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Abstract: Graphs are data structures that effectively represent relational data in the real world. Graph
representation learning is a significant task since it could facilitate various downstream tasks, such as
node classification, link prediction, etc. Graph representation learning aims to map graph entities
to low-dimensional vectors while preserving graph structure and entity relationships. Over the
decades, many models have been proposed for graph representation learning. This paper aims to
show a comprehensive picture of graph representation learning models, including traditional and
state-of-the-art models on various graphs in different geometric spaces. First, we begin with five
types of graph embedding models: graph kernels, matrix factorization models, shallow models, deep-
learning models, and non-Euclidean models. In addition, we also discuss graph transformer models
and Gaussian embedding models. Second, we present practical applications of graph embedding
models, from constructing graphs for specific domains to applying models to solve tasks. Finally, we
discuss challenges for existing models and future research directions in detail. As a result, this paper
provides a structured overview of the diversity of graph embedding models.

Keywords: graph embedding; graph representation learning; graph transformer;
graph neural networks

1. Introduction

Graphs are a common language for representing complex relational data, including
social media, transportation system networks, and biological protein–protein networks [1,2].
Since most graph data are complex and high-dimensional, it is difficult for researchers
to extract valuable knowledge. Therefore, processing graph data and transforming them
into a form (fixed-dimensional vectors) is an important process that researchers can then
apply to different downstream tasks [3]. The objective of graph representation learning is
to obtain vector representations of graph entities (e.g., nodes, edges, subgraphs, etc.) to
facilitate various downstream tasks, such as node classification [4], link prediction [5,6],
community detection [7], etc. As a result, graph representation learning plays an important
role since it could significantly promote the performance of the downstream tasks.

Representation of the graph data, however, is challenging and different from image
and text data [8]. In textual data, words are linked together in a sentence, and they have
a fixed position in that sentence. In image data, pixels are arranged on an ordered grid
space and can be represented by a grid matrix. However, the nodes and edges in graphs are
non-ordered and have their features. This leads to mapping graph entities to latent space
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while preserving the graph structure, and proximity relationships are challenging. In the
case of a social network, a user can have many friends (neighbors) and various personal
information, such as hometown, education level, and hobbies, which makes preserving
the graph structure and properties significantly problematic. In addition, many real-world
networks show dynamic behaviors in which graph structures and node features could be
changed over time [9,10]. These could deliver challenges in capturing the graph structure
and mapping graph entities into vector space.

Over decades, various graph representation learning models have been proposed
to project graph entities into fixed-length vectors [11–13]. Graph embedding models are
mainly divided into five main groups: graph kernels, matrix factorization models, shallow
models, deep neural network models, and non-Euclidean models. Figure 1 presents the
popularity of different graph representation learning models from 2010 to 2022. The number
of graph representation learning studies increased considerably over the period of 12 years.
Furthermore, there was significant growth in the frequency of research studies on graph
neural networks, graph convolutional networks, and graph transformer models. In contrast,
the number of studies in graph kernels, graph autoencoder, and matrix factorization-based
models increased slightly over the period of 12 years. We obtained the frequency of
academic publications including each keyword from Scopus (https://www.scopus.com
(accessed on 16 April 2023)).
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Figure 1. The popularity of graph representation learning models in the Scopus database. The
line plot shows changes in the number of publications in different types of graph representation
learning models from 2010 to 2022. The y-axis denotes the number of publications on the popularity
of graph representation learning models over the years. There are seven keywords, including graph
representation learning (GRL), graph kernels (GK), matrix factorization-based graph embedding
(MF), graph neural networks (GNNs), graph autoencoder (GAE), graph convolution networks
(GCNs), graph transformer (GT), and non-Euclidean graph embedding (NEGE). There are nineteen
representative models, including DeepWalk [14], Grarep [15], LINE [16], GGCN [17], GCN [18],
HOPE [5], Node2Vec [4], GAT [19], Metapath2Vec [20], Struc2Vec [21], GraphSage [22], G2G [23],
GIN [24], HGAT [25], DGI [26], HGNN [27], GCNII [28], GT [29], and EGT [30].

https://www.scopus.com
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Historically, the first graph representation learning models were graph kernels. The
idea of graph kernel methods perhaps comes from the most essential and well-known
Weisfeiler–Lehman (WL) isomorphic testing in 1968 [31]. Graph kernels are kernel functions
that aim to measure the similarity between graphs and their entities [32]. The main idea
of graph kernels is to decompose original graphs into substructures and construct vector
embeddings based on the substructure features. There are two main types of graph kernels:
kernels for graphs and kernels on graphs. The former aims to measure the similarity
between pairs of graphs, while the latter estimates the similarity between graph nodes.
Several strategies to estimate the similarity of graph pairs have been proposed to represent
various graph structures, such as graphlet kernels, random walk, and the shortest path,
which started in the 2000s. Based on WL isomorphic testing, various graph kernels are
built to compute the similarity of pairs of graph entities, such as WL kernels [31], WL
subtree kernels [33–35], and random walks [36,37]. However, one of the limitations of
graph kernels is the computational complexity when working with large-scale graphs since
computing graph kernels is an NP-hard class.

Early models for graph representation learning primarily focused on matrix factoriza-
tion methods, which are motivated by traditional techniques for dimensionality reduction
in 2002 [38]. Several matrix factorization-based models have been proposed to handle large
graphs with millions of nodes [39,40]. The objective of matrix factorization models is to
decompose the proximity matrix into a product of small-sized matrices and then learn
the embeddings that fit the proximity. Based on the ways to learn vector embeddings,
there are two main lines of matrix factorization models: Laplacian eigenmaps and node
proximity matrix factorization. Starting in the 2000s, Laplacian eigenmaps methods [41,42]
aim to represent each node by Laplacian eigenvectors along with the first k eigenvalues. In
contrast, the node proximity matrix factorization methods [5,15] aim to gain node embed-
dings by the singular value decomposition in 2015. Various proximity matrix factorization
models have successfully handled large graphs and achieved great performance [15,43].
However, matrix factorization models suffer from capturing high-order proximity due to
computational complexity when performing with high transition matrices.

In 2014 and 2016, early shallow models, DeepWalk [14] and Node2Vec [4] were pro-
posed, which learn node embeddings based on shallow neural networks. Remarkably, the
primary concept is to learn node embeddings by maximizing the neighborhood probability
of target nodes using the skip-gram model started in the natural language processing area.
The purpose of this strategy could then be optimized with SGD on neural network layers,
thus reducing computational complexity. With this historic milestone, various models have
been developed by improving multiple sampling strategies and training processes. Shallow
models are the embedding models that aim to map graph entities to low-dimensional
vectors by conducting an embedding lookup for each graph entity [3]. From this per-
spective, the embedding of node vi could be represented as Zi = Mxi, where M denotes
an embedding matrix of all nodes and xi is a one-hot vector of node vi. Various shallow
models have been proposed to learn embeddings with different strategies to preserve graph
structures and the similarity between graph entities. Structure-preservation models aim to
preserve the structural connection between entities (e.g., DeepWalk [14], Node2Vec [4]). In
2015, Tang et al. [16] proposed the LINE model, a proximity reconstruction method that
aims to preserve proximity between nodes in graphs. After that, various models have been
proposed to preserve the node proximity with higher-order proximity and capture more
global graph structure. However, most of the above models focus on transductive learning
and ignore node features, which may have several limitations to practical applications.

Breakthroughs in deep learning have led to a new research perspective on applying
deep neural networks to the graph domain. Since the 2000s, there have been several early
models on GNNs designed to learn node embeddings based on neighborhood information
using an aggregation mechanism [44,45]. Graph neural networks (GNNs) have shown a
significant expressive capacity to represent graph embeddings in an inductive learning man-
ner and solve the limitations of aforementioned shallow models [46,47]. Recurrent GNNs
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are also the first studies on GNNs based on recurrent neural network architecture [48,49]
in 2005. These models aim to learn node embeddings via recurrent layers with the same
weights in each hidden layer and run recursively until convergence. Several recurrent
GNNs with different strategies have been proposed by the power of recurrent neural net-
work architecture and the combinations with several sampling strategies. However, using
the same weights at each hidden layer of the RGNN model may cause the model to be
incapable of distinguishing the local and global structure. Since 2016, several graph autoen-
coder models have been proposed based on the original autoencoder architecture, which
could learn complex graph structures by reconstructing the input graph structure [50,51].
The graph autoencoders comprise two main layers: encoder layers take the adjacency
matrix as input and squeeze it to generate node embeddings, and decoder layers recon-
struct the input data. By contrast, the idea of CGNNs is to use convolutional operators
with different weights in each hidden layer, which are more efficient in capturing and
distinguishing the local and global structures [18,52–54]. Many studies have been proposed
with various variants of CGNNs, including spectral CGNNs [55–57] started in 2014, spatial
CGNNs [22,24,52] started in 2016, and attentive CGNNs [19,58] started in 2017. Never-
theless, most GNNs suffer limitations such as over-smoothing problems and noise from
neighbor nodes when stacking more GNN layers [59,60].

Motivated by transformer architecture started from natural language processing appli-
cations in 2017, several graph transformer models were proposed using the transformer
architecture to the graph domain in 2019 [61,62]. Graph transformer models have shown
competitive and superior performance against GNNs in learning complex graph struc-
tures [30,63]. Graph transformer models can be divided into three main groups: transformer
for tree-like graphs, transformer with GNNs, and transformer with global self-attention.
Early graph transformer models aim to learn tree-like graphs, which mainly aim at learn-
ing node embeddings in tree-like graphs where nodes are arranged hierarchically [64,65]
since 2019. These models encode the node positions through their relative and absolute
positional encoding in trees as constraints with root nodes and neighbor nodes at the
same level. Second, several models leverage the power of GNNs as an auxiliary module
in computing attention scores [66]. In addition, some models put GNN layers on top
of the model to overcome the over-smoothing problem and make the model remember
the local structure [61]. Most above graph transformer models adopt vanilla transformer
architecture to learn embeddings that rely on multi-head self-attention. Third, several
graph transformer models use a global self-attention mechanism to learn node embeddings,
which implements self-attention independently and does not require constraints from the
neighborhood [30,67]. These models work directly on input graphs and can capture the
global structure with global self-attention.

Most of the above models learn embeddings in Euclidean space and represent graph
entities as vector points in latent space. However, graphs in the real world could have
complex structures and different forms, such that Euclidean space may be inadequate to
represent the graph structure and ultimately lead to structural loss [68,69]. Early models
learn complex graphs in non-Euclidean geometry by developing efficient algorithms for
learning node embeddings based on manifold optimization [70] in 2017. Following the
line, several models aim to represent graph data in non-Euclidean space and gain desirable
results [68,69,71]. Two typical non-Euclidean spaces, including spherical and hyperbolic
geometry, have their advantages. Spherical space could represent graph structures with
large cycles, while hyperbolic space is suitable for hierarchical graph structures. Most
non-Euclidean models aim to design an efficient algorithm for learning node embeddings
since it is challenging to implement operators directly in non-Euclidean. Furthermore, to
deal with uncertainty, several Gaussian graph models have been introduced to represent
graph entities as density-based embeddings [23] started in 2016. Node embeddings could
be defined as a continuous density mostly based on Gaussian distribution [72].

To the extent of our knowledge, no comparable paper in the literature focuses on a wide
range of graph embedding models for static and dynamic graphs in different geometric
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spaces. Most current papers only presented specific approaches for graph representation
learning. Wu et al. [8] focused on graph neural network models, which are presented as
a section in this paper. Several surveys [13,73,74] summarized graph embedding models
for various types of graphs, but they did not mention either graph transformer models or
non-Euclidean models. From applying graph embedding models to practical applications,
several papers only list the applications for specific and narrow tasks [12,75]. However, we
discuss how graphs are constructed in specific applications and how graph embedding
models are implemented in various domains.

This paper presents a comprehensive picture of graph embedding models in static
and dynamic graphs in different geometric spaces. In particular, we recognize five general
categories of models for addressing graph representation learning, including graph kernels,
matrix factorization models, shallow models, deep neural network models, and non-
Euclidean models. The contribution of this study can be categorized as follows:

• This paper presents a taxonomy of graph embedding models based on various algo-
rithms and strategies.

• We provide readers with an in-depth analysis of an overview of graph embedding
models with different types of graphs ranging from static to dynamic and from
homogeneous to heterogeneous graphs.

• This paper presents graph transformer models, which have achieved remarkable
results in a deeper understanding of graph structures in recent years.

• We cover applications of graph representation learning in various areas, from con-
structing graphs to applying models in specific tasks.

• We discuss the challenges and future directions of existing graph embedding models
in detail.

Since abundant graph representation learning models have been proposed recently,
we employed different approaches to find related studies. We built a search strategy by
defining keywords and analyzing reliable sources. The list of keywords includes graph
embedding, graph representation learning, graph neural networks, graph convolution,
graph attention, graph transformer, graph embedding in non-Euclidean space, Gaussian
graph embedding, and applications of graph embedding. We found related studies at
famous top-tier conferences and journals such as AAAI, IJCAI, SIGKDD, ICML, WSDM,
Nature Machine Intelligence, Pattern Recognition, Intelligent Systems with Applications,
the Web, and so on.

The following sections of this paper are summarized as follows. Section 2 describes fun-
damental concepts and backgrounds related to graph representation learning. In Section 3,
all the graph embedding models will be presented, such as graph kernels, matrix factor-
ization models, shallow models, deep neural network models, and non-Euclidean models.
Section 4 discusses a wide range of practical applications of graph embedding models in
the real world. Section 5 summarizes the latest benchmarks, downstream tasks, evaluation
metrics, and libraries. Challenges for existing graph embedding models and future research
directions will be discussed in Section 6. The last section, Section 7 is the conclusion.

2. Problem Description

Graph representation learning aims to project the graph entities into low-dimensional
vectors while preserving the graph structure and the proximity of entities in graphs. With
the desire to map graph entities into vector space, it is necessary to model the graph in
mathematical form. Therefore, we begin with several fundamental definitions of graphs.
The list of standard notations used in this survey is detailed in Table 1. Mathematically, a
graph G can be defined as follows:

Definition 1 (Graph [3]). A graph is a discrete structure consisting of a set of nodes and the edges
connecting those nodes. The graph can be described mathematically in the form: G = (V, E, A),
where V = {v1, v2, · · · , vN} is the set of nodes, E = {(vi, vj)|(vi, vj) ∈ V × V} is the set of
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edges, and A is an adjacency matrix. A is a square matrix of size N × N where N is the number of
nodes in graphs. This can be formulated as follows:

A =

A11 · · · A1N
...

. . .
...

AN1 · · · ANN

, Aij =

{
1, if eij ∈ E.
0, otherwise.

, (1)

where Aij indicates adjacency between node vi and node vj.

Table 1. A summary of notations.

Notations Descriptions

V The set of nodes in the graph G
E The set of edges in graph G
N The number of nodes in graph G
Et The set of edges with type t in heterogeneous graphs
vi The node vi in the graph G
eij The edge (vi, vj) in the graph G
A The adjacency matrix of the graph G
X The feature matrix of nodes in graph G
D The degree matrix of nodes in graph G
φ Projection function
Zi The embedding vector of node vi
M The transition matrix

N(vi) The set of neighbors of node vi
k The k-hop distance from a target node to other nodes
d The dimension of vector in latent space
yi The label of node vi

When Aij is binary, the matrix A represents only the existence of connections between
nodes. By extending the definition of matrix A, we could expand to abundant different
types of graph G:

• Directed graph: When Aij = Aji for any 1 ≤ i, j ≤ n, then the graph G is called an
undirected graph, and G is directed graph otherwise.

• Weighted graph: is a graph in which each edge is assigned a specific weight value.
Therefore, the adjacency matrix could be presented as: Aij = wij, where wij ∈ R is the
weight of the edge eij.

• Signed graph: When Aij ∈ [−∞, ∞], the graph G is called signature/signed graph.
The graph G could have all positive signed edges when Aij > 0 for any 1 ≤ i, j ≤ n,
and G could have all negative signed edges otherwise.

• Attributed graph: A graph G = (V, E, A, X) is an attributed graph where V, E is the
set of nodes and edges, respectively, and X is the matrix of node attributes with size
n × d. Furthermore, we could also have the matrix X as the matrix of edge input
attribute with size m× d where m is the number of edges eij ∈ E for any 1 ≤ i, j ≤ n.

• Hyper graph: A hyper graph G could be represented as G = (V, E, W), where V
denotes the set of nodes and E denotes a set of hyperedge. Each hyperedge eij can
connect multiple nodes and is assigned a weight wij ∈W. The hypergraph G could be
represented by an incidence matrix H size |V| × |E| with entries h(vi, vj) = 1 if eij ∈ E,
and h(vi, vj) = 0 otherwise.

• Heterogeneous graph: A heterogeneous graph is defined as G = (V, E, T, ϕ, ρ) where
V, and E are the set of nodes and edges, respectively, ϕ is the mapping function:
ϕ : V → Tv, and the mapping function ρ : E→ Te with Tv, Te describe the set of node
types and edge types, respectively, and T = Tv+ Te is the sum of the number of node
types and edge types.

According to the definitions of graph G = (V, E) that have been represented mathe-
matically above, the idea of graph embedding is to map graph entities into low-dimensional
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vectors with the number of dimensions d with d� N. Mathematically, the graph embed-
ding is formulated as follows:

Definition 2 (Graph embedding [14]). Given a graph G = (V, E) where V is the set of nodes,
and E is the set of edges, graph embedding is a projection function φ(·), where φ : V → Rd

(d � |V|) and k(vi, vj) ' 〈φ(vi), φ(vj)〉 describes the proximity of two nodes vi and vj in the
graph and 〈φ(vi), φ(vj)〉 is the distance of two vectors φ(vi) and φ(vj) in the vector space.

Graph representation learning aims to project graph entities into the vector space
while preserving the graph structure and entity proximity. For example, if two nodes vi
and vj in the graph G are connected directly, then in vector space, the distance between two
vectors φ(vi) and φ(vj) must be minimal. Figure 2 shows an example of a graph embedding
model that transforms nodes in a graph to low-dimensional vectors (Z1 Z2 · · · Zn) in the
vector space.

Figure 2. A comprehensive view of graph embedding. Given a spare, high-dimensional graph
G = (V, E) where V and E denote the set of nodes and edges. Graph embedding learning aims to
find a function φ that maps nodes from graph space to d-dimensional vector space with d� |V|.

When mapping graph entities to latent space, preserving the proximity of graph
entities is one of the most important factors in preserving the graph structure and the
relationship between nodes. In other words, if two nodes vi and vj are connected or close
in the graph, the distance between the two vectors Zi and Zj must be minimal in the vector
space. Several models [16,76–78] aim to preserve k-order proximity between graph entities
in vector space. Formally, the k-order proximity is defined as follows:

Definition 3 (k-order proximity [79]). Given a graph G = (V, E) where V is the set of nodes,
and E is the set of edges, k-order proximity describes the similarity of nodes with the distance
captured from the k-hop in the graph G. When k = 1, it is 1st-order proximity that captures the
local pairwise proximity of two nodes in graphs. When k is higher, it could capture the global
graph structure.

There is another way to define graph embedding from the perspective of Encoder-
Decoder architecture [3]. From this perspective, the task of the encoder part is to encode
graph entities into low-dimensional vectors, and the decoder part tries to reconstruct the
graph from the latent space. In the real world, many graphs show dynamic behaviors,
including node and edge evolution, and feature evolution [80]. Dynamic graphs are found
widely in many applications [81], such as social networks where connections between
friends could be added or removed over time.

Definition 4 (Dynamic graph [80]). A dynamic graph G is formed of three entities: G =
(V,E, T) where V = {V(t)} is the group of node sets, E = {E(t)} with t ∈ T is the group of
edge sets over time span T, and T denotes the time span. From the statistic perspective, we could
also consider a dynamic graph G = {G(t0) G(t1) · · · G(tn)} as a collection of static graphs G(tk)
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where G(tk) = (V(tk), E(tk)) denotes the static graph G at time tk, and V(tk), E(tk) denotes the
set of nodes and set of edges at time tk, respectively.

Figure 3a presents an example of dynamic graph representation. At time t + 1, there
are several changes in the graph G(t + 1) such as: the edge e23 will be removed, node v6
will be added and new edge e56. Casteigts et al. [80] proposed an alternative definition
of a dynamic graph with five components: G = (V,E, T, ρ, ζ) where ρ : V× T → {0, 1}
describes the existence of each node at time t, and ζ : E× T → Ψ describes the existence of
an edge at time t.

(a) (b)
Figure 3. Methods for modeling dynamic graphs over time. (a) The representation of a dynamic
graph by a series of snapshots; (b) The evolution of edges and nodes in the dynamic graph from time
t to t + 1. In (a), the graph G is the collection of G(t) (i.e., G = {G(1), G(2), · · · , G(t)}) which t is the
time span, and the entities of G change from time t to t + 1. (b) depicts the evolution of edges in the
same dynamic graph from (a) which each edge contains the series of the time spans from t to t + 1.
At time t, the graph has five nodes (v1, v2, v3, v4, v5) and five edges (e13 e15 e34 e45 e23). However, at
time t + 1, the edge e23 and node v2 are removed, and a new node v6, a new edge e56 are added in
the graph.

There is another way to model a dynamic graph based on the changes of the graph
entities (edges, nodes) taking place on the graph G over a time span t or by an edge stream.
From this perspective, a dynamic G could be modeled as G = (V, Et, T) where Et presents
the collection of edges of dynamic graph G at time t, and function f : E → R+ to map
edges into integer numbers. It notices that all the edges at time t will have the same labels.
Figure 3b describes the evolution of the edges of a graph from time (t) to (t + 1).

Definition 5 (Dynamic graph embedding [82]). Given a dynamic graph G = (V,E, T) where
V = {V(t)} is the group of node sets, and E = {E(t)} is the group of edge sets over time span
T, a dynamic graph embedding is a projection function φ(·), where φ(·) : G× T → Rd × T. T
describes the time domain in latent space and T is the time span. When G is represented as the
collection of snapshots: G = {G(t0) G(t1) · · · G(tn)}, then the projection function φ will be
defined as: φ = {φ(0) φ(1) · · · φ(n)} where φ(t) is the vector embedding of the graph G(t) at
time t.

There are two ways to represent a dynamic graph G, including a temporal dynamic
graph embedding (changes over a period of time) and topological dynamic graph embed-
ding (changes in the graph structure over time).

