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Abstract: Scheduling residential loads for financial savings and user comfort may be performed
by smart home controllers (SHCs). For this purpose, the electricity utility’s tariff variation costs,
the lowest tariff cost schedules, the user’s preferences, and the level of comfort that each load may
add to the household user are examined. However, the user’s comfort modeling, found in the
literature, does not take into account the user’s comfort perceptions, and only uses the user-defined
preferences for load on-time when it is registered in the SHC. The user’s comfort perceptions are
dynamic and fluctuating, while the comfort preferences are fixed. Therefore, this paper proposes the
modeling of a comfort function that takes into account the user’s perceptions using fuzzy logic. The
proposed function is integrated into an SHC that uses PSO for scheduling residential loads, and aims
at economy and user comfort as multiple objectives. The analysis and validation of the proposed
function includes different scenarios related to economy–comfort, load shifting, consideration of
energy tariffs, user preferences, and user perceptions. The results show that it is more beneficial to
use the proposed comfort function method only when the user requires SHC to prioritize comfort at
the expense of financial savings. Otherwise, it is more beneficial to use a comfort function that only
considers the user’s comfort preferences and not their perceptions.

Keywords: fuzzy logic; load-side management; particle swarm optimization; smart grids; smart
home controllers

1. Introduction

In the context of demand response (DR), measures to improve the energy chain unfold
in two areas: supply-side management (SSM) and demand-side management (DSM). The
first area aims to improve the generation, transmission, and distribution of electricity, while
the second area aims to influence the consumption profile of households through flexible
tariffs or energy bonuses [1,2]. In this scenario, residential consumers can use smart home
controllers (SHCs) to take advantage of benefits offered by the utility [3]. These controllers
may incorporate residential comfort functions [4–6], residential load modeling, the ability
to manage distributed generation (DG) associated with energy storage systems (ESSs)
and electric vehicles (EVs), and a collaborative/non-collaborative relationship between
prosumers [7].

Specifically in the context of DSM, residential load modeling and user comfort model-
ing are presented as one of the important measures that fulfill the above idea. The modeling
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of residential loads is based on the successive measurement of electrical quantities associ-
ated with residential loads connected to the electrical power grid. On the other hand, user
comfort modeling comprises both psychological and physiological issues. Psychological
issues are related to the perceptions of human beings regarding their way of feeling and re-
sponding to stimuli felt by the human body [8,9]. This perception can affect an individual’s
mood, emotional state, and satisfaction to the point of making them uncomfortable in an
environment that is pleasant for others, or vice versa [10–12]. Physiological aspects, on the
other hand, are related to well-being and safety, including thermal comfort, visual comfort,
and ambient air quality [13–15]. In this context, the modeling of residential loads and user
comfort may be characterized by disjoint metrics resulting from different indices and by
parameters separated from each other.

However, for a multi-objective SHCs system, residential loads can have their own
comfort index that measures overall comfort associated with load scheduling and user
preferences. Thus, it is reasonable to state that there is a gap in the SHC state-of-the-
art in relation to the incorporation of the user’s perception of residential comfort, as
the algorithms proposed for managing residential loads associated with SHCs do not
consider the user’s perceptions of comfort, only their preferences. Therefore, an SHC in
this configuration can present comfort indices that do not correspond to the user’s real
perception of comfort, because users’ psychological factors can influence their perception by
making them feel uncomfortable in a comfortable environment, or vice versa [10]. This may
result in the need for manual intervention using the SHC for comfort adjustment, thereby
increasing electrical energy consumption and leading to loss of controller configuration,
comfort, accuracy SHC, and other benefits offered by the utility. In addition, from the
perspective of home office work discomfort can influence user/worker productivity. For
these reasons, this article proposes the modeling of a comfort function that considers user
perceptions of comfort through fuzzy logic.

The proposed comfort function is integrated in an SHC that uses PSO, as in [6,16], to
schedule residential loads with the dual aims of savings and comfort. The analysis and val-
idation of the proposed function includes different scenarios in terms of economy–comfort
and load displacement, and considers energy tariffs, preferences, and user perceptions.

Thus, in this paper we present the following contributions to the state-of-the-art with
respect to residential comfort analysis:

• Introduction of a novel residential comfort function capable of integrating parameters
associated with the human perceptions of temperature and humidity.

• Proposal of a multi-objective SHC model that relies on PSO for scheduling the residen-
tial loads and integrates the proposed comfort function by means of fuzzy logic.

• Improvement of thermal comfort indices, the computational burden of the SHC, the
efficiency of the particle swarm optimization (PSO) algorithm, and economic savings
when compared with [5,6].

• Supplemental materials are available at GitHub® through https://github.com/
jonathacosta/SmartGrid/tree/main/SCC-SHC accessed on 15 February 2023, in-
cluding our source codes, allowing prompt reproduction of our results.

The remainder of this paper is organized as follows. Section 2 presents a brief overview
of the theoretical foundations. Section 3 presents the PSO and fuzzy principles along with
mathematical definitions. Section 4 describes the methodology used to obtain the new
comfort function and incorporate it into the SHC. Section 5 presents the results obtained
under different scenarios. A discussion of the results is presented in Section 6 and our final
considerations are provided in Section 7.

2. Demand-Side Management (DSM)

Among the main programs, DSM stands out for the response to tariff signals offered
by the concessionaire to end users, namely, time of use (time-of-use (ToU)), critical peak
pricing (CPP), and real-time price (RTP) [17].

https://github.com/jonathacosta/SmartGrid/tree/main/SCC-SHC
https://github.com/jonathacosta/SmartGrid/tree/main/SCC-SHC
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In the Brazilian market, the “white-rate tariff” is a term for the ToU [18] tariff, as
mentioned above. In this scenario, low-voltage consumers, called group B, are informed
of energy costs based on the day and time of consumption. Such a program provides
significant benefits by shifting consumption from peak periods to times when the power
distribution system has spare capacity.

Table 1 shows that as more loads are shifted to off-peak hours and the difference
between the conventional tariff (CT) and ToU tariffs increases, the savings for consumers
increase as well [18]. Otherwise, high energy costs may be incurred, which is why the use
of SHCs is of great importance in this scenario.

Table 1. Comparison between CT and ToU.

Period Tariff CT ToU
Mode (US$/kWh) (US$/kWh)

00:00 to 16:30 Off-peak 0.136 0.112
16:30 to 17:30 Intermediate 0.136 0.187
17:30 to 20:30 Peak 0.136 0.294
20:30 to 21:30 Intermediate 0.136 0.187
21:30 to 00:00 Off-peak 0.136 0.112

2.1. Smart Home Controllers (SHCs)

The basic definition of an SHC is based on the search for the best control strategy,
considering the aim of scheduling household loads while minimizing cost and maximizing
user comfort. In this sense, residential loads have a certain degree of flexibility in terms of
duty cycle, power, and on/off times. These loads are part of the smart homes (SHs), which
can exchange information with the utility in response to DSM programs. At this point, it
should be emphasized that SHs can include DG units with or without ESSs and EVs to
support the optimization goal of SHCs.

