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Abstract: Mobile devices may use mobile edge computing to improve energy efficiency and respon-
siveness by offloading computation tasks to edge servers. However, the transmissions of mobile
devices may result in interference that decreases the upload rate and prolongs transmission delay.
Clustering has been shown as an effective approach to improve the transmission efficiency for dense
devices, but there is no distributed algorithm for the optimization of clustering and computation
offloading. In this work, we study the optimization problem of computation offloading to minimize
the energy consumption of mobile devices in mobile edge computing by adaptively clustering de-
vices to improve the transmission efficiency. To address the optimization problem in a distributed
manner, the decision problem of clustering and computation offloading for mobile devices is for-
mulated as a potential game. We introduce the construction of the potential game and show the
existence of Nash equilibrium in the game with a finite enhancement ability. Then, we propose a
distributed algorithm of clustering and computation offloading based on game theory. We conducted
a simulation to evaluate the proposed algorithm. The numerical results from our simulation show
that our algorithm can improve offloading efficiency for mobile devices in mobile edge computing
by improving transmission efficiency. By offloading more tasks to edge servers, both the energy
efficiency of mobile devices and the responsiveness of computation-intensive applications can be
improved simultaneously.

Keywords: computation offloading; clustering; game theory; Nash equilibrium; mobile edge computing

1. Introduction

Various computation-intensive mobile applications, such as online gaming, machine
learning, and virtual/augmented reality, have been developed. Some of these applications
may have a delay-constraint requirement, but satisfying the requests of these applica-
tions from mobile devices (MDs) is difficult because these devices have only restricted
resources [1]. Mobile edge computing has emerged as a crucial 5G technology. MEC servers
are deployed at basestations in the close proximity to MDs to provide the capability of
storage and computation for MDs [2]. This technology provides the benefits of improving
transmission quality and efficient network operation [3].

Although mobile edge computing could improve the application performance for
MDs, the simultaneous transmissions of MDs may degrade channel quality. As a re-
sult, the transmission performance is degraded, prolonging the response latency [4]. Al-
though multi-channel communication can be applied to improve transmission performance
by assigning MDs to different channels [5], the spectrum resources may still not be enough
to accommodate all MDs [6].

To ease the communication overhead for MEC, it is possible to generate clusters of
MDs, where only the cluster head of each cluster communicates with the basestation.
In each cluster, the cluster members with computation offloadings transmit their data to
the cluster head and the cluster head transmits data to the basestation on behalf of all MDs
in the cluster. With the MD clustering, the transmission performance can be improved
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by allocating spectrum resources to cluster heads. However, the optimization problem of
clustering and computation offloading for MDs has not been addressed in a distributed
manner in the previous literature.

In this paper, we model the problem of clustering and computation offloading for
MDs as a competitive game, where each MD attempts to minimize its overhead by inde-
pendently adjusting its clustering and offloading decision until a Nash equilibrium is reach.
As compared with a centralized approach, the competitive game enables a distributed
model for better flexibility and scalability. We summarize the contributions of this work
as below:

1. Clustering and computation offloading for MDs: To cope with the communication over-
head caused by the interference among MDs with computation offloading, we propose
a system model that clusters MDs, where only cluster heads can communicate with
the basestation. Cluster members can forward their requests through their cluster
heads to reduce the number of concurrent transmissions and improve the transmis-
sion performance.

2. Formulation of a distributed competitive game: Based on the system model, a potential
game where each MD selfishly selects a decision to minimize its overhead is formu-
lated. For the proposed game, we show the existence of Nash equilibrium, where no
MD can achieve better performance by altering its strategy. With the existence of a
Nash equilibrium, the game will converge within limited number of iterations.

3. An algorithm of the distributed clustering and computation offloading game: We developed
an efficient algorithm, namely, distributed clustering and computation offloading
(DCCO). Since the algorithm is performed in a distributed manner, the decision
overhead is shared by all MDs within a network. Our algorithm is evaluated to show
the performance improvement in terms of the number of successful computation
offloadings, energy consumption and response delay. The convergence performance
of the algorithm is also investigated.

The rest of this paper is organized as follows. Section 2 reviews related work. In
Section 3, we present the system model of clustering and computation offloading. Then, we
formulate the problem of clustering and computation offloading for MDs as a competitive
game in Section 4, where the existence of Nash equilibrium is demonstrated. In Section 5,
we present the proposed DCCO algorithm and explore the convergence of the DCCO game.
To evaluate the performance of the proposed algorithm, we conducted experiments upon
different algorithms and show their numerical results in Section 6. Finally, the conclusions
of this paper are provided in Section 7.

