal components and plays a crucial role in dealing with the problem
of convolutional blind signal separation. So far, many researchers have made great contributions to
the improvement of this algorithm by adopting different methods to optimize the update rules of the
algorithm, accelerate the convergence speed of the algorithm, enhance the separation performance of
the algorithm, and adapt to different application scenarios. This meaningful and attractive research
work prompted us to conduct a comprehensive survey of this field. This paper briefly reviews the
basic principles of the BSS problem, ICA, and IVA and focuses on the existing IVA-based optimization
update rule techniques. Additionally, the experimental results show that the AuxIVA-IPA method has
the best performance in the deterministic environment, followed by AuxIVA-IP2, and the OverIVA-
IP2 has the best performance in the overdetermined environment. The performance of the IVA-NG
method is not very optimistic in all environments.

Keywords: blind source separation (BSS); independent component analysis (ICA); independent
vector analysis (IVA); optimization update rule

1. Introduction

With the advent of the era of big data information, people’s access to information has
become more and more abundant. However, we usually only obtain the mixed information
collected from the receiver, and the whole mixed information needs to be separated or
extracted from the latent signals. The subsequent problem is how to effectively obtain
useful signals from the received signals, which leads to the technology related to blind
source separation (BSS) [1].

The theory of BSS can be traced back to the cocktail party problem, which has attracted
much attention for decades. The cocktail party problem is when you are at a cocktail
party and there are all kinds of people chatting around, but you can only concentrate
on one of the discussions, or focus on the conversation of one of the people. BSS theory
refers to observing the mixed signals of different sources and using these mixed signals
to restore the original signal, and the prior information of the source signal and its mixed
signal is minimal. A large number of applications of BSS in communication, speech, and
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medical signal processing has received extensive attention in recent years [2]. It is of great
significance to realize blind estimation, blind equalization, and adaptive signal processing
through blind characteristics.

Independent component analysis [3–5] (ICA) is one of the most important methods first
proposed to deal with BSS. This is a classic BSS technology based on statistical independence
of source signals and is the mainstream technology of BSS. ICA requires that source
signals be statistically independent of each other. It is an unsupervised, data-driven signal
processing technique based on non-Gaussian maximization to separate time-invariant
mixture signals in the time domain.

However, consider that in a real scenario, the signal is often mixed with reverberation
in the form of convolution. However, ICA cannot separate the common form of convolution
mixing. Moreover, the convolution mixed signal is processed in the time domain with
high computational complexity and a huge amount of computation, and the convergence
speed is slow, which greatly reduces the separation performance. Taking advantage of
the properties of convolution mixing: the convolution in the time domain is equal to the
product in the frequency domain, a frequency domain ICA [6,7] (FD-ICA) algorithm is
proposed. The entire convolutional mixed signal is converted from the time domain to the
frequency domain for separation by the short-time Fourier transform (STFT). Compared
with the time-domain convolution operation, the frequency-domain product operation
has the advantages of convenient calculation, small computational complexity, and fast
convergence speed.

To solve the above-mentioned problems of ICA, the independent vector analysis
(IVA) [8,9] algorithm is proposed. It generalizes ICA to multiple datasets by exploiting
statistical dependencies across datasets, addressing some of the uncertainty in the output
of signal separation. The method maintains the correlation of each source vector during
the learning process while minimizing the correlation between different source vectors.
Therefore, the permutation problem can be solved naturally without any pre- or post-
processing during the learning process. Their entire development process is shown in
Figure 1.
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Figure 1. The history of IVA.



Sensors 2023, 23, 493 3 of 26

Since the IVA algorithm was proposed, it has been widely used, especially in the fields
of speech signal [10,11], medical image [12–14], communication [15,16], and acoustic detec-
tion of unmanned aerial vehicles [17]. In addition, the relevant identification conditions
and performance limit constraints of the IVA algorithm are also carried out [8]. In different
application scenarios, the choice of the source prior model and the optimization update
rule of the IVA algorithm will have different effects on the entire separation result. The
source prior model that conforms to the scene will make the separation effect better, and
the update rule determines the convergence accuracy and convergence speed, which plays
a crucial role in the entire separation process.

This paper mainly analyzes the state-of-the-art updated rules of the IVA algorithm,
the mainstream technology of the BSS problem, such as gradient descent (GD), fast fixed
point, auxiliary function, expectation maximization (EM), block coordinate descent (BCD),
eigenvalue decomposition (EVD), and their derivation and mixed use are discussed com-
prehensively. Its classification is shown in Figure 2:
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Figure 2. Optimizing update rule classification.

Each method has its unique effect on the convergence speed, convergence accuracy,
and computational complexity of the entire calculation process of BSS. So far, although
researchers have published and reported a great deal of work on the different update
rules of the IVA, no comprehensive survey work has been conducted. In addition, the
development of this work hopes that scholars who are interested in this field can get help
and quickly become familiar with the current research status and future development
trends in this field. Finally, the analysis of the optimization update rules in this paper is
combined with the BSS problem, which will greatly promote the applications of the IVA
algorithm to the BSS field.

The contributions of this paper are as follows. This paper reviews the existing kinds of
literature on the application of a large number of publicly reported IVA algorithms in the
field of BSS. The technical limitations and challenges of the IVA algorithms in dealing with
the BSS problem under the existing optimization update rules are deeply analyzed. An
in-depth analysis of the theory is provided to provide heuristic discussion and investigation
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guidance, as well as numerical experimental comparisons of optimization rules. The main
contents of this article are as follows:

1. The theoretical principles of BSS for ICA and IVA are reviewed.
2. Analysis of the existing kinds of literature on IVA optimization update rule methods.
3. Numerical experiments are carried out to compare the existing optimization up-

date rules.
4. Prospects are discussed for a series of research on the optimization and update rules

and application fields of the IVA algorithm.

The remaining content of this paper is structured as follows. Section 2 discusses BSS
and the principles underlying the theory and introduces their hybrid models and basic
theories. Section 3 mainly analyzes the existing optimization update rule methods. Section
4 compares various methods numerically in overdetermined and deterministic conditions.
Section 5 provides a summary and prospects.