In this context, in [19] the authors proposed a simulation tool for residential load
scheduling that uses binary particle swarm optimization (BPSO) and allows the proper
selection of DG units. However, the mathematical model proposed in the tool does not have
a function to evaluate the comfort level of the user. In [3], an event-based controller using
integer linear programming (ILP) was proposed to minimize residential energy consump-
tion while considering the variation in the electricity tariff and the average consumption
of scheduled loads. However, the authors did not present user comfort metrics, and the
proposed approach does not minimize consumption peaks, although it uses a restriction to
avoid network overloads.

The authors of [20,21] employed a mixed ILP to optimize the operation of residential
loads based on consumer preferences, which were modeled in a load schedule sliding
window (LSSW) of heating, ventilation, and air conditioning (HVAC) equipment. The
assessed scenarios combined DG, ESSs, and EVs. In [21], a thermodynamic comfort model
for thermostatic loads was incorporated using linear programming (LP), where the index
predicted mean vote (PMV) was used to measure the thermal comfort. However, this work
did not consider users’ overall comfort level.

The authors of [22,23] proposed a dynamic parameter selection process to improve the
performance of an HVAC controller designed for load balancing within one hour. However,
comfort and consumption optimization functions were not included. In [24], mixed integer
nonlinear programming (MINLP) is used while taking into account changes in the intraday
energy price and user preferences for thermal comfort in order to minimize daily energy
demand. The authors did not examine overall user comfort and did not consider perceived
user comfort.

A linear aggregation function with weights in the range [0, 1] was incorporated into
the load controller by [4] to correlate the consumption and comfort functions; however, the
authors did not address the perceived comfort of users. In [25], the authors introduced an
equilibrium parameter and a comfort model using the Taguchi loss function. Their proposal
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relied on convex optimization, and they studied the rate scenarios day-ahead price (DAP)
and flat price (FP). The authors did not investigate the users’ perceptions of comfort, and
only considered pre-configured devices registered in the SHC. The controller evaluated
in [26] used genetic algorithm (GA), teacher learning-based optimization (TLBO) and LP
for load scheduling, and the authors proposed a novel optimization technique based on
the combination of GA and TLBO called teacher learning genetic optimization (TLGO).
The proposed technique presents a satisfaction cost index depending on the time and the
type of device, where the user can use more electrical devices or use the same device for
a longer period of time. The studies reported in [27] present a home interactive interface
(HIC) based on the ubiquity concept to enable SHs users to monitor residential loads and
comfort metrics, as well as consumption and operational status related to fault alerts. The
multi-objective controller described in [5] includes a global comfort function, while the
work in [4] evaluated multiple fare scenarios associated with DG. The authors considered
the user’s comfort level based on the relevance of each load to that comfort level. In these
proposals, however, the relevance of loads was fixed and the user’s perceived comfort was
not examined. The method introduced in [5] was reformulated in [28] by implementing an
GA-based approach. This approach applies Pareto front approximation for the automatic
definition of load activation, and provides users with options that take into account both
energy consumption and residential comfort. According to [6], it is possible to associate
PSO with the mathematical formulation of comfort and loads presented in [5], where it is
possible to obtain a maximum consumption threshold modeled by an inverted Gaussian.
Similarly, the authors did not address the users’ perception of comfort.

In [29], the authors presented a residential controller that optimizes the charge/discharge
scheduling of local ESSs in SHs with DG. It aims to it aims to minimize the cost of local
energy consumption and to enable the negotiation of excess energy between prosumers
and between prosumers and the utility. The authors used an objective function based on
multi-objective grey wolf optimization (MOGWO) and compared the results with PSO. The
authors did not, however, examine users’ perceptions of comfort

A coordination model involving a central controller, local controllers, and residential
consumers was proposed in [30]. The hierarchical structure aims to reduce demand through
competitive bidding. The authors modeled the consumption of air conditioners and water
heaters using an optimization function based on mixed integer linear programming (MILP)
to minimize the total reward at each bid.

Lyapunov optimization based on virtual queue stability was used in [31]. This work
aimed to study energy optimization in an SH with HVAC loads, DG, and an ESS. The
proposed algorithm creates and controls four queues for indoor temperature, EV charging,
and ESS. System implementation is conducted by convex programming. The authors of [32]
employed fuzzy logic to determine the estimated comfort and cost–benefit ratio in the
near future, and used simulated anneling (SA) to determine the set point for battery bank
operation. Their focus was on maximizing the monthly profit from energy sales. In turn,
the study of [33] presented an algorithm that reduces the consumption of HVAC loads. The
resulting energy surplus enables the adjustment of the illuminance set point in the range
of 0–500 lux to maximize the user’s visual comfort. Both of the aforementioned controls
are based on fuzzy logic. Finally, in [34], a controller was proposed that considers DG and
ESS to minimize the energy cost. The load schedule results from the proposed algorithm
based on ant colony optimization (ACO) and TLBO. The authors studied comfort in terms
of thermal and lighting preferences, though they did not consider the user’s perception
of comfort.

2.2. Comfort Analysis Strategy

Based on the above, residential comfort can be classified into three categories: (a)
Conceptual Comfort, which refers to the wellbeing of the user and the perception of less
effort. An example is communication and automatic configuration between internet of
things (IoT) devices in a SH that does not require specific knowledge of the user, as in [27].
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This type of convenience, by its nature, does not include quantitative metrics. (b) Individual
Comfort, which refers to the individual measurement of variables associated with user
comfort, that is, temperature, humidity, lighting, noise, and CO2 levels, among others. Each
variable can be analyzed under a specific metric, as in [31,33]. (c) Global Comfort, which
refers to a numerical index representing the sum of the individual values associated with
each residential load enabled according to user preferences, as in [5,6,25]. In this category,
each residential load (xi) is assigned a value representing its relevance level (wi), which can
be expressed as the sum of the products xi × wi.

Therefore, in the above research, it can be seen that while SHC algorithms and current
strategies consider user preferences in comfort modeling, they do not consider user percep-
tions. The user’s comfort preferences have been considered when registering household
loads in the SHC. On the other hand, the user’s comfort perception varies throughout
the day and has not been considered in SHC modeling in the aforementioned studies. It
is worth noting that the present work focuses on global comfort and aims at optimizing
residential comfort by incorporating user-perceived variables, as presented in Section 1.

3. Computer Algorithms

The strategy presented in this paper to minimize energy costs and maximize user com-
fort consists of a combination of fuzzy logic and PSO. Below, we present the mathematical
bases of PSO and fuzzy logic.