• Temporal dynamic graph embedding: A temporal dynamic embedding is a projection
function φ(·), where φt : Gt−k,t × T → Rd × T and Gt−k,t = {Gt−k Gt−k+1 · · · Gt}
describes the collection of graph G during time interval [t− k, t].

• Topological dynamic graph embedding: A topological dynamic graph embedding for
graph G for nodes is a mapping function φ, where φ : V× T → Rd ×T.
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3. Graph Representation Learning Models

This section presents a taxonomy of existing graph representation learning models in
the literature. We categorize the existing graph embedding models into five main groups
based on strategies to preserve graph structures and proximity of entities in graphs, includ-
ing graph kernels, matrix factorization-based models, shallow models, deep neural network
models, and non-Euclidean models. Figure 4 presents the proposed taxonomy of the graph
representation learning models. Furthermore, we deliver open-source implementations of
graph embedding models in Appendix A.

Graph Embedding Models

Non-Euclidean modelsDeep neural network modelsGraph Kernels

Matrix Factorization
based models

Shallow models

Autoencoder models

Recurrent GNN models

Hyperbolic models

Spherical models

Structure preservation
models

Proximity reconstruction
models

Convolutional GNN
models

Graph transformer
models

Gaussian models

Figure 4. The proposed taxonomy for graph representation learning models.

Graph kernels and matrix factorization-based models are one of the pioneer models for
graph representation learning. Graph kernels are prevalent in learning graph embeddings
using a deterministic mapping function in solving graph classification tasks [83–85]. There
are two types of graph kernels: kernels for graphs, which aim to compare the similarity
between graphs, and kernels on graphs aim to find the similarity between nodes in graphs.
Second, matrix factorization-based models aim to represent the graph as matrices and gain
embeddings by decomposing the matrices [5,86]. There are several strategies for factoriza-
tion modeling, and most of these models aim to approximate high-order proximity between
nodes. However, graph kernels and matrix factorization-based models suffer from compu-
tational complexity when handling large graphs and capturing high-order proximity.

Shallow models aim to construct an embedding matrix to transform each graph
entity into vectors. We categorize shallow models into two main groups: structure preser-
vation and proximity reconstruction. Structure-preservation strategies aim to conserve
structural relationships between nodes in graphs [4,14,87]. Depending on specific tasks,
several sampling strategies could be employed to capture graph structures, such as random
walks [4,14], graphlets [88], motifs [89–91], etc. By contrast, the objective of the proximity
reconstruction models is to preserve the proximity of nodes in graphs [16,92]. The proxim-
ity strategies can vary across different models based on their objectives. For example, the
LINE model [16] aims to preserve 1st-order and 2nd-order proximity between nodes, while
PALE [77] preserves pairwise similarities.

Graph neural networks have shown great performance in learning complex graph struc-
tures [18,50]. GNNs can be categorized into three main groups: graph autoencoder [50,51],
recurrent GNNs [17,93], and convolutional GNNs. Graph autoencoders and recurrent
GNNs are mostly pioneer studies of GNNs based on autoencoder architecture and recur-
rent neural networks, respectively. Graph autoencoders are composed of an encoder layer
and a decoder layer. The encoder layer aims to compress a proximity graph matrix to
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vector embeddings, and the decoder layer reconstructs the proximity matrix. Most graph
autoencoder models employ multilayer perceptron-based layers or recurrent GNNs as
the core of autoencoder architecture. Recurrent GNNs aim to learn node embeddings
based on recurrent neural network architecture in which connections between neurons can
make a cycle. Therefore, earlier RGNNs mainly aimed to learn embeddings on directed
acyclic graphs [94]. Recurrent GNNs employ the same weights in all hidden layers to
capture local and global structures. Recently, convolutional GNNs have been much more
efficient and can gain outstanding performance compared to RGNNs. The main difference
between RGNNs and CGNNs is that CGNNs use different weights in each hidden layer,
which could distinguish local and global structures. Various CGNN models have been pro-
posed and mainly fall into two categories: spectral CGNNs, and spatial CGNNs [22,52,95].
Spectral CGNNs aim to transform graph data to the frequency domain and learn node
embeddings in this domain [56,96]. By contrast, spatial CGNNs work directly on the graph
using convolutional filters [53,54]. By staking multiple GNN layers, the models could learn
node embeddings more efficiently and capture higher-order structural information [97,98].
However, stacking many layers could cause the over-smoothing problem, which most
GNNs have not fully solved in a whole extent.

Recently, several models have enabled transformer architecture to learn graph struc-
tures which gain significant results compared to other deep-learning models [30,46,99].
We categorize graph transformer models into three main groups: transformer for tree-
like graphs [64,65], transformer with GNNs [99,100], and transformer with global self-
attention [30,67]. Different types of graph transformer models aim to handle distinct types
of graphs. The transformer for tree-like graphs aims to learn node embeddings in tree-like
hierarchical graphs [64,65,101]. The hierarchical relationships from the target nodes to their
parents and neighbors are presented as absolute and relative positional encoding, respec-
tively. Several graph transformer models employ the message-passing mechanism from
GNNs as an auxiliary module in computing the attention score matrix [61,100]. GNN layers
can be used to aggregate information as input to graph transformer models or put on top
of the model, which aims to preserve local structures. In addition, some graph transformer
models can directly process graph data without support from GNN layers [30,67]. These
models implement a global self-attention to learn local and global structures in a graph
input without neighborhood constraints.

Most existing graph embedding models aim to learn embeddings in Euclidean space,
which may not deliver good geometric representations and metrics. Recent studies have
shown that non-Euclidean spaces are more suitable for representing complex graph struc-
tures. The non-Euclidean models could be categorized as hyperbolic, spherical, and
Gaussian. Hyperbolic and spherical space are two types of non-Euclidean geometry that
could represent different graph structures. Hyperbolic space [102] is more suitable for
representing hierarchical graph structures that follow the power law, while the power of
spherical space is to represent large circular graph structures [103]. Moreover, since the
information about the embedding space is unknown and uncertain, several models aim at
learning node embeddings as Gaussian distribution [23,104].

3.1. Graph Kernels

Graph kernels aim to compare graphs or their substructures (e.g., nodes, subgraphs,
and edges) by measuring their similarity [105]. The problem of measuring the similarity of
graphs is, therefore, at the core of learning graphs in an unsupervised manner. Measuring
the similarity of large graphs is problematic since the graph isomorphism problem is
assigned to the NP (nondeterministic polynomial time) class. However, it is an NP-complete
for subgraphs isomorphism problem. Table 2 describes a summary of graph kernel models.

Kernel methods applied to the graph embedding problem can be understood in two
forms, including the isomorphism testing of N graphs (kernels for graphs) and embedding
entities of graphs to Hilbert space (kernels on graphs).
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• Kernels for graphs: Kernels for graphs aim to measure the similarity between graphs.
The similarity between the two graphs (isomorphism) could be explained as follows:
Given two undirected graphs G1 = (V1 E1) and G2 = (V2 E2), G1 and G2 are isomor-
phic if they exist a bimodal mapping function φ : V1 → V2 such that ∀a b ∈ V1, a and b
are contiguous on G1 if φ(a) and φ(b) are contiguous on G2.

• Kernels on graphs: To embed nodes in graphs, kernel methods refer to finding a
function that maps pairs of nodes to latent space using particular similarity measures.
Formally, graph kernels could be defined as: Given a graph G = (V, E), a function
K = V ×V → R is a kernel on G if there is a mapping function φ : V → H such that
K(vi vj) = 〈φ(vi) φ(vj)〉 for any node pairs (vi vj).

There are several strategies to measure the similarity of pairs of graphs, such as
graphlet kernels, WL kernels, random walk, and shortest paths [31,83]. Among the kernel
methods, graphlet kernels are one of the simple kernels that could measure the similar-
ity between graphs by counting subgraphs with a limited size k [83,106]. For instance,
Shervashidze et al. [83] introduced a graphlet kernel with the main idea of finding the
graph feature by counting the number of different graphlets in graphs. Formally, given an
unlabeled graph G, a graphlet list Vk = (G1 + G2 + · · ·+ Gnk ) is the set of the graphlets
with size k where nk depicts the number of graphlets. The graphlet kernel for two unlabeled
graphs G and G′ could be defined as:

K
(
G, G′

)
= 〈φ(G), φ

(
G′
)
〉, (2)

where φG and φG′ are vectors that depict the number of graphlets in a Gi and G′i , respectively.
By counting all graphlets with size k for a graph, the computation time is expensive
by the enumeration nk with n depicts the number of nodes in G. One of the practical
solutions to overcome this limitation is to design the feature φi

G more effectively, called
Weisfeiler–Lehman.

Weisfeiler–Lehman (WL) test [31] is considered to be a traditional strategy to test the
homomorphism of two graphs using color refinements. Figure 5 presents the main idea
of the WL homomorphism test for two graphs in detail. By updating node labels, all the
structure information of nodes in graphs could be stored at each node, including both local
and global information, depending on the number of iterations. We can then compute
histograms or other summary statistics over these labels as a vector representation for
graphs.

Table 2. A summary of graph kernel models.

Models Graph Types Tasks Loss Function

[83] Static graphs Graph comparison ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[106] Static graphs Graph comparison ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[33] Static graphs Graph classification ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[34] Static graphs Graph classification ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[84] Static graphs Graph classification ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[35] Static graphs Graph classification ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[85] Static graphs Graph comparison ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[107] Attributed graphs Graph classification ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[37] Attributed graphs Graph classification ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[108] Attributed graphs Graph classification ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[36] Attributed graphs Graph classification ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[109] Attributed graphs Graph classification ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

[110] Attributed graphs Graph classification ∑vi∈V max
(
0, 1− yᵀi ŷi

)
+ L2

GraTFEL [111] Dynamic graphs Graph reconstruction
Link prediction

1
N ∑vi∈V

∥∥Zi − Ẑi
∥∥2

2 + L1 + L2

[112] Dynamic graphs Link prediction 1
N ∑vi∈V

∥∥Zi − Ẑi
∥∥2

2 + L1 + L2

[113] Dynamic graphs Link prediction 1
N ∑vi∈V

∥∥Zi − Ẑi
∥∥2

2
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Several models improved the idea from WL isomorphism test [34,84]. The concept of
the WL isomorphism test inspired various GNN models later, which aim to be expressive
as powerful as the WL test to distinguish different graph structures. Shervashidze et al. [33]
presented three instances of WL kernels, including the WL subtree kernel, WL edge kernel,
and WL shortest-path kernel with an enrichment strategy for labels. The key idea of [33] is
to represent a graph G as WL sequences with the height of h. The WL sequences of two
graphs G and G′ can be defined as:

k(h)WL
(
G, G′

)
= k

(
G0, G′0

)
+ k
(
G1, G′1

)
+ · · ·+ k

(
Gh, G′h

)
(3)

where k
(
Gi, G′i

)
=
〈
φ(Gi), φ(G′i)

〉
. For N graphs, the WL subtree kernel could be computed

in a runtime of O(Nhm + N2hn), where h and m are the numbers of interactions and edges
in G, respectively. Therefore, the algorithm could capture more information about the
graph G after h interactions and compare graphs at different levels.

(a) (b)
Figure 5. The Weisfeiler–Lehman isomorphism test. (a) Original labels, i = 0; (b) Relabeled labels,
i = 1. There are two interactions of WL relabeling for the graph with five nodes {v1, v2, v3, v4, v5}. In
(a), labels of nodes are initialized consisting of 5 nodes. In (b), in the first iteration, new labels of the
nodes will be reassigned and calculated based on the connection information to its adjacent nodes.
For example, node v1 is adjacent to node v2 and node v3, therefore the new label of v1 is calculated as
{v1, 〈v2, v3〉} and resigned as new label v6. The same steps are repeated until a steady state for the
nodes is reached.

However, the vanilla WL isomorphism test requires massive resources since the
methods are an NP-hard class. Following the WL isomorphism idea, Morris et al. [34]
presented a set of k-set forms V(G)k and built a local and global neighborhood of the
k−sets. Instead of working on each node in graphs, the models calculate and update
the labels based on the k−set. The feature vectors of graph G then could be calculated
by counting the number of occurrences of k−sets. Several models [84,114] improved the
Wasserstein distance based on the WL isomorphism test, and the models could estimate
weights of subtree patterns before the kernel construction [35]. Several models adopted a
random-walk sampling strategy to capture the graph structure that could help reduce the
computational complexity to handle large graphs [36,37,85,107].

However, the above methods only focus on homogeneous graphs in which nodes
do not have side information. In the real world, graph nodes could contain labels and
attributes and change over time, making it challenging to learn node embeddings. Several
models have been proposed with slight variations from the traditional WL isomorphism
test and random walk methods [109–113]. For example, Borgwardt et al. [109] presented
random-walk sampling on attributed edges to capture the graph structure. Since existing
kernel models primarily work on small-scale graphs or a subset of graphs, improving
similarity based on shortest paths could achieve better computational efficiency for graph
kernels in polynomial time. An all-paths kernel K could be defined as:

K(P(G1), P(G2)) = ∑
p1∈P(G1)

∑
p2∈P(G2)

kpath(p1, p2), (4)
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where P(G1) and P(G2) are the set of random-walk paths in G1 and G2, respectively, and
kpath(p1, p2) depicts a positive definite kernel on two paths p1 and p2. The model then
applied Floyd–Warshall algorithm [115] to find k shortest-path kernels in graphs. One of
the disadvantages of this model is the runtime complexity, which is about O(k× n4), where
n depicts the number of nodes in graphs. Morris et al. [108] introduced a variation of the
WL subtree kernel for attributed graphs by improving existing shortest-path kernels. The
key idea of this model is to use a hash function that maps continuous attributes to label
codes, and then it normalizes the discrete label codes.

To sum up, graph kernels are effective models and bring several advantages:

• Coverage: The graph kernels are one of the most useful functions to measure the simi-
larity between graph entities by performing several strategies to find a kernel in graphs.
This could be seen as a generalization of the traditional statistical methods [116].

• Efficiency: Several kernel tricks have been proposed to reduce the computational cost
of kernel methods on graphs [117]. Kernel tricks could reduce the number of spatial
dimensions and computational complexity on substructures while still providing
efficient kernels.

Although kernel methods have several advantages, several disadvantages make the
kernels difficult to scale:

• Missing entities: Most kernel models could not learn node embeddings for new nodes.
In the real world, graphs are dynamic, and their entities could evolve. Therefore,
the graph kernels must re-learn graphs every time a new node is added, which is
time-consuming and difficult to apply in practice.

• Dealing with weights: Most graph kernel models do not consider the weighted edges,
which could lead to structural information loss. This could reduce the possibility of
graph representation in the hidden space.

• Computational complexity: Graph kernels are an NP-hard class [109]. Although
several kernel-based models aim to reduce the computational time by considering the
distribution of substructures, this may increase the complexity and reduce the ability
to capture the global structure.

Although the graph kernels delivered good results when working with small graphs,
they remain limitations when working with large and complex graphs [118]. To address
the issue, matrix factorization-based models could bring far more advantages to learning
node embeddings by decomposing the large original graphs into small-sized components.
Therefore, we discuss matrix factorization-based models for learning node embeddings in
the next section.

3.2. Matrix Factorization-Based Models

Matrix factorization aims to reduce the high-dimensional matrix that describes graphs
(e.g., adjacency matrix, Laplacian matrix) into a low-dimensional space. Several well-
known decomposition models (e.g., SVD, PCA, etc.) are widely applied in graph repre-
sentation learning and recommendation system problems. Table 3 and Table 4 present
matrix factorization-based models for static and dynamic graphs, respectively. Based on
the strategy to preserve the graph structures, matrix factorization models could be catego-
rized into two main groups: graph embedding Laplacian eigenmaps and node proximity
matrix factorization.

• The Laplacian eigenmaps: To learn representations of a graph G = (V, E), these
approaches first represent G as a Laplacian matrix L where L = D − A and D is
the degree matrix [41]. In the matrix L, the positive values depict the degree of
nodes, and negative values are the weights of the edges. The matrix L could be
decomposed to find the smallest number from eigenvalues which are considered node
embeddings. The optimal node embedding Z∗, therefore, could be computed using
an objective function:

Z∗ = arg min
Z

ZᵀLZ . (5)
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• Node proximity matrix factorization: The objective of these models is to decompose
node proximity matrix into small-sized matrices directly. In other words, the proximity
of nodes in graphs will be preserved in the latent space. Formally, given a proximity
matrix M, the models try to optimize the distance between two pair nodes vi and vj,
which could be defined as:

Z∗ = arg min
Z

∥∥∥Mij − ZiZj
T
∥∥∥ . (6)

Hofmann et al. [119] proposed an MSDC (Multidimensional Scaling and Data Clus-
tering) model based on matrix factorization. The key idea of MSDC is to represent data
points as a bipartite graph and then learn node embeddings based on node similarity in
the graph. This method requires a symmetric proximity matrix M ∈ RN×N as input and
learns a latent representation of the data in Euclidean space by minimizing the loss that
could be defined as:

Z∗ = arg min
Z

1
2|V| ∑

(vi ,vj)∈E

[∣∣Zi − Zj
∣∣2 −Mij

]2
. (7)

However, the limitation of the MSDC model is that the model focuses only on the
pairwise nodes, which cannot capture the global graph structure. Furthermore, the model
investigated the proximity of all the data points in the graph, which could increase com-
putational complexity when working on large graphs. Several models [39,120] adopted
k-nearest methods to search neighbor nodes which can capture more graph structure. The
k-nearest methods, therefore, could bring the advantage of reducing computational com-
plexity since the models only take k neighbors as inputs. For example, Han et al. [120]
proposed the similarity Sij between two nodes vi and vj as:

Sij =

exp
(
− ||vi−vj ||2

δ2

)
, if vj ∈ Nk(vi).

0, otherwise.
, (8)

where Nk(vi) depicts the set of k nearest neighbors of vi in graphs. The model could measure
the infringement of the constraints between pairs of nodes regarding label distribution.
In addition, the model can estimate the correlation between features which would be
beneficial to combine common features during the training process.

Several models [7,40,120–122] have been proposed to capture side information in
graphs such as attributes and labels. He et al. [42] used the locality-preserving projection
technique, a nonlinear Laplacian Eigenmap, to preserve the local structural information in
graphs. The model first constructs an adjacency matrix with k nearest neighbors for each
pair of nodes. The model then computes the objective function as:

a∗ = arg min
a

aᵀXLXᵀ a (9)

subject to: aᵀXLXᵀ a = 1 (10)

where D is a diagonal matrix, L = D− A is the Laplacian matrix, and a is the transformation
matrix in the linear embedding xi → yi = Aᵀxi. Nevertheless, the idea from [42] only
captures the structure within k nearest neighbors, which fails to capture the global similarity
between nodes in the graph. Motivated by these limitations, Cao et al. [15] introduced the
GraRep model, which considers a k-hop neighborhood of each target node. Accordingly,
GraRep could capture global structural information in graphs. The model works with
k-order probability transition matrix (proximity matrix) Mk which could be defined as:

Mk = M · · ·M︸ ︷︷ ︸
k

(11)
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where M = D−1 A, D is the degree matrix, A is the adjacent matrix, and Mk
ij presents the

transition probability from node vi to vj. The loss function, thus, is the sum of k transition
loss functions:

Lk(vi) = ∑
vj∈N(vi)

Mk
ij log σ

(
Zᵀ

i Zj
)
−
∣∣Nneg

∣∣ ∑
vm∼Pn(v)

Mk
im log σ

(
−Zᵀ

i Zm
)

. (12)

To construct the vector embeddings, GraRep decomposed the transition matrix into
small-sized matrices using SVD matrix factorization. Similarly, Li [123] introduced NECS
(Learning network embedding with the community) to capture the high-order proximity
using Equation (11).

Table 3. A summary of matrix factorization-based models for static graphs. C indicates the number
of clusters in graphs, N(Zi|µc, Σc) refers to the multivariate Gaussian distribution for each cluster, L
means the Laplacian matrix, H ∈ Rn×k is the probability matrix that a node belongs to a cluster, U
denotes the coefficient vector, and Wij is the weight on (vi, vj).

Models Graph Types Tasks Loss Function

SLE [39] Static graphs Node classification ∑vi∈V ∑vj∈V

∣∣∣Wij

∣∣∣∥∥∥Zi − sijZj

∥∥∥2

2

[120] Attributed graphs Node classification arg min
W

Tr(UᵀXᵀLXU) + α ∑ vi∈V
vj∈N(vi)

∥∥∥Zi − Zj

∥∥∥2

2
+ α1L1 + α2L2

[7] Attributed graphs Community detection − ∑
(vi ,vj)∈E

log σ
(

Zᵀ
i Zj

)
− ∑

vi∈V
vj∈N(vi)

log σ
(

Zᵀ
i Zj

)

−
∣∣Nneg

∣∣∑vk∼Pn(v) log σ
(
−Zᵀ

i Zk
)
−

C
∑

vi∈V,c=1
N(Zi|µc, Σc)

LPP [42] Attributed graphs Node classification 1
|V| ∑vi∈V ‖yi − ŷi‖2

2

[121] Attributed graphs Graph reconstruction 1
|V| ∑vi∈V ‖yi − ŷi‖2

2

[40] Static graphs Node clustering ∑vi∈V ∑C
c=1 ‖Zi − µc‖

GLEE [122] Attributed graphs Graph reconstruction,
Link prediction

∥∥L− L̂
∥∥2

LPP [42] Static graphs Node classification ∑(vi ,vj)∈E

∥∥∥Zi − Zj

∥∥∥2

2
Grarep [15] Static graphs Node classification,

Node clustering
−∑vi∈V ∑vj∈N(vi) Al

ij log σ
(

Zᵀ
i Zj

)
−
∣∣Nneg

∣∣∑vk∼Pn(v) Al
ik log σ

(
−Zᵀ

i Zk
)

NECS [123] Static graphs Graph reconstruction,
Link prediction,
Node classification

∥∥M− M̂
∥∥2

F + α1
∥∥H − Ĥ

∥∥2
F + α2

∥∥HᵀĤ − I
∥∥2

F

HOPE [5] Static graphs Graph reconstruction
Link prediction,
Node classification

‖M− Z · Zᵀ‖2
F

[124] Static graphs Link prediction ∑
(vi ,vj)∈S

Aij

∥∥∥Zi − Zj

∥∥∥2

2

AROPE [86] Static graphs Graph reconstruction,
Link prediction,
Node classification

‖M− Z · Zᵀ‖2
F

ProNE [43] Static graphs Node classification −∑vi∈V

[
∑vj∈N(vi) log σ

(
Zᵀ

i Zj

)
+ ∑

vk∼Pn(v)
log σ

(
−Zᵀ

i Zk
)]

ATP [6] Static graphs Link prediction ‖M− Z · Zᵀ‖2
F

[125] Static graphs Graph partition ∑
(vi ,vj)∈E
vi ,vj∈Vk

(
Wij −

〈
Z(k)

i , Z(k)
j

〉)2
+ ∑

vi∈Vk

∥∥Zi − Ẑi
∥∥2

2

NRL-MF [126] Static graphs Node classification ∑
vi∈V

vj∈N(vi)

∥∥∥Zi − Zj

∥∥∥2

2
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In terms of considering the node proximity based on neighbor relations, Ou et al. [5]
presented HOPE, an approach for preserving structural information in graphs using k-order
proximity. In contrast to GraRep, HOPE tried to solve the asymmetric transitivity problem
in directed graphs by approximating high-order proximity. The objective function needs to
be minimized for the approximation proximity could be defined as:

Z∗ = arg min
Z

∥∥Mij − Zᵀ
i Zj
∥∥2

2 (13)

where M is the high-order proximity matrix, for instance, Mij presents the proximity
of two nodes vi and vj, Zi and Zj denote vector embeddings of vi and vj, respectively.
The proximity matrix M can be measured by decomposing into two small-sized matrices(

M = M−1
g ·Ml

)
. Several common criteria could measure the node proximity, such as

Katz Index [127], Rooted PageRank [128], Adamic-Adar [129], and Common Neighbors.
Coskun and Mustafa [124] suggested changes in the proximity measure formulas of the
HOPE model. For nodes that have a small degree, singular values could be zero after
measuring the node proximity. Therefore, to solve this problem, they added a parameter σ
to regularize the Laplacian graph.