2. Related Works

Researchers have exploited the technology of mobile edge computing for Internet of
Things (IoT) and in the 5G framework for computation offloading. You et al. studied a near-
optimal design with a threshold-based structure for network resource allocation in a multi-
user mobile-edge computing offloading (MECO) system based on TDMA/OFDMA [7].
Malik et al. proposed parallel execution for computation tasks [8]. Guan et al. employed
neighboring devices for cooperative partial offloading [9]. Zaman et al. incorporated
machine learning for mobility prediction to improve resource efficiency [10,11]. The tradeoff
between delay and energy consumption can also be addressed by an iterative search
algorithm [12]. This algorithm yields the optimal solution in multi-device environments.
The above algorithms are performed in a centralized manner for better optimization,
but they may suffer from the cost of gathering statistical data from all MDs.

There are also implementations operated in a decentralized manner, where mobile
devices make offloading decisions based on their own interests without forwarding statis-
tics data to the MEC server. Tran et al. improved the performance gain of computation
offloading for MEC with multiple servers [13]. Dinh et al. optimized the decisions of
task allocation and CPU frequency with an offloading framework to minimize both total
execution latency and energy consumption [14]. Bi et al. maximized the total computa-
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tion rate of all wireless devices based on wireless power transfer for energy-harvesting
wireless devices with a computation offloading policy [15]. Neto et al. presented a user-
level online offloading framework [16] in which each device is equipped with a decision
engine to minimize the remote-execution overhead. Chen et al. developed an online
peer offloading structure by using the Lyapunov technique to handle spatially uneven
computation workloads and prevent long computation latency in overloaded small-cell
basestations [17]. Mazouzi et al. focused on computation offloading over a heterogeneous
cloudlet environment for mobile devices whose tasks have different energy and latency
constraints [18]. They proposed a heuristic approach of distributed linear relaxation based
on the Lagrangian decomposition method.

There have also been studies applying game theory to solve the problem of compu-
tation offloading in a distributed framework. Yang et al. took a small cell network with
multiple users and multiple MEC servers into account to design a threshold-based game-
theoretic approach [19]. Guo et al. introduced a hybrid fiber-wireless (FiWi) network to
support a system of integrating a centralized cloud and multi-access edge computing [20].
To address the collaborative computation offloading problem and overcome the drawback
of centralized management, an approximation greedy strategy and a game theory as a
distributed scheme was developed. He et al. investigated the edge-user-allocation problem
from the perspectives of application vendors in edge computing, where users can make
their own allocation decisions [21].

According to the previous literature [22], we are aware that one factor affecting the
performance of computation offloading is the communication between mobile devices
and MEC servers. Channel management was considered in the previous studies of com-
munication. Li et al. investigated the problems of radio and computational resources to
improve spectrum efficiency for both static and dynamic tasks from mobile devices for
vehicular edge computing [23]. Ning et al. proposed a hybrid computation offloading
structure for real-time interactive systems [24]. They formulated a joint problem of task
offloading, sub-channel assignment and power allocation. Alsen et al. introduced an MEC
system for unmanned aerial vehicles with the optimization problem of task offloading.
They also considered bandwidth allocation for IoT devices and resource allocation in local
computation [25]. Tun et al. presented a system of virtualized multi-access edge computing,
where network bandwidth and computation resource are sliced [26]. Cheng et al. aimed at a
multi-user and multi-MEC server scenario based on OFDMA [27]. They jointly investigated
task offloading policies and radio resource allocation. In this work, we also use OFDMA
for the communications between MDs and basestations.

Clustering is a technique to categorize entities into different groups, and the entities
of each group share a certain level of similarity [28]. Numerous approaches have been
proposed to address the optimization of clustering [29,30]. Although the technique of
clustering is applied to wireless transmission, previous studies of computation offloading
rarely exploited the concept of clustering to improve the performance of offloading based
on game theory. Hong et al. declared a robust optimization algorithm of energy and power
with fault tolerance to overcome diverse electrical power and computing strength [31].
Attiah et al. implemented a game-theoretical clustering framework to allow for the differ-
entiation of a cluster head’s obligation between each node to manage energy usage [32].
Afsar et al. aimed at the issue of energy shortage by proposing the splitting network and
game-theory-based clustering algorithm [33]. Loomba et al. presented the development
of an energy-efficient stochastic leader-selection algorithm [34], which uses the distance
between mobile devices and the basestation to select the best cluster head as offloading
agent. The algorithm also improves the energy usage of the interaction between mobile
handsets and an application server. Bouet et al. used a MEC-clustering algorithm to consol-
idate edge communications [35]. Du et al. introduced a fast and self-adaptive clustering
algorithm to obtain a accurate density threshold by optimizing the sum of squared errors
formula with limited iterations [36]. He et al. offloaded computational tasks in MEC-based
ultra dense networks from the core network by the perception of AP-clustering [37].
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To our knowledge, there is no distributed clustering algorithm for MEC computation
offloading. We are thus motivated to combine the decision problems of clustering and
computation offloading as a competitive game and propose an efficient algorithm.