3.1. Principles of Fuzzy Sets and Logic

In classical (binary) logic, sets of elements are called crisp sets, in which it is defined
that an element x belongs to a set A and not to a set B, as there is a well-defined boundary
to decide whether or not element x belongs to a set, expressed in the following form: x ∈ A
and x /∈ B. In fuzzy logic, sets of elements are called fuzzy sets, in which an element x has
degrees of membership in set A and in set B, as the above boundary decision is not present.
The degree of membership of an element x in a set A is expressed by µA(x), which takes
continuous values in the closed interval [0,1]. Thus, an element x can be described by its
degrees of membership in the sets A and B, which can be expressed, for example, in the
form µA(x) = 0.4 and µB(x) = 0.6.

Furthermore, a linguistic variable is defined as a variable with values that are fuzzy set
names (U), as in: U = {“cold”, “warm”, “very warm”}. Such variables refer to the diffuse
human perception of measurable quantities, and may contain sets of logical connectives
(negation: no, connectives: and/or), modifiers (much, little), and delimiters (such as
parentheses). Otherwise, a function that establishes a relationship between crisp values
and linguistic variables is defined as a membership function (uA(x)) in fuzzy logic. This
function expresses a priori knowledge about the behavior of the analyzed variable, and
can be modeled by a profile: triangular, trapezoidal, Gaussian, generalized bell, sigmoidal,
and others.

That said, mapping an input with a precise value (not fuzzy through membership
functions (uA(x)) is called the fuzzy step of a fuzzy inference system. This step processes
rules in the linguistic variables to derive the output values, for which it uses the Mamdani
or Takagi–Sugeno method. The first method returns a fuzzy set, while the second method
returns a real number. The last step of a fuzzy inference system is called defuzzification, and
can use one of several well-known methods for it: centroid, first-of-maximum, maximum
criterion, angle bisector, and others.

3.1.1. Formalization

Formally, a fuzzy set A in X is expressed as a set of ordered pairs, as shown in
Equation (1):

A = {x, uA(x) with x ∈ X} (1)
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where uA(x) is the membership function of element x in the set A, which can be represented
as in Equation (2) (triangular format), Equation (3) (trapezoidal format), Equation (4)
(Gaussian format), and Equation (5) (generalized bell format):

trim f (x; a, b, c) = max
(

min
(

x− a
b− a

,
c− x
c− b

)
, 0
)

(2)

trapm f (x; a, b, c, d) = max
(

min
(

x− a
b− a

, 1,
d− x
d− c

)
, 0
)

(3)

gaussm f (x; a, b, c) = e−
1
2

(
x−c

σ

)2

(4)

gbellm f (x; a, b, c) =
1

1 +
∣∣ x−c

b

∣∣2b (5)

where: a, b, c, d represent the limits of functions on the Cartesian axis.

3.1.2. Application

Fuzzy inference systems are commonly used in many areas, for example, in the
development of control systems for air conditioners, washing machines and vehicles. In the
context of this paper, Figure 1 illustrates human perception of temperature in a residential
environment. The fuzzy degrees of membership in the “cold” and “warm” groups are
represented by the hatching in the Gaussian lines in the center of the figure.

Note that the values corresponding to a temperature of ≈ 30 ◦C (a value of crisp on
the ordinate axis) have a membership degree of µmild(temp) ≈ 0.26, µhot(temp) ≈ 0.49, and
µvery_hot(temp) ≈ 0.15 on the vertical axis (‘membership degree’).

Figure 1. Perceived temperature.

Direct application of fuzzy logic (FL) and a link to the implemented source codes
are provided for those involved in related research. In addition, modeling and control
of systems with fuzzy logic are available in [35,36], and introductory concepts and a
methodology for applying fuzzy logic in the context of DSM are presented in [37–39].

3.2. Principles of Particle Swarm Optimization (PSO)

PSO is a stochastic population optimization method based on the collective behavior of
animals, such as schooling or flocking [40]. The algorithm attempts to find the best solution
using a population of particles, and is based on the concept of collective cooperation.

3.2.1. Formalization

In the PSO algorithm, a particle i is defined by the vectors of position (~xi), velocity (~vi),
and best individual position ( ~pbest). A vector with the best global position of the swarm
( ~gbest) is the result of the individual positions of n particles in this cluster. The elements of
the algorithm are:
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A The population of particles
~xi The position vector of particle i in the solution space
f The evaluation function (fitness)
~vi The velocity vector of particle i
~pbesti The vector of the best individual position of particle i, corresponding to the position

in the search space where particle i has the best value of the evaluation function f .
~gbesti The vector of the best global position of the particle, corresponding to the position

that provides the best value among all pbesti.

3.2.2. Updating Individual and Global Best Positions

Equations (6) and (7) specify how pbesti and gbesti are updated with time t. The
swarm is said to have n particles in a minimization problem of a function f such that:

~pbesti(t + 1) =

{
~pbesti(t) if f ( ~pbesti(t)) ≤ f (~xi(t + 1))

~xi(t + 1) if f ( ~pbesti(t)) > f (~xi(t + 1))
, (6)

~gbesti(t + 1) = min{ f ( ~pbest), f ( ~gbest)}, (7)

where ~pbest ∈ { ~pbest0, ~pbest1, · · · , ~pbestn}.

3.2.3. Updating the Velocity and Position of a Particle

In addition, the velocity (~v) for a particle i is defined by the inertia parameter, the
cognitive parameter, and the social parameter. The first (inertia parameter) is the previous
velocity of the swarm, which causes the particle to continue to move in the same direction as
it already is. The second (cognitive parameter) expresses the particle’s individual experience
of where the solution lies, and influences the particle to move to a better position than its
current one. The third parameter (social parameter) represents the experience of the swarm,
and influences the particle to follow in the direction of its best neighbors. Equations (8) and
(9) respectively describe how the velocity and position of the ith particle are updated:

~vi(t + 1) = w~vi(t) + c1r1( ~pbesti − ~xi) + c2r2( ~gbesti − ~xi) (8)

~xi(t + 1) = ~xi(t) + ~vi(t + 1) (9)

where c1 and c2 are positive constants representing the cognitive and social parameters,
respectively, the variables r1 and r2 are random numbers ∈ [0, 1], and w is the inertia weight.

3.2.4. Application

General aspects regarding the development of the PSO algorithm, along with dis-
cussion of the constraint factors, inertia weights, dynamic tracking systems, adaptive
parameter adjustments, and more, are available in [41,42]. In addition, [16,43–45] provide
examples of the use of PSO and fuzzy strategies in other applications.

4. Proposed Method: Holistic Architecture

Figure 2 summarizes the results shown up to this point, and shows the user interaction
of the SHC model.