A few models have been proposed with the same idea as HOPE and GraRep [43,86].
For example, ProNE model [43] aimed to use k number of the Chebyshev expansion to avoid
Eigen decomposition, instead of using k-order proximity in HOPE models. Sun et al. [6]
introduced a similar approach for preserving asymmetric transitivity with high-order prox-
imity. However, the significant difference is that they proposed a strategy to break directed
acyclic graphs while preserving the graph structure. The non-negative matrix factorization
could then be applied to produce an embedding matrix. Several models [125,130,131]
mainly focused on the pointwise mutual information (PMI) of nodes in graphs which
calculates the connection between nodes in terms of linear and nonlinear independence.
Equation (5) is used to learn node embeddings.

Several models aimed to reduce computational complexity from matrix factorization
by improving the sampling strategies [126,132,133]. For instance, the key idea of the NRL-
MF model [126] was to deal with a hashing function for computing dot products. Each
node is presented as a binarized vector by a hashing function, which can be calculated
faster by XOR operators. The model could learn the binary and quantized codes based
on matrix factorization and preserve high-order proximity. Jiezhong [133] targeted sparse
matrix factorization. They implemented random-walk sampling on graphs to construct a
NetMF Matrix Sparsifier. RNP model [132] explored in-depth vector embeddings based on
personalized PageRank values, then approximated the PPR matrices.

Table 4. A summary of matrix factorization-based models for heterogeneous graphs and dynamic
graphs. H ∈ Rn×k is the probability matrix that a node belongs to a cluster, E(t) is the edge matrix
with type t, Wij is the weight on (vi, vj), r denotes the relation type, and E(1,2) is the set of edges in
two component graphs G1 and G2.

Models Graph Types Tasks Loss Function

DBMM [134] Dynamic graphs Node classification,
Node clustering

∥∥A− Â
∥∥2

F

[135] Dynamic graphs Link prediction
∥∥A− Â

∥∥2
2 + αL2

[136] Dynamic graphs Link prediction
∥∥A− Â

∥∥2
F

LIST [137] Dynamic graphs Link prediction
∥∥A− Â

∥∥2
F + L2

TADW [131] Attributed graphs Node classification ‖M−WᵀHX‖2
F + α

(
‖W‖2

F + ‖H‖2
F

)
PME [138] Heterogeneous graphs Link prediction ∑

(vi ,vj)∈E(r)

(vi ,vk)/∈E(r)

(∥∥∥Zi − Zj

∥∥∥2

2
− ‖Zi − Znk‖

2
2 + m

)
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Table 4. Cont.

Models Graph Types Tasks Loss Function

EOE [139] Heterogeneous graphs Node classification ∑
(vi ,vj)∈E(1,2)

σ
(

Zᵀ
i Zj

)
− ∑

(vl ,vk)/∈E(1,2)
σ
(
−Zᵀ

i Zj

)
+ α1L1 + α2L2

[130] Heterogeneous graphs Link prediction ∑(vi ,vj)∈E(t)

∥∥∥Z(t)
i − Ẑ(t)

i

∥∥∥2

F
+α1L1 + α2L2

ASPEM [140] Heterogeneous graphs Node classification,
Link prediction

− ∑
vi∈V

(vi ,vj ,r)∈E

log
(

p(vi|vj, r)
)

MELL [141] Heterogeneous graphs Link prediction − ∑
(vi ,vj)∈E

σ
(

Zᵀ
i Zj

)
− ∑

(vi ,vk)/∈E
σ
(
1− Zᵀ

i Zk
)
+ αL2

PLE [142] Attributed graphs Node classification ∑(vi ,vj)∈E log σ(ZiZj) +
∣∣Nneg

∣∣Evk∼Pn(vk)(log σ(−ZiZk))

In the real world, several graphs often contain attributes for nodes and edges, such as
user profiles on a social network. These attributes provide helpful information to improve
the node representation and help to learn node embedding. Yang et al. [131] proposed
the TADW model by representing the DeepWalk model as a matrix factorization and
integrating text features into the factorization model. Ren et al. [142] introduced the PLE
model to learn jointly different types of nodes and edges with text attributes. Since existing
models often ignore the noise of labels, PLE is the first work to investigate the noisy type
labels by measuring the similarity between entities and type labels.

Beyond static and homogeneous graphs, several models have been proposed to learn
embeddings in dynamic and heterogeneous graphs. The embedding models for dynamic
graphs are essentially the same as for static graphs, including Laplacian eigenmaps methods
and node proximity matrix factorization to model relations in dynamic graphs over time.
For Laplacian eigenmaps methods, Li et al. [81] presented DANE (Dynamic Attributed
Network Embedding) model to learn node embeddings in dynamic graphs. The main
idea of the DANE model is to represent a Laplacian matrix as L(t)

A = D(t)
A − A(t), where

A(t) ∈ Rn×n is the adjacency matrix of dynamic graphs at time t, DA is the diagonal matrix,
then the model could be able to learn node embeddings by time in an online manner. To
preserve the node proximity, the DANE model aimed to minimize the loss function:

L(vi, vj) = ∑
(vi ,vj)

i 6=j

A(t)
ij

∥∥Zi − Zj
∥∥2

2 . (14)

The eigenvectors λ of the Laplacian matrix L can be calculated by solving the general-
ized eigenproblem: L(t)

A a = λD(t)
A , where a = 〈a0 a1 · · · aN〉 is the eigenvectors.

Several models applied node proximity matrix factorization directly to dynamic graphs
by updating the proximity matrix between entities in the dynamic graphs. Rossi et al. [134]
presented dynamic graphs as a set of static graph snapshots: G = {G(t0) G(t1) · · · G(tN)}.
The model then learned a transition proximity matrix T, which describes all transitions
from the dynamic graphs. For evaluation, they predict the graph G at time t + 1: Ĝt+1 =

GtTt+1, then estimate the error using Frobenius loss:
∥∥∥Ĝt+1 − Gt+1

∥∥∥
F
. Zhu et al. [135,137]

aimed to preserve the graph structure based on temporal matrix factorization during
the network evolution. Given an adjacency matrix A(t) at time t, two temporal rank-k
matrix factorization U and V(t) are factorized as A(t) = f (UV(t)ᵀ), and the objective is to
minimize the loss function L(A) which could be defined as:

L(A) =
T

∑
t=1

D(t)
2

∥∥A(t)− Â(t)
∥∥2

F . (15)

Matrix factorization models have been successfully applied to graph embedding,
mainly for the node embedding problem. Most models are based on singular value
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decomposition to find eigenvectors in the latent space. There are several advantages of
matrix factorization-based models:

• Training data requirement: The matrix factorization-based models do not need much
data to learn embeddings. Compared to other methods, such as neural network-based
models, these models bring advantages in case there is little training data.

• Coverage: Since the graphs are presented as Laplacian matrix L, or transition matrix
M, then the models could capture all the proximity of the nodes in the graphs. The
connection of all the pairs of nodes is observed at least once time under the matrix
that makes the models could be able to handle sparsity graphs.

Although matrix factorization is widely used in graph embedding problems, it still
has several limitations:

• Computational complexity: The matrix factorization suffers from time complexity and
memory complexity for large graphs with millions of nodes. The main reason is the
time it takes to decompose the matrix into a product of small-sized matrices [15].

• Missing values: Models based on matrix factorization cannot handle incomplete
graphs with unseen and missing values [143,144]. When the graph data are insufficient,
the matrix factorization-based models could not learn generalized vector embeddings.
Therefore, we need neural network models that can generalize graphs and better
predict entities in graphs.

3.3. Shallow Models

This section focuses on shallow models for mapping graph entities into vector space.
These models mainly aim to map nodes, edges, and subgraphs as low-dimensional vectors
while preserving the graph structure and entity proximity. Typically, the models first
implement a sampling technique to capture graph structure and proximity relation and
then learn embeddings based on shallow neural network algorithms. Several sampling
strategies could be taken to capture the local and global information in graphs [14,145,146].
Based on the sampling strategy, we divide shallow models into two main groups: structure
preservation and proximity reconstruction.

• Structure preservation: The primary concept of these approaches is to define sampling
strategies that could capture the graph structure within fixed-length samples. Several
sampling techniques could capture both local and global graph structures, such as
random-walk sampling, role-based sampling, and edge reconstruction. The model
then applies shallow neural network algorithms to learn vector embeddings in the
latent space in an unsupervised learning manner. Figure 6a shows an example of a
random-walk-based sampling technique in a graph from a source node vs to a target
node vt.

• Proximity reconstruction: It refers to preserving a k-hop relationship between nodes
in graphs. The relation between neighboring nodes in the k-hop distance should be
preserved in the latent space. For instance, Figure 6b presents a 3-hop proximity from
the source node vs.

In general, shallow models have achieved many successes in the past decade [4,14,21].
However, there are several disadvantages of shallow models:

• Unseen nodes: When there is a new node in graphs, the shallow models cannot learn
embeddings for new nodes. To obtain embedding for new nodes, the models must
update new patterns, for example, re-execute random-walk sampling to generate new
paths for new nodes, and then the models must be re-trained to learn embeddings. The
re-sampling and re-training procedures make it impractical to apply them in practice.

• Node features: Shallow models such as DeepWalk and Node2Vec mainly work suitably
on homogeneous graphs and ignore information about the attributes/labels of nodes.
However, in the real world, many graphs have attributes and labels that could be
informative for graph representation learning. Only a few studies have investigated
the attributes and labels of nodes, and edges. However, the limitations of domain
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knowledge when working with heterogeneous and dynamic graphs have made the
model inefficient and increased the computational complexity.

• Parameter sharing: One of the problems of shallow models is that these models cannot
share the parameters during the training process. From the statistical perspective,
parameter sharing could reduce the computational time and the number of weight
updates during the training process.

(a) (b)
Figure 6. Node sampling techniques. (a) k-hop sampling; (b) Random-walk sampling. The source
node vs and the target node vt are taken as the source node and the target node in the graph. In
(a), the k-hop proximity sampling strategy begins from source node vs, and the green nodes are
considered to be the 1st-hop proximity of node vs. The blue and the black nodes are considered
2nd-hop and 3rd-hop proximity of node vs, respectively. In (b), the random-walk sampling strategy
takes a random walk (red arrow) from the source node vs to the target node vt.

3.3.1. Structure-Preservation Models

Choosing a strategy to capture the graph structure is essential for shallow models to
learn vector embeddings. The graph structure can be sampled through connections between
nodes in graphs or substructures (e.g., subgraphs, motifs, graphlets, roles, etc.). Table 5
briefly summarizes structure-preservation models for static and homogeneous graphs.

Over the last decade, various models have been proposed to capture the graph struc-
ture and learn embeddings [4,21,147,148]. Among those models, random-walk-based
strategies could be considered one of the most typical strategies to sample the graph struc-
tures [4,14]. The main idea of the random-walk strategy is to gather information about
the graph structure to generate paths that can be treated as sentences in documents. The
definition of random walks could be defined as:

Definition 6 (Random walk [14]). Given a graph G = (V, E), where V is the set of nodes and E
is the set of edges, a random walk with length l is a process starting at a node vi ∈ V and moving to
its neighbors for each time step. The next steps are repeated until the length l is reached.

Two models, DeepWalk [14] and Node2Vec [4] could be considered to be pioneer
models to open a new direction for learning node embeddings.

Inspired by the disadvantages of the matrix factorization-based models, the DeepWalk
model could preserve the node neighborhoods based on random-walk sampling, which
could capture global information in graphs. Moreover, both DeeWalk and Node2Vec aim
to maximize the probability of observing node neighbors by stochastic gradient descent
on each single-layer neural network. Therefore, these models reduce running time and
computational complexity. DeepWalk [14] is a simple node embedding model using
the random-walk sampling strategy to generate node sequences and treat them as word
sentences. The objective of DeepWalk is to maximize the probability of the set of neighbor
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nodes N(vi) given a target node vi. Formally, the optimization problem could be defined as:

φ∗(·) = arg min
φ(·)
− log p(N(vi)|φ(vi)) (16)

where vi denotes the target node, N(vi) is the set of neighbors of vi which could be
generated from random-walk sampling, φ(vi) is the mapping function φ : vi ∈ V → R|V|×d.
The model uses two strategies for finding neighbors given a source node, based on the
Breadth-First Search (BFS) and Depth First Search (DFS) strategies. The BFS strategy aims to
represent a microscopic view that captures the local structure. In contrast, the DFS strategy
delivers the global structure information in graphs. The DeepWalk then uses a skip-gram
model and stochastic gradient descent (SGD) to learn latent representations.

Table 5. A summary of structure-preservation models for homogeneous and static graphs. K indicates
the number of clusters in the graph, and µk refers to the mean value of cluster k.

Models Graph Types Tasks Loss Function

DeepWalk [14] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)
Node2Vec [4] Static graphs Node classification,

Link prediction
−∑vi∈V yᵀi log(ŷi)

WalkLets [147] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)
Div2Vec [149] Static graphs Link prediction −∑vi∈V yᵀi log(ŷi)

Static graphs Node classification −∑vi∈V yᵀi log(ŷi)
Node2Vec+ [148] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)

Struct2Vec [21] Static graphs Node classification − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

DiaRW [150] Static graphs Node classification,
Link prediction

∑vi∈V −yᵀi log(ŷi)− (1− yi) log(1− ŷi)

Role2Vec [151] Attributed graphs Link prediction
K
∑

k=1
∑vi∈Vk

‖Zi − µk‖2
2

NERD [152] Directed graphs Link Prediction,
Graph Reconstruction,
Node classification

∑
(vi ,vj)∈E

log σ(ZiZj) +
∣∣Nneg

∣∣Evk∼Pn(vk)(log σ(−ZiZk))

Sub2Vec [153] Static graphs Community detection,
graph classification

K
∑

k=1
∑vi∈Vk

‖Zi − µk‖2
2

Subgraph2Vec [145] Static graphs Graph classification,
Clustering

−∑vi∈V yᵀi log(ŷi)

RUM [89] Static graphs Node classification,
Graph reconstruction

−∑vi∈V yᵀi log(ŷi)

Gat2Vec [154] Attributed graphs Node classification,
Link prediction

− ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

ANRLBRW [155] Attributed graphs Node classification − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

Gl2Vec [88] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)

One of the limitations of DeepWalk is that the model can only capture the graph struc-
ture but fail to navigate the random-walk sampling to enrich the quality of the sampling
graph structure. To overcome the limitations of DeepWalk, Grover and Leskovec intro-
duced Node2Vec [4] with a flexible random-walk sampling strategy to navigate random
walks via each time step. The key difference between DeepWalk and Node2Vec is that
instead of using a truncated random walk, the model used a biased random-walk sampling
process with two parameters (p and q) to adjust the random walk on graphs. Figure 7a
presents two parameters p and q in Node2Vec model in detail. The model could capture
more information on the graph structure locally and globally by introducing constraints
when deciding the subsequent nodes visited.
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(a) (b)

Figure 7. Sampling strategy in Node2Vec and WalkLets model. (a) Sampling strategy in Node2Vec
model; (b) Sampling strategy in WalkLets model. In (a), assume a random path from the DeepWalk
model is of the form: (v1 → v2 → v3 → v4), then the corpus of random walk pairs at scale k = 3
is: A1 = {(v1, v2), (v2, v3), (v3, v4)}, A2 = {(v1, v3), (v2, v4)}, and A3 = {(v1, v4)}. In (b), there are
two parameters: the return parameter p and the in–out parameter q. Parameters 1, 1/p, and 1/q are
conditional probabilities. Starting at node u and now at v, the random walk looks at the next node
based on the probabilities 1/p and 1/q.

Perozzi et al. [147] presented the WalkLets model, which was extended from the
DeepWalk model. They modified the random-walk sampling strategy to capture more
graph structure information by skipping and passing over multiple nodes at each time
step. Therefore, these sampling strategies can capture more global graph structure by the
power of the transition matrix when passing over multiple nodes. The main idea of the
WalkLets model is to represent the random-walk paths as pairs of nodes in the multi-scale
direction. Figure 7b depicts the sampling strategy of the WalkLets model using multi-scale
random-walk paths. However, one of the limitations of the WalkLets is that the model
could not distinguish local and global structures when passing and skipping over nodes
in graphs. Jisu et al. [149] presented a variation of DeepWalk, named Div2Vec model. The
main difference between the two models is the way that Div2Vec chooses the next node in
the random-walk path, which will be visited based on the degree of neighboring nodes. The
focus on the degree of neighboring nodes could help the models learn the importance of
nodes that are popular in social networks. Therefore, at the current node vi, the probability
of choosing the next node vj in a random-walk path is calculated as:

p(vj|vi) =
f (deg(vj)

∑vi∈N f (deg(vi))
(17)

where deg(vj) depicts the degree of node vj, and f (deg(vj)) =
1

deg(vj)
. Renming et al. [148]

presented Node2Vec+, an improved version of Node2Vec. One limitation of the Node2Vec
model is that it cannot determine the following nodes based on the target nodes. There
is a significant difference between Node2Vec and Node2Vec+. The Node2Vec+ model
can determine the state of the potential edge for a given node, therefore enhancing the
navigability of the Node2Vec model to capture more graph structure. In particular, they
introduced three neighboring edge states from a current node (out edge, noisy edge, and in
edge) which are calculated to decide the next step. With potential out edges (vi, vj) ∈ E
from previous node t, the in–out parameters p and q of Node2Vec model could then be
re-defined as bias factor α as:

αpq(t, vi, vj) =



1
p if t = x.

1 if w(vj, t) ≥ d̃(vj).
min{1, 1

p} if w(vj, t) < d̃(vj) and w(vj, t) < d̃(vi).
1
q + (1− 1

q )
w(vj ,t)

d(x) if w(vj, t) < d̃(vj) and w(vj, t) ≥ d̃(vi).

(18)
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where d̃(vi) denotes a noisy edge threshold which could consider the next node state vj
from the current node t and could be viewed as the weights of edges, w(vi, vj) is the weight
of the edge between vi and vj.

In contrast to preserving graph topology which mainly focuses on distance relations,
several models aimed to preserve the role and importance of nodes in graphs. In the
case of social networks, for example, we could discover influencers with the ability to
impact several activities of communities. In contrast to the random-walk-based technique,
several studies [21,150] used the term “role-based” to preserve the nodes’ role, which
random-walk-based sampling strategies cannot capture in a fixed length. Therefore, by
preserving the role of nodes, role-based models could capture the structural equivalent.
Ribeiro et al. [21] introduced the Struc2Vec model to capture graph structure based on the
nodes’ role. Nodes that have the same degree should be encoded close in the vector space.
Given a graph G, they introduced k graphs, each graph can be considered in one layer.
Each layer denotes a graph that describes the weighted node degree from different hop
distances. Specifically, at layer Lk, for each node vi ∈ V, there are three probabilities of
going to node vj in the same layer, jumping to the previous layer Lk−1 and next layer Lk+1:

pk(vk
i , vk

j ) =
e− fk(vk

i ,vk
j )

Zk(vk
i )

(19)

pk(vk
i , vk+1

i ) =
w(vk

i , vk+1
i )

w(vk
i , vk+1

i ) + w(vk
i , vk−1

i )
(20)

pk(vk
i , vk−1

i ) = 1− pk(vk
i , vk+1

i ) (21)

where fk(vi vj) presents the role-based distance between nodes vi and vj, and w(·) denotes
the edge weight. Zhang et al. [150] presented the DiaRW model, which uses a random-walk
strategy based on the node degree. The difference between other role-based models and
the DiaRW model is that they used random walks that can vary in length based on the
node degree. One of the limitations of the Struc2Vec model is that the model could not
preserve the similarity of nodes in graphs. Motivated by this limitation, the DiaRW model
aims to capture structural identity based on node degree and the neighborhood in which
nodes have a high degree. The purpose of this model is to collect structural information
around higher-order nodes, which is a limitation of models based on fixed-length random
walks. Ahmed et al. [151] introduced the Role2Vec model that could capture the node’s
similarity and structure by introducing a node-type parameter to guide random-walk
paths. The core idea of Role2Vec is that nodes in the same cluster should be sampled
together in the random-walk path. By only sampling nodes in the same clusters, Role2Vec
could learn correct patterns with reduced computational complexity. The model then uses
the skip-gram model to learn node embeddings. Unlike Rol2Vec, the NERD model [152]
considers nodes’ asymmetric roles for directed graphs. The model sampled the neighbor’s
nodes using an alternative random walk. The probability of the next node vi+1 from the
current node vi in the random-walk path could be defined as:

p(vi+1|vi) =


1

dout(vi)
· w(vi, vj) if (vi, vj) ∈ E .

1
din(vi)

· w(vi, vj) if (vj, vi) /∈ E .

0 otherwise .

(22)

where w(vi, vj) is the weight of the edge eij din(vi) and dout(vi) present the total in-degree
and out-degree of the node vi, respectively.