3. System Model

In this section, we show the model for the distributed clustering and computation
offloading game. In the model, a set of mobile devices expressed as N = {1, 2 . . . , n} are
randomly distributed in a cell. These mobile devices have computation tasks, which must
be completed with a limited delay. Each basestation is connected to a MEC server with
computational capabilities, as shown in Figure 1. The computation tasks which cannot
be accommodated by MEC servers will be forwarded to remote cloud datacenter, but the
computation tasks offloaded to the datacenter may suffer from long latency. In this work,
we consider a static scenario where the states of mobile devices do not change during the
operation of computation offloading.

Internet

Tablet

PC

PC

Mobile

Laptop

MEC 
Servers

Mobile 

Devices

Basestation

Cloud Datacenter

Figure 1. An illustration of mobile edge computing.

We further propose a clustering approach which incorporates short-distance commu-
nication, e.g., Wi-Fi in WLAN or dedicated short-range communications (DSRC) in VANET,
to minimize communication overheads. As shown in the left of Figure 2, mobile devices
are randomly distributed in a cell, where each device has a unique identifier. Within a
range of short-distance communication, a mobile device can select a nearby MD as its
cluster head, where the cluster heads are denoted by solid circles in the middle of Figure 2.
The cluster heads collect data from their members of the same cluster and transmit the data
to the basestation. As a result, the cluster members do not directly communicate with the
basestation to reduce interference.

Figure 2. An example of MD clustering.

The node clustering generates a set of clusters denoted as CL = {cl1, cl2 . . . , clt},
1 ≤ t ≤ N. With the clusters, a cluster head could achieve a superior transmission rate
to the basestation and shorten the transmission latency. In this work, we neglect the
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occurrence of collisions. If the collision ratios are too high to enable clustering, our scheme
can still opt for direct communications between mobile devices and the basestation. We
also assume that data from the computation task of each MD would be encrypted before
the transmission to avoid the concern of privacy breaches.

In the following subsections, we describe the system model in detail. Section 3.1
describes the communication model. The computation model is introduced in Section 3.2.
The notation used in both subsections is listed in Table 1.

Table 1. Notation.

Symbol Definition

N The set of mobile devices

CL The set of clusters

M The set of channels

OFF The offloading decisions of all MDs

o f fn The offloading decision of MD n

C The clustering decisions of all MDs

cn The clustering decision of MD n

Jn The computation task of MD n

Bn The data size for Jn

Dn The required CPU cycles for Jn

Tn The computation time for Jn

En The energy consumption for Jn

pn The transmission power of MD n

rn The transmission rate of MD n

3.1. Communication Model

In this section, we describe the proposed communication model for mobile edge com-
puting. Each basestation has a set of wireless channels represented as M = {1, 2 . . . , m}.
MDs share these channels by using OFDMA to assign a subset of channel resources. We de-
note o f fn ∈ {0}∪M, cn ∈ {0}∪CL as the channel and clustering selection of each MD n, re-
spectively. With the decision profiles, OFF = {o f f1, o f f2 . . . , o f fn} and C = {c1, c2 . . . , cn},
of all mobile devices, we can compute the uplink data transmission rate of MD n which
opts to offload via the MD clustering approach by using the following formula:

rn(o f f , c) = Wlog2(1 +
pngn,s

ω0 + ∑m∈N:o f fm=o f fn ,cm 6=cn ,m 6=n pmgm,s
) (1)

W is the channel bandwidth, and pn is the transmission power of MD n. gn,s denotes
the channel gain between the MD n and the basestation s according to the path loss and
shadowing. ω0 denotes the background noise power.

From Equation (1), we can recognize that mobile devices may incur heavy interference
when numerous devices select the same wireless channel. By clustering mobile devices
to reduce excessive transmissions in a wireless channel, the uplink transmission rate can
be improved.

3.2. Computation Model

Next, we present the computation model. We assume that each mobile device n has
a computational task, Jn = {Bn, Dn}, to be executed either locally on MD n, or offloaded
to MEC server based on its decision. Bn indicates the data size of computation input to
offload, and Dn denotes the total number of CPU cycles required to accomplish Jn. Then,
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we can calculate the computation overhead in terms of delay and energy consumption for
local computing and edge computing.

3.2.1. Local Computing

Let f l
n be the computational capability of MD n, i.e., the number of CPU cycles per

second. If MD n calculates its task Jn locally, the delay is Tl
n = Dn

f l
n

, and the energy

consumption can be formulated as:

El
n = Dnεl

n, (2)

where εl
n is the coefficient of the consumed energy per CPU cycle.