Note the first decision block of the flowchart; after loading the user’s preference and
perception values, PSO can achieve a tradeoff between savings and comfort using the
comfort conventional concept according to user preferences or the new comfort concept
according to user perception.
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Figure 2. Flowchart of the combined PSO and fuzzy algorithm.

Note the first decision block of the flowchart; after loading the user’s preference and
perception values, PSO can achieve a tradeoff between savings and comfort using the
comfort conventional concept according to user preferences or the new comfort concept
according to user perception.

4.1. SHC Structure Diagram

Figure 3 provides an overview of the model proposed in this paper.
The SHC receives information about utility billing (T), residential loads (Lm), resi-

dential load activation preferences (Lmbest ), and comfort level (CLm ). The residential loads
considered here (Lm) include: (a) schedulable loads that can be directly activated by smart
outlets at a specified time interval, such as air conditioners, heaters, and pool filter pumps,
among others; and (b) non-schedulable loads that cannot be directly controlled, such as
multimedia equipment, microwave ovens, toasters, vacuum cleaners, etc. The PSO algo-
rithm is used for multi-objective optimization of schedulable loads. For this purpose, the
data comprising the residential loads, consumption profile ( f1), and residential comfort
profile ( f2) are modeled, leading to an appreciation of consumption (a), savings (b), and
comfort (c) by a day-ahead load schedule (d) considering both asynchronous operation and
synchronous operation throughout the same day.

Figure 2. Flowchart of the combined PSO and fuzzy algorithm.

4.1. SHC Structure Diagram

Figure 3 provides an overview of the model proposed in this paper.
The SHC receives information about utility billing (T), residential loads (Lm), resi-

dential load activation preferences (Lmbest ), and comfort level (CLm ). The residential loads
considered here (Lm) include: (a) schedulable loads that can be directly activated by smart
outlets at a specified time interval, such as air conditioners, heaters, and pool filter pumps,
among others; and (b) non-schedulable loads that cannot be directly controlled, such as
multimedia equipment, microwave ovens, toasters, vacuum cleaners, etc. The PSO algo-
rithm is used for multi-objective optimization of schedulable loads. For this purpose, the
data comprising the residential loads, consumption profile ( f1), and residential comfort
profile ( f2) are modeled, leading to an appreciation of consumption (a), savings (b), and
comfort (c) by a day-ahead load schedule (d) considering both asynchronous operation and
synchronous operation throughout the same day.
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X Load data
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Figure 3. Proposed SHC model.

4.2. Mathematical Modeling

The mathematical model of the SHC is represented as a discrete-time system operating
at a sampling rate Ts that allows the management of controllable and non-controllable
loads according to the residential consumption profile. In the proposed approach, the cost
function ( f1) and the comfort function ( f2) define the financial savings and the comfort
relevance level, respectively, according to Figure 3. Table 2 defines the variables used in
the modeling.

Table 2. List of symbols.

Id Description

m Total amount of schedulable loads
N Total amount of samples
P̄m Average power vector of m-th load
P̂m Maximum power vector of m-th load
Nm Duration of the m-th load at sampling
ISm Sample associated with the minimum starting time of the m-th load
IEm Sample associated with the maximum end time of the m-th load
IBm Sample associated with the best starting time of the m-th load
ICm Scheduled start time of the m-th load.
CLm Comfort relevance level of m-th load
Pk Peak limit at k-th time instant
C Vector referring to the cost of electrical energy during the period.
Ts Consumption sampling rate expressed in minutes
τ Perception of ambient temperature by the user.
υ Perception of relative humidity by the user
ω Comfort relevance level of m-th load with user’s perception of τ, υ

4.2.1. Cost Model—f1

This paper uses the mathematical definitions of residential load at the grid level, as
presented in [3]. The mathematical model of residential loads corresponds to Equation (10),
considering the following premises: m schedulable loads, N daily samples, and a sampling
rate Ts, as well as the notation described in Table 2, as follows:

fFcost =
M

∑
m=1

ICm+Nm

∑
k=ICm

(P̄m[k]
Ts

60
C[k]) (10)
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subject to the following constraints:

ISm ≤ ICm ≤ IEm (11)

N

∑
k=1

(
M

∑
m=1

P̄m[k]) ≤ Pk (12)

The constraints in Equation (11) state that the schedule for activation of the m-th load
must be within the minimum and maximum flexibility intervals defined by the user, while
the loads must not exceed the threshold demand at the k-th time of activation according to
the constraints of Equation (12).

The cost function ( f1) defines the economic savings due to SHC. The first and second
terms in Equation (13) correspond to the costs resulting from the user preference profile
and the SHC scheduling, respectively:

f1 =
M

∑
m=1

( IBm+Nm

∑
i=IBm

(P̄m[i]
Ts

60
C[i])−

ICm+Nm

∑
i=ICm

(P̄m[i]
Ts

60
C[i])

)
(13)

where f1 ≥ 0, meaning that the schedule proposed by the SHC is accepted by the algorithm
as a valid solution for the user.

4.2.2. Comfort Model—f2

The comfort model proposed in [5] considers the comfort relevance level of a load m
as a fixed value and defines user preferences. It takes into account the user’s perception of
comfort, for example, in terms of temperature and humidity. Such parameters may change
the relevance that the user assigns to a given load m when registering it through the SHC.
Considering the above, the second objective function ( f2) defines the relevance of comfort
(CLm) using fuzzy logic.

For this purpose, the user should register the residential loads that can be scheduled
in SHC, as well as the comfort relevance values (0 ≤ CLm ≤ 1) and the load onset times
in terms of minimum (ISm), maximum (IEm), and preferred (IBm) values. The CLm value of
each load is updated using fuzzy logic taking into account the user’s perception of comfort.

Equation (14) represents the comfort function. The first term corresponds to the
activation window of a load m with respect to the user’s preferences; thus, this value
is used as a reference for calculating the comfort. The second term defines the distance
between the time instant (ICm) selected by SHC and the time preferred by the user (IBm),
which is weighted by the comfort relevance of the m-th load.

f2 =

[
max(|ISm − IBm|, |IEm − IBm|)

]
− CLm|ICm − IBm| (14)

For a given load m with a comfort relevance of CLm = 1, this parameter takes the
maximum value when the SHC’s scheduled time converges with the user’s preferred time
(ICm ≈ IBm). Otherwise, if ICm ≈ ISm (or ICm ≈ IEm at the other end of the load activation
window), the comfort is minimal, as the operation cycle starts at the time farthest from the
one the user has specified as their preferred time.

4.2.3. Fuzzification of Comfort Relevance Level

Figure 4 represents the fuzzification process of the comfort relevance level (CLm)
considering user perception.

The values denoting the user’s perception of temperature and humidity are the inputs
of the fuzzy system by means of the linguistic variables τ and υ, respectively. The fuzzy
system uses rules to calculate a new relevance value (ω) for a load m, then updates the
value of CLm from Equation (14).
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Fuzzy comfort
Fuzzy control

Perceived temperature
τ

Perceived humidity
υ

ω

Figure 4. Fuzzification of the comfort relevance level.