In some types of graphs, nodes in the same subgraphs tend to have similar labels.
Studying low-level node representation could not bring significant generalization. Instead
of embedding individual nodes in graphs, several studies aimed to learn subgraph similar-
ity or the whole graphs. Inspired by representations of sentences and documents in the
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NLP (natural language processing) area, Bijaya et al. [153] proposed the Sub2Vec model to
embed each subgraph into a vector embedding.

To learn a subgraph embedding S = {G1 G2 · · · Gn} from an original graph G, two
properties should be preserved: similarity and structural property. The former ensures the
connection between subgraph nodes by collecting sets of paths in a subgraph. The latter
ensures that each node in a subgraph should be densely connected to all other nodes in
the same subgraph. Figure 8 presents two subgraph properties that could capture each
subgraph connection and structure.

Figure 8. Sampling strategy in Sub2Vec model. Assume that there are two subgraphs
G1 = {v1, v2, v3, v4}, and G2 = {v5, v6, v7, v9}. For neighborhood properties, the model uses random-
walk sampling on all nodes in subgraphs G1 and G2 to capture the subgraph structure. For structural
properties, they introduced a ratio of node degree when sampling. With the length of the random-
walk path is 3, then the degree path for G1 is 0.75→ 0.75→ 0.75, while the degree path from node v5

to v9 is: 0.25→ 0.75→ 0.25.

In contrast to Sub2Vec, Subgraph2Vec [145] aimed to learn rooted subgraph em-
beddings for detecting Android malware. One of the advantages of this model with
the Sub2Vec model is that Subgraph2Vec could consider different degrees of rooted sub-
graphs surrounding the target subgraph while Sub2Vec tried to detect the community.
Annamalai et al. [156] targeted embedding the entire graph into the latent space. With
the same idea as the Subgraph2Vec model, they extracted the set of subgraphs from the
original graph using the WL relabeling strategy. However, the difference is that they used
the Doc2Vec model by treating documents as graphs to learn graph embeddings.

Most models mentioned above aim to capture the graph structure based on low-level
node representation, which could fail to represent the higher-level structure. Therefore,
finding the community structure can be difficult for models based on random-walk sam-
pling strategies. Motif-based models are one of the strategies to preserve the local structure
and discover the global structure of graphs. Yanlei et al. [89] proposed the RUM (network
Representation learning Using Motifs) model to learn small groups of nodes in graphs. The
main idea of RUM was to build a new graph G′ = (V′, E′) based on the original graph by
constructing new nodes and edges as follows:

• Generating nodes in graph G′: Each new node v in graph G′ is a tuple vijk = 〈vi, vj, vk〉
in the original graph G. Therefore, they can map the triangle patterns of the original
graph to the new graph for structure preservation.

• Generating edges of graph G′: Each edge of the new graph is formed from two
nodes that have two edges in common in the original graph. For example, the edge
e = (vijk, vijl) denotes that we the edge (vi, vj) ∈ E in the original graph G.

The model then used the skip-gram model to learn the node and motif embeddings.
Figure 9b depicts the details of the random-walk sampling strategy based on motifs.
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(a) (b)
Figure 9. The random-walk sampling based on motif. (a) Random-walk sampling; (b) Motif-based
random-walk sampling. (a) presents a random-walk path from node v1 to v7: v1 → v3 → v4 → v5 →
v7. In (b), the motif-based path is: 〈v1, v2, v3〉 → 〈v2, v3, v4〉 → 〈v2, v4, v5〉 → 〈v4, v5, v6〉.

There are also several models based on motifs for heterogeneous graphs [87,90,91].
For instance, Qian et al. [90] proposed the MBRep model (Motif-based representation) with
the same idea from the RUM model to generate a hyper-network based on a triangle motif.
However, the critical difference is that the MBRep model could extract motifs based on
various node and edge types in heterogeneous graphs.

Most of the above models aim to learn node embeddings without side information,
which could be informative for learning graph structure. However, graphs in the real world
could be composed of side information, such as attributes of nodes and edges. Several
models tried to learn node embeddings in attributed graphs by adding node properties
presented as attributed graphs. Nasrullah et al. [154] proposed the Gat2Vec model to
capture the contextual attributes of nodes. Given by a graph G = (V, E, X) where X is the
attribute function X : V → 2X , they generated a structural graph Gs and a bipartite graph
Ga as:

Gs = (Vs E) (23)

Ga = (Va X Ea) (24)

where Vs ⊆ V, Va = {vi : X(vi) 6= ∅}, Va ⊆ V, and Ea = {(vi, a), a : X(vi)}. They then
used the random-walk sampling strategy to capture the graph structure in both types of
graphs. Similar to Gat2Vec, Wei et al. [155] introduced the ANRLBRW model (Attributed
Network Representation Learning Based on Biased Random Walk) with the idea of splitting
the original graph G into a geological graph and attributed graph. However, there is a
slight difference between the two models. ANRLBRW model used a biased random-walk
sampling inspired by Node2Vec, which includes two parameters p and q in the sampling
strategy. Kun et al. [88] introduced the Gl2Vec model to learn node embeddings based on
graphlets. To generate the feature representation for graphs, they capture the proportion of
graphlet occurrences in a graph compared with random graphs.

For social networks, the connections of nodes are far more complex than the node-
to-node edge relationship, which constructs hypergraphs. In contrast to homogeneous
graphs, edges in hypergraphs could connect more than two nodes in graphs which leads to
difficult learning node embeddings. Several models have been proposed to learn node and
edge embeddings in the hypergraphs [157,158]. For example, Yang et al. [157] proposed
the LBSN2Vec (Location Based Social Networks) model, a hypergraph embedding model
to learn hyperedges including both user-user connection and user-check-in locations over
time. Since most existing models fail to capture mobility features and co-location rates
dynamically, the model could learn the impact of user mobility in social networks for
prediction tasks. The objective of this model is to use a random-walk-based sampling
strategy on hyperedges with a sequence length to capture the hypergraph structure. They
then use cousin similarity to preserve nodes’ proximity in the random-walk sequences.
Table 6 lists a summary of representative models for heterogeneous graphs.
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Table 6. A summary of structure-preservation models for heterogeneous graphs and dynamic graphs.
K is the number of clusters in graphs, Nneg refers to the number of negative samples, and Pn means
the noise distribution.

Models Graph Types Tasks Loss Function

MBRep [90] Hypergraphs Link prediction − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

Motif2Vec [87] Heterogeneous
graphs

Node classification
link prediction

∑vi∈V ∑vj∈N(vi) − log
(

p(vj|Zi)
)

JUST [159] Heterogeneous
graphs

Node classification
Node clustering

∑(vi ,vj)∈E log σ(ZiZj) +
∣∣Nneg

∣∣Evk∼Pn(vk)(log σ(−ZiZk))

[160] Multiplex graphs Link prediction ∑(vi ,vj)∈E log σ(ZiZj) +
∣∣Nneg

∣∣Evk∼Pn(vk)(log σ(−ZiZk))

BHIN2Vec [161] Heterogeneous
graph

Node classification −∑vi∈V
(
yᵀi log(ŷi) + (1− yi) log(1− ŷi)

)
[162] Heterogeneous

graphs
Link prediction 1

|V| ∑vi∈V ‖yi − ŷi‖2
2

[163] Heterogeneous
graphs

Link prediction 1
|V| ∑vi∈V ‖yi − ŷi‖2

2

[164] Heterogeneous
graphs

Link prediction 1
|V| ∑vi∈V ‖yi − ŷi‖2

2

[165] Heterogeneous
graphs

Link prediction 1
|V| ∑vi∈V ‖yi − ŷi‖2

2

[166] Heterogeneous
graphs

Entities prediction 1
|V| ∑vi∈V ‖yi − ŷi‖2

2

MrMine [167] Multiplex graphs Graph classification − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

[168] Heterogeneous
graph

Link prediction ∑
(vi ,vj)∈E

[
log σ

(
Zᵀ

i Zj

)
−

n
∑

k=1

(
Evk∼P(vi) log σ(Zᵀ

i Zk)
)]

[169] Dynamic graphs Node classification −∑vi∈V yᵀi log(ŷi)

[170] Dynamic graphs Node classification − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

[171] Dynamic graphs Link prediction −
N
∑

i=1
[yi log ŷi + α(1− yi) log(1− ŷi)]

STWalk [172] Dynamic graphs Node classification
[173] Dynamic graphs Node classification,

Link prediction
−∑vi∈V yᵀi log(ŷi)

[174] Dynamic graphs Link prediction,
Node classification

−∑vi∈V ∑vj∈N(vi) log(Ẑj)

Dyn2Vec [10] Dynamic graphs Node classification − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

[92] Dynamic graphs Link prediction 1
|V| ∑

vi∈V
[yi log ŷi + α(1− yi) log(1− ŷi]

T-EDGE [175] Dynamic graphs Node classification − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

LBSN2Vec [157] Hyper graphs Link prediction
n
∑

i=1

(
1− cos

(
Zi, Zj

))
[158] Hyper graphs Link prediction arg min

Z
ZᵀLZ

Several types of graphs in the real world are heterogeneous, with different node
and edge types. Most of the above models fail to capture heterogeneous graphs. Several
models have been proposed to capture the heterogeneous graph structure [159,164,166].
Dong et al. [20] introduced the Metapath2Vec model, the idea based on random walks to
learn node embeddings in heterogeneous graphs. One of the powers of meta-path is that it
can capture the relationship between various types of nodes and edges in heterogeneous
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graphs. To capture the structure of heterogeneous graphs with different types of nodes and
edges, they presented meta-path random walks P with length l:

P : v1
t1−→ v2

t2−→ · · ·
tk−1−−→ vk

tk−→ · · ·
tl−1−−→ vl (25)

where ti presents the relation type between nodes vi and vi+1. Therefore, the transition
probability of node vi+1 given by node vi in the meta-path P could be defined as:

p(vi+1|vt
i , P) =

{ 1
|Nt+1(vt

i )|
if (vi+1, vt

i) ∈ E E(t)(vi+1) = t + 1 .

0, otherwise .
, (26)

where Nt+1(vt
i) is the number of the neighbors of node vi with node type t + 1. Then,

similar to DeepWalk and Node2Vec models, they used the skip-gram model to learn node
embeddings. The approach from JUST [159] was conceptually similar to Metapath2Vec but
the sampling strategy is performed differently. The model introduced a biased random-
walk strategy with two parameters (jumping and staying) which aims to change the current
domain or stay in the same domain for the next step.

Since the vanilla meta-path sampling strategy fails to capture different types of
graphs, such as multiplex graphs and sparse graphs, several sampling strategies have
been proposed for heterogeneous graphs based on meta-path strategies. The work of
Zhang et al. [160] was similar to Metapath2Vec which implements random-walk sampling
of all node types in the multiplex network. Lee et al. [161] introduced a BHIN2vec model
which uses the random-walk strategy to capture sparse and rare patterns in heteroge-
neous graphs. Some models [162–165] have been applied to biological areas based on
random-walk strategies. Lee et al. [166] used the WL relabeling strategy to capture tempo-
ral substructures of graphs. The model targeted the proximity of substructures in graphs
instead of node proximity to learn the bibliographic entities in heterogeneous graphs. There
are several models [167,168,176,177] that aim to capture entities from multiple networks.
Du and Tong et al. [167] presented the MrMine model (Multi-resolution Multi-network)
to learn embeddings with multi-resolutions. They first used WL label transformation to
label nodes by the degree sequences, then adopted a dynamic time wrapping measure [21]
to calculate the distance of each sequence to generate a relation network. The truncated
random-walk sampling strategy is adopted to capture the graph structure. In contrast
to the MrMine model, Lee and colleagues [168,176,177] explored in-depth multi-layered
structure to represent the relation and proximity of individual characters, substructures,
and the story network as a whole. To embed the substructure and story network, they
first used WL relabeling [33] to extract substructures in the story network and then used
Subgraph2Vec and Doc2Vec models to learn node embeddings.

Several types of graphs in the real world, however, show dynamic behaviors. Since
most graph embedding models aim to learn node embeddings in static graphs, several
models have been applied to learn node embeddings in dynamic graphs [10,92,173–175].
Most of them were based on the idea of DeepWalk and Node2Vec to capture the graph
structure. By representing dynamic graphs as a set of static graphs, some models captured
changes in the dynamic graph structure and updated changes in random walks over time.
Then, the skip-gram model is used to learn node embeddings. For instance, the key idea
of Sajjad et al. [169] is to generate random-walk paths on the first snapshot and then
update random-walk paths in the corpus by time. Most existing models re-generate node
embeddings for each graph snapshot to capture the dynamic behaviors. By contrast, the
model introduced a set of dynamic random walks, which are frequently updated when
there are any changes in dynamic graphs. This could reduce the computational complexity
when the model handles large graphs. Figure 10 shows an example of how random-walk
paths are updated in dynamic graphs.
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Figure 10. Updating random-walk paths to the corpus on dynamic graphs. At time t, the graph has
3 nodes: v1, v2, v3 with two edges:(v1, v2) and (v2, v3). Assuming the length of the random walk is 3,
then the set of random walks: 〈v1, v2, v1〉, 〈v1, v2, v3〉, 〈v2, v1, v2〉, 〈v2, v3, v2〉, 〈v3, v2, v1〉, 〈v3, v2, v3〉.
At the time t + 1: the graph has a new node v4 and a new edge (v2, v4). Then, new random walks
will be updated on the corpus are: 〈v4, v2, v1〉, 〈v4, v2, v3〉, and 〈v4, v2, v4〉.

Since the evolution of graphs only takes place at every few nodes and within a
specific range of neighbors, updating the entire random walk is time-consuming. Several
models [169–172,174,175] suggested updating dynamic steps over time for a few nodes
and their local neighbors’ relationship. For example, Sedigheh et al. [174] presented the
Dynnode2Vec model to capture the temporal evolution from graph Gt to Gt+1 by a set
of new nodes and edges (Vnew, Enew) and a set of removed nodes and edges (Vdel , Edel).
Motivated by Node2Vec architecture, the Dynnode2Vec model could learn the dynamic
structure by inducing an adequate group of random walks for only dynamic nodes. The
random-walk strategy, therefore, could be more computational efficiency when the model
handles large graphs. Furthermore, the proposed dynamic skip-gram model could learn
node embeddings at time t by adopting the results of the previous time t − 1 as initial
weights. As a result, the dynamic skip-gram model could learn the dynamic behaviors over
time.

Therefore, the changes in nodes at time t + 1 could be described as:

∆Vt = Vadd ∪ {vi ∈ Vt+1|∃e = (vi, vj) ∈ (Eadd ∪ Edel)} . (27)

In summary, structure-preservation methods have succeeded in learning embeddings
over the past decade. There are several key advantages of these models:

• Computational complexity: Unlike kernel models and matrix factorization-based
models, which require considerable computational costs, structure preservation mod-
els could learn embeddings with an efficient time. This effectiveness comes from
search-based sampling strategies and the model generalizability from the training
process.

• Classification tasks: Since the models aim to find structural neighbor relationships
from a target node, these show power in problems involving node classification. In
almost all graphs, nodes that have the same label tend to be connected at a small,
fixed-length distance. This is a strength of models based on preserving structure in
problems related to classification tasks.

However, there are a few limitations that these models suffer when preserving the
graph structure:

• Transductive learning: Most models cannot learn node embeddings that have not been
seen in the training data. To learn new node embeddings, the model should re-sample
the graph structure and learn the new samples again which could be time-consuming.

• Missing connection problem: Many graphs have sparse connections and missing
connections between nodes in the real world. However, most structure-preservation
models cannot handle missing connections between nodes since the sampling strate-
gies could not be able to capture these connections. In the case of a random-walk-based
sampling strategy, for example, these models only capture graph structure when nodes
are linked together.
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• Parameter sharing: These models could only learn node embeddings for individual
nodes and do not share parameters. The absence of sharing parameters could reduce
the effectiveness of learning representation.

3.3.2. Proximity Reconstruction Models

The purpose of graph embedding models is not only to preserve the graph structure
but also to preserve the proximity of nodes in graphs. Most proximity reconstruction-based
models are used for link prediction or node recommendation tasks [178–180] due to the
nature of the similarity strategies. In this part, we discuss various models attempting to
preserve the proximity of entities in graphs. Table 7 describes a summary of representative
proximity reconstruction-based graph embedding models.

One of the typical models is LINE [16], which aims to preserve the symmetric proximity
of node pairs in graphs. The advantage of the LINE model is that it could learn the
node similarity which most structure-preservation models cannot represent this structural
information. The main goal of the LINE model is to preserve the 1st-order and 2nd-order
proximity of node pairs in graphs. The 1st-order proximity can be defined as follows:

Definition 7 (1st-order proximity [16]). The 1st-order proximity describes the local pairwise
similarity between two nodes in graphs. Let wij be the weight of an edge between two nodes vi and
vj, and the 1st-order proximity is defined as wij when two nodes are connected and wij = 0 when
there is no link between them.

In the case of binary graphs, wij = 1 if two nodes vi and vj are connected, and wij = 0
otherwise. To preserve the 1st-order proximity, the objective function of two distribution
p̂1(vi, vj) and p1(vi, vj) should be minimized:

L1(θ) = arg min
θ

d
(

p̂1(vi, vj), p1(vi, vj)|θ
)

(28)

p̂1(vi, vj) =
wij

∑(vk ,vl)∈E Zᵀ
k Zl

p1(vi, vj) =
exp(Zᵀ

i Zj)

∑(vk ,vl)∈E Zᵀ
k Zl

(29)

where p̂1(vi, vj) and p1(vi, vj) depict the empirical probability, and the actual probability of
the 1st-order proximity, respectively, vi and vj are two nodes in G, Zi and Zj are embedding
vectors in latent space corresponding to vi and vj, respectively, d(· ·) is the distance between
the two distributions. The statistical distance, Kullback–Leibler divergence [181], is usually
used to measure the difference between two distributions. In addition to preserving
the proximity of two nodes that are connected directly, the LINE model also introduced
2nd-order proximity, which could be defined as follows:

Definition 8 (2nd-order proximity [16]). The 2nd-order proximity when k = 2 captures the
relationship of neighbors of each pair of nodes in the graph G. The idea of the 2nd-order proximity is
that nodes should be closed if they share the same neighbors.

Let Zi and Zj are vector embeddings of nodes vi and vj, respectively, the probability
of the specific context vj given by the target node vi could be defined as:

p2(vj|vi) =
exp(Zᵀ

j Zi)

∑vk∈V exp(Zᵀ
k Zi)

. (30)

Therefore, the minimization of the objective function L2 could be defined as:

L2(θ) = arg min
θ

∑
vi∈V

DKL( p̂2(.|vi; θ), p2(.|vi)) (31)
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where p̂2(vj|vi) =
wij

∑k∈N(i) wik
is the observed distribution, wij is the weighted edge between

vi and vj.

Table 7. A summary of proximity reconstruction models. v(t)i denotes the type t of node vi, wij is the
weight between node vi and vj, P is a meta-path in heterogeneous graphs, N2 is the 1st-order and
2nd-order proximity of a node vi, and Pn(v) is the noise distribution for negative sampling.

Models Graph Types Objective Loss Function

LINE [16] Static graphs Node classification − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

APP [76] Static graphs Link prediction − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

PALE [77] Static graphs Link prediction − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

∑〈vi ,vj〉∈E

∥∥∥Zi − Zj

∥∥∥2

F

CVLP [182] Attributed
graphs

Link prediction − ∑
(vi ,vj)∈E
(vi ,vk)/∈E

log σ
(

Zᵀ
i Zj − Zᵀ

i Zk

)
+ α1

∥∥∥Zi − Zj

∥∥∥2

2
+ α2L1 + α3L2

[183] Static graphs Link prediction − ∑
〈vi ,vj〉∈E

wij log
(

p1(vi|vj)
)
− ∑
〈vi ,vj〉∈E

wij log
(

p2(vj|vi)
)

HARP [178] Static graphs Node classification − ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

PTE [179] Heterogeneous
graphs

Link prediction −∑〈v(t)i ,v(t)j

〉
∈E(t) wij log(v(t)i |v

(t)
j )

Hin2Vec [180] Heterogeneous
graphs

Node classification,
link prediction

∑vi∈V −yᵀi log(ŷi)− (1− yi) log(1− ŷi)

[78] Heterogeneous
graphs

Node classification ∑(vi ,vj)∈E log σ(ZiZj) +
∣∣Nneg

∣∣Evk∼Pn(vk)(log σ(−ZiZk))

[184] Signed graphs Link prediction ∑vi∈V −yᵀi log(ŷi)− (1− yi) log(1− ŷi)

[185] Heterogeneous
graphs

Node classification,
Node clustering

− ∑
(vi ,vj)∈P

log
(

1 + e−Zi Zj
)
+
∣∣Nneg

∣∣Evk∼Pn(vk)

[
log
(
1 + e−Zi Zk

)]
[186] Heterogeneous

graphs
Link prediction ∑

(vi ,vj)∈N2

log σ(ZiZj) +
∣∣Nneg

∣∣Evk∼Pn(vk)(log σ(−ZiZk))

[187] Static graphs Node classification ∑
(vi ,vj)∈N2

log σ(ZiZj) +
∣∣Nneg

∣∣Evk∼Pn(vk)(log σ(−ZiZk))

[188] Heterogeneous
graph

Graph reconstruction,
link prediction,
node classification

∑vi∈V
∥∥(Zi − Ẑi

)
� B

∥∥2
2 + αL2

ProbWalk [189] Static graphs Node classification,
link prediction

∑vi∈V,〈vi ,vj〉∈E log
(

σ(Zᵀ
i Zj)

)
− |Nneg|∑vk∼Pn(v) log

(
σ(−Zᵀ

i Zk)
)

[190] Static graphs Node classification,
link prediction

1
|V| ∑vi∈V [yi log ŷi + α(1− yi) log(1− ŷi)]

NEWEE [191] Static graphs Node classification,
link prediction

− ∑
vi∈V,〈vi ,vj〉∈E

log
(

σ(Zᵀ
i Zj)

)
− |Nneg| ∑

vk∼Pn(v)
log
(
σ(−Zᵀ

i Zk)
)

DANE [192] Attributed
graphs

Node classification,
Link prediction

∑
vi∈V

∥∥Xi − X̂i
∥∥2

2 + ∑
vi∈V

∥∥Mi − M̂i
∥∥2

2 − ∑
(vi ,vj)∈E

log pij −

∑
(vi ,vj)∈E

[
log pij − ∑

(vi ,vj)/∈E
log(1− pij)

]
CENE [193] Attributed

graphs
Node classification ∑vi∈V −yᵀi log(ŷi)− (1− yi) log(1− ŷi)

HSCA [194] Attributed
graphs

Node classification ‖M−WᵀHX‖2
F + α

(
‖W‖2

F + ‖H‖2
F

)

However, the LINE model had several limitations as it only handles symmetric prox-
imity pairs of nodes, and the proximity of node pairs was only considered up to 2nd-order
proximity. To deal with directed graphs, Chang et al. [76] introduced the APP model, which
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could preserve the asymmetric proximity of node pairs. They introduced two roles for each
node vi ∈ V as the source role svi and target role tvi . The probability of each pair of nodes
that start from a source node to the target node could be defined as:

p(vi|vj) =
exp(svj · tvi )

∑vk∈V exp(svj · tvk )
. (32)

Tong et al. [77] presented the PALE (Predicting Anchor Links via Embedding) model
to predict the anchor links in social networks. The idea of the PALE model was the same as
that of the LINE model, but they sampled only 1st-order proximity. The loss function with
the negative sampling could be defined as:

L(V) = − ∑
(vi ,vj)∈E

log σ(ZiZj)−
∣∣Nneg

∣∣Evk∼Pn(vk)
(log σ(−ZiZk)) . (33)

Wei et al. [182] presented the CVLP (Cross-View Link Prediction) model that could
predict the connections of nodes in the context of missing and noisy attributes. Given
by a triplet (vi, vj, vk) where (vi, vj) ∈ E and (vi, vk) /∈ E, the probability of proximity
preservation is defined as:

P(sij > sik|Ug) = σ
(
sij − sik

)
(34)

where Ug is the latent representation, sij is the inner product of the representation
sij = Ug

i (U
g
j )

ᵀ
, and σ(·) is the sigmoid function. Li et al. [183] performed a similar study

to deeply learn follower-ship and followee-ship between users across different social net-
works. The main idea of this model is that the proximity between nodes in a social network
should be preserved in another social network. For each node vi in a graph, there are three
vector representations (a node vector Zi, an input context vector Z(1)

i , and output context

vector Z(2)
i ). In particular, if a node vi is following a node vj in a social network, then vector

Zi should contribute to the input context of Z(1)
j , and vector Zj should contribute to the

output context of Z(2)
i . Therefore, given a node vi, the input and output context probability

of node vj could be defined as follows:

pinput(vj|vi) =
exp(Z(1)

j

ᵀ
Zi)

∑N
k=1 (Z(1)

k

ᵀ
Zi)

poutput(vi|vj) =
exp(Z(2)

j

ᵀ
Zj)

∑N
k=1 (Z(2)

k

ᵀ
Zj)

. (35)

Haochen et al. [178] presented HARP (Hierarchical Representation) model with a
meta-strategy to capture more global proximity of each pair node in graphs. The critical
difference between HARP and LINE models is that they presented the original graph G as
a series of graphs G1, G2, · · · , GL where each graph can represent the collapse of adjacent
edges and nodes. Figure 11 shows the way that two edges and nodes are collapsed in a
graph. By representing L graphs after multiple collapses of edges and nodes, the graph can
compress the proximity of nodes through supernodes.