3.2.2. Edge Computing

The main difference between edge and local computing is the additional overheads
for the computation offloading of a MD. The overhead includes the offloading delay and
energy consumption for transmitting data to the MEC server. The delay and energy con-
sumption for the offloading are defined as To f f

n and Eo f f
n , where Eo f f

n = To f f
n pn. After MD n

finishes the transmission, the MEC server performs the computation task Jn remotely. Thus,
the delay for executing task Jn is Te

n. We ignore the energy consumption of the MEC server.
There are two approaches to offload the task of each MD, where a MD can either

directly offload its task to the MEC server or upload its data through the cluster head.
In the later case, the cluster head transmits the data of all cluster members based on the
following equation:

Bcln
n = ∑

n∈cln

Bn (3)

Let f e be the computational capability of the MEC server. If MD n offloads its task Jn to the
MEC server through the basestation, the total delay and the energy consumption can be
expressed as:

Te
n = To f f

n + Texe
n =

Bn

rn(o f f , c)
+

Dn

f e (4)

Ee
n = Ec

n =
pnBn

rn(o f f , c)
(5)

The possible values of Bn are listed in Equation (6), and those of pn are listed in Equation (7).

Bn =


Bn, MD n as an offloader
Bcln

n , MD n as a cluster head
0, MD n as a cluster member

(6)

pn =

{
pe

n, MD n as an offloader or a cluster head
pw

n , MD n as a cluster member
(7)

We further combine Equations (2) and (5) to obtain computation overhead of clustering-
based offloading for each MD:

En =


El

n, if cn = 0 and o f fn = 0
Ee

n, if cn = 0 and o f fn > 0
Ec

n, if cn > 0 and o f fn > 0
(8)

We do not consider the downlink transmission of results in the model, because the result
size is usually much smaller than the input data [19].

4. Problem Formulation

Next, we formulate the clustering and computation offloading problem for mobile
edge computing based on the proposed communication and computation model.
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4.1. Game Formulation

We denote sn = {o f fn, cn} as the channel and clustering decisions of the mobile
device n. Let s−n = {s1, . . . , sn−1, sn+1, . . . , sN} be the decisions of the other MDs and −sn
be decisions not chosen by mobile device n. Given the decisions of the other MDs, s−n,
mobile device n chooses the decision sn as the solution of the following equation:

OMIN : min ∑
n∈N

En(sn, s−n) (9)

C1 : offn ∈ {0, 1, 2 . . . , M},
C2 : cn ∈ {0, cl1, cl2 . . . , clt},
C3 : Dn(sn)I{offn 6=0,cn 6=0} ≤ Dn(−sn)I{offn 6=0,cn 6=0},

where C1 and C2 are defined in Section 3.1. I{S} is used to indicate whether a decision
variable is true. For example, if S is true, I{S} = 1; otherwise, I{S} = 0.

According to Equation (8), we can set the problem of computation energy consumption
as the following equation:

En(sn, s−n) =


El

n, if cn = 0 and o f fn = 0
Ee

n, if cn = 0 and o f fn > 0
Ec

n, if cn > 0 and o f fn > 0
(10)

Then, we formulate the overhead minimization problem (OMIN) to be a game of strategy,
Γ = (N, {Sn}n∈N , {En}n∈N), where the players are the mobile devices ∈ N. Sn is the set
of strategies including offloading offn and clustering decision cn for player n. The energy
consumption En(sn, s−n) of each MD is the expense function to be minimized for player n.
Consequently, we regard the game as the multi-MD clustering and computation offloading
game and show the existence of a Nash equilibrium in the game.

Definition 1. A set of strategies s? = {s?1 , . . . , s?n} reaches a Nash equilibrium for the clustering
and computation offloading game with multiple MDs where no MD can additionally reduce its
energy consumption by adjusting its strategy in the equilibrium s?; i.e.,

En(s?n, s?−n) < En(sn, s?−n), ∀sn ∈ Sn, n ∈ N. (11)

Based on the above definition, when the game of clustering and computation offload-
ing reaches a Nash equilibrium, each MD has a mutually satisfactory solution.

4.2. Nash Equilibrium of the DCCO Game

Next, we show the presence of Nash equilibrium for the clustering and computation
offloading (DCCO) game.

Definition 2. It can be inferred from a potential game that a potential function Φ(s) is needed so
that ∀n ∈ N, sn, s?n ∈ Sn, s−n ∈ S−n:

En(s?n, s−n)− En(sn, s−n) < 0

=⇒ Φn(s?n, s−n)−Φn(sn, s−n) < 0.
(12)

Lemma 1. Given a set of strategies with offloading and clustering decisions s = {off, c}, edge com-
puting with clustering is favorable if its received interference from other MDs, τn(s) = τn(off, c) =
∑i∈N\{n}:offi=offn ,ci 6=cn pigi,s, in the channel, satisfies that τn(s) ≤ Θn, where the threshold is
expressed as

Θn =
pngn,s

pnBn

2WEl
n−1

−ω0
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Proof. According to Equations (2) and (5), if we anticipate the edge computing with
clustering is advantageous compared with local computation for MD n, the following
circumstance, Ec

n(s) ≤ El
n(s), must occur; i.e., Bn

rn(s)
pn ≤ El

n. Therefore, we can derive the
following equation:

rn(s) ≥
Bn

El
n

pn.