2. The Principle of BSS

This section mainly introduces the two mainstream separation theories at this stage,
analyzes the basic principles and models of separation, and summarizes the key principles
of the two related algorithms. The specific content is as follows: In Section 2.1, the system
model of BSS and related framework classifications are described, and then the basic
separation algorithm principles related to BSS are introduced in Sections 2.2 and 2.3.

2.1. Basic Model and Classification of BSS

The signal is usually mixed with the reverberation in a convolutional manner, and the
mixing model is as follows,

xm[t] =
N

∑
n=1

amn[t] ∗ sn[t]

=
N

∑
n=1

L−1

∑
`=0

amn[`]sn[t− `], 1 ≤ m ≤ M, 1 ≤ n ≤ N.

(1)

where sn[t] is the signal from source n, xm[t] is the mth observation value of M observations,
amn is a time-domain transfer function from the nth source to the mth observation, t
represents time, M denotes the number of observation signals, and N denotes the number
of source signals.

The currently widely used ICA algorithm performs BSS by assuming that the source sig-
nals are statistically independent. The IVA algorithm is an extension of the ICA algorithm,
which extends the ICA separation to multiple datasets for simultaneous decomposition.
According to the relationship between the number of sensors that send and receive signals,
the system models can be divided into three categories: determined models (M = N),
underdetermined models (M > N), and overdetermined (M < N) models. It is a very
meaningful and challenging problem to deal with underdetermined or overdetermined
models that are more in line with real-life scenarios. In addition, different BSS problems
can be described according to the mixture model and parameter characteristics, as shown
in Figure 3.

Generally speaking, the model of the BSS algorithm consists of the cost function
(objective function or loss function) and the optimization method. The cost function of BSS
is constructed according to the characteristics of the restricted source and the separation
criterion. The purpose of BSS is to find a suitable linear transformation matrix or separation
matrix W by optimizing the cost function. So, in operation, the BSS separation process
usually consists of two steps:

1. Estimate the separation matrix.
2. Use the estimated separation matrix to restore the source signal.
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In the BSS problem, the cost function is always treated as an optimization problem,
and the optimal solution is obtained by selecting the appropriate optimization algorithm in
Figure 3 for optimization.

BSS Model

Cost Function optimization

mixed model

linear problem

nonlinear 

problem

number of 

transceivers

parameter 

properties

dynamic problem
Over-D or D 

problem 

static problem
underdetermined 

problem

Figure 3. Basic elements of BSS problems.

2.2. ICA and FD-ICA Algorithms

As an important theory of the BSS problem, the ICA algorithm relies on statistically
independent criteria to construct the cost function. Then, according to the actual application
scenario, an optimization algorithm is selected to optimize the cost function, and the source
signal is separated or extracted from the linear mixed signal. The ICA algorithm is a
characteristic unsupervised learning method that can directly estimate the mixture matrix
and independent source components using only signal observations.

However, this method cannot separate the common form of convolution mixing, so
the FD-ICA method is generally used for convolution mixing. This method transfers the
whole convolution mixing separation to the frequency domain by STFT transform, and its
model can be expressed as (2)

x(k)m [z] =
N

∑
n=1

a(k)mns(k)n [z] (2)

where x(k)m [z], s(k)n [z] denote the mth observation value of M observations, the nth source
signal of N sources at the kth frequency bin, a(k)mn denotes the mixing filter coefficients at the
kth frequency bin, z denotes the time frame index, k = 1, 2, · · · , K, and K is the number of
frequency bins. Compared with the time-domain convolution calculation, the complexity
of the frequency-domain product calculation is significantly reduced. The complexity of
frequency domain and time domain are M · log M and M2, respectively.

In practical application scenarios, the ICA algorithm needs to satisfy subsequent
assumptions to ensure effective and accurate signal source separation. The ICA model has
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three assumptions. First of all, the sources of data need to be independent of each other.
The second is that the independent source components have a non-Gaussian probability
distribution, that is, the higher-order statistics of the source are nonzero. Finally, the
mixing matrix is a square invertible matrix. Usually, in most application scenarios, the first
assumption is easier to satisfy. Because the sources in most scenarios come from different
physical mechanisms, it is easy to create conditions that are independent of each other.
While the second hypothesis reveals that the ICA algorithm cannot be applied to separate
multiple Gaussian mixture signal scenarios, and therefore cannot separate the source signal
from the Gaussian mixture. The square invertible matrix indicates that the number of
source signals should be consistent with the observed quantity when mixing separation to
ensure that the mixing matrix is invertible and can be used for source signal estimation.

However, the ICA algorithm and FD-ICA algorithm used in nonlinear functions have
certain uncertainties, these uncertainties include the output signal sequence change, phase
reversal and amplitude change. These uncertainties will directly lead to errors in signal
separation and require subsequent processing for the fuzzy arrangement of separation
results, thus increasing the overall separation complexity.

2.3. IVA Algorithm

The IVA algorithm [8,9] is a new important theory that has been widely used in
recent years to deal with BSS problems, and it is a frequency-domain method applied to
convolution mixtures. Its model is composed of a set of standard ICA models, as shown in
Figure 4.
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ww
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Time  j

Time  j

Time  j
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Figure 4. Models of ICA and IVA.

The mixed model of noiseless frequency-domain convolution blind separation IVA can
be represented by (2). Its separation model is expressed as (3)
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y(k)n ≈
∧
y
(k)

n [z] =
M

∑
m=1

w(k)
nmx(k)m [z] (3)

where x(k)m [z], s(k)n [z], and
∧
y
(k)

n [z] denote the mth observation value of M observations, the
nth source signal, and nth estimated source of N sources at the kth frequency bin, and y(k)n

is the source signal. a(k)mn and w(k)
nm are the mixing and unmixing filter coefficients at the kth

frequency bin, respectively. Equations (2) and (3) can be simplified to vector representation:

x(k)[z] = A(k)s(k)[z], y(k)[z] = W(k)x(k)[z] (4)

where in (4) x(k)[z] = [x(k)1 [z], x(k)2 [z], . . .]T , s(k)[z] = [s(k)1 [z], s(k)2 [z], . . .]T , y(k)[z] = [y(k)1 [z],

y(k)2 [z], . . .]T .
In this model, we assume that a linear mixed model exists in each dimension sepa-

rately, and the underlying sources are independent of the other dimensions. Although
it is an extension of the ICA algorithm, it differs from ICA in that the source signal is a
random vector, not just a single variable. This means that the elements within the random
component are closely related. Although the IVA algorithm is an extension of the ICA
algorithm, the separation process of the IVA algorithm can be regarded as the separation of
multiple ICA algorithm problems. However, instead of applying the ICA algorithm alone,
the BSS problem is solved by defining a multivariate dependency and directly pushing it to
the IVA algorithm. Three assumptions are proposed based on the ICA algorithm:

1. The elements in the source vector are independent of the elements of other source
vectors.

2. In the source vector, there are dependencies among the elements.
3. The number of source signals should be less than or equal to the number of observed

signals.