Several variations and extensions of the LINE model are applied to heterogeneous
and dynamic graphs. Jian et al. [179] presented the PTE model to preserve the 1st-order
and 2nd-order proximity for heterogeneous graphs. By considering heterogeneous graphs
as the set of bipartite graphs, they could independently construct the 1st-order and 2nd-
order proximity for each homogeneous graph. Specifically, a bipartite graph G could be
defined as G = (VA ∪ VB, E) where VA and VB are the set of nodes with different types.
The probability of a node vi in the set VA given by a node vj in the set VB could be defined
as follows:

p(vi, vj) =
exp(Zᵀ

i · Zj)

∑vk∈VA
exp(Zᵀ

k · Zj)
. (36)
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(a) (b)
Figure 11. The strategy of edge and node collapsing of HARP model. (a) Edge compression; (b) Node
compression. In (a), the super nodes 〈v1, v2〉 and 〈v3, v4〉 are formed by merging edges e12 and e34,
respectively. In (b), the super nodes 〈v1, v2〉 and 〈v3, v4〉 are formed by merging node pairs (v1, v2)

and (v3, v4), respectively.

The PTE model decomposes heterogeneous graphs into k homogeneous graphs, and
the loss function is the sum of the component loss functions, which could be formulated as:

L(V) = − ∑(
v(t)i ,v(t)j

)
∈E(t)

wij log p
(

v(t)i |v
(t)
j

)
, (37)

where K is the number of bipartite graphs extracted from the heterogeneous graphs. Sim-
ilar to the PTE model, Tao-yang et al. [180] proposed the Hin2Vec model to capture the
2nd-order proximity in heterogeneous graphs. However, instead of treating heterogeneous
graphs as sets of bipartite graphs, the Hin2Vec model captured the relationship between
two nodes within 2-hop distance. For instance, in the DBLP network, the relationship set is
R = {P− P, P− A, A− P, P− P− P, P− P− A, P− A− P, A− P− P, A− P− A}where
P is the paper node type and A is the author node type. Zhipeng and Nikos [185] presented
the HINE model (Heterogeneous Information Network Embedding) to preserve the trun-
cated proximity of nodes. They defined an empirical joint probability of two entities in a
graph as:

p̂(vi, vj) =
s(vi, vj)

∑vk∈V s(vi, vk)
(38)

where vi and vj are nodes, and s(vi, vj) depicts the proximity between vi and vj in G. The
proximity score s(vi, vj) could be measured by counting the number of instances of the
meta-path containing two nodes or a probability gained from implementing a random-walk
sampling from vi to vj.

Graphs in the real world, however, could contain attributes where several existing
models, such as LINE and APP, fail to capture this information. Several models have
been proposed to learn structural similarity in attributed graphs [193,195]. Sun et al. [193]
proposed a CENE (content-enhanced network embedding) model to learn structural graphs
and side information jointly. The objective of the CENE model is to preserve the similarity
between node pairs and node-content pairs. Zhang et al. [194] proposed the HSCA
(Homophily, Structure, and Content Augmented network) model to learn the homophily
property of node sequences. To gain the node sequences, HSCA uses the DeepWalk model
to capture the short random-walk sampling, which could represent the node context. The
model then learns node embeddings based on matrix factorization by decomposing the
probability transition matrix.

Most models mentioned above mainly consider the edge’s existence and ignore the
dissimilarities between edges. Beyond preserving the topology and proximity of the
aforementioned nodes, there are a variety of studies on edge reconstruction. The main idea
of edge initialization-based models is that the edge weights can be transformed as transition
probability. Wu et al. [189] introduced the ProbWalk model to learn weighted edges based
on random-walk paths for edges and the skip-gram model to learn edge embeddings. The
advantage of random walk on weighted edges is that this could help the model to generate
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more accurate node sequences and capture more useful structural information. To calculate
the probability of weighted edges in graphs, they introduced a joint distribution:

p(v1, v2 · · · vk|vi) = ∏
vj∈C

eZj ·Zi

∑n
m=1 eZm ·Zi

(39)

where vi is the target node, C = {v1, v2, · · · , vk} is the context of node vi, and Zi is vector
embedding of node vi.

Alternatively, several tasks need to preserve the proximity between different rela-
tionship types of nodes. Qi et al. [190,191] proposed the NEWEE model to learn edge
embeddings and then adopted a biased random-walk sampling to capture the graph
structure. To learn edge embeddings, they first look for a self-centered network of each
graph node. In this situation, the model could explore the similarity between edges in
the self-centered network since their score tends to be higher than those in the different
self-centered networks. Given a node vi in G, the self-centered network is a set of nodes
containing vi and its neighbors. For example, Figure 12 depicts two self-centered networks
C1 and C2 of node v1. The objective of the model is to make all edges embedded in the same
self-centered network should be close in the vector space. Therefore, given a self-centered
network G′ = (V′, E′), the objective function aims to maximize the proximity between
edges in the same network, which could be defined as:

L(E) = − ∑
vi∈V′

∑
eij∈E′

eik /∈E′

log
[
σ
(

eᵀijZi

)]
+ log

[
1− σ

(
eᵀijZk

)]
(40)

where eij denotes the edge between node vi and vj in a self-centered network G′, eik denotes
a negative edge that vi and vk coming from different self-centered network.

Figure 12. The self-centered network of NEWEE model. For instance, the self-centered of node v2

could be defined as G′ = (V′, E′) where V′ = (v1, v2, v3, v4, v5) and E′ is the set of edges in G′.

In summary, compared with structure-preservation models, the proximity construction
models bring several advantages:

• Inter-graph proximity: Proximity-based models not only explore proximity between
nodes in a single graph but can also are applied for proximity reconstruction across
different graphs with common nodes [183]. These methods can preserve the structural
similarity of nodes in other graphs which are entirely different from other models.
In the case of models based on structure-preservation strategies, these must re-learn
node embeddings in other graphs.

• Proximity of nodes belonging to different clusters: In the context of clusters with
different densities and sizes, proximity reconstruction-based models could capture
nodes that are close to each other but in different clusters. This feature shows an
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advantage over structure reconstruction-based models, which tend to favor searching
for neighboring nodes in the same cluster.

• Link prediction and node classification problem: Since structural identity is based on
proximity between nodes, two nodes with similar neighborhoods should be close in
the vector space. For instance, the LINE model considered preserving the 1st-order
and 2nd-order proximity between two nodes. As a result, proximity reconstruction
provides remarkable results for link prediction and node classification tasks [16,76,77].

However, besides the advantages of these models, there are also a few disadvantages
of the proximity-based models:

• Weighted edges problems: Most proximity-based models do not consider the weighted
edges between nodes. These models consider proximity based only on the number of
connections shared without weights which could lead to structural loss.

• Capturing the whole graph structure: Proximity-based models mostly focus on 1st-
order and 2nd-order proximity which cannot specify the global structure of graphs. A
few models try to capture the higher-order proximity of nodes in graphs, but there is
a problem with the computational complexity.

To overcome these limitations, shallow models should be replaced by models based
on deep neural networks. Deep neural network-based models can better generalize and
capture more of graph entity relationships and graph structure.

3.4. Deep Neural Network-Based Models

In recent years, large-scale graphs have challenged the ability of numerous graph
embedding models. Traditional models, such as shallow neural networks or statistical meth-
ods, cannot efficiently capture complex graph structures due to their simple architecture.
Recently, there have been various studies on deep graph neural networks, which are explod-
ing rapidly because of their ability to work with complex and large graphs [11,14,23,196].
Based on the model architecture, we separate deep graph neural networks into four main
groups: graph autoencoders, recurrent GNNs, convolutional GNNs, and graph transformer
models. This section provides a detailed picture of deep neural network-based methods.

Unlike earlier models, most deep neural network-based models adopt the graph
structure (represented as A) and node attributes/features (represented as X) to learn node
embeddings. For instance, users in the social network could have text data, such as profile
information. For nodes with missing attribute information, the attributes/features could
be represented as node degree or one-hot vectors [72].

3.4.1. Graph Autoencoders

Graph autoencoder models are unsupervised learning algorithms that aim to encode
graph entities into the latent space and reconstruct these entities from the encoded informa-
tion. Based on the encoder and decoder architecture, we can classify graph autoencoder
models into multilayer perceptron-based models and recurrent graph neural networks.

Early-stage graph autoencoder models are primarily based on multilayer perceptron
(MLP) to learn embeddings [50,51,196]. Table 8 lists a summary of fully connected graph
autoencoder models. Daixin et al. [50] introduced the SDNE model (Structural Deep
Network Embedding) to capture the graph structure based on autoencoder architecture.
Similar to the LINE model, the SDNE model aimed to preserve the 1st-order and 2nd-order
proximity between two nodes in graphs, but it used the autoencoder-based architecture.
Figure 13 presents the general architecture of the SDNE model with the corresponding
encoder and decoder layers. The joint loss function that combines two loss functions for
1st-order proximity and 2nd-order proximity can be formulated as:

L(Z, X) =
n

∑
i,j=1

∥∥(X̂− X)� B
∥∥2

F + λ
n

∑
i,j=1

sij
∥∥Zi − Zj

∥∥2
2 + L2 (41)



Sensors 2023, 23, 4168 34 of 105

where sij denotes the proximity between two nodes vi and vj. However, the SDNE model
has been proposed to learn node embeddings in homogeneous graphs. Extension of the
SDNE model to heterogeneous graphs was suggested by several graph autoencoder mod-
els [51,196]. Ke et al. [51] presented the DHNE model (Deep Hyper-Network Embedding)
to preserve neighborhood structures, ensuring that the nodes with similar neighborhood
structures will have similar embeddings. The autoencoder layer adopts an adjacency matrix
A of a hypergraph as an input, which can be formulated as:

A = HHᵀ − Dv (42)

where Dv is the diagonal matrix of node degree, and H is a matrix of size |V| × |E| presents
the relation between nodes and hyperedges in graphs. The autoencoder includes two main
layers: an encoder layer and a decoder layer. The encoder part takes the adjacency matrix
as input and compresses it to generate node embeddings, and then the decoder part tries
to reconstruct the input. Formally, the output of the encoder and decoder layer of node vi
could be defined as follows:

Zi = σ(WAi + b) Âi = σ(ŴZi + b̂) . (43)

Table 8. A summary of fully connected graph autoencoder models. A and Â are the input adjacency
matrix and reconstructed adjacency matrix, respectively, B is the penalty matrix, At is the adjacency
matrix of node type t, L denotes the number of layers, k is the length of random-walk steps, sij

denotes the proximity between vi and vj, and Z(l)
i is the hidden vector of node vi at layer l.

Models Graph Types Objective Loss Function

SDNE [50] Static graphs 1st-order proximity,
2nd-order proximity

∥∥(Â− A)� B
∥∥2

F + λ
n
∑

i,j=1
sij

∥∥∥Zi − Zj

∥∥∥2

2
+ L2.

DHNE [51] Hyper graphs 1st-order proximity,
2nd-order proximity

∥∥Â− A
∥∥2

F + λ
n
∑
t

∥∥At − Ât
∥∥2

F.

DNE-
SBP [197]

Signed graphs 1st-order proximity ∑L
l=1

(∥∥∥(Â(l) − A(l))� B
∥∥∥2

F
+ αl A

∥∥∥Z(l)
i − Z(l)

j

∥∥∥2

F
+ βl L1 + γl L2

)
.

DynGEM [198] Dynamic
graphs

1st-order proximity,
2nd-order proximity

∥∥(Â− A)� B
∥∥2

F + λ
n
∑

i,j=1
sij

∥∥∥Zi − Zj

∥∥∥2

2
+ L1 + L2.

NetWalk [199] Dynamic
graphs

Random walk
L
∑

l=1

∥∥∥Z(l)
i − Z(l)

j

∥∥∥2

2
+

L
∑

l=1

∥∥∥|A(l)
i − A(l)

j

∥∥∥2

2
+ L2.

DNGR [196] Static graphs PPMI matrix
∥∥Â− A

∥∥2
F.

One of the limitations of SDNE and DHNE models is that these models cannot handle
signed graphs. Shen and Chung [197] proposed the DNE-SBP model (Deep Network
Embedding with Structural Balance Preservation) to preserve the proximity of nodes in
signed graphs. The DNE-SBP model constructed the input and output of the autoencoder
which could be defined as:

H(l) = σ

(
X(l)

(
W(l)

1

)T
+ B(l)

1

)
X̂(l) = σ

(
Ĥ(l)(W(l)

2 )
T
)
+ B(l)

2 (44)

where X(1) = A, X(l) = H(l−1), and σ is an activation function. The joint loss function is
then composed of reconstruction errors with ML and CL pairwise constraints [200].

For dynamic graphs, graph autoencoder models take snapshots of graphs as inputs,
and the model tries to rebuild snapshots. In several models, the output can predict fu-
ture graphs by reconstructing coming snapshot graphs. Inspired by the SDNE model
for static graphs, Palash et al. [198] presented the DynGEM model for dynamic graph
embedding. Figure 14 presents the overview architecture of the DynGEM model. Given a
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sequence of graph snapshots G = {G1, G2, · · · , GT} and a sequence of a mapping function
φ = {φ1, φ2, · · · , φT}, the DynGEM model aims to generate an embedding Zt+1 = φt+1(Gt+1).
The stability of embeddings is the ratio of the difference between embeddings over the
difference between adjacency matrices over time which could be defined as:

Aabs(φ; t) =
∥∥∥∥ Zt+1(Vt)− Zt(Vt)

At+1(Vt)− At(Vt)

∥∥∥∥ (45)

where At is the weighted adjacency matrix of graph Gt, Zt(Vt) presents embeddings of
all nodes Vt at time t. The model learns parameter θ for each graph snapshot Gt at time t.
Similar to the SDNE model, the loss function of the DynGEM model could be defined as:

L(Z, X) =
∥∥(Â− A)� B

∥∥2
F + λ

n

∑
i,j=1

sij
∥∥Zi − Zj

∥∥2
2 + L1 + L2 (46)

where L1 and L2 are regularization terms to prevent the over-fitting, and sij is the similarity
between vi and vj. Similar to SDNE, Palash et al. [201] used autoencoder architecture and
adopted the adjacency matrix of graph snapshots as input of the encoder layer. How-
ever, they updated parameters θt at time t based on parameter θt−1 from the previous
graph Gt−1.

Figure 13. The architecture of SDNE model. The features of nodes xi and xj are the inputs of the
SDNE model. The encoder layer compresses the feature data xi and xj into vectors Zi and Zj in the
latent space. The decoder layer aims to reconstruct the node features.

Unlike the aforementioned models, Wenchao et al. [199] presented the NetWalk model
that composes initial embeddings first and then updates the embeddings by learning paths
in graphs, which are sampled by a reservoir sampling strategy. NetWalk model sampled the
graph structure using a random-walk strategy as input to the autoencoder model. If there
are any changes in dynamic graphs, the Netwalk model first updates the list of neighbors
for each node and corresponding edges and then only learns embeddings again for the
changes.

The aforementioned autoencoder models, which are based on feedforward neural
networks, only focus on preserving pairs of nodes in graphs. Several models focus on
integrating recurrent neural networks and LSTM into the autoencoder architecture, bringing
prominent results, which we cover in the following section.
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Figure 14. The architecture of DynGEM model. Similarity to the SDNE model, the DynGEM model
could capture the 1st-order and 2nd-order proximity between two nodes in graphs with the encoder
and decoder layers. The difference is vector embedding θt parameters at time t are updated from
vector embedding θt−1 at time t− 1.

3.4.2. Recurrent Graph Neural Networks

One of the first models applying deep neural networks to graph representation learn-
ing was based on graph neural networks (GNNs). The main idea of GNNs is that it
considers messages shared between target nodes and their neighbors until a steady balance
is acquired. Table 9 summarizes graph recurrent autoencoder models.

Scarselli et al. [44,45] proposed a GNN model which could learn embeddings directly
for different graphs, such as acyclic/cyclic and directed/undirected graphs. These models
assumed that if nodes are directly connected in graphs, the distance between them should
be minimized in the latent space. The GNN models used a data diffusion mechanism to
aggregate signals from neighbor nodes (units) to target nodes. Therefore, the state of a node
describes the context of its neighbors and can be used to learn embeddings. Mathematically,
given a node vi in a graph, the state of vi and its output can be defined as:

Hi = ∑
vj∈N(vi)

fw(yi, eij, Hj, yj), Zi = gw(Hi, yi), (47)

where fw(· · · ·) and gw(· ·) are transition functions, and yi, eij denote the label of node vi,
edge (vi, vj), respectively. By considering the state Hi that is revised by the shift process,
Hi and its output at layer l could be defined as:

Hi
(l) = fw

(
yi, eij, Hj

(l−1), yj

)
, Zi

(l) = gw

(
Hi

(l), yi

)
. (48)

However, one of the limitations of GNNs is that the model learns node embeddings as
single output, which could cause problems with sequence output. Several studies tried to
improve GNNs using recurrent graph neural networks [17,48,49]. Unlike the GNNs which
could represent a single output for each entity in a graph, Li et al. [17] attempted to output
sequences by applying gated recurrent units. The model used two gated graph neural
networks F(l)

x and F(l)
o to predict the output Ol and the following hidden states. Therefore,

the output of node vi at layer l + 1 could be computed as:
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H(l+1)
i = σ

H(l)
i , ∑

vj∈N(vi)

WH(l)
j

, (49)

where N(vi) denotes the set of neighbors of node vi.
Wang et al. [49] proposed Topo-LSTM model to capture the diffusion structure by

representing graphs as a diffusion cascade to capture active and inactive nodes in graphs.
Given by a cascade sequence s = {(v1, 1) · · · (vT , T)}, the hidden state can be represented
as follows:

h
′(p)
t = φ(hv|v ∈ Pv), (50)

h
′(q)
t = φ(hv|v ∈ Qv\Pv), (51)

where p and q denote the input aggregation for active nodes connected with vt and not
connected with the node vt, respectively, Pv depicts the precedent sets of active nodes at
time t, and Qv depicts the set of activated nodes before time t. Figure 15 presents an example
of the Topo-LSTM model. However, these models could not capture global graph structure
since they only capture the graph structure within k-hop distance. Several models have
been proposed by combining graph recurrent neural network architecture with random-
walk sampling structure to capture higher structural information [48,93]. Huang et al. [93]
introduced the GraphRNA model to combine a joint random-walk strategy on attributed
graphs with recurrent graph networks. One of the powers of the random-walk sampling
strategy is to capture the global structure. By considering the node attributes as a bipartite
network, the model could perform joint random walks on the bipartite matrix containing
attributes to capture the global structure of graphs. After sampling the node attributes
and graph structure through joint random walks, the model uses graph recurrent neural
networks to learn embeddings. Similar to GraphRNA model, Zhang et al. [48] presented
the SHNE model to analyze the attributes’ semantics and global structure in attributed
graphs. The SHNE model also used a random-walk strategy to capture the global structure
of graphs. However, the main difference between SHNE and GraphRNA is that the SHNE
model first applied GRU (gated recurrent units) model to learn the attributes and then
combined them with graph structure via random-walk sampling.

Figure 15. An example of the Topo-LSTM model. Given by a cascade sequence S =

{(v1, 1), (v2, 2), (v3, 3), (v4, 4)}, the model first takes features of each node x1, x2, x3, x4 as inputs and
then infers embeddings via Topo-LSTM model.
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Table 9. A summary of graph recurrent autoencoder models. Gi,t is the diffusion graph of a cascade
at time t, yi is the label of node vi, T is the timestamp window, At

ij is the adjacency matrix at time
t, σ(·) is the sigmoid function. wi,j is the weight between two nodes vi and vj, Ns(vi) is the set of
neighbors of node vi, and triple (vi, vj, vk) denotes (vi, vj) ∈ P, and vk is the negative sample.