Based on Equation (1), we can get that

∑
i∈N\{n}:o f fi=o f fn ,ci 6=cn

pigi,s ≤
pngn,s

pnBn

2WEl
n−1

−ω0. (13)

The condition after ‘\’ indicates the exception cases.
Through Lemma 1, we notice that if a MD receives low interference in its channel,

the MD will prefer to upload its task to the MEC server via its cluster head. In contrast,
if the obtained interference from other MDs on the same channel is high, the MD should
perform its task locally.

Theorem 1. The clustering and computation offloading game is a possible game to reach a Nash
equilibrium with a finite enhancement ability.

Proof. First, we assume that s = {off, c} are the channel and clustering decisions of mobile
devices. The potential equation for clustering and computation offloading game can be
presented as

Φ(s) =
1
2 ∑

i∈S
∑

j∈S\{i}
pigi,s pjgj,s I{offi=offj ,ci 6=cj} I{ci>0} + ∑

i∈S
pigi,sΘi I{offi=0,ci=0} (14)

Equation (14) can be expressed as the following:

Φ(s) =
1
2 ∑

j∈S\{k}
pkgk,s pjgj,s I{offj=offk ,cj 6=ck} I{ck>0}

+
1
2 ∑

i∈S\{k}
pigi,s pkgk,s I{o f f k=o f f i ,ck 6=ci} I{ci>0}

+
1
2 ∑

i∈S\{k}
∑

j∈S\{i,k}
pigi,s pjgj,s I{offi=offj ,ci 6=cj} I{ci>0}

+pkgk,sΘk I{offk=0,ck=0}

+ ∑
i∈S\{k}

pigi,sΘi I{offi=0,ci=0} (15)

We can get the following equation:

∑
j∈S\{k}

pkgk,s pjgj,s I{offj=offk ,cj 6=ck} I{ck>0}

= ∑
i∈S\{k}

pigi,s pkgk,s I{offk=offj ,ck 6=cj} I{offi>0,ci>0} (16)

Let Ξ(sS\{k}) be the following equation:

1
2 ∑

i∈S\{k}
∑

j∈S\{i,k}
pigi,s pjgj,s I{offi=offj ,ci 6=cj} I{ci>0} + ∑

i∈S\{k}
pigi,sΘi I{offi=0,ci=0}. (17)
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With Equations (15) and (16), we can obtain the following equation:

Φ(s) = ∑
j∈S\{k}

pigi,s pkgk,s I{offk=offi ,ck 6=ci} I{ci>0} + pkgk,sΘk I{offk=0,ck=0} + Ξ(sS\{k}), (18)

where Ξ(sS\{k}) is self-reliant for MD k’s strategy sk. With Equation (13), we obtain the
following equation:

Ek(s) = ∑
j∈S\{k}

pjgj,s I{offj=offk ,cj 6=ck} I{ck>0} + Θk I{offk=0,ck=0} (19)

Then, we assume that MD k will have the situation Ek(s?k , s−k) < Ek(sk, s−k), when it prefers
updating its clustering and offloading decisions to cut down its cost. With the potential
game’s definition, the request of updating would result in the situation Φk(s?k , s−k) <
Φk(sk, s−k). We consider three cases—(1) ck > 0, c?k > 0, (2) ck = 0, c?k > 0 and (3)
ck > 0, c?k = 0—to analyze whether the convergence can be achieved for a given channel
decision o f fk.

Case 1 appears when the MD k’s clustering and offloading decisions are updated
from the clustering ck > 0 toward the other clustering c?k > 0. Based on Equation (1),
it is obvious that the function Wlog2α consistently grows by α, and the circumstance
Ek(s?k , s−k) < Ek(sk, s−k) is known. We can get the result of the following equation:

∑
i∈N\{k}:offi=off?k ,ci 6=ck

pigi,s < ∑
i∈N\{k}:offi=offk ,ci 6=ck

pigi,s (20)

With Equations (18) and (20), we can get:

Φk(sk, s−k)−Φk(s?k , s−k) = pkgk,s ∑
i∈S\{k}

pigi,s I{offk=offi ,ck 6=ci} I{ck>0}

−pkgk,s ∑
i∈S\{k}

pigi,s I{off?k=offi ,ck 6=ci} I{ck>0} > 0 (21)