To be able to separate multivariate components from multivariate observations, we
need to define contrast functions for multivariate random variables. By assuming de-
pendencies among the elements of the source vector, we define the dependencies among
vectors as the Kullback–Leibler (K-L) divergence between the product of the total joint
probability of the vector and the marginal probability of the vector:

IIVA = KL( f (y1, · · · , yN)||∏
n

g(yn))

= ∑
n

Eyn log g(yn)− 2 ∑
K

log |det W(k)| − const.
(5)

where Eyn denotes the expectation, y(k)
n = [y(k)n , . . . , y(k)n ]T , f (y1, · · · , yn) denotes the joint

probability density function (PDF), and ∏
n

g(yn) denotes the product of approximate

marginal probability density distribution functions, which is a nonlinear function. It
should be noted that the random variables in the cost function are multivariate, and each
source is also multivariate. In the separation process, the cost function is used to eliminate
the dependency between the source vectors while retaining the connection between the
source components. The source signals are separated by optimizing the cost function. Since
the model preserves the elemental dependencies between each source signal, the separated
source signals avoid the permutation problem. The IVA algorithm separates the entire
dataset at the same time, which greatly improves the separation efficiency. Recently, an IVA
algorithm combined with non-negative matrix factorization (NMF) for BSS independent
low-rank matrix analysis (ILRMA) [18] was proposed. Using NMF as the source model
of the IVA algorithm to capture the spectral structure solves the problem that IVA utilizes
specific spectral structure features. specific spectral structure features
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Based on the above description, the basic principle of BSS consists of two parts: cost
function and optimization algorithm. The cost function of the IVA algorithm is usually
constructed according to different statistically independent measures, including maximum
likelihood estimation, mutual information, convex divergence, K-L divergence, and cumu-
lant criterion. The optimization update rules include methods such as gradient descent,
auxiliary function, and NI. The overall structure is shown in Figure 5.
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Figure 5. Basic components of IVA.

This paper mainly discusses the existing IVA optimization and update rules compre-
hensively.

3. Optimizing IVA Algorithm—Optimizing Update Rules

The IVA algorithm resolves the permutation ambiguity of the ICA algorithm by ex-
ploiting the statistical dependencies between datasets. At the same time, the separation is
extended to multiple datasets simultaneously, which greatly enhances the overall separa-
tion efficiency. Usually, the optimization update rule and the source prior model are the
two most important factors when the IVA algorithm deals with different BSS problems.

The IVA algorithm solves the problem of arrangement ambiguity caused by the tra-
ditional algorithm by modeling the dependencies between the elements in the source
component, that is, the source prior. Since the prior information provided by the source
signal in different scenarios is different, choosing different source prior models in different
scenarios will have a certain impact on the performance of the IVA algorithm. Especially
in noisy environments, it is necessary to learn the parameters of the source prior and
simultaneously realize the source components and denoising. Therefore, the selection of
the source prior model determines whether the IVA algorithm can accurately capture the
fine structure of the source signal, which plays a crucial role in the entire BSS process. In
particular, the source prior model based on deep learning [19] and the source prior model
based on deep neural network [20] are the focus of current source prior model research,
and the source prior model is compared in detail in [20].
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The selection of the source prior model is important for the overall separation process,
but the choice of the algorithm update rule determines the separation efficiency. Usually, the
IVA algorithm needs to optimize the separation matrix of all frequency points as a whole,
and each iteration requires a relatively large amount of computation. When the separation
matrix is initialized for the mixed signal, it will cause too many iterations and a long
operation time, which will affect the separation performance. Moreover, when the initial
value of the separation matrix is unreasonable, it is easy to fall into local convergence and it
cannot be effectively separated. The most common is the update rule based on the step size,
but the step size needs to be effectively selected to ensure the stability and convergence
accuracy of the system. Therefore, the selection of update rules plays a decisive role in the
stability and separation effectiveness of the separation process of the BSS problem. In the
existing IVA algorithms, researchers have also developed many updated rules based on
step size and nonstep size, as shown in Table 1.

Table 1. Optimize update rule classification.

Method Principle Characteristic Step Reference

NG
Step size selection
mechanism for iterative
update

The choice of step size
affects the convergence;
convergence speed is slow.

! [8,21–31]

FastIVA
Finding the optimal
solution using Fast fixed
point method

Faster convergence speed
and low computational
complexity.

% [32–40]

AuxIVA
Construct helper functions
to estimate the unmixing
matrix

Faster convergence speed,
stability, and widely used % [10,41–49]

EM

Estimate the parameters to
calculate the expected
value of the objective
function

Handling scenarios where
parameter estimation is
complex or impossible

% [50–58]

BCD

Perform a linear search
along a single dimension
at a time, looping until
convergence

Dealing with nonconvex
functions that are difficult
to obtain global optimum

% [42,59–70]

EVD Eigenvalue decomposition

The mixing matrix is
unmixed and updated by
eigenvalue decomposition,
and the update speed is fast

% [11,71]

This section surveys and discusses these valuable update rule methods. In this section,
the relevant content is organized as follows. Sections 3.1–3.3 summarize the applications of
GD, NI, and auxiliary function methods and their improved derivatives in BSS updating
and describe the comparisons in the existing literature. The EM method is introduced in
Section 3.4. The BCD method and its improvements are presented in Section 3.5. The EVD
methods are introduced in Section 3.6.