Model Graph Type Sampling Strategy Loss Function

[44] Hypergraphs Local transition
function

∑vi∈V
∥∥Zi − Ẑi

∥∥2
2

[45] Homogeneous graphs Local transition
function

∑vi∈V
∥∥Zi − Ẑi

∥∥2
2

[57] Weighted graphs Node-weight
sequences

1
N ∑vi∈V

∥∥Zi − Ẑi
∥∥2

2,

∑
<vi ,vj>∈E

wij log
(

p(vi, vj)
)

p(vi, vj) = SoftMax(Zᵀ
i Zj)

[202] Dynamic graphs Random walk, Shortest
paths, BFS

1
N ∑vi∈V

∥∥Zi − Ẑi
∥∥2

2

LSTM-
Node2Vec [203]

Dynamic graphs Temporal random walk −∑vi∈V log p(Ns(vi)|Zi)

E-LSTM-D [204] Dynamic graphs 1st-order proximity
∥∥(At − Ât)� B

∥∥2
F + λL2

Dyngraph2Vec-
AERNN [201]

Dynamic graphs Adjacency matrix
∥∥(At − Ât)� B

∥∥2
F

Topo-LSTM [49] Directed graphs Diffusion structure −∑vi∈V
T
∑

t=1
log p

(
vi,t|Gt

)
+ αL2

SHNE [48] Heterogeneous graphs Random walk
Meta-path

∑
〈vi ,vj ,vk〉

log σ
(

Zj · Zi

)
+ log σ(−Zk · Zi)

[17] Directed graphs Transition matrix −∑vi∈V yᵀi log(ŷi)
GraphRNA [93] Attributed graph Random walk −∑vi∈V yᵀi log(ŷi)

[205] Labeled graphs Random walks, shortest
paths, and breadth-first
search.

∑vi∈V
∥∥Zi − Ẑi

∥∥2
2

−∑vi∈V yᵀi log(ŷi)

[206] Dynamic graphs Graph reconstruction
T
∑

t=1
∑

<vi ,vj>∈E
At

i,j log(Ât
i,j)

Camel [207] Heterogeneous graphs Link prediction ∑
(vi ,vj)∈E
(vi ,vk)/∈E

[∥∥∥Zi − Zj

∥∥∥2

2
− ‖Zi − Zk‖2

2

]

+ α1 ∑
(vi ,vk)/∈P

log σ
(
−Zᵀ

i Zj

)
+ α2L2

TaPEm [208] Heterogeneous graphs Link prediction −∑vi∈V
(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
[209] Heterogeneous graphs Link prediction −∑vi∈V

(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
Since the power of autoencoders architecture is to learn compressed representations,

several studies [57,205] aimed to combine RGNNs and autoencoders with learning node
embeddings in weighted graphs. For instance, Seo and Lee [57] adopted an LSTM autoen-
coder to learn node embeddings for weighted graphs. They used the BFS algorithm to
travel nodes in graphs and extract the node-weight sequences of graphs as inputs for the
LSTM autoencoder. The model then could leverage the graph structure reconstruction
based on autoencoder architecture and the node attributes by the LSTM model. Figure 16
presents the sampling strategy of this model, which lists the nodes and their respective
weighted edges. To capture local and global graph structure, Aynaz et al. [205] proposed
a sequence-to-sequence autoencoder model, which could represent inputs with arbitrary
lengths. The LSTM-based autoencoder model architecture consists of two main parts:
the encoder layer LSTMenc and the decoder layer LSTMdec. For the sequence-to-sequence
autoencoder, at each time step l, the hidden vectors in the encoder and decoder layers can
be defined as:
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ht
enc = LSTMenc

(
Z(t)

i , ht−1
enc

)
, ht

dec = LSTMdec

(
Z(t−1)

i , ht−1
dec

)
(52)

where ht
enc and ht

dec are the hidden states at step t in the encoder and decoder layers,
respectively. To generate the sequences of nodes, the model implemented different sampling
strategies, including random walks, shortest paths, and breadth-first search with the WL
algorithm to encode the information of node labels.

Since the aforementioned models learn node embeddings for static graphs,
Shima et al. [203] presented an LSTM-Node2Vec model by combining an LSTM-based
autoencoder architecture with the Node2Vec model with learning embeddings for dynamic
graphs. The idea of the LSTM-Node2Vec model is that it uses an LSTM autoencoder to
preserve the history of node evolution with a temporal random-walk sampling. It then
adopted the Node2Vec model to generate the vector embeddings for the new graphs.
Figure 17 presents a temporal random-walk sampling strategy to travel a dynamic graph.

Figure 16. The sampling strategy of [57]. The model lists all the node pairs in respective weights as
input of the autoencoder model.

(a) (b) (c)
Figure 17. The temporal random-walk sampling strategy of LSTM-Node2Vec model during the
graphs’ evolution. (a) t; (b) t + 1; (c) t + 2. At the time t, the graph has four nodes and four edges be-
tween nodes. At the time t + 1 and t + 2, the graph has new nodes v5 and v6, respectively. A temporal
random walk for node v1 with length L = 3 could be: P = {(v2, v3, v4), (v3, v2, v5), (v3, v5, v6), · · · } .

Jinyin et al. [204] presented the E-LSTM-D model (Encoder-LSTM-Decoder) to learn
embeddings for dynamic graphs by combining autoencoder architecture and LSTM layers.
Given by a set of graph snapshots S = {Gt−k, Gt−k+1, · · · , Gt−1}, the objective of the model
is to learn a mapping function φ : φ(S)→ Gt. The model takes the adjacency matrix as the
input of the autoencoder model, and the output of the encoder layer could be defined as:

H(1)
e,i = ReLU

(
W(1)

e si + b(1)i

)
(53)

H(l)
e,i = ReLU

(
W(l)

e b(l−1)
e,i + b(l)e

)
(54)

H(l)
e =

[
H(l)

e,0 , H(l)
e,1 , · · · , H(l)

e,N−1

]
(55)
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where si denotes the i-th graph in the series of graph snapshots, ReLU(·) = max(0, ·) is
the activation function. For the decoder layer, the model tried to reconstruct the original
adjacency matrix from vector embeddings, which could be defined as follows:

H(1)
d = ReLU

(
W(1)

d He + b(1)d

)
(56)

H(l)
d = ReLU

(
W(l)

d H(l−1)
d + b(l)d

)
(57)

where He depicts the output of the stacked LSTM model, which captures the current
graph’s structure Gt. Similar to E-LSTM-D model, Palash et al. [201] proposed a variant
of Dyngraph2Vec model, named Dyngraph2VecAERNN (Dynamic Graph to Vector Au-
toencoder Recurrent Neural Network) which also considers the adjacency matrix as input
for the model. However, the critical difference between the E-LSTM-D model and the
Dyngraph2VecAERNN model is that they feed the LSTM layers directly into the encoder
part to learn embeddings. The decoder layer is composed of fully connected neural network
layers to reconstruct the inputs.

There are several advantages of recurrent graph neural networks compared to shallow
learning techniques:

• Diffusion pattern and multiple relations: RGNNs show superior learning ability when
dealing with diffuse information, and they can handle multi-relational graphs where
a single node has many relations. This feature is achieved due to the ability to update
the states of each node in each hidden layer.

• Parameter sharing: RGNNs could share parameters across different locations, which
could be able to capture the sequence node inputs. This advantage could reduce
computational complexity during the training process with fewer parameters and
increase the performance of the models.

However, one of the disadvantages of the RGNNs is that these models use recurrent
layers with the same weights during the weight update process. This leads to inefficiencies
in representing different relationship constraints between neighbor and target nodes. To
overcome the limitation of RGNNs, convolutional GNNs have shown remarkable ability in
recent years when it uses different weights in each hidden layer.

3.4.3. Convolutional Graph Neural Networks

CNNs have achieved remarkable success in the image processing area. Since image
data can be considered to be a special case of graph data, convolution operators can be
defined and applied to graph mining. There are two strategies to implement when applying
convolution operators to the graph domain. The first strategy is based on graph spectrum
theory which transforms graph entities from the spatial domain to the spectral domain and
applies convolution filters on the spectral domain. The other strategy directly employs the
convolution operators in the graph domain (spatial domain). Table 10 summarizes spectral
CGNN models.

Table 10. A summary of spectral CGNN models.

Model Graph Type Tasks Loss Function

[56] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)
[96] Static graphs Node classification −∑vi∈V yᵀi log(ŷi) + L2

[210] Static graphs Multi-task prediction
Node classification

[
1
|V| ∑vi∈V (ŷi − yi)

2
] 1

2

[211] Static graphs Label classification − 1
|V| ∑vi∈V yᵀi log(ŷi) + L2

GCN [18] Knowledge graphs Node classification −∑vi∈V yᵀi log(ŷi)
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Table 10. Cont.

Model Graph Type Tasks Loss Function

EGCN [55] Static graphs Multi-task classification,
Link prediction

[
1
|V| ∑vi∈V (ŷi − yi)

2
] 1

2

LNPP [212] Static graphs Graph Reconstruction
∥∥A− Â

∥∥2
F

[213] Static graphs Node classification ∑vi∈V ‖yi − ŷi‖2
D)

[214] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)

[215] Heterogeneous
graphs

Node classification ∑
(vi ,vj)∈E

log σ
(

Zᵀ
i Zj

)
− ∑

(vi ,vk)/∈E
log σ

(
−Zᵀ

i Zj

)

When computing power is insufficient for implementing convolution operators di-
rectly on the graph domain, several studies focus on transforming graph data to the spectral
domain and applying filtering operators to reduce computational time [18,55,213]. The
signal filtering process acts as the feature extraction on the Laplacian matrix. Most models
adopted single and undirected graphs and presented graph data as a Laplacian matrix:

L = In − D−
1
2 AD−

1
2 (58)

where D denotes the diagonal matrix of the node degree, A is the adjacency matrix. The
matrix L is a symmetric positive definite matrix describing the graph structure. Considering
a matrix U as a graph Fourier basis, the Laplacian matrix then could be decomposed into
three components: L = UΛUᵀ where Λ is the diagonal matrix which denotes the spectral
representation of graph topology and U = [u0, u1, · · · , un−1] is eigenvectors matrix. The
filter function gθ resembles a k-order polynomial, and the spectral convolution acts as
diffusion convolution in graph domains. The spectral graph convolution given by an input
x with a filter gθ is defined as:

gθ ∗ x = Ugθ
Uᵀx (59)

where ∗ is the convolution operation. Bruna et al. [56] transformed the graph data to the
spectral domain and applied filter operators on a Fourier basis. The hidden state at the
layer l could be defined as:

H(l)
i = σ

(
V

cl−1

∑
j=1

D(l)
ij VᵀH(l)

j

)
(60)

where D(l)
ij is a diagonal matrix at layer l, cl−1 denotes the number of filters at layer l − 1,

and V denotes the eigenvectors of the L matrix. Typically, most of the energy of the D
matrix is concentrated in the first d elements. Therefore, we can obtain the first d values of
the matrix V, and the number of parameters that should be trained is cl−1 · cl · d.

Several studies focused on improving spectral filters to reduce computational time
and capture more graph structure in the spectral domain [210,216]. For instance,
Defferrard et al. [216] presented a strategy to re-design convolutional filters for graphs.
Since the spectral filter gθ(Λ) indeed generates a kernel on graphs, the key idea is that they
consider gθ(Λ) as a polynomial which includes k-localized kernel:

gθ(Λ) =
K−1

∑
k=0

θkΛ(k) (61)

where θ is a vector of polynomial coefficients. This k-localized kernel provides a circular
distribution of weights in the kernel from a target node to k-hop nodes in graphs.

Unlike the above models, Zhuang and Ma [211] tried to capture the local and global
graph structures by introducing two convolutional filters. The first convolutional operator,
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local consistency convolution, captures the local graph structure. The output of a hidden
layer Zl , then, could be defined as:

Z(l) = σ(D̃−
1
2 ÃD̃−

1
2 Z(l−1)W(l)) (62)

where Ã = A + I denotes the self-loops adjacency matrix, and D̃i.i = ∑j Ãij is the diagonal
matrix presenting the degree information of nodes. In addition to the first filter, the second
filter aims to capture the global structure of graphs which could be defined as:

Z(l) = σ(D−
1
2 APD−

1
2 Z(l−1)W(l)) (63)

where P denotes the PPMI matrix, which can be calculated via frequency matrix using
random-walk sampling.

Most of the above models learn node embeddings by transforming graph data to signal
domain and use convolutional filters which lead to increased computational complexity.
In 2016, Kipf and Welling [18] introduced graph convolutional networks (GCNs), which
were considered to be a bridge between spectral and spatial approaches. The spectral filter
gθ(Λ) and the hidden layers of the GCN model followed the layer-wise propagation rule
can be defined as follows:

gθ′(Λ) ≈
K

∑
k=0

θ′kTk(Λ̃) (64)

H(l+1) = σ
(

D̃−
1
2 AD̃−

1
2 H(l)W(l)

)
(65)

where Λ̃ = 2
λmax

Λ− IN and λmax is the largest eigenvalue of Laplacian matrix L, θ′ ∈ RK is
Chebyshev coefficients vector, Tk(x) is Chebyshev polynomials could be defined as:

Tk(x) = 2xTk−1(x)− Tk−2(x) (66)

where T0(x) = 1 and T1(x) = x. Consequently, the convolution filter of an input x is
defined as:

gθ′ ∗ x ≈
K

∑
k=0

θ′kTk
(

L̃
)
x, L̃ =

2
λmax

L− IN . (67)

Although spectral CGNNs are effective in applying convolution filters on the spectral
domain, they have several limitations as follows:

• Computational complexity: The spectral decomposition of the Laplacian matrix into
matrices containing eigenvectors is time-consuming. During the training process, the
dot product of the U, Λ, and UT matrices also increase the training time.

• Difficulties for handling large-scale graphs: Since the number of parameters for the
kernels also corresponds to the number of nodes in graphs. Therefore, spectral models
could not be suitable for large-scale graphs.

• Difficulties for considering graph dynamicity: To apply convolution filters to graphs
and train the model, the graph data must be transformed to the spectral domain in the
form of a Laplacian matrix. Therefore, when the graph data changes, in the case of
dynamic graphs, the model is not applicable to capture changes in dynamic graphs.

Motivated by the limitations of spectral domain-based CGNNs, spatial models apply
convolution operators directly to the graph domain and learn node embeddings in an
effective way. Recently, various spatial CGNNs have been proposed showing remarkable
results in handling different graph structures compared to spectral models [52,95]. Based
on the mechanism of aggregation from graphs and how to apply the convolution operators,
we divide CGNN models into the following main groups: (i) Aggregation mechanism
improvement, (ii) Training efficiency improvement, (iii) Attention-based models, and
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(iv) Autoencoder-CGNN models. Tables 11 and 12 present a summary of spatial CGNN
models for all types of graphs ranging from homogeneous to heterogeneous graphs.

Table 11. A summary of spatial CGNN models for static and homogeneous graphs. m is the total
weight of the degrees of the Graph, Vt is the number of clusters in the graph. Pn(v) is a negative
sampling distribution, A(k) is the transition matrix at time k, and B is the batch of nodes used to
calculate the gradient estimation.

Model Graph Type Tasks Loss Function

HCNP [217] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)

CDMG [218] Static graphs Community detection −trace
(

HᵀA(k)H
)

[219] Static graphs Passenger Prediction
[

1
|V| ∑vi∈V (ŷi − yi)

2
] 1

2

ST-GDN [220] Static graphs Link prediction ∑vi∈V ‖yi − ŷi‖2
2

[221] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)

MPNNs [222] Static graphs Node prediction ∑vi∈V ‖yi − ŷi‖2
2

GraphSAGE [22] Static graphs Node classification ∑
vi∈V
− log

(
σ(yᵀi yj)

)
− |Nneg|Evk∼Pn(v) log

(
σ(−yᵀi yk)

)
FastGCN [52] Static graphs Node classification,

link prediction
∑vi∈V ‖yi − ŷi‖2

2

SACNNs [223] Static graphs Node classification
Regression tasks

−∑vi∈V yᵀi log(ŷi)
1
|V| ∑vi∈V ‖yi − ŷi‖2

2

Cluster-GCN [95] Static graphs Node classification − 1
|B| ∑vi∈B yᵀi log(ŷi)

[18] Static graphs Node classification ∑vi∈V ‖yi − ŷi‖2
2

[224] Static graphs Node classification − 1
|B| ∑vi∈B yᵀi log(ŷi)

GraphSAINT [53] Static graphs Node classification
Community prediction

∑vi∈V ‖yi − ŷi‖2
2

VGAE [72] Static graphs Link prediction Eq(Z|X,A)[log p(A|Z)]− KL[q(Z|X, A)||p(Z)]

PinSAGE [225] Static graphs Link prediction Enk∼Pn(i) max
(

0, Zi · Znk − Zi · Zj + m
)

Hi-GCN [54] Static graphs Classification tasks −∑vi∈V yᵀi log(ŷi)

[226] Static graphs Link prediction ∑
〈vi ,vj ,vk〉

log σ
(

ZiZj − ZiZk

)
+ αL2

[28] Static graph Node classification 1
2 ∑vi∈V ‖yi − ŷi‖2

2 + αL1
[26] Static graph Node classification − 1

|V| ∑vi∈V
(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
[227] Static graphs Classification tasks − 1

|V| ∑vi∈V
(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
[228] Static graph Node Classification

Link prediction
∑vi∈V ‖yi − ŷi‖2

2

[229] Static graphs Node classification
Link prediction

−∑vi∈V
(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
DCRNN [230] Static graphs Node classification 1

|V| ∑vi∈V |yi − ŷi|
PinSAGE [225] Static graphs Link prediction Enk∼Pn(i) max

(
0, Zi · Znk − Zi · Zj + m

)
E-GraphSAGE [231] Static graph Edge classification −∑vi∈V yᵀi log(ŷi)

GraphNorm [232] Static graphs Graph classification ∑vi∈V
1
2‖yi − ŷi‖2

2
GIN [24] Heterogeneous

graphs
Node classification,
Graph classification

∑vi∈V
1
2‖yi − ŷi‖2

2

DeeperGCN [98] Static graphs Node property prediction,
Graph property prediction

∑vi∈V
1
2‖yi − ŷi‖2

2

PHC-GNNs [233] Static graphs Graph classification −∑vi∈V
(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
HGNN [27] Hypergraphs Node classification,

Recognition tasks.
−∑vi∈V yᵀi log(ŷi)

HyperGCN [234] Hypergraphs Node classification −∑vi∈V yᵀi log(ŷi)

Gilmer et al. [222] presented the MPNN (Message-Passing Neural Network) model
to employ the concept of messages passing over nodes in graphs. Given a pair of nodes
(vi, vj), a message from vj to vi could be calculated by a message function Mij. During the
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message-passing phase, a hidden state at layer l of a node vi could be calculated based on
the message-passing from its neighbors, which could be defined as:

m(l+1)
i = ∑

vj∈N(vi)

M(l)

(
h(l)i , h(l)j , eij

)
, (68)

h(l+1)
i = σ

(
h(l)i , m(l+1)

i

)
, (69)

where M(l) denotes the message function at layer l which could be a MLP function, σ is an
activation function, and N(vi) denotes the set of neighbors of node vi.

Most previous graph embedding models work in transductive learning which cannot
handle unseen nodes. In 2017, Hamilton et al. [22] introduced the GraphSAGE model
(SAmple and aggreGatE) to generate inductive node embeddings in an unsupervised
manner. The hidden state at layer l + 1 of a node vi could be defined as:

h(l+1)
i = AGG(l+1)

(
{h(l)j , ∀vj ∈ N(vi)}

)
(70)

where N(vi) denotes the set of neighbors of node vi, h(l)j is the hidden state of node vj

at layer l. The function AGG(· ·) is a differentiable aggregator function. There are three
aggregators (e.g., Mean, LSTM, and Pooling) to aggregate information from neighboring
nodes and separate nodes into mini batches. Algorithm 1 presents the algorithm of the
GraphSAGE model.

Algorithm 1: GraphSAGE algorithm. The model first takes the node features as
inputs. For each layer, the model aggregates the information from neighbors
and then updates the hidden state of each node vi.

Input : G = (V, E): The graph G with set of nodes V and set of edges E.
xi: The input features of node vi
L: The depth of hidden layers, ∀l ∈ {1 · · · L}
AGGk: Differentiable aggregator functions
N(vi): The set of neighbors of node vi.

Output : Zi: Vector representations for vi.
h0

i ← xi, ∀vi ∈ V

for k=1 to L do
for vi ∈ V do

hl
N(vi)

← AGGl

(
{hl−1

j , ∀vj ∈ N(vi)}
)

;

hl
i ← σ

(
W l ·

(
hl−1

i ‖ hl
N(vi)

))
end
hl

i ← hk
i /||hl

i ||2, ∀vi ∈ V
end
Zi ← hL

i , ∀vi ∈ V

Lo et al. [231] aimed to apply the GraphSAGE model to detect computer attackers
in computer network systems, named E-graphSAGE. The main difference between the
two models is that E-graphSAGE used the edges of graphs as aggregation information for
learning embeddings. The edge information between two nodes is the data flow between
two source IP addresses (Clients) and destination IP addresses (Servers).

By evaluating the contribution of neighboring nodes to target nodes, Tran et al. [229]
proposed convolutional filters with different parameters. The key idea of this model is to
rank the contributions of different distances from the set of neighbor nodes to target nodes
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using short path sampling. Formally, the hidden state of a node at layer l + 1 could be
defined as multiple graph convolutional filters:

hr,l+1 = ‖r
j=0

(
(Dj)

−1
SPjhlW j,l

)
(71)

where ‖ denotes the concatenation, r and SPj denote the r-hop distance and the shortest-
path distance j, respectively. Ying et al. [225] considered random-walk sampling as the
aggregation information that can be aggregated to the hidden state of CGNNs. To collect
the neighbors of node v, the idea of the model is to gather a set consisting of random-walk
paths from node v and then select the top k nodes with the highest probability.

Table 12. A summary of spatial CGNN models for dynamic and heterogeneous graphs, m is
the margin.