The values of τ and υ can be loaded automatically or passed to the SHC by the
user. In the first case, the proposed algorithm accesses the weather data available at
https://pt.weatherspark.com/ and https://tempo.inmet.gov.br/TabelaEstacoes/82397,
accessed on 15 February 2023, to load the temperature and humidity values associated
with τ and υ, respectively. In the second case, SHC interacts with the user through voice
commands to collect information about the user’s temperature and humidity perceptions,
then assigns values to the respective variables. The user’s perceptions are fuzzy variables
that can be handled with the linguistic variables defined in Table 3. When the user starts
interacting with the SHC, a timer is activated to ensure that the first mode of operation is
loaded in the event that the process is not completed because the user gives up or times out.
The comfort relevance stage update phase (ω) is the first stage to be executed by the SHC
algorithm. The update from CLm to ω is performed according to the criterion defined by
Equation (15), meaning that only the registered loads with priorities close to the maximum
relevance value (CLm = 1.0) are activated.

CLm = ω, ∀ CLm0 ≥ 0.5 (15)

where CLm0 is the initial value of the relevance comfort level of the m-th load registered by
the user and ω is the value of the relevance comfort level comprising the fuzzy sets of the
user’s perception.

4.3. Comfort Fuzzification Model

The values of CLm obtained from Equation (14) are updated considering fuzzy sets for
the perception of thermal comfort (τ) and humidity (υ), the linguistic variables of which
are defined by the corresponding notation and normalized range shown in Table 3.

Table 3. Linguistic variables, terms, and fuzzy domain.

Thermal Perception (τ)

Linguistic Value Notation Domain
Very cold t1 [0.00–0.45]

Cold t2 [0.23–0.68]
Mild t3 [0.40–0.85]
Hot t4 [0.58–1.00]

Very hot t5 [0.65–1.00]

Humidity Perception (υ)

Linguistic Value Notation Domain
Low u1 [0.35–0.50]

Medium u2 [0.40–0.70]
High u3 [0.60–0.75]

Comfort Relevance Level (ω)

Linguistic Value Notation Domain
Low c1 [0.0– 0.4]

Medium c2 [0.2–0.8]
High c3 [0.6–1.0]

The linguistic variables of the fuzzy sets were quantitatively distributed using the
intuitive method to investigate different combinations between them while considering

https://pt.weatherspark.com/
https://tempo.inmet.gov.br/TabelaEstacoes/82397
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the following definitions: τ = {t1, t2, t3, t4, t5}, υ = {υ1, υ2, υ3}. The ranges of linguistic
variables for each fuzzy set (τ, υ, ω) were determined using Gaussian, trapezoidal, and tri-
angular membership functions such that the thresholds converge with those defined by the
corresponding standards of the Brazilian Association of Technical Standards (ABNT) (NBR
16401-2/2008) and the American Society of Heating, Refrigerating, and Air Conditioning
Engineers (ASHRAE) [46]. The adjustment of the membership functions and the choice of
generators for each membership function were accomplished by considering successive
simulations using the exhaustive search method for each function and domain.

The fuzzy rules were created both by directly combining the two input variables
and combinations between them. Thus, comfort relevance, that is, the output variable ω,
always takes into account the influence of the input variables. Next, we incorporate the
following rules.

1. If τ ≤ t2 and ∀υ, or if τ = t3 and υ = u3, then ω = c1
2. If t3 ≤ τ ≤ t4 and u1 ≤ υ ≤ u2, then ω = c2
3. If τ = t5 and ∀υ, or if τ = t4 and υ = u3, then ω = c3

It can be observed that the output of the “low” (c1) comfort level (ω) in (1) is when
the user considers the ambient temperature as “cold” or “very cold” (τ ≤ t2 ), regardless
of the perceived humidity (ε). In this way, the rule establishes a relationship between
user-perceived temperature and humidity, meaning that it provides the SHC with the
flexibility to schedule loads by reducing them (ω). The remaining rules follow the same
reasoning for creating the inference system.

Figure 5 shows a surface map based on the relationship between user perception and
the comfort adjustments made in the SHC.

Figure 5. Fuzzy control surface as a function of user perception.

The user’s comfort level is determined by defuzzification of the temperature and
humidity variables perceived by the user. Following the fuzzification rules presented
in this section, the surface map in Figure 5 is obtained. It is worth noting that the axes
represent temperature, humidity, and comfort. In addition, user perception allows the
comfort level to be adjusted even in fuzzy modeling, providing the SHC with the flexibility
to reduce energy consumption in residential energy usage contexts.
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Figure 6 shows the behavior of the fuzzy set representing the temperature. The domain
corresponds to the range between 0 and 40 ◦C, while the membership function is between
0.0 and 1.0.

Figure 6. Perceived temperature.

The fuzzy input ‘very cold’ is modeled by a trapezoidal function starting at 0 ◦C and
decreasing from 10 to 18 ◦C. The fuzzy input ‘cold’ is modeled by a Gaussian function
centered at 18 ◦C with a deviation of 3 ◦C. The fuzzy input ‘mild’ is modeled by a Gaussian
function centered at 25 ◦C and deviating by 3 ◦C. The fuzzy input ‘hot’ is modeled by
a Gaussian function centered at 35 ◦C and differing by 4 ◦C. The fuzzy input ‘very hot’
is modeled by a Gaussian function centered at 38 ◦C and differing by 4 ◦C. The shaded
areas represent the sets of membership corresponding to the crisp input of 38 ◦C. This
input is represented by the vertical bar on the abscissa axis, for which the projection on the
ordinate axis represents its membership in the sets that contain it, that is, µhot(τ) ≈ 0.75
and µveryhot(τ) ≈ 1.0.

Figure 7 shows the behavior of the fuzzy set named ‘humidity’. The domain corre-
sponds to the range between 0 and 100% of the relative humidity (RH), while the amplitude
includes the membership values between 0 and 1.

Figure 7. Perceived humidity.

The ‘low’ input is modeled by a trapezoidal function that starts at 0 and decreases
between 40 and 50% RH. The ‘medium’ input is modeled by a triangular function centered
at 55% RH and bounded between 40 and 70% RH. The ‘high’ input is modeled by a
trapezoidal function that starts at 60, increases to 70% RH, and remains constant at 75% RH.
The shaded area represents the membership set defining the crisp input of 60% RH. This
input corresponds to the vertical bar on the abscissa axis, and its projection on the ordinate
axis represents the membership of the sets containing it, that is, µmedium(υ) ≈ 0.65.

Figure 8 displays the behavior of the fuzzy set called ‘comfort’. Both the domains and
the amplitude range between 0.0 and 1.0.
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Figure 8. Comfort level.