3.1. Gradient Descent

GD [21] is one of the most primitive optimization algorithms. Gradient descent is a
method that minimizes I by updating the model parameter in the opposite direction of the
gradient of the objective function I . The learning rate η determines the size of the step size
chosen to reach the local minimum, in other words, the descending hill along the slope of
the surface produced by the objective function until a valley is reached. This is a separation
method obtained by minimizing (5), a simple GD method is extrapolated as follows:

∆W(k) = − ∂I
∂W(k)

(6)
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Its main variants are batch gradient (BG), stochastic gradient (SG), and natural gradient
(NG). Among them, the NG algorithm [22,23] is an effective and one of the most commonly
used algorithms to solve the problem of BSS. The main idea is to take the NG direction of
the objective function I as the iterative direction so that the algorithm can quickly converge,
so as to realize the separation of source signals. Additionally, it is proved that the best
descent direction is not the "negative" regular gradient direction but the "negative" Riemann
gradient. It was first proposed in [24,25], and its main idea is to multiply the scaling matrix
Q(k) to modify the gradient in the original GD method to obtain faster convergence speed.
As Equation (7):

∆W(k) = − ∂I
∂W(k)

Q(k) (7)

The update for the separation matrix is:

W(k) ← W(k) + η∆W(k) (8)

Both the conventional GD algorithm and its variants are inseparable from the choice
of step size η when solving the objective function. The choice of step size will directly
affect the convergence speed and accuracy. In order to speed up the convergence speed
of the algorithm, many scholars have also optimized and improved the classical NG
algorithm. In 2011, Liang et al. [26] proposed a control mechanism that considers the
step size to obtain fast and stable convergence. In 2011, Zhang et al. [27] proposed an
NG blind separation algorithm that directly estimates the score function through function
approximation, which uses a linear combination of a set of orthogonal polynomials to
approximate the score function, and its performance is measured by the mean squared
error. An improved momentum term method was proposed in [28] which can speed up the
algorithm’s convergence.

In 2018, Fu et al. [29] proposed a blind separation algorithm for IVA based on step-size
adaptation. The algorithm initializes the separation matrix using the feature matrix joint
approximate diagonalization algorithm and adaptively optimizes the step-size parame-
ter. That is, to avoid local convergence, it can also significantly improve the convergence
speed of the algorithm and further improve the separation performance. According to
the relationship between the iteration step size and the estimated cost function change. In
2012, Wang et al. [30] proposed a variable-step-size IVA gradient algorithm based on the
most block speed step-size descent. Additionally, according to the relationship between
the iterative step size and the change in the separation matrix to be obtained, a variable-
step-size IVA gradient algorithm based on the estimation function is proposed. In 2010,
Kim [23] proposed a modified gradient and normalized IVA method with nonfully closed
constraints. Gradient normalization improves the convergence speed, and nonholographi-
cally constrained gradients with lower computational complexity show better performance,
while possessing simpler structures compared with other methods. In 2018, Koldovský
et al. [31], based on the independent vector extraction (IVE) of the IVA algorithm, proposed
an IVE algorithm with an adaptive step-size method in complex non-Gaussian scenarios to
speed up convergence.

3.2. Fast Fixed Point Method

The fast fixed point method was derived by introducing Newton’s method. The
iterative update rule based on fast fixed point [32] was first proposed to optimize the
objective function of ICA. It provides a very simple algorithm, one that does not depend on
any defined parameters and that quickly converges to the most accurate update rule the
data allow.

When optimizing a negative entropy-based objective function, the easiest way is to use
GD. Although the GD-based method has a good separation effect, it is relatively simple to
use. The overall convergence speed of this method is slow and depends on a good choice of
the learning rate sequence, i.e., the step size per iteration. Although various optimizations
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for the step-size factor were summarized in the previous section, GD methods rely on a
suitable step size for separation.

Therefore, in practical applications, it is very important to make the entire convergence
process faster and more reliable. Therefore, a fast fixed point iterative algorithm [33] is
proposed to achieve this. In fixed point algorithms, the entire computation is performed
in batch or block mode, i.e., a large number of data points are used in one step of the
algorithm. The fast fixed point algorithm has very attractive convergence properties, and
in experiments, it converges much faster than the commonly used GD method. At the
same time, in environments where fast real-time adaptation is not required, this method
is a good alternative to adaptive learning rules. In 1997, Hyvarinen [34] described a more
heuristic derivation of it.

In 2000, Bingham et al. [35] proposed a FastICA algorithm capable of separating
complex-valued linear mixed-source signals. The method shows good performance in the
ICA algorithm. The same [36] generalized fast fixed point method to the IVA algorithm,
which was developed based on the idea of FastICA and used to optimize the traditional
IVA algorithm. Under this method, the update is expressed as:

w(k)
n ← E[G′(∑

k
| y(k)n |2)

+| y(k)n |2G′′(∑
k
| y(k)n |2)]w(k)

n

−E[(y(k)n )∗G′(∑
k
| y(k)n |2) x(k)]

(9)

where E denotes the expectation, G(·) denotes a nonlinear function, and

G(∑
k
| y(k)n |2) = − log

∧
gsn(yn) (10)

where w(k)
n = [w(k)

n , . . . , w(k)
n ]T , yn = [y(1)n , . . . , y(K)n ]T , and

∧
gsn(yn) denotes the estimate

of the source PDF, the source prior. (·)∗ denotes the complex conjugate of (·). After the
updated matrix W is obtained through the update rule, decorrelation needs to be performed
to ensure orthogonality as follows:

W[k] ←
(

W[k]
(

W[k]
)H
)−1/2

W[k] (11)

where (·)H denotes the conjugate transpose of (·). To be able to directly apply Newton’s
method to derive a fast algorithm for complex variables, a quadratic Taylor polynomial is
introduced into the complex notation. Using this form of Taylor series expansion makes
the derivation simpler and is useful for directly applying Newton’s method to objective
functions of complex-valued variables. In 2000, Yan et al. [37] provided an independent
equivalent.

Recently, in 2021, Koldovský et al. [38] proposed an extended fast dynamic inde-
pendent vector analysis (FastDIVA) algorithm based on the FastICA and FastIVA static
hybrid algorithms, used to blindly extract or separate one or more signal sources from a
time-varying mixed signal. In a source-by-source separation mixture model that allows
the desired source to move, the mixture is either in series or in parallel. The algorithm
inherits the advantages of FastIVA, exhibits good performance in motion source separa-
tion, and exhibits superior convergence speed and ability to separate super-Gaussian and
sub-Gaussian signals.