Model Graph Type Tasks Loss Function

SHARE [235] Dynamic graphs Availability prediction 1
N

(
∑vi∈V ‖yi − ŷi‖2

2+yᵀi log(ŷi)
)

Dyn-GRCNN [236] Dynamic graphs Traffic flow forecasting ∑vi∈V ‖yi − ŷi‖2
2[

1
|V| ∑vi∈V (ŷi − yi)

2
] 1

2

STAN [237] Dynamic graphs Fraud detection ∑vi∈V
[
yᵀi log(ŷi) + α(1− yᵀi )log(1− ŷi)

]
SeqGNN [238] Dynamic graphs Traffic speed prediction ∑vi∈V ‖yi − ŷi‖2

2

DMVST-Net [239] Dynamic graphs Taxi demand prediction ∑vi∈V

(
‖yi − ŷi‖2

2 +
∥∥∥ yi−ŷi

yi

∥∥∥2

2

)
ST-ResNet [240] Dynamic graphs Flow prediction ∑vi∈V ‖yi − ŷi‖2

2
R-GCNs [241] Knowledge graphs Entity classification −∑vi∈V yᵀi log(ŷi)

HDMI [242] Multiplex graphs Node clustering,
Node classification

− 1
|V| ∑vi∈V

(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
DMGI [243] Multiplex graphs Link Prediction,

Clustering,
Node classification

− 1
|V| ∑vi∈V

(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)

LDANE [244] Dynamic graphs Graph reconstruction,
Link prediction,
Node classification

∑
vi∈V

∥∥Âi − Ai
∥∥2

2 + α ∑
〈vi ,vj〉∈E

∥∥∥Zi − Zj

∥∥∥2

2
+ L1 + L2

EvolveGCN [245] Dynamic graphs Link prediction,
Node, edge classification

−∑vi∈V yᵀi log(ŷi)

For hypergraphs, several GNN models have been proposed to learn high-order graph
structure [27,44,234]. Feng et al. [27] proposed HGNN (Hypergraph Neural Networks)
model to learn hypergraph structure based on spectral convolution. They first learn
each hyperedge feature by aggregating all the nodes connected by the hyperedge. Then,
each node’s attribute is updated with a vector embedding based on all the hyperedges
connecting to the nodes. By contrast, Yadati [234] presented the HyperGCN model to
learn hypergraphs based on spectral theory. Since each hyperedge could connect several
nodes between them, this model’s idea is to filter far apart nodes. Therefore, they adopt
the Laplacian operator first to learn node embedding and filter edges, which connect two
nodes at a high distance. The GCNs could then be used to learn node embeddings.

One of the limitations of GNN models is that the models consider the set of neigh-
bors as permutation invariant. This limitation then makes the models cannot distinguish
between isomorphic subgraphs. By considering the message-passing set from neighbors
of nodes as permutation invariant, several works aimed to improve the message-passing
mechanism by simple aggregation functions. Xu et al. [24] proposed GIN (Graph Iso-
morphism Network) model, which aims to learn vector embeddings as powerful as the
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1-dimensional WL isomorphism test. Formally, the hidden state of node vi at layer l could
be defined as:

h(l)i = MLP(l)
((

1 + ε(l)
)
· h(l−1)

i + ∑vj∈N(vi)
h(l−1)

j

)
(72)

where MLP denotes multilayer perceptions and ε is a parameter that could be learnable or
fixed scalar. Another problem of GNNs is the over-smoothing problem when stacking more
layers in the models. DeeperGCN [98] was a similar approach that aims to solve the over-
smoothing problem by generalized aggregations and skip connections. The DeeperGCN
model defined a simple normalized message-passing, which could be defined as:

m(l)
ij = ReLU

(
h(l)i + 1

(
h(l)eij · h

(l)
eij

))
+ ε (73)

h(l+1)
i = MLP

h(l)i + s ·
∥∥∥h(l)i

∥∥∥
2
·

m(l)
i∥∥∥m(l)

i

∥∥∥
2

 (74)

where mij denotes the message-passing from node vj to node vi, heij is the edge feature
of the edge eij, 1(·) presents an indicator procedure which is being 1 if two nodes vi and
vj are connected. Le et al. [233] presented the PHC-GNN model, which improves the
message-passing compared to the GIN model. The main difference between PHC-GNN
and GIN models is that the PHC-GNN model added edge embeddings and a residual
connection after the message-passing. Formally, the message-passing and hidden state of a
node vi at layer l + 1 could be defined as:

mi
(l+1) = ∑

vj∈N(vi)

αij

(
h(l)i + he

(l)
ij

)
, (75)

h̃(l+1)
i = MLP(l+1)

(
h(l)i + m(l+1)

i

)
, (76)

hi
(l+1) = hi

(a) + h̃(l+1)
i . (77)

A few studies focused on building pre-trained GNN models, which could be used to
initialize other tasks [209,246,247]. These pre-trained models are also beneficial to handle
the little availability of node labels. For example, the main objective of the GPT-GNN
model [247] is to reconstruct the graph structure and the node features by masking the
attributes and edges. Given a permutated order, the model maximizes the node attributes
based on observed edges and then generates the remaining edges. Formally, the conditional
probability could be defined as:

p(Xi, Ei|X<i, E<i) = ∑
m

p(Xi, Ei,¬m|Ei,mX<i, E<i) · p(Ei,m|X<i, E<i) (78)

where Ei,m and Ei,¬m depict the observed and masked edges, respectively.
Since learning node embeddings in the whole graphs is time-consuming, several

approaches aim to apply standard cluster algorithms (e.g., METIS, K-means, etc.) to cluster
nodes into different subgraphs, then use GCNs to learn node embeddings. Chiang et al. [95]
proposed a Cluster-GCN model to increase the computational efficiency during the train-
ing of the CGNNs. Given a graph G, the model first separates G into c clusters G =
{G1, G2, · · · , Gc} where Gi = {Vi, Ei} using Metis clustering algorithm [248]. The model
then aggregates information within each cluster. GraphSAINT model [53] had a similar
structure to Cluster-GCN and [249] model. GraphSAINT model aggregated neighbor infor-
mation and samples nodes directly on a subgraph at each hidden layer. The probability of
keeping a connection from a node u at layer l to a node v in layer l + 1 could be based on the
node degree. Figure 18 presents an example of aggregation strategy for the GraphSAINT
model. By contrast, Jiang et al. [54] presented a hi-GCN model (hierarchical GCN) that
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could effectively model the brain network with two-level GCNs. Since individual brain
networks have multiple functions, the first level GCN aims to capture the graph structure.
The objective of the 2nd GCN level is to provide the correlation between network structure
and contextual information to improve the semantic information. The work from Huang
et al. [250] was similar to GraphSAGE and FastGCN models. However, instead of using
node-wise sampling at each hidden layer, the model provided two strategies: a layer-wise
sampling strategy and a skip-connection strategy that could directly share the aggregation
information between hidden layers and improve message-passing. The main idea of the
skip-connection strategy is to reuse the information from previous layers that could usually
be forgotten in dense graphs.

One of the limitations of the CGNNs is that at the hidden layer, the model updates
the state of all neighboring nodes. This can lead to slow training and updating because
of inactive nodes. Some models aimed to enhance CGNNs by improving the sampling
strategy [52,223,224]. For example, Chen et al. [52] presented a FastGCN model to improve
the training time and the model performance compared to CGNNs. One of the problems
with existing GNN models is scalability which expands the neighborhood and increases
computational complexity. The model could learn neighborhood sampling at each convolu-
tion layer which mainly focuses on essential neighbor nodes. Therefore, the model could
learn the essential neighbor nodes for every batch.

By considering each hidden layer as an embedding layer of independent nodes,
FastGCN aims to subsample the receptive area at each hidden layer. For each layer,
they chose tk i.i.d. nodes u(l)

1 , u(l)
2 , · · · , u(l)

k and compute the hidden state which could be
defined as:

h̃(l+1)
k+1 (v) =

1
k

k

∑
j=1

Ã(v, u(l)
j )h(l)k u(l)

j W(l) (79)

h(l+1)
k+1 (v) = σ(h̃(l+1)

k+1 (v)) (80)

where Ã(v, u(l)
j ) denotes the kernel, and σ denotes the activation function. Wu et al. [214]

introduced SGC (Simple Graph Convolution) model, which could improve 1st-order prox-
imity in the GCN model. The model removed nonlinear activation functions at each hidden
layer. Instead, they used a final SoftMax function at the last layer to acquire probabilistic
outputs. Chen et al. [224] presented a model to improve the updating of the nodes’ state.
Instead of collecting all the information from the neighbors of each node, the model pro-
posed an option to keep track of the activation history states of the nodes to reduce the
receptive scope. The model aimed to maintain the history state h̄(l)v for each state h(l)v of
each node v.

(a) (b)
Figure 18. An example of the GraphSAINT model. (a) A subgraph has five nodes v1, v2, v3, v4,
and v5; (b) A full GCN has three layers. (a) presents a subgraph with nodes. In the subgraph,
there are 3 nodes (v1, v2, v3) with higher order than the other two nodes (v4, v5). (b) presents a full
CGNN-based model with three layers. Three nodes with higher degrees should be sampled from
each other in the next layers.
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Similar to [250], Chen et al. [28] presented a GCNII model using an initial residual con-
nection and identity mapping to overcome the over-smoothing problem. The GCNII model
aimed to maintain the structural identity of target nodes to overcome the over-smoothing
problem. They introduced an initial residual connection H0 at the first convolution layer
and identity mapping In. Mathematically, the hidden state at layer l + 1 could be defined as:

H(l+1) = σ
((

(1− al)P̃ ·H
(l)

+ alH
(0)
)(

(1− bl)In + blW
(l)
))

(81)

where P̃ = D̃−
1
2 ÃD̃−

1
2 denotes the convolutional filter with normalization. Adding two

parameters H(0) and In is for the purpose of tackling the over-smoothing problem.
Several models aim to maximize the node representation and graph structure by

matching a prior distribution. There have been a few studies based on the idea of Deep
Infomax [227] from image processing to learn graph embeddings [26,242]. For example,
Velickovic et al. [26] introduced the Deep Graph Infomax (DGI) model, which could adopt
the GCN as an encoder. The main idea of mutual information is that the model trains
the GCN encoder to maximize the understanding of local and global graph structure in
actual graphs and minimize that in fake graphs. There are four components in the DGI
model, including:

• A corruption function C: This function aims to generate negative examples from an
original graph with several changes in structure and properties.

• An encoder φ : RN×M ×RN×N → RN×D. The goal of function φ is to encode nodes
into vector space so that φ(X, A) = H = {h1, h2, · · · hN} presents vector embeddings
of all nodes in graphs.

• Readout functionR : RN×D → RD. This function maps all embedding nodes into a
single vector (supernode).

• A discriminator D : RM ×RM → R compares vector embeddings against the global
vector of the graph by calculating a score between 0 and 1 for each vector embedding.

One of the limitations of the DGI model is that it only works with attributed graphs.
Several studies have improved DGI to work with heterogeneous graphs with attention and
semantic mechanisms [242,243]. Similar to the DGI model, Park et al. [243] presented the
DMGI model (Deep Multiplex Graph Infomax) for attributed multiplex graphs. Given a
specific node with relation type r, the hidden state could be defined as:

H(r) = σ

(
D̂−

1
2

r Â(r)D̂−
1
2

r XWr
)

(82)

where Â(r) = A(r) + αIn, and D̂ii = ∑j Âij, Wr ∈ Rn×d is trainable weights, and σ is the
activation function. Similar to the DGI model, the readout function and discriminator can
be employed as:

S(r) = Readout(H(r)) = σ

(
1
N

N

∑
i=1

h(r)
i

)
(83)

D
(

h(r)i , S(r)
)
= σ

(
h (r)

i

T
M(r) s(r)

)
(84)

where h(r)i is the i-th vector of matrix H(r), Mr denotes a trainable scoring matrix, Sr is a

function with Sr = σ
(

1
N ∑N

i=1 hi
r
)

. The attention mechanism is adopted from [251], which
could capture the importance of node type to generate the vector embeddings at the last
layer. Similarly, Jing et al. [242] proposed HDMI (High-order Deep Multiplex Infomax)
model, which is conceptually similar to the DGI model. The HDMI model could optimize
the high-order mutual information to process different relation types.

Increasing the number of hidden layers to aggregate more structural information of
graphs can lead to an over-smoothing problem [97,252]. Previous models have considered
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the weights of messages to be the same role in aggregating information from neighbors
of nodes. In recent years, various studies have focused on attention mechanisms to ex-
tract valuable information from neighborhoods of nodes [19,253,254]. Table 13 presents a
summary of attentive GNN models.

Table 13. A summary of attentive convolutional GNN models. pl
ij denotes the probability of an edge

between two node vi and vj at layer l, pij = σ
(

W(hi||hj)
)

.

Model Graph Type Tasks Loss Function

GAT [19] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)
GATv2 [58] Static graphs Link prediction,

Graph prediction,
Node classification

−∑vi∈V yᵀi log(ŷi)

Gaan [255] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)
GraphStar [256] Static graphs Node classification,

Graph classification,
Link prediction

−∑vi∈V yᵀi log(ŷi)

HAN [25] Heterogeneous
graphs

Node classification,
Node clustering

−∑vi∈V yᵀi log(ŷi)

[257] Static graphs Label-agreement
prediction,
Link prediction

−∑vi∈V
(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
SuperGAT [258] Static graphs Label-agreement

Link prediction
− 1
|V| ∑vi∈V

(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
+ α ∑L

l=1 Ll
E + βL2

where Ll
E = ∑(vi ,vj) 1((vi ,vj)∈E) log pl

ij+1((vi ,vj)/∈E) log(1− pl
ij)

CGAT [259] Static graphs Node classification ∑vi∈V ∑ vj∈N(vi),
vk /∈N(vi)

max
(

0, φik + m− φij

)
−∑vi∈V yᵀi log(ŷi)

[260] Static graphs Node classification −∑vi∈V yᵀi log(ŷi)

[261] Static graphs Node classification,
Object recognition

−∑vi∈V yᵀi log(ŷi) + α ∑
(vi ,vj)∈E

∥∥∥Zi − Zj

∥∥∥2

2

[25] Heterogeneous
graphs

Node classification,
Node clustering

−∑vi∈V yᵀi log(ŷi)

[262] Knowledge graphs Relation prediction ∑
〈h,t,r〉

∑
〈h′ ,t′ ,r〉

max(0, ‖h + r− t‖1 − ‖h′ + r− t′‖1 + m)

[224] Static graphs Node classification − 1
|V| ∑vi∈V yᵀi log(ŷi)

R-GCN [241] Knowledge graphs Entity classification,
Link prediction

− 1
|V| ∑vi∈V yᵀi log(ŷi)

DMGI [243] Attributed multi-
plex graphs

Node clustering,
Node classification

− 1
|V| ∑vi∈V

(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
+ αLE + βL2

where LE =
[

Z− σ
(

H(r)|r ∈ R
)]2
−
[

Z− σ
(

H̃(r)|r ∈ R
)]2

SHetGCN [263] Heterogeneous
graphs

Node classification − 1
|V| ∑vi∈V yᵀi log(ŷi)

DualHGCN [264] Multiplex bipartite
graphs

Node classification
Link prediction

∑
(vi ,vj)∈E

[
α log σ

(
Zᵀ

i Zj

)
+ (1− α)

n
∑

k=1

(
Evk∼P(vi) log σ(Zᵀ

i Zk)
)]

HANE [265] Heterogeneous
graphs

Node classification − 1
|V| ∑vi∈V yᵀi log(ŷi)

MHGCN [266] Multiplex hetero-
geneous Graph

Link prediction
Node classification

− 1
|V| ∑vi∈V yᵀi log(ŷi)

∑
(vi ,vj)∈E

log σ
(

Zᵀ
i Zj

)
− ∑

(vi ,vk)/∈E
log σ

(
−Zᵀ

i Zj

)

Velickovi et al. [19] presented the GATs (graph attention networks) model, one of
the first models in applying attention mechanism to graph representation learning. The
purpose of the attention mechanism is to compute a weighted message for each neighbor
node during the message-passing of GNNs. Formally, there are three steps for GATs which
can be explained as follows:

• Attention score: At layer l, the model takes a set of features of a node as inputs
h = {hi ∈ Rd|vi ∈ V} and the output h′ = {h′ i ∈ Rd′ |vi ∈ V}. An attention score
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measures the importance of neighbor nodes vi to the target node vj could be computed
as:

sij = σ
(
aᵀ(W hi ‖Whj )

)
(85)

where a ∈ R2d′ , and W(k) ∈ Rd′×d are trainable weights, ‖ denotes the concatenation.
• Normalization: The score then is normalized comparable across all neighbors of node

vi using the SoftMax function:

αij = SoftMax(sij ) =
exp

(
sij
)

∑vk∈N(vi)
exp(sik)

. (86)

• Aggregation: After normalization, the embeddings of node vi could be computed by
aggregating states of neighbor nodes which could be computed as:

hi
′ = σ

 ∑
vj∈N(vi)

αij ·Whj

 . (87)

Furthermore, the GAT model used multi-head attention to enhance the model power
and stabilize the learning strategy. Since the GAT model takes the attention coefficient
between nodes as inputs and ranks the attention unconditionally, this results in a limited
capacity to summarize the global graph structure.

In recent years, various models have been proposed based on the GAT idea. Most of
them aimed to improve the ability of the self-attention mechanism to capture more global
graph structures [253,254]. Zhang et al. [253] presented GaAN (Gated Attention Networks)
model to control the importance of neighbor nodes by controlling the amount of attention
score. The main idea of GaAN is to measure the different weights that come to different
heads in target nodes. Formally, the gated attention aggregator could be defined as follows:

hi
′ = MLPθ

xi ⊕
Mhead
‖

m=1

g(m)
i ∑

j∈N(vi)

w(m)
ij MLPθ(m)(hi)

 (88)

gi = [g(1)i , g(2)i · · · g(Mhead)
i ] (89)

where MLP(·) denotes a simple linear transformation, and g(m)
i is the gate value of m-th

head of node vi.
To capture a coarser graph structure, Kim and Oh [258] considered attention based on

the importance of nodes to each other. The importance of nodes is based on whether the
two nodes are directly connected. By defining the different attention from target nodes to
context nodes, the model could solve the permutation equivalent and capture more global
graph structure. Based on this idea, they proposed the SuperGAT model with two variants,
scaled dot product (SD) and mixed GO and DP (MX), to enhance the attention span of
the original model. The attention score sij between two nodes vi and vj can be defined
as follows:

s(l+1)
ij,SD =

(
W(l+1)h(l)i

)ᵀ
×W(l+1)h(l)j√

d
(90)

s(l+1)
ij,MX =

(
a(l+1)

)ᵀ[
W(l+1)h(l)i ||W

(l+1)h(l)j

]
· σ
((

W(l+1)h(l)i

)ᵀ
×W(l+1)h(l)j

)
(91)

where d denotes the number of features at layer l + 1. The two attention scores can softly
decline the number of nodes that are not connected to the target node vi.

Wang et al. [259] aimed to introduce a margin-based constraint to control over-fitting
and over-smoothing problems. By assigning the attention weight of each neighbor to
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target nodes across all nodes in graphs, the proposed model can adjust the influence of the
smoothing problem and drop unimportant edges.

Extending the GAT model to capture more global structural information using atten-
tion, Haonan et al. [256] introduced the GraphStar model using a virtual node (a virtual
start) to maintain global information at each hidden layer. The main difference between the
GraphStar and GATs models is that they introduce three different types of relationships:
node-to-node (self-attention), node-to-start (global attention), and node-to-neighbors (local
attention). Using different types of relationships, GraphStar could solve the over-smoothing
problem when staking more neural network layers. Formally, the attention coefficients
could be defined as:

h(t+1)
i =

Mhead
||
m

σ

∑
r∈R

∑
j∈Nr

i

αm
ijrW

m(t)
1 ht

j + αm
is,r=sW

m(t)
2 St + αm

i0,r=0Wm(t)
3 ht

i

 (92)

where Wm(t)
1 , Wm(t)

2 , and Wm(t)
3 denotes the node-to-node, node-to-start and node-to-

neighbors relations at the m-th head of node vi, respectively.
One of the problems with the GAT model is that the model only provides static

attention which mainly focuses the high-weight attention on several neighbor nodes. As
a result, GAT cannot learn universal attention for all nodes in graphs. Motivated by the
limitations of the GAT model, Brody et al. [58] proposed the GATv2 model using dynamic
attention which could learn graph structure more efficiently from a target node vi to
neighbor node vj. The attention score can be computed with a slight modification:

sij = aᵀσ(W · [hi||hj]) . (93)

Similar to Wang et al. [259], Zhang et al. [260] presented ADSF (ADaptive Structural
Fingerprint) model, which could monitor attention weights from each neighbor of the
target node. However, the difference between GraphStar [259] and the ADSF model is that
the ADSF model introduced two attention scores sij and eij for each node vi which can
capture the graph structure and context, respectively.