The ‘low’ input is modeled by a trapezoidal function that starts at 0 and decreases
between 0.2 and 0.4. The ’medium’ input is modeled by a trapezoidal function that
starts at 0.2, increases to 0.4, remains constant at 0.6, and decreases to 0.8. The ‘high’
input is modeled by a trapezoidal function that starts at 0.6, increases to 0.8, and remains
constant at 1.0. Unlike the previous graphs, the shaded area represents the membership
sets corresponding to the crisp output of 0.83. This value is represented by the vertical bar
on the abscissa axis, and its projection on the ordinate axis represents the membership of
the sets containing it, that is, µcom f ort(ω) = 1.0.

The proposed fuzzy modeling relies on an object-oriented programming (OOP) ap-
proach. The source code was written in the Python® language using the Scikit-Fuzzy,
numpy, and random modules. The developed classes and methods are appropriately
commented in the code for proper understanding of the programming logic, which in-
cludes a simulation field for new values of the fuzzy variables. The source code is available
at https://raw.githubusercontent.com/jonathacosta/SmartGrid/main/SCC-SHC/Codes/
ModConfFz.py, accessed on 15 February 2023.

The following definitions identify each of the scenarios assessed in the simulations
described in Section 5:

• fz-comf: employs fuzzy variables to assign a new value to the comfort relevance level
according to Equation (15)—user’s perceptions.

• nfz-comf: a fixed value for the comfort relevance level is used, which is specified by
the user when registering the loads in the SHC—user’s preferences.

• PSO & nfz-comf: the algorithm proposed in [6], which relies on PSO and the comfort
function proposed in [5], which uses nfz-comf.

• PSO & fz-comf: the algorithm introduced in this paper, combining PSO and the
comfort function proposed.

• PSO & nfz-tag-comf: the algorithm proposed in [6], which relies on PSO and the
comfort function proposed in [25], which uses nfz-comf.

• PSO & fz-tag-comf: the algorithm presented in this paper combining PSO and the
comfort function proposed in [25], with the addition of fuzzy comfort (fz-comf).

4.4. Multi-Objective SHC Function

The evaluation function of the solutions obtained with the SHC consists of the func-
tions f1 and f2. The first defines the resulting financial savings, while the second represents
the user’s comfort level. Equation (16) represents a total cost function F that consolidates
f1 and f2, corresponding respectively to Equations (13) and (14).

https://raw.githubusercontent.com/jonathacosta/SmartGrid/main/SCC-SHC/Codes/ModConfFz.py
https://raw.githubusercontent.com/jonathacosta/SmartGrid/main/SCC-SHC/Codes/ModConfFz.py
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F = α · f 1 + (α− 1) · f 2 (16)

where α ∈ [0, 1]. The values adopted for α are directly related to the relationship between
consumption and user comfort. Comfort is maximal for the maximum threshold α = 0.0,
resulting in minimal or no savings. Conversely, comfort is minimal for α = 1.0, while
savings are maximal.

The pseudocode of SHC which applies the proposed comfort function is shown in
Algorithm 1.

Algorithm 1: Pseudocode of SHC based on fuzzy logic
Input : Loads, Tariff(T), Population(P), Iterations(It), c1, c2
Output : gBest

1 begin
2 for i = 1 to (Loads) do
3 if Clm > 0.5 then
4 Clm ← ω;
5 pop← iniPop(Loads)
6 fitness← calcFitness()
7 Determine pbest and gbest
8 k← 0
9 output← 0 /*Convergence*/

10 while k <= It & output = 0 do
11 w = diw_InertialTechnique()
12 for i = 1 to P do
13 if f itnessi > gBest then
14 gbest← popi ;
15 last← k;
16 if f itnessi > pBest then
17 pbest← popi ;
18 r1, r2← rand()
19 Update popi ·V and popi · X
20 f itness← calcFitness()
21 if (k− last) > (0.1× It) then
22 if k <= (0.2× It) then
23 /* Restart P keeping the current gbest as the worst solution */

pop← iniPop(Loads);
24 f itness← calcFitness();
25 p← argmin( f itness);
26 popp ← gbest
27 else
28 output← 1 /*Convergence*/
29 k← k + 1

To ensure performance, note that the convergence criterion is 20% of the maximum
iterations, with the population restarted if no improvement in the solution is achieved after
10% of the iterations.

5. Results
5.1. Simulation Scenarios and Analysis Criteria

The characteristics common to all simulation scenarios are: (a) sampling rate (Ts)
5.0 min; (b) daily demand threshold 4.0 kW, represented by an inverted Gaussian centered
at 18:30 h with an amplitude of 1.0 kW to simulate a decrease in the demand threshold;
(c) the ToU tariffs; and (d) the household loads described in Table 4 and detailed in [5].
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Table 4. Reference loads in an actual residence.

ID Load Cycles ∆t (min) P̄ [kw] P̂ [kw] Best Min Max CLm
Time Time Time

1 Booster pump 1 20 2 3 8 h or 16 h 7 h 17 h 0.1
2 Pool pump 1 120 0.75 1.2 8 h 7 h 17 h 0.1

3 Washing machine 8 10,10, 4, 6, 2, 2,
2, 7

0.13, 0.50, 0.30,
0.26, 0.15, 0.15,

0.15, 0.22

0.70, 0.50, 0.30,
0.26, 0.15, 0.15,

0.15, 0.30
8 h 7 h 17 h 0.5

4 External lighting 1 270 0.3 0.3 18 h 17 h 24 h 0.3
5 Internal lighting 1 270 0.15 0.3 18 h 17 h 23 h 0.7

6 Air conditioning 1 14 [10, 5, 5, . . . , 5,
5] [1.3, . . . , 1.3] [1.7, 1.3, . . . ,

1.3] 16 h or 20 h 15 h 24 h 1.0

7 Air conditioning 2 7 [30, 20, 5, . . . ,
5, 5] [2, . . . , 2] [2.1, . . . , 2.1] 20 h 17 h 24 h 1.0

8 Air conditioning 3 1 240 1.1 1.2 20 h 17 h 24 h 1.0

9 Air conditioning 4 7 [10, 10, 5, . . . ,
5] [0.9, . . . , 0.9] [1.1, . . . , 1.1] 20 h 17 h 24 h 1.0

10 Dis hwashing mac
hine 5 5, 10, 15, 5, 10 0.03, 1.76, 0.03,

1.76, 0.03
0.03, 1.76, 0.03,

1.76, 0.03 21 h 18 h 22 h 0.3

5.1.1. Simulation Parameters

Reference loads are identified by the operating cycle, time per cycle (∆t) in minutes,
average power (P̄) in kW, maximum power (P̂) in kW, best start time, minimum time,
maximum time, and comfort relevance level (CLm). In addition, certain loads have two
values for the best start time. Our simulations were performed with the same parameters
presented in [6] to allow for a more fair comparison, considering the following aspects:
(a) swarm size of ten particles, with each particle representing one possible solution of the
algorithm, i.e., the total number of loads; (b) the weight change technique (w) and inertial
weight (DIW); (c) the cognitive and social parameters (c1 = 2 and c2 = 2, respectively); (d) a
maximum number of iterations of 10,000. Each solution in each scenario was executed
30 times.