In 2021, Amor et al. [39] used FastDIVA for blind source extraction for mixture mod-
els with constant separation vector CSV. Additionally, it shows new potential and good
separation performance in three environments: motion loudspeaker in a noisy environ-
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ment, extraction of motion brain activity, and motion source. In 2021, Koldovský et al. [40]
proposed a new dynamic IVA algorithm. It is based on a mixed model in which the
source-of-interest (SOI)-related mixing parameters are time-varying, and the separation
parameters are time-invariant. The Newton–Raphson method is used to optimize the objec-
tive function based on the quasi-likelihood method, then the iterative update is performed
without imposing orthogonality constraints, and then orthogonality is performed. This
algorithm is an optimization of the fast fixed point algorithm, which is better than the
gradient algorithm and the auxiliary function method in performance.

3.3. Auxiliary Function

The update method based on the auxiliary function technology is also a method that
does not include tuning parameters such as step size, which is an iterative algorithm
with a convergence guarantee. This is a stable and fast update rule derived from the
majorize-minimization principle [10,49]. Find its minimum by exploiting the convexity of
the function. When the objective function f (θ) is difficult to optimize, and the optimization
algorithm used cannot directly find the optimal solution to the objective function, an easy-
to-optimize objective function g(θ) can be found instead. Then, the substitution function
is solved, and the optimal solution of g(θ) is close to the optimal solution of f (θ). In
each iteration, a new surrogate function for the next iteration is reconstructed from the
solution. Then, the new substitute function is optimized and solved to obtain the objective
function of the next iteration. After several iterations, the optimal solution that is closer and
closer to the original objective function that can be obtained. It was first proposed in the
literature [41] to accelerate the convergence speed of the ICA algorithm. This rule consists
of two optional updates:

1. The update of the weighted covariance matrix (that is, the auxiliary function variable).
2. The update of the separation matrix ensures that the objective function decreases

monotonically at each update and finally achieves convergence.

Equation (12) is the auxiliary function variable update:

Vn = En[
U′(||yn||2)
||yn||2

xn(xn)
H ] (12)

Among them, Vn denotes a covariance matrix of the observed signals, U(·) denotes a
continuous and differentiable function of a real variable · satisfying, and U′(·) usually takes
the constant 1. || · ||2 denotes the 2-norm of ·. Equation (13) is the update of the unmixing
matrix:

w(k)
n =

[WVn]
−1en√

eT
n (W

−H
n V−1

n W−1
n )en

(13)

In 2011, Nobutaka Ono [42] used the auxiliary function technique in the objective
function of the IVA algorithm and similarly derived an efficient update rule suitable for
the IVA algorithm, called AuxIVA. In 2012, Nobutaka Ono [43] proposed an AuxIVA
algorithm based on a generalized Gaussian source model or a Gaussian source model
with time-varying variance. In 2012 and 2013, Nobutaka Ono [44,45] proposed a faster
algorithm that can update two separation vectors simultaneously by solving the generalized
eigenvalue problem for the AuxIVA algorithm with two sources and two microphones.
Compared with the one-by-one update method, this method has faster convergence speed
and better performance. This pairwise update method is also applicable to the pairwise
separation of vectors in the case of three or more sources [46]. In 2014, Taniguchi et al. [47]
used the AuxIVA algorithm based on the auxiliary function method for online real-time
blind speech separation. In experimental comparisons with commonly used real-time IVA
algorithms, the proposed online algorithm achieves a higher signal-to-noise ratio without
environment-sensitive tuning parameters such as step factor.
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In 2021, Brendel et al. [48] further optimized the IVA algorithm based on auxiliary
functions under the same computational cost. The convergence speed of the AuxIVA
algorithm is enhanced by three methods:

1. Turn the differential term into a tuning parameter via the differential term in the NG
approximation algorithm.

2. Approximate the differential term as a matrix using the quasi-Newton method.
3. Use the square iteration method to speed it up.

3.4. EM Method

In signal processing, a common problem is estimating the parameters of a probability
distribution function. The situation is more complicated in many parameter estimation
problems because the data needed to estimate the parameters are not directly accessible, or
some data are missing. EM-based optimization algorithms are well-suited for solving this
class of problems because the EM algorithm produces maximum likelihood (ML) estimates
of the parameters when there is a many-to-one mapping from the underlying distribution
to the distribution of the control observations, while taking additive noise into account.
The EM algorithm overcomes the problem of unanalyzable solutions and has been widely
used in statistics, signal processing, and machine learning [50].

The EM algorithm is an iterative optimization method [51] that is used to estimate some
unknown parameters given measurement data. The solution is divided into two steps.

E-step: First assign an initial distribution to each hidden variable empirically, that is,
assume distribution parameters. Then, according to the parameters of the distribution,
the expectation of the hidden variables in each data tuple can be obtained, that is, the
classification operation is performed. The posteriors of the source signal can be obtained by

log q(x(k)1 , . . . , x(k)N |s
(k)
1 , . . . , s(k)N )

∝ log g(y(k)1 , . . . , y(k)N |x
(k)
1 , . . . , x(k)N )

+ (log g(x(k)1 |s
(k)
1 ) + . . . + log g(x(k)N |s

(k)
N )) + const.

(14)

where ∝ denotes it is proportional to the previous term, and q denotes posterior probability.
M-step: Calculate the maximum likelihood value of the distribution parameter (vector)

based on the classification result, and then in turn recalculate the expectation of the hidden
variable for each data tuple based on this maximum likelihood value. The update rules for
mixing matrices A are

A(k) = (∑
k
< y(k)(x(k))

T
>q)(∑

k
< x(k)(x(k))

T
>q)

−1 (15)

where < · >q denotes expectation over q.
Through the repetition of the above two steps, when the expectation of the hidden

variable and the maximum likelihood value of the parameter tends to be stable, the entire
iteration is completed.