Case 2 occurs when MD k’s decision is updated from a clustering decision ck = 0,
i.e., no clustering, to another cluster c?k > 0. The interference in the cluster c?k > 0 should
be smaller than the threshold of interference, i.e., ∑i∈N\{n}:offi=off?k ,ci 6=ck

pigi,s < Θk and
Ek(s?k , s−k) < Ek(sk, s−k). The following equation can be yielded:

Φk(sk, s−k)−Φk(s?k , s−k) = pkgk,sΘk I{offk=0,ck=0}

−pkgk,s ∑
i∈S\{k}

pigi,s I{off?k=offi ,ck 6=ci} I{ck>0} > 0 (22)

The last case takes place when MD k’s clustering and offloading decisions are updated
with the cluster ck > 0 toward the other clustering decision c?k = 0, i.e., no clustering.
As for Ek(s?k , s−k) < Ek(sk, s−k) and ∑i∈N\{n}:offi=off?k ,ci 6=ck

pigi,s > Θk, we can generate the
following equation:

Φk(sk, s−k)−Φk(s?k , s−k) = pkgk,s ∑
i∈S\{k}

pigi,s I{offk=offi ,ck 6=ci} I{ck>0}

−pkgk,sΘk I{off?k=0,ck=0} > 0 (23)

Based on the analysis for three cases of updating decisions, we can observe that a potential
game of clustering and computation offloading can be formed to reach Nash equilibrium.
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5. Distributed Clustering and Computation Offloading Game

In this section, we develop an efficient distributed clustering and computation offload-
ing game among multiple MDs to achieve Nash equilibrium and analyze the convergence
of the DCCO game.

5.1. Algorithm

The proposed algorithm is conducted in an iterative manner, as listed in Algorithm 1.
Initially, the decisions of all MDs are local computation and without joining any clustering;
i.e., offn = 0, cn = 0. In order to examine the interference information of different channels,
each MD, say n, may transmit its offloading and clustering decisions to the basestation
through the channel access. Then, the basestation will return the information of wireless
channels and the locations of nearby mobile devices to MD n. The MD n can thus measure
the interference of different channels to avoid poor transmission quality among MDs of
the same channel in the previous iteration. The locations of nearby MDs can be used to
identify the neighboring nodes. Once a MD n receives the feedback from the basestation,
it will calculate the best solution, ∆n(t), based on the OMIN problem, where each MD n
independently selects its decisions of offloading offn and clustering cn. If the decisions of
current iteration are different to those of the previous one, i.e., ∆n(t) 6= ∆n(t− 1), the MD n
transmits a request to the MEC server to compete for the permission to update its decision.
Otherwise, the MD n does not forward any message to the MEC server to maintain its
decision in this iteration; i.e., offn(t + 1) = offn(t), cn(t + 1) = cn(t).

Algorithm 1 DCCO game.

1: Initialize:
offloading decision offn(0) = 0;
clustering decision cn(0) = 0.

2: while update decision request 6= ∅ do
3: for each iteration t do
4: for each MD n do
5: Send a wireless signal toward basestation.
6: Receive information of channels and near MDs.
7: ∆n(t)←− compute best solution by (OMIN).
8: end for
9: if ∆n(t) 6= ∆n(t− 1) then

10: Send a request to update decision to MEC server.
11: if a permission of updating decision received from the MEC server then
12: Update offloading and clustering decisions

offn(t + 1), cn(t + 1) = ∆n(t).
13: else
14: Keep offloading and clustering decisions

offn(t + 1) = offn(t), cn(t + 1) = cn(t).
15: end if
16: else
17: Keep offloading and clustering decisions

offn(t + 1) = offn(t), cn(t + 1) = cn(t).
18: end if
19: end for
20: end while

When the MEC server receives update requests from MDs, the MEC server will ran-
domly select and accept one of those requests and inform all MDs. Only the selected MD
can update its decision, i.e., o f fn(t + 1), cn(t + 1) = ∆n(t), and the other MDs keep their de-
cisions unchanged as in the previous iteration—i.e., o f fn(t+ 1) = o f fn(t), cn(t+ 1) = cn(t).
The game will execute continuously until no update messages are transmitted to the MEC
server. In other words, no mobile device can further reduce energy consumption by updat-
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ing its decision. Therefore, the MEC server with the basestation will commit the decisions
in the last iteration of the DCCO game, and each MD will perform its computational task
based on its clustering and offloading decisions.

We note that it is possible that an MD may disconnect before convergence. In this
case, the MD will no longer receive any updates to yield the final decision for computation
offloading. The other MDs will ignore this MD and proceed to reach Nash equilibrium.

5.2. Convergence Analysis

Owing to Theorem 1, the algorithm of DCCO game will retain a Nash equilibrium
within the limited iterations. In this subsection, we analyze the computational complexity
of the DCCO algorithm.