5.1.2. Analysis Criteria

Each solution was evaluated based on the results of the simulated scenarios. The
same simulation parameters were used for each scenario, with a single variable being
changed each time to allow for fair comparison of the results. For this purpose, the fitness
function, financial savings, relative comfort, expected consumption, total consumption of
household loads, execution time, and standard deviation were analyzed for each solution.
The scenarios were evaluated against the above metrics using load scheduling diagrams
and exploratory data analysis according to the model developed by the authors. The cor-
responding source code is available at https://raw.githubusercontent.com/jonathacosta/
SmartGrid/main/SCC-SHC/Codes/ModEDA.py, accessed on 15 February 2023.

5.2. Analysis of Comfort Relevance Level

From Table 4, it is apparent that air conditioners have a relevant comfort level of
(CLm) 1.0. This means that the SHC must prioritize the activation of these loads at the time
chosen by the user in order to satisfy the user’s comfort preferences. However, the user’s
comfort perception may vary over the course of days due to both climatic and psychological
aspects. This means that the previously established comfort preferences may not match the
individual’s actual comfort perception at a given time. For example, the relevance of air
conditioning must be adjusted to the user’s comfort perception. Table 5 shows the variation
in the relevance of user comfort level (CLm) for an air conditioner along with the fuzzy
variables involved.

https://raw.githubusercontent.com/jonathacosta/SmartGrid/main/SCC-SHC/Codes/ModEDA.py
https://raw.githubusercontent.com/jonathacosta/SmartGrid/main/SCC-SHC/Codes/ModEDA.py
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Table 5. Updating the load relevance from fuzzy inputs.

Id Load CLm τ υ ω Gain

1 Air cond. 1.0 15 ◦C 40% 0.1639 X
2 Air cond. 1.0 25 ◦C 45% 0.4788 X
3 Air cond. 1.0 38 ◦C 60% 0.8443 X

It can be observed that the temperature (τ) and humidity (υ) perceptions were chosen
under extreme conditions of the domain ranges. In addition, all loads are scheduled to
ensure comfort. However, because CLm is assigned with the value of ω, the load scheduling
algorithm has the flexibility to shift loads to times close to peak hours, maximizing user
comfort while simultaneously allowing for improvement of the cost–comfort ratio.

5.3. Analysis of Residential Scenarios

The simulations in this scenario consider the most critical tariff costs published by a
regulatory agency in northeastern Brazil, namely, USD 0.3047 for green flag tariffs, USD
0.3073 for yellow flag tariffs, and USD 0.3230 for red flag tariffs [47].

It is useful to note that the use of the white tariff (ToU) allows an additional adjustment
of the cost–comfort ratio by α according to Equation (16). This parameter was used in this
simulation as [0.25, 0.50, 0.75] to highlight different SHC configuration conditions between
two houses with the same loads and the same fuzzy parameters. With the parameter
α = 0.25, according to Equation (16), the user sets SHC to 0.25 for cost savings and 0.75 for
comfort. Therefore, the user configures the system to prioritize user comfort over savings in
load scheduling. The reverse is true for α = 0.75, and for α = 0.5 there is an even threshold.

5.3.1. ToU Scenario com α = 0.25

With the parameter α = 0.25, the user sets the SHC to 0.25 for cost savings and 0.75 for
comfort. This configures the system to favor comfort over cost savings when scheduling
loads. Table 6 shows the results of the simulations with the above parameters.

Table 6. Comparative results between different fuzzy and non-fuzzy comfort functions using the ToU
tariff and α = 0.25.

Comfort nfz-
comf fz-comf nfz-tag-

comf
fz-tag-
comf

ω ∀ 0.16 0.56 0.84 ∀ 0.16 0.56 0.84
f itmin 1.18 1.20 1.20 1.18 1.20 1.21 1.20 1.21
f itavg 1.22 1.23 1.22 1.22 1.23 1.24 1.23 1.23
f itmax 1.24 1.26 1.25 1.24 1.26 1.27 1.26 1.26

Deviation 0.015 0.016 0.015 0.018 0.016 0.015 0.017 0.013
kW/h 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
US$ 2.593 2.666 2.618 2.614 2.614 2.570 2.700 2.619

Com favg 84.13% 93.14% 88.07% 84.99% 92.70% 95.84% 95.28% 92.98%
tavg 4.17 3.28 3.36 2.86 3.11 3.10 2.89 2.99

Table 6 shows the values and compares two different comfort functions, the first
originally proposed by [5] and the second proposed by [25]. Note that the average user’s
comfort level is higher when the SHC uses the fz-comf comfort function instead of the
nfz-comf comfort function. Even when the ω parameter tends to 0.0, the user continues to
gain comfort. The same relationship is observed when the SHC sets fz-tag-comf instead of
nfz-tag-comf. In this scenario, it can be seen that the use of the proposed comfort function
provides further benefits, as it takes into account the user’s perception of comfort in load
scheduling instead only the user’s preferences.
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5.3.2. ToU Scenario com α = 0.50

Otherwise, using the parameter α = 0.50, the user sets the SHC to 0.50 for cost
savings and 0.50 for comfort. In this way, the system can be configured to balance cost
savings and comfort in load scheduling. Table 7 shows the result of the simulations for the
above parameters.

Table 7. Comparative results between different fuzzy and non-fuzzy comfort functions using the ToU
tariff and α = 0.50.

Comfort nfz-
comf fz-comf nfz-tag-

comf
fz-tag-
comf

ω ∀ 0.16 0.56 0.84 ∀ 0.16 0.56 0.84
f itmin 1.14 1.15 1.13 1.12 1.13 1.15 1.16 1.16
f itavg 1.19 1.21 1.19 1.19 1.12 1.21 1.21 1.22
f itmax 1.24 1.26 1.24 1.25 1.26 1.25 1.25 1.26

Deviation 0.027 0.029 0.030 0.030 0.035 0.028 0.027 0.026
kW/h 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
US$ 2.593 2.581 2.610 2.619 2.619 2.575 2.583 2.510

Com favg 82.43% 93.06% 88.43% 84.19% 91.25% 95.17% 93.13% 92.89%
tavg 2.78 2.68 2.84 2.44 2.51 2.82 2.59 2.47

It can be observed that the use of the proposed comfort function in this scenario is
more beneficial when the SHC operates with the fz-tag-comf function, as it takes into
account the user’s comfort perception, increases the average comfort, and reduces the load
scheduling cost.