In 2004 and 2008, Varadhan et al. [52,53] used the square iteration method in the
EM algorithm to accelerate its convergence speed. In 2008, Lee et al. [54] deduced the
expectation-maximization algorithm, and the algorithm was used in the updated iteration
of the IVA algorithm. The EM algorithm could estimate the parameters of the separation
matrix and the unknown source at the same time, showing a good separation performance.
In 2010, Hao et al. [55] proposed a unified probabilistic framework for the IVA algorithm
with the Gaussian mixture model as the source prior model; this flexible prior source
enables the IVA algorithm to separate different types of signals, deduce different EM
algorithms, and test three models: noiseless IVA, online IVA, and noise IVA. The EM
algorithm can effectively estimate the unmixing matrix without sensor noise. In online IVA,
an online EM algorithm is derived to track the motion of the source under nonstationary
conditions. Noise IVA includes sensor noise and denoising combined with separation. An
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EM algorithm suitable for this model is proposed which can effectively estimate the model
parameters and separate the source signal at the same time.

In 2019, Gu et al. [56] proposed a Gaussian mixture model IVA algorithm with time-
varying parameters to accommodate temporal power fluctuations embedded in nonstation-
ary speech signals, thus avoiding the pretraining process of the original Gaussian mixture
model IVA (GMM-IVA) algorithm and using the corresponding improved EM algorithm
to estimate the separation matrix and signal model. The experimental results confirm
the effectiveness of the method in random initialization and the advantages in separation
accuracy and convergence speed. In 2019, Rafique et al. [57] proposed a new IVA algorithm
based on Student’s t-mixture model as a source before adapting to the statistical properties
of different speech sources. At the same time, an efficient EM algorithm is derived which
estimates the location parameters of the source prior matrix and the decomposition matrix
together, thereby improving the separation performance of the IVA algorithm. In 2020, Tang
et al. [58] proposed a complex generalized Gaussian mixture distribution with weighted
variance to capture the non-Gaussian and nonstationary properties of speech signals to
flexibly characterize real speech signals. At the same time, the optimization rules based on
the EM method are used to estimate and update the mixing parameters.

3.5. BCD Method

Coordinate descent (CD) is a nongradient optimization algorithm. The algorithm does
not need to calculate the gradient of the objective function and performs a linear search
along a single dimension at a time. When a minimum value of the current dimension is
obtained, different dimension directions are used repeatedly, and the optimal solution is
finally converged. However, this algorithm is only suitable for smooth functions. When
nonsmooth functions are used, they may fall into a nonstagnant point and fail to converge.
In 2015, Wright [59] proposed block coordinate descent (BCD), a generalization of the coor-
dinate descent algorithm. It decomposes the original problem into multiple subproblems by
simultaneously optimizing a subset of variables. The order of updates during the descent
can be deterministic or random. This algorithm is mainly used to solve the nonconvex
function, of which the objective function’s global optimal value is difficult to obtain.

Among them, the BCD algorithm has developed two methods with closed update
formula for the BSS IVA algorithm’s [60] IP and ISS methods.

3.5.1. Iterative Projection

The IVA algorithm based on iterative projection was first introduced in the AuxIVA [42]
algorithm. Its update rule is similar to (13). Figure 6 shows that the algorithm alternately
updates each row vector of the separation matrix during each iteration of block coordinate
descent, where red denotes the vector to be updated and green denotes the mixed vector.
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Figure 6. IP update method.



Sensors 2023, 23, 493 15 of 26

This update rule is derived by solving a quadratic system of equations obtained by dif-
ferentiating the cost function concerning the separation vector. In 2004, Dégerine et al. [61]
also proposed a similar scheme in the context of semiblind Gaussian source components.
In 2016, Kitamura et al. [62] used the IP algorithm in a BSS algorithm combining IVA and
NMF, which provided good convergence speed and separation effect. In 2018, Yatabe
et al. [63] proposed an alternative to the AuxIVA-IP algorithm based on proximal splitting.
In 2021, Nakashima et al. [64] optimized it based on IP and extended each row vector of the
separation matrix to update one by one to two rows of the separation matrix per update,
resulting in a faster IP-2, as shown in Figure 7:
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Figure 7. IP-2 update method.

In 2020, Ikeshita et al. [65] deduced IP-1 and IP-2 and used these two update rules to
accelerate the OverIVA algorithm, forming the OverIVA-IP and OverIVA-IP2 update rules.
In 2021, Scheibler [66] proposed an iterative projection with adjustment (IPA) and a Newton
conjugate gradient (NCG) to solve the hybrid exact-approximate diagonalization (HEAD)
problem. IPA adopts a multiplicative update form, that is, the current separation matrix is
multiplied by the rank 2 perturbation of the identity matrix. This method performs joint
updates to the unmixing filters and additional rank-one updates to the remainder of the
unmixing matrix. Simply put, the IPA optimization rule is a combination of IP and ISS
methods. Updating one row and one column of the matrix in each update, performing IP-
and ISS-style updates jointly, outperforms the IP and ISS methods.

3.5.2. Iterative Source Steering

ISS [67] is an alternative to IP. Although IP has the advantages of good performance and
fast convergence speed, in the iterative update process, it needs to recalculate a covariance
matrix and invert for each source and each iteration. This greatly increases the overall
complexity of the algorithm. The complexity of the algorithm is three times the number
of microphones used. In addition to that, inverting a matrix is an inherently dangerous
operation that can lead to unstable convergence when iterating. On this basis, the proposed
ISS algorithm can effectively reduce the computational cost and complexity brought by
the IP algorithm. ISS can also minimize the same cost function as the AuxIVA algorithm.
Figure 8 shows that the algorithm considers a series of rank-1 updates to the separation
matrix itself throughout the separation process, i.e., updating one column of the separation
matrix, rather than updating one separation matrix at a time. The update method is
as follows:

W(k) ← W(k)− v(k)
n (w(k)

n )H (16)

where w(k)
n = [w(1)

n , . . . , w(K)
n ]T . This update method is inverse, and the complexity of each

iteration is only quadratic times the number of microphones.
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Figure 8. ISS update method.

This update rule, which does not require matrix inversion, is used in a new method for
joint deredundancy and BSS [68]. This is a method based on an ILRMA framework, which
combines the advantages of no inversion and low complexity of the ISS algorithm to achieve
efficient BSS. In 2021, Du et al. [69] proposed a computationally efficient optimization
algorithm for BSS of overdetermined mixtures, an improved ISS algorithm for OverIVA
algorithm, namely OverIVA-ISS. The algorithm combines the technology in OverIVA-IP
with the technology in AuxIVA-ISS, which is more computationally efficient than the
OverIVA-IP algorithm and can guarantee convergence. Additionally, the computational
complexity is reduced from O(M2) to O(MN).