Assume F iterations are required to finish the algorithm of the DCCO game for
N mobile devices; the overall complexity of the DCCO game is O(FN log N). We let
Θmax = maxn∈NΘn, Λn = pngn,s, Λmax = maxn∈NΛn and Λmin = minn∈NΛn and consider
F iterations to reach convergence for the DCCO game. The following result can be obtained.

Theorem 2. DCCO game will end within at most Λ2
max

2Λmin
N2 + ΘmaxΛmax

Λmin
N iterations when Θn and

Λn are both positive integers, ∀n ∈ N. That is, F ≤ Λ2
max

2Λmin
N2 + ΘmaxΛmax

Λmin
N.

Proof. Based on Equation (14), we can obtain:

0 ≤ Φ(s) ≤ 1
2 ∑

i∈N
∑
j∈N

Λ2
max + ∑

i∈N
ΛmaxΘmax =

1
2

Λ2
max N2 + ΛmaxΘmax N (24)

We assume that a MD k ∈ N receives permission from the MEC server to update its
current clustering decision from ck to another clustering decision c?k , in order to yield a
decline in its expense function. According to Definition 2, the above condition also yields a
decline in the potential function as well; i.e.,

Φk(s?k , s−k) > Φk(sk, s−k) + Λmin. (25)

Now, we discuss each of the three cases presented in Section 4.2: (1) ck > 0, c?k > 0, (2)
ck = 0, c?k > 0 and (3) ck > 0, c?k = 0.

Case 1: Based on Equation (21), we can obtain:

Φk(sk, s−k)−Φn(s?k , s−k) = Λk( ∑
i∈S\{k}

Λi I{offk=offi ,ck 6=ci} I{ck>0}

− ∑
i∈S\{k}

Λi I{off?k=o f f i ,ck 6=ci} I{ck>0}) > 0. (26)

Due to the property of integers as Λi for each MD in N,

∑
i∈S\{k}

Λi I{offk=offi ,ck 6=ci} I{ck>0} ≥ ∑
i∈S\{k}

Λi I{off?k=offi ,ck 6=ci} I{ck>0} + 1 (27)

As a result, based on Equation (26), we can yield the following equation for Case 1:

Φk(sk, s−k) ≥ Φk(s?k , s−k) + Λk ≥ Φk(s?k , s−k) + Λmin

Case 2: Based on Equation (22), we have the following equation:

Φk(sk, s−k)−Φn(s?k , s−k) = Λk(Θk − ∑
i∈S\{k}

Λi I{offk=offi ,ck 6=ci} I{ck>0}) > 0 (28)
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Thus, based on Equation (28), Case 2 can be held by:

Φk(sk, s−k) ≥ Φk(s?k , s−k) + Λk ≥ Φk(s?k , s−k) + Λmin

Case 3: Through the equivalent statements on Cases 1 and 2, we can demonstrate the
following equation for the last case:

Φk(sk, s−k) ≥ Φk(s?k , s−k) + Λmin

Hence, according to Equations (24) and (25) and by applying the potential function into a

minimum state, the algorithm of the DCCO game will finish within Λ2
max

2Λmin
N2 + ΘmaxΛmax

Λmin
N

iterations, at most.
We consider that transmission power and channel gain of MD n in reality are both

positive integers, i.e., pn ≥ 0, gn,s ≥ 0. Moreover, the condition of Θn ≥ 0 is non-negative to
imply that the probability of MD n can achieve advantageous edge computing as compared
with local computing. Our simulation results in Section 6 also demonstrate that the DCCO
game can converge rapidly.

6. Simulation Results

In this section, we validate the effectiveness of the proposed algorithm based on
simulations. We developed a Python-based simulator to perform our simulations. The
simulation scenario included a basestation whose coverage was 100 m. There were 30 to
70 MDs randomly distributed in the cell. There were five channels, namely, M = 5; the
bandwidth of each channel was 5 MHz. The transmission power p was 150 mWatts. We set
the path loss factor as 4. The data generated by MDs were 5000 kbits, and the number of
required CPU cycles for computation tasks was 1000× 108. The computational capacity
of the MEC server was 10× 109 cycles/s, and that of a MD was 1.0× 109 cycles/s. We
summarize the simulation settings in Table 2.

Table 2. Simulation parameters.

Parameters Value

Data size 5000 kbits
Number of CPU Cycles 1000× 108 cycles
Number of Channels 5
Channel Bandwidth 5 MHz
Wi-Fi Channel Bandwidth 0.5 MHz
MEC Capacity 10× 109 cycles/s
MD Capacity 1.0× 109 cycles/s
MD Transmission Power 150 mWatts
MD Wi-Fi Power 50 mWatts
Noise 10−10 mWatts
Path Loss Factor 4
Coverage 50 m

In our simulation, two additional algorithms were used, as listed below.