5.3.3. ToU Scenario com α = 0.75

Otherwise, with the parameter α = 0.75, the user sets the SHC to 0.75 for cost savings
and 0.25 for comfort. This configures the system to prioritize cost savings over comfort
when scheduling loads. Table 8 shows the results of the simulations with the above parameters.

Table 8. Comparative results between different fuzzy and non-fuzzy comfort functions using the ToU
tariff and α = 0.75.

Comfort nfz-
comf fz-comf nfz-tag-

comf
fz-tag-
comf

ω ∀ 0.16 0.56 0.84 ∀ 0.16 0.56 0.84
f itmin 1.07 1.05 1.08 1.07 1.05 1.07 1.08 1.11
f itavg 1.17 1.16 1.17 1.17 1.18 1.18 1.17 1.17
f itmax 1.25 1.26 1.26 1.24 1.24 1.25 1.25 1.24

Deviation 0.047 0.049 0.049 0.045 0.043 0.047 0.039 0.039
kW/h 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
US$ 2.589 2.628 2.580 2.587 2.572 2.580 2.595 2.585

Com favg 81.80% 92.70% 87.88% 84.47% 92.39% 95.40% 93.27% 92.07%
tavg 2.86 2.56 2.52 2.59 2.85 2.78 2.97 2.67

Thus, in this scenario where cost savings are the main concern, it is advantageous
for the SHC to use only the nfz-tag-comf comfort function, as it provides the greatest
savings at the highest comfort level. This means that the SHC does not take into account
the user’s perception of comfort, only their preferences as predefined in the load regis-
tration, guaranteeing an average comfort level while focusing on reducing the cost when
scheduling loads.

6. Discussion

Simulations were performed considering all possible combinations between ToU
energy tariffs, user preferences in terms of cost–comfort, user perception, and number of
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loads in a residence. The results confirm our initial hypothesis that the use of a comfort
function integrating the above variables allows user comfort to be maximized without
affecting cost.

In addition, improved performance leads to more flexible load scheduling, which
allows shifting loads to times closer to user preferences. Figure 9a,b shows the load
scheduling graphs for scenarios with and without fuzzy comfort considering the tariff ToU,
α = 0.25, and 10 loads. The range in the graphs between 17:00 (5 PM) and 22:00 (10 PM)
corresponds to the highest tariff costs. Therefore, SHC should reduce energy consumption
during critical periods and/or shift loads to off-peak hours.

(a) ToU with nfz-comf

(b) ToU with fz-comf

Figure 9. Load scheduling performed by the SHC using the ToU tariff and α = 0.25.

The red area in Figure 9a,b represents an air conditioner (‘F2 AC’) that should be put
into operation at 17:00 (see Figure 9a). The application of fuzzy comfort (fz-comf) allows
the load to be shifted to near 20:00, where 20:00 is the user’s preferred time according to
Table 4 (Id 7), maximizing thermal comfort. This process occurs at the algorithm level; a
comfort relevance level mitigation factor is calculated from Equation (15) to increase the
comfort function f2 in Equation (14), and consequently the fitness evaluation function of
each PSO solution according to Equation (16).
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In general, in keeping with the initial hypothesis, the integration of user perception
variables (humidity and temperature) results in an SHC model with fuzzy comfort than
can lead to significant gains in the evaluated scenarios.

Overview and Other Possible Scenarios

Figure 10a,b provides an overview of the tradeoff between comfort and cost for the fea-
tures originally proposed in [5,25]. Figure 10a shows the user’s comfort gain when the SHC
is operated with different comfort functions, while Figure 10b shows the corresponding
cost, optimizing the cost–comfort threshold defined for the SHC in each scenario. Thus, it
is fair to say that the use of the proposed comfort function allows the SHC to maximize the
user’s comfort while including their perception of temperature and humidity and reducing
the cost of load scheduling.

(a) Comfort range with fuzzy and non-fuzzy comfort functions

(b) Cost range with fuzzy and non-fuzzy comfort functions

Figure 10. Comfort functions.

Graphs showing the remaining combinations of α with and without considering the
user’s comfort perceptions are available on GitHub® at https://github.com/jonathacosta/
SmartGrid/tree/main/SCC-SHC/Results/Figures, accessed on 15 February 2023.

7. Conclusions

In previous studies, SHCs have been proposed that interact with users’ comfort
preferences; however, the dynamics of users’ comfort perceptions have not been studied
before. In this context, the present work addresses the problem of modeling user perception
of home comfort. Our main objective was to mathematically model the dynamics of user
perception of home comfort using fuzzy logic. Based on this model, we analyzed the
proposed functions for the housing cost–comfort ratio and compared them with other
comfort functions under the same conditions.

The results show that it is more beneficial to use our proposed fz-comfort comfort
function in cases when the user asks the SHC to prioritize comfort over financial savings.
In other cases, it is more beneficial to use a comfort function that only considers the user’s
comfort preferences, i.e., tag-comfort, and not the user’s perceptions. This study makes
an initial contribution to modeling users’ comfort perceptions relative to their comfort
preferences. A limitation of this study is the context of home comfort, which for the
purposes of this study is associated with a single user interacting with the SHC. As a
suggestion for future research, there remains a need to analyze user perceptions in multi-
user scenarios, such as condominiums or houses, where a single SHC is operated by
multiple users.

https://github.com/jonathacosta/SmartGrid/tree/main/SCC-SHC/Results/Figures
https://github.com/jonathacosta/SmartGrid/tree/main/SCC-SHC/Results/Figures
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Abbreviations
The following abbreviations are used in this manuscript:

DAP day-ahead price
CPP critical peak pricing
RTP real-time price
FP flat price
CT conventional tariff
DG distributed generation
LSSW load schedule sliding window
LP linear programming
ILP integer linear programming
MINLP mixed-integer nonlinear programming
MILP mixed-integer linear programming
BPSO binary particle swarm optimization
TLGO teacher learning genetic optimization
TLBO teacher learning-based optimization
GA genetic algorithm
PSO particle swarm optimization
FL fuzzy logic
SA simulated anneling
ACO ant colony optimization
MOGWO multi-objective grey wolf optimization
IoT internet of things
HIC home interactive interface
DR demand response
ToU time-of-use
SSM supply-side management
DSM demand-side management
SG smart grid
RH relative humidity
OOP object-oriented programming
SHC smart home controller
HVAC heating, ventilation, and air conditioning
ABNT Brazilian Association of Technical Standards
ASHRAE American Society of Heating, Refrigerating, and Air Conditioning Engineers
fz-comf fuzzy comfort
nfz-comf non-fuzzy comfort
ESS energy storage system
EV electric vehicle
PMV predicted mean vote
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