The overall performance of the ISS algorithm is better than the IP algorithm but inferior
to the IP-2 algorithm. Therefore, an ISS-2 algorithm is proposed. In 2022, Ikeshita et al. [70]
extended the ISS algorithm to ISS-2; Figure 9 shows that the latter can update two rows of
the separation matrix at each iteration.
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Figure 9. ISS-2 update method.
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At the same time, the advantage of the smaller time complexity of the ISS algorithm is
maintained, and the separation performance is comparable to IP-2.

3.6. EVD Method

The EVD method is to find the most similar matrix to the original matrix. The opti-
mization update rule based on EVD can be expressed as:

w[k] ← w[k]

||w[k]||2
(17)

and
w(k) =

1√
λ
(k)
M

u(k)
M (18)

where λM and uM denote the smallest eigenvalue and eigenvector, respectively.
The IVA algorithm based on the EVD update rule was proposed in [11] for a fast

independent vector extraction (FIVE) algorithm. By comparing with the OverIVA and
AuxIVA algorithms experimentally, the proposed algorithm can obtain the optimal solution
with only a few iterations and is far superior to other algorithms in terms of convergence
performance. In 2021, Brendel et al. [71] extended the update rule of eigenvalue decompo-
sition to an IVA source extraction algorithm with SOI mechanism. The proposed update
rule achieves fast convergence at lower computational cost and outperforms the IP update
rule in performance.

3.7. Summary

Regarding the above optimization update rules, the NG method needs to set the step
size and other tuning parameters for iteration, and the convergence is slow. When the
tuning parameters are not appropriate, it will cause convergence failure. Newton’s method
is faster to converge but computationally more complex. The method based on the auxiliary
function can effectively estimate the source signal by constructing the auxiliary function to
replace the intractable objective function. At the same time, the combination acceleration
can be performed by the other methods mentioned above, but this method has a large
amount of calculation and high complexity. The EM method can estimate parameters more
easily to achieve convergence and can deal with scenarios where parameter estimation
is complicated or impossible. The BCD method mainly deals with convex functions that
are difficult to obtain the global optimum. At the same time, this method can be used in
combination with other algorithms and is one of the most widely used methods at present.
May fail to converge when dealing with nonsmooth functions. The EVD method unmixes
and updates the mixing matrix through eigenvalue decomposition, the update speed is
faster, and it is mostly used for the extraction of a single source. All methods other than
NG do not require tuning parameters such as step size.

4. Optimizing the Performance Comparison of Update Rules
4.1. Frequency Domain Convolution Blind Separation

Typically, a microphone in a reverberant environment records a real-valued convolu-
tion mix of all sources in the scene, as described in Function (1). The time-domain signal is
divided into frames and then multiplied by a window function, and the time-domain signal
is converted into a frequency-domain representation through STFT, such as in Function (2),
which effectively reduces the amount of calculation and complexity. In this experimental
environment, Gaussian white noise is added to (1), and its model is expressed as (19):

xm[t] =
M

∑
n−1

L−1

∑
`=0

amn[`]sn[t− `] + bm[t] (19)

where bm[t] is the uncorrelated microphone noise signal.
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4.2. Experimental Environment Settings

By using the pyroroomacoustics Python package to simulate 1000 random 3D matrix
rooms, the source and interfering signals are randomly distributed in the 3D room, as
shown in Figure 10:

Figure 10. Simulation of a 3D matrix room.

This three-dimensional matrix room has wall lengths of 6 m and 10 m and ceiling
heights from 2.8 to 4.5 m. The simulated reverberation time is uniformly sampled between
approximately 60 ms and 450 ms. The source and microphone array are randomly placed
at least 50 cm away from the wall, and the height is between 1 and 2 m. The array is
circular and regular, and the number of microphones that can be selected is between 3 and
10, with a radius of 10 cm between adjacent microphones. All sound sources are located
farther from the array than the critical distance of the room, where the direct sound and
reverberation energy are equal. This distance can be calculated by Equation (20):

d = 0.057
√

V/T60 (20)

where V represents the volume of this room. At the same time, the SNR of each microphone
is defined as:

SNRmic =
E[||xm[`]− bm[`]||2]

E[|| bm[`]||2]
(21)

Obtain a specified SNR at any reference microphone by adding uncorrelated Gaussian
noise bm[`] to the microphone output. In the comparison experiment, the first microphone
was selected as a reference, and its SNR value was fixed. SNR values of 5 dB, 15 dB, and
25 dB were investigated. Experiments under different signal-to-noise ratios can directly
reflect the impact of noise on the algorithm performance in blind source separation. If
the separation performance is different, the impact of noise is large; otherwise, the impact
of noise is small. Simulations were performed at 16 kHz using speech signals from the
CUM Arctic corpus, using a 4096 Hamming window with STFT overlapping 3/4. Through
the separation of convolutional mixed speech signals, we comprehensively compare the
performance of various IVA optimization update rule algorithms such as AuxIVA-IP,
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AuxIVA-IP2, AuxIVA-ISS, FastIVA, NGIVA, and OverIVA-IP, reviewed in the previous
chapter.

4.3. Experimental Simulation Results

In simulation experiments, the multivariate Laplacian source prior model is used in
various IVA methods for performance evaluation. In the process of the BSS experiments,
two cases of determined model 3×3 and overdetermined model 4×3 were considered. The
experimental configuration is carried out under the same number of interference signals
and target signal environment.

Figure 11a–c shows three microphones and three target signals, and the SNR values
are the performance comparison of the optimized update rule under the conditions of
5 dB, 15 dB, and 25 dB, respectively. Figure 12a–c shows four microphones and three target
signals, and the SNR values are the performance comparison of the optimized update rule
under the conditions of 5 dB, 15 dB, and 25 dB, respectively. Overall, it can be seen from
the above performance comparison graphs that all methods optimized for (5) have similar
distributions. Under the 3×3 model in Figure 11, AuxIVA-IPA and AuxIVA-IP2 have the
best performance in a 5 dB environment, and AuxIVA-IP2 and AuxIVA-Fullhead have the
best performance in a 15 dB environment. FastIVA outperforms other algorithms in the
25 dB environment, but the AuxIVA-IPA method has the most stable performance in the
three cases and is the most favorable compared with the other algorithms. In the 4 × 3
model in Figure 12, the performance of the AuxIVA-IPANCG algorithm is significantly
better than other algorithms in the 5 dB environment, and even surpasses the OverIVA
method, probably because this method is more suitable for this specific scene. However,
OverIVA-IP2 performs the best in the other two environments, indicating that this method
is still the best choice when dealing with overdetermined models. In all cases, the NG
method could not achieve convergence in the specified number of iterations; usually, more
iterations were required to achieve convergence, and the method converged slowly. The
IPA method jointly executes IP and ISS to update and updates one row and one column of
the separation matrix in each iteration. At the same time, the method re-estimates the kth
filter and adjusts the values of all other filters by taking steps consistent with the current
estimate of source k, so the separation effect is better.