1. Distributed computation offloading (DCO): The DCO algorithm exploits game theory
for offloading decisions.

2. LE-based distributed computation offloading game (L&E DCO): The L&E DCO algo-
rithm uses game theory based on latency and energy consumption [19].

3. Distributed clustering and computation offloading (DCCO): The proposed algorithm
employs game theory for clustering and offloading decisions.

First, we reveal the numbers of offloading MDs for the numbers of MDs in the different
schemes in Figure 3. The scheme L&E DCO considers the ratio between edge and local
computing to outperform the algorithm based on original game theory (DCO). The results
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show that it uses about 23% additional offloadings for 30 MDs as compared to DCO.
However, our scheme, DCCO, can further increase the number of offloading MDs by 38%.
It is apparent that DCCO outperforms both DCO and L&E DCO because of the additional
MD clustering. The interference received by each MD is reduced, since the MDs in the same
channel are eliminated. DCCO thus enables more MDs to offload tasks to the MEC server.

DCO
L&E	DCO
DCCO
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35

Number	of	MDs
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Figure 3. The numbers of offloading MDs for various algorithms.

We further show the numbers of cluster heads and members in Figure 4. The results
show that the proposed algorithm can significantly increase the number of clustered MDs.
When there are more MDs, more clusters are also generated to reduce the number of MDs
directly communicating with the basestation.

Cluster	Head
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Direct	Transmission
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Figure 4. The numbers of cluster heads and members in each channel with 30 MDs.

We also show the number of MDs in each channel for the scenario with five channels
and 30 MDs in Figure 5. The numbers of cluster heads and members for the proposed
DCCO algorithm are also depicted. The results suggest that the additional offloading MDs
can be achieved by MD clustering. Since the cluster members do not communicate with
the basestation directly, the interference received by the mobile devices can be reduced to
improve the transmission performance.
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Figure 5. The distribution of 30 MDs in each channel.

Then, we indicate the energy usage in average for a mobile device to execute the task
in Figure 6. The energy consumption includes that for both transmission and execution,
where mesh bars denote the average energy consumption for data transmission. L&E DCO
has similar energy consumption to DCO. In particular, L&E DCO consumes more energy
for data transmission. As compared with the other two schemes, our scheme, DCCO, can
reduce energy consumption by about 30% for 30 MDs by offloading more tasks to the
MEC server.
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Figure 6. The average energy consumption with different algorithms.

Figure 7 shows the average delay for finishing tasks from mobile devices for different
numbers of MDs. The delay in the results also includes the latency for both transmission
and execution, where the mesh bars depict average transmission delay. In the case of
30 MDs, it can be observed that the proposed algorithm has the shortest delay. With the
DCCO algorithm, we can reduce response delay by about 20% as compared to DCO.
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Figure 7. The average delay with different algorithms.

Figure 8 and 9 present the number of iterations for convergence with 30 and 70 MDs,
respectively. In both figures, the upper half shows the energy consumption and the lower
half shows the number of MD clusters. We observe that within 20 iterations, all schemes
can reach Nash equilibrium. Although the proposed DCCO algorithm reaches the Nash
equilibrium with more iterations than the other two algorithms, it also reduces the average
energy consumption by increasing the number of clusters and offloading MDs. Figure 9
shows that about 35 iterations are required to reach Nash equilibrium. The results show that
the convergence time is sublinearly related to the number of MDs. As a result, the proposed
algorithm provides scalability for scenarios with numerous MDs.
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Figure 8. The convergence performance with 30 MDs.
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Figure 9. The convergence performance with 70 MDs.

7. Conclusions

In this work, we proposed an algorithm based on game theory to combine cluster-
ing and computation offloading to deal with increasing MDs in mobile edge computing.
With MD clustering, the number of transmitting nodes in a channel can be reduced to im-
prove the transmission rate because cluster members can forward data through their cluster
heads. Accordingly, we formulated the overhead minimization problem as a competitive
game and presented an algorithm for the clustering and computation offloading game. We
also showed the existence of a Nash equilibrium for the game. In the performance evalua-
tion, we showed that the proposed model for the distributed clustering and computation
offloading game can achieve better efficiency of computation offloading than the previous
game-theory-based schemes. With our algorithm, the number of offloaded tasks can be
increased by up to 36% to lower the energy consumption of mobile devices by 30%. Our
algorithm also shortens the latency of computation tasks by 20%. Moreover, our algorithm
can effectively converge to yield feasible decisions of clustering and offloading. In our
future work, we will attempt to improve the fairness of energy consumption among mobile
devices, since mobile devices with poor channel quality may not be able to successfully
offload their computation tasks.
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