Table 2 shows the comparison of the running time of different algorithms when
three sources are separated by 5 dB, where F is the extraction of a single source.

Table 2. Algorithms’ running time.

IP IP2 ISS ISS2 OverIVA FIVE IPA IPANCG NG FastIVA

time(s) 14.455 14.347 13.291 13.357 13.912 7.884 14.481 13.718 14.657 13.71

It can be seen from the table that the running times of ISS and ISS2 are close and
short, and the time complexity is low. IVE processes a single source, so time complexity is
minimal. The time complexity of OverIVA, IPANCG, and FastIVA is moderate. The time
complexity of IP, IP2, IPA, and NG is high.



Sensors 2023, 23, 493 20 of 26

0 5 10

5

0

5

10

15

20

SI
-S
IR

Iteration

 AuxIVA-IP
 AuxIVA-IP2
 AuxIVA-ISS
 AuxIVA-ISS2
 AuxIVA_PCA
 AuxIVA_IPA
 AuxIVA_IPANCG
 AuxIVA_FullHEAD
 IVA_NG
 FastIVA

(a) 5 dB

5 0 5 10 15 20 25 30 35 40 45 50 55

10

5

0

5

10

15

20

25

30

SI
-S
IR

Iteration

 AuxIVA-IP
 AuxIVA-IP2
 AuxIVA-ISS
 AuxIVA-ISS2
 AuxIVA_PCA
 AuxIVA_IPA
 AuxIVA_IPANCG
 AuxIVA_Fullhead
 IVA_NG
 FastIVA

(b) 15 dB

5 0 5 10 15 20 25 30 35 40 45 50 55
10

0

10

20

30

SI
-S
IR

Iteration

 AuxIVA-IP
 AuxIVA-IP2
 AuxIVA-ISS
 AuxIVA-ISS2
 AuxIVA_PCA
 AuxIVA_IPA
 AuxIVA_IPANCG
 AuxIVA_Fullhead
 IVA_NG
 FastIVA

(c) 25 dB

Figure 11. Performance comparison under different SNRs in the 3×3 determined case.
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Figure 12. Performance comparison under different SNRs in the 4×3 overdetermined case.
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Figure 13a is a comparison of the cost function in a 5 dB environment. Figure 13b
shows the reduction percentage of the cost function compared with AuxIVA-IPA after
one iteration in the 5 dB environment. By comparing the two graphs, it can be concluded
that the AuxIVA-IPA algorithm has the best performance in the 5 dB environment: the
cost function declines the fastest, and the convergence speed is the fastest. Through the
experiment, the specific signal separation effect diagram can be obtained as follows:

0 5 10
1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

Co
st 

Fu
nc

tio
n

iteration

 AuxIVA-IP
 AuxIVA-IP2
 AuxIVA-ISS
 AuxIVA-ISS2
 AuxIVA_IPA
 AuxIVA_IPANCG
 AuxIVA_Fullhead
 IVA_NG

(a) Variation of the cost function

IPA IP ISS Fullhead NCG ISS2 IP2 NG
0.4

0.6

0.8

1.0

Pe
rc
en

ta
ge

Algorithm

 first iteration reduction comparison

(b) 15 dB

Figure 13. Cost function comparison at 5 dB.

Figure 14 is the separation effect diagram of different methods in the 5 dB environment;
OverIVA and IVE correspond to source separation and single-source extraction in the
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overdetermined environment, respectively. The remaining methods are used to determine
source separation in the environment. From the separation effect, it can be seen that AuxIVA-
IPANCG has a relatively good separation effect in a definite environment, OverIVA has a
good separation effect in an overdetermined environment, and the IVE method has a very
good effect on single-source extraction.

(a) IP (b) IP2 (c) ISS (d) ISS2

(e) OverIVA (f) IVE (g) PCA (h) IPA

(i) IPANCG (j) NG (k) FastIVA

Figure 14. Separation effect comparison.

Through the above various numerical experiments, we can clearly understand the
separation performance of different optimization update rules in the IVA algorithm in
different scenarios. Through performance comparison, appropriate methods can be selected
for source separation or source extraction in different scenarios. We note that the run results
will be limited by software-based implementations and that more efficient implementations
may be possible.

5. Summary and Prospect

In this paper, the optimization update rules of the principle of the IVA algorithm
and the application of IVA in BSS are reviewed. The basic principles of the ICA and IVA
algorithms are discussed. As an efficient method, the IVA algorithm can select appropriate
optimization and update rules according to different separation scenarios. The optimization
update rules based on IVA are mainly divided into six types: gradient method, Newton
method, auxiliary function method, block coordinate method, expectation maximization,
and eigenvalue decomposition. From the point of view of convergence speed and separa-
tion effect, the basic principles of these methods are briefly discussed. As the mainstream
algorithm to solve the problem of BSS, IVA solves the problem of the ICA algorithm arrange-
ment ambiguity and so on. Additionally, the source signal can be efficiently separated, and
the improvement of the optimization update rule cannot only accelerate the convergence
but also improve the overall separation effect. By reading the relevant literature, it is known
that some of the above optimization update rules can be used interchangeably to speed up
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the entire convergence speed and achieve rapid separation. This is a thought-provoking
and very interesting research direction, and related work will be carried out in the follow-up
research.

This paper also conducts an experimental comparison of the existing optimization
update rules. Through the numerical experiment comparison, the separation effect of the
existing optimization schemes can be understood. In different scenarios, the corresponding
update rules with good performance can be selected for blind separation work.
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