Besides the GAT-based models applied to homogeneous graphs, several models tried
to apply attention mechanism to heterogeneous and knowledge graphs [25,261,262]. For
example, Wang et al. [25] presented hierarchical attention to learn the importance of nodes
in graphs. One of the advantages of this model is to handle heterogeneous graphs with
different types of nodes and edges by deploying local and global level attention. The
model proposed two levels of attention: node and semantic-level attention. The node-level
attention aims to capture the attention between two nodes in meta-paths. Given a node
pair (vi, vj) in a meta-path P, the attention score of P could be defined as:

sP
ij = Attnode(h

′
i, h
′
j; P) (94)

where h′i and h′j denote the original and projected features of node vi and vj via a projection
function Mφ, respectively, and Attnode is a function which scores the node-level attention. To
make the coefficients across other nodes in a meta-path P which contain a set of neighbors
NP

i of a target node vi, the attention score αP
ij, and node embedding with k multi-head

attention can be defined as:
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αP
ij =

exp
(

σ(sT
ij · [h

′
i||h

′
j])
)

∑k∈NP
i

exp
(
σ(sT

ik ·[h
′
i||h

′
k])
) (95)

zP
i =

K
||

k=1
σ

 ∑
j∈NP

i

αP
ijh
′
j

 . (96)

The score zP
i indicates how the importance of the set of neighbors based on meta-path

P contributes to node vi. Furthermore, the semantic-level aggregation aims to score the
importance of meta-paths. Given an attention coefficient zP

i , the importance of meta-path P
and its normalization could be defined as wP:

wP =
1
|V|

(
∑
i∈V

qᵀ · tanh(W · zP
i + b)

)
(97)

w̄P =
exp(wP)

∑l
p=1 exp

(
wp
) . (98)

In addition to applying CGNNs to homogeneous graphs, several studies focused
on applying CGNNs for heterogeneous and knowledge graphs [224,241,243,263,264,266].
Since heterogeneous graphs have different types of edges and nodes, the main problem
when applying CGNN models is the aggregation of messages based on different edge types.
Schlichtkrull et al. [241] introduced the R-GCNs model (Relational Graph Convolutional
Networks) to model relational entities in knowledge graphs. R-GCNs is the first model
to be applied to learn node embeddings in heterogeneous graphs to several downstream
tasks, such as link prediction and node classification. In addition, they also use parameter
sharing to learn the node embedding efficiently. Formally, given a node vi under relation
r ∈ R, the hidden state at layer l + 1 could be defined as:

h(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1
ci,r

W(l)
r h(l)j + W(l)

0 h(l)i

, (99)

where ci,r is the normalization constant, and Nr
i denotes the set of neighbors of node vi

with relation r. Wang et al. [265] introduced HANE (Heterogeneous Attributed Network
Embedding) model to learn embeddings for heterogeneous graphs. The key idea of the
HANE model is to measure attention scores for different types of nodes in heterogeneous
graphs. Formally, given a node vi, the attention coefficients s(l)ij , attention score α

(l)
ij , and

the hidden state h(l+1)
i at layer l + 1 could be defined as:

z(l)i = W(l)
i x(l)i s(l)ij = (z(l)i ||z

(l)
j ) α

(l)
ij =

exp(s(l)ij )

∑vk∈N(vi)
exp(s(l)ik )

(100)

h(l+1)
i = σ

(
z(l)i

)
⊕

 ∑
vk∈N(vi)

α
(l)
ik z(l)l

 (101)

where N(vi) denotes the set of neighbors of node vi, xi denotes the feature of vi, and W(l)
i

is the weighted matrix of each node type.
Several studies focused on applying CGNNs for recommendation systems [228,267–269].

For instance, Wang et al. [267] presented KGCN (Knowledge Graph Convolutional Net-
works) model to extract the user preferences in the recommendation systems. Since most
existing models suffer from the cold start problem and sparsity of user–item interactions,
the proposed model can capture users’ side information (attributes) on knowledge graphs.
The users’ preferences, therefore, could be captured by a multilayer receptive field in GCN.
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Formally, given a user u, item v, Nv denotes the set of items connected to u, the user–item
interaction score could be computed as:

π̃u
rv,e =

exp(πu
rv,e)

∑e∈N(v) exp(πu
rv,e)

, vu
N(v) = ∑

e∈N(v)
exp(π̃u

rv,e e) (102)

where πu
rv,e denotes an inner product where the score between user u and relation r, e is the

representation of item v.
Since the power of the autoencoder architecture is to learn a low-dimensional node

representation in an unsupervised manner, several studies focused on integrating the
convolutional GNNs into autoencoder architecture to leverage the power of the autoencoder
architecture [72,270]. Table 14 summarizes graph convolutional autoencoder models for
static and dynamic graphs.

Table 14. A summary of graph convolutional autoencoder models. E is the edge attribute tensor, X is
a node attribute matrix.

Algorithms Graph Types Tasks Loss Function

GAE [72] Static graphs Link prediction Eq(Z|X,A)[log p(A|Z)]− KL[q(Z|X, A)||p(Z)]
VGAE [72] Static graphs Link prediction Eq(Z|X,A)[log p(A|Z)]− KL[q(Z|X, A)||p(Z)]
[271] Static graphs Graph generation −α1 log p(A|Z)− α2 log p(X|Z)− α3 log p(E|Z)
[272] Static graphs Graph generation −∑vi∈V

(
yᵀi log(ŷi) + (1− yi)log(1− ŷi)

)
MGAE [270] Static graphs Graph clustering

∥∥A− Â
∥∥2

[273] Static graphs Graph reconstruction 1
|V| ∑vi∈V ‖yi − ŷi‖2

2

LDANE [244] Dynamic graphs Graph reconstruction,
Link prediction,
Node classification

∑vi∈V
∥∥Âi − Ai

∥∥2
2 + α ∑〈i,j〉∈E

∥∥∥Zi − Zj

∥∥∥2

2
+ L1 + L2

Most graph autoencoder models were designed based on VAE (variational autoen-
coders) architecture to learn embeddings [274]. Kipf and Welling [72] introduced the GAE
model, one of the first studies on applying autoencoder architecture to graph representation
learning. GAE model [72] aimed to reconstruct the adjacency matrix A and feature matrix
X from original graphs by adopting the CGNNs as an encoder and an inner product as
the decoder part. Figure 19 presents the detail of the GAE model. Formally, the output
embedding Z and the reconstruction process of the adjacency matrix input could be defined
as:

Z = GCN(X, A) Â = σ(ZZᵀ) (103)

where GCN(·, ·) function could be defined by Equation (65), and σ is an activation function
ReLU(·) = max(0, ·). The model aims to reconstruct the adjacency matrix A by an inner
product decoder part:

p(A, Z) =
N

∏
i=1

N

∏
j=1

p(Aij|Zi, Zj), p(Aij = 1|Zi, Zj) = σ(Zᵀ
i Zj) (104)

where σ is the sigmoid function and Aij is the value at row i-th and column j-th in the
adjacency matrix A. In the training process, the model tries to minimize the loss function
by gradient descent:

L(θ) = Eq(Z|X,A)[logp(A|Z; θ)]−KL[q(Z|Z, A)||p(Z)] (105)

where KL[q(Z|Z, A)||p(Z)] is the Kullback–Leibler divergence between two distributions
p and q.
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Figure 19. The architecture of GAE and VGAE model. The model adopts the adjacency matrix A and
the feature matrix X as inputs. The encoder part includes two convolutional GNN layers. In the GAE
model, the decoder part adopts the embedding matrix Z as input and reconstructs the adjacency
matrix A using an inner product. In the VAGE model, the output of GNN could be represented as a
Gaussian distribution.

Several models attempted to incorporate the autoencoder architecture into the GNN
model to reconstruct graphs. For example, the MGAE model [270] combined the message-
passing mechanism from GNNs and GAE architecture for graph clustering. The primary
purpose of MGAE is to capture information about the features of the nodes by randomly re-
moving several noise pieces of information from the feature matrix to train the GAE model.

The GNNs have shown outstanding performance in learning complex structural
graphs that shallow models could not solve [245,275,276]. There are several main advan-
tages of deep neural network models:

• Parameter sharing: Deep neural network models share weights during the training
phase to reduce training time and training parameters while increasing the perfor-
mance of the models. In addition, the parameter-sharing mechanism allows the model
to learn multi-tasks.

• Inductive learning: The outstanding advantage of deep models over shallow models
is that deep models can support inductive learning. This makes deep-learning models
capable of generalizing to unseen nodes and having practical applicability.

However, the CGNNs are considered the most advantageous in the line of GNNs and
have limitations in graph representation learning.

• Over-smoothing problem: When capturing the graph structure and entity relation-
ships, CGNNs rely on an aggregation mechanism that captures information from
neighboring nodes for target nodes. This results in stacking multiple graph con-
volutional layers to capture higher-order graph structure. However, increasing the
depth of convolution layers could lead to over-smoothing problems [252]. To over-
come this drawback, models based on transformer architecture have shown several
improvements compared to CGNNs using self-attention.

• The ability on disassortative graphs: Disassortative graphs are graphs where nodes
with different labels tend to be linked together. However, the aggregation mechanism
in GNN samples all the features of the neighboring nodes even though they have
different labels. Therefore, the aggregation mechanism is the limitation and challenge
of GNNs for disassortative graphs in classification tasks.

3.4.4. Graph Transformer Models

Transformers [277] have gained tremendous success for many tasks in natural lan-
guage processing [278,279] and image processing areas [280,281]. In documents, the trans-
former models could tokenize sentences into a set of tokens and represent them as one-hot
encodings. With image processing, the transformer models could adopt image patches and
use two-dimensional encoding to tokenize the image data. However, the tokenization of
graph entities is non-trivial since graphs have irregular structures and disordered nodes.
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Therefore, applying transformers to graphs is still an open question of whether the graph
transformer models are suitable for graph representation learning.

The transformer architecture consists of two main parts: a self-attention module and a
position-wise feedforward network. Mathematically, the input of the self-attention model
at layer l could be formulated as H =

[
hl

1, hl
2, · · · , hl

N

]
where hl

i denotes the hidden state
of position of node vi. Then, the self-attention could be formulated as:

Q = HWQ K = HWK V = HWV (106)

S =
QKT
√

dK
S(H) = Softmax(S)V (107)

where Q, K, and V depict the query matrix, key matrix, and value matrix, respectively, and
d is the hidden dimension embedding. The matrix S measures the similarity between the
queries and keys.

The architecture of graph transformer models differs from GNNs. GNNs use message-
passing to aggregate the information from neighbor nodes to target nodes. However, graph
transformer models use a self-attention mechanism to capture the context of target nodes in
graphs, which usually denotes the similarity between nodes in graphs. The self-attention
mechanism could help capture the amount of information aggregated between two nodes
in a specific context. In addition, the models use a multi-head self-attention that allows
various information channels to pass to the target nodes. Transformer models then learn
the correct aggregation patterns during training without pre-defining the graph structure
sampling. Table 15 lists a summary of graph transformer models.

Table 15. A summary of graph transformer models. MP is the message-passing, SPD is the shortest-
path distance.

Model Graph Type Transformer Type Sampling Strategy Self-Supervised Learning

[64] Tree-like graphs Structural encoding Dependency path
BFS, DFS

Structure reconstruction

[65] Tree-like graphs Structural encoding Dependency path Structure reconstruction
[282] Tree-like graphs Structural encoding SPD Structure reconstruction
Graph-Bert [63] Static graphs Structural encoding

Attention + GNN
WL and K-hop Attribute reconstruction

Structure reconstruction
[283] Static graphs Structural encoding WL, K-hop Structure reconstruction
[29] Heterogeneous graphs Structural encoding

Edge channels
Laplacian matrix Structure reconstruction

SAN [284] Heterogeneous graphs Structural encoding
Edge channels

Laplacian matrix Structure reconstruction

Grover [100] Heterogeneous graphs MP + Attention k-hop Feature prediction
Motif prediction

Mesh
Graphormer [99]

Static graphs Attention + CGNNs k-order proximity Graph reconstruction

HGT [285] Heterogeneous graphs Attention+ MP Meta-paths Graph reconstruction
UGformer [61] Heterogeneous graphs Attention +GNN 1st-order proximity Graph reconstruction
StA-PLAN [286] Heterogeneous graphs Attention matrix 1st-order proximity Structure reconstruction
NI-CTR [287] Heterogeneous graphs Attention matrix Subgraph sampling Structure reconstruction
[101] Heterogeneous graphs MP + Attention 1-hop neighbors Structure reconstruction
[66] Heterogeneous graphs Attention + MP Subgraph Masked label prediction
Gophormer [46] Heterogeneous graphs Attention matrix Ego-graph

k-order proximity
Node classification

Graformer [47] Knowledge graphs Edge channels SPD Structure reconstruction
Graphormer [67] Homogeneous graphs Edge channels SPD Structure reconstruction
EGT [30] Homogeneous graphs Edge channels SPD Structure reconstruction

In this section, we divide graph transformer models for graph representation learning
into three main groups based on the strategy of applying graph transformer models.
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• Structural encoding-based graph transformer: These models focus on various posi-
tional encoding schemes to capture absolute and relative information about entity
relationships and graph structure. Structural encoding strategies are mainly suitable
for tree-like graphs since the models should capture the hierarchical relations between
the target nodes and their parents as well as the interaction with other nodes of the
same level.

• GNNs as an auxiliary module: GNNs bring a powerful mechanism in terms of ag-
gregating local structural information. Therefore, several studies try integrating
message-passing and GNN modules with a graph transformer encoder as an auxiliary.

• Edge channel-based attention: The graph structure could be viewed as the combination
of the node and edge features and the ordered/unordered connection between them.
From this perspective, we do not need GNNs as an auxiliary module. Recently, several
models have been proposed to capture graph structure in depth as well as apply graph
transformer architecture based on the self-attention mechanism.

Several models tried to apply vanilla transformers to tree-like graphs to capture
the node position [64,65,277,288]. Preserving tree structure depicts preserving a node’s
relative and absolute structural positions in trees. Absolute structural position describes
the positional relationship of the current node to the parent nodes (root nodes). In contrast,
relative structural position describes the positional relationship of the current node to
its neighbors.

Shiv and Quirk [64] proposed to build a positional encoding (PE) strategy for program-
ming language translation tasks. The significant advantage of tree-based models is that
they can explore nonlinear dependencies. By custom positional encodings of nodes in the
graph in a hieratical manner, the model could strengthen the transformer model’s power
to capture the relationship between node pairs in the tree. The key idea is to represent
programming language data in the form of a binary tree and encode the target nodes based
on the location of the parent nodes and the relationship with neighboring nodes at the same
level. Specifically, they used binary matrices to encode the relationship of target nodes with
their parents and neighbors.

Similarly, Wang et al. [65] introduced structural position representations for tree-like
graphs. However, they combine sequential and structural positional encoding to enrich
the contextual and structural language data. The absolute position and relative position
encoding for each word wi could be defined as:

PEi = f
(

Abs(vi)

100002i/d

)
(108)

PEij =
xiWQ(xjWK)

ᵀ
+ xiWQ(aK

ij )
ᵀ

√
d

(109)

where Abs is the absolute position of the word in the sentence, d denotes the hidden
size of K, Q matrix, f (·) is the sin/cos function depending on the even/old dimension,
respectively, and R is the matrix presenting relative position representation.

The sentences also are represented in an independent tree which could represent the
structural relations between words. For structural position encoding, the absolute and
relative structural position of a node vi could be encoded as:

PEi = d(vi, root) (110)

PEij =


PEi −PEj if(vi, vj) ∈ E .
PEi +PEj if(vi, vj) /∈ E, i > j.
−(PEi +PEj) if(vi, vj) /∈ E, i < j.
0 otherwise .

(111)
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where d(· ·) denotes the distance between the root node and the target nodes. They
then use a linear function to combine sequential PE and structural PE as inputs to the
transformer encoder.

To capture more global structural information in the tree-like graphs, Cai and Lam [282]
also proposed an absolute position encoding to capture the relation between target and
root nodes. Regarding the relative positional encoding, they use attention score to measure
the relationship between nodes in the same shortest path sampled from graphs. The power
of using the shortest path is that it can capture the hieratical proximity and the global
structure of the graph. Given two nodes vi and vj, the attention score between two nodes
can be calculated as:

Sij = HiW
ᵀ
q Wk Hj (112)

where Wq and Wk are trainable projection matrices, Hi and Hj depict the node presentation
vi and vj, respectively. To define the relationship ri→j between two nodes vi and vj, they
adopt a bi-directional GRUs model, which could be defined as follows:

→
s i = GRU

(→
s i−1, SPDi→j

)
(113)

←
s i = GRU

(←
s i+1, SPDi→j

)
(114)

where SPD denotes the shortest path from node vi to node vj,~si and
←
s i are the states of the

forward and backward GRU, respectively.
Several models tried to encode positional information of nodes based on subgraph

sampling [63,283]. Zhang et al. [63] proposed a Graph-Bert model, which samples the
subgraph structure using absolute and relative positional encoding layers. In terms of
subgraph sampling, they adopt a top-k intimacy sampling strategy to capture subgraphs
as inputs for positional encoding layers. Four layers in the model are responsible for
positional encoding. Since several strategies were implemented to capture the structural
information in graphs, the advantage of Graph-Bert is that it can be trainable with various
types of subgraphs. In addition, Graph-Bert could be further fine-tuned to learn various
downstream tasks. For each node vi in a subgraph Gi = (Vi, Ei), they first embed raw
feature xi using a linear function. They then adopt three layers to encode the positional
information of a node, including absolute role embedding, relative positional embedding,
and hop-based relative distance embedding. Formally, the output of three embedding
layers of the node vi from subgraph Gi could be defined as follows:

PE(1)
i = f (WL(vi)), (115)

PE(2)
i = f (P(vi)), (116)

PE(3)
i = f

(
H(vj, vi)

)
, (117)

f (xi) =

[
sin
(

xi

100002l/d

)
, cos

(
xi

100002l+1/d

)]b d
2 c

l=0
, (118)

where WL(vi) denotes the WL code that labels node vi, which can be calculated from
whole graphs, l and d are the numbers of interactions throughout all nodes, and the vector
dimension of nodes, P(·) is a position metric, H(· ·) denotes the distance metric between
two nodes, and PE(1)

i , PE(2)
i , PE(3)

i denote the absolute, relative structure intimacy, and
relative structure hop PE, respectively. They then aggregate all the vector embeddings
together as initial embedding vectors for the graph transformer encoder. Mathematically,
the transformer architecture could be explained as follows:
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h(0)i = PE(1)
i +PE(2)

i +PE(3)
i +Xi (119)

H(l) = Transformer
(

H(l−1)
)

(120)

Zi = Fusion
(

H(l)
)

. (121)

Similar to Graph-Bert, Jeon et al. [283] tried to present subgraphs for the paper citation
network and capture the contextual citation of each paper. Each paper is considered a
subgraph with nodes as reference papers. To extract the citation context, they encode the
order of the referenced papers in the target paper based on the position and order of the
referenced papers. In addition, they use the WL label to capture the structural role of the
references. The approach by Liu et al. [289] was conceptually similar to [283]. However,
there is a significant difference between them. They proposed an MCN sampling strategy
to capture the contextual neighbors from a subgraph. The purpose of MCN sampling is
based on the importance of the target node based on the frequency of occurrence when
sampling.

In several types of graphs, such as molecular networks, the edges could bring fea-
tures presenting the chemical connections between atoms. Several models adopted Lapla-
cian eigenvectors to encode the positional node information with edge features [29,284].
Dwivedi and Bresson [29] proposed the positional encoding strategy using node position
and edge channel as inputs to the transformer model. The idea of this model is to use Lapla-
cian eigenvectors to encode the node position information from graphs and then define
edge channels to capture the global graph structures. The advantage of using the Laplacian
eigenvector is that it can help the transformer model learn the proximity of neighbor nodes
by maximizing the dot product operator between Q and K matrix. They first pre-computed
Laplacian eigenvectors from the Laplacian matrix that could be calculated as:

∆ = I − D−
1
2 AD−

1
2 = UᵀΛU (122)

where ∆ is the Laplacian matrix, and Λ and U denote the eigenvalues and eigenvectors,
respectively. The Laplacian eigenvectors λi then could denote the positional encoding for
node vi. Given node vi with feature xi and the edge feature eij, the first hidden layer and
edge channel could be defined as:

h(0)i = A0xi + λ
(0)
i + a(0) (123)

e(0)ij = B(0)eij + b(0) . (124)

The hidden layers ĥ(l+1)
i of node vi and the edge channel ê(l+1)

i at layer l + 1 could be
defined as follows:

ĥ(l+1)
i = O(l)

h

H
||

k=1

(
∑

j∈Ni

Ak,l
ij Vk,lhl

j

)
, (125)

ê(l+1)
i = O(l)

e
H
||

k=1

(
Ak,l

ij

)
, (126)

Sk,l
ij =

(
Qk,lhl

i · Kk,lhl
j√

dk

)
· Ek,lel

ij (127)

where Q, K, V, E are learned output projection matrices, H denotes the number of
attention head.

Similar to [29], Kreuzer at al. [284] aimed to add edge channels to all pairs of nodes
in an input graph. However, the critical difference between them is that they combine
full-graph attention with sparse attention. One of the advantages of the model is that it
could capture more global structural information since they implement self-attention to
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nodes in the sparse graph. Therefore, they use two different types of similarity matrices
to guide the transformer model to distinguish the local and global connections between
nodes in graphs. Formally, they re-define the similarity matrix for pair of connected and
disconnected nodes, which could be defined as follows:

Ŝk,l
ij =


Q1,k,l hl

i ·K
1,k,l hl

i E
1,k,leij√

d
if(vi, vj) ∈ E.

Q2,k,l hl
i ·K

2,k,l hl
i E

2,k,leij√
d

otherwise.
(128)

where Ŝk,l
ij denotes the similarity between two nodes vi and vj, (Q1, K1, E1) and (Q2, K2, E2)

are the keys, queries, and edge projections of connected and disconnected pair
nodes, respectively.

In some specific cases where graphs are sparse, small, or fully connected, the self-
attention mechanism could lead to the over-smoothing problem and structure loss since
it cannot learn the graph structure. To overcome these limitations, several models adopt
GNNs as an auxiliary model to maintain the local structure of the target nodes [99,100,285].
Rong et al. [100] proposed the Grover model, which integrates the message-passing mech-
anism into the transformer encoder for self-supervised tasks. They used the dynamic
message-passing mechanism to capture the number of hops compatible with different
graph structures. To avoid the over-smoothing problem, they used a long-range residual
connection to strengthen the awareness of local structures.

Several models attempted to integrate GNNs on top of the multi-attention sublayers
to preserve local structure between nodes neighbors [63,99,290]. For instance, Lin et al. [99]
presented Mesh Graphormer model to capture the global and local information from
3D human mesh. Unlike the Grover model, they inserted a sublayer graph residual
block with two GCN layers on top of the multi-head attention layer to capture more local
connections between connected pair nodes. Hu et al. [285] integrated message-passing
with a transformer model for heterogeneous graphs. Since heterogeneous graphs have
different types of node and edge relations, they proposed an attention score, which could
capture the importance of nodes. Given a source node vi and a target node vj with the edge
eij, the attention score could be defined as:

S(vi, eij, vj) = Softmax

(
Mhead
||

m=1
αm(vi, eij, vj

))
(129)

αm(vi, eij, vj
)
= Km(vi)Wτ(eij)

Qm(vj)
µ√
d

(130)

where αm(·, ·, ·) denotes the m-th attention head, Wτ(eij)
is the attentive trainable weights

for each edge types, K and Q are linear projection of all type of source node vi and vj,
respectively, and µ is the importance of each relationship.

Nguyen et al. [61] introduced the UGformer model, which uses a convolution layer
on top of the transformer layer to work with sparse and small graphs. Applying only self-
attention could result in structure loss in several small-sized and sparse graphs. A GNN
layer is stacked after the output of the transformer encoder to maintain local structures
in graphs. One of the advantages of the GNN layer is that it can help the transformer
model retain the local structure information since all the nodes in the input graph are fully
connected.

In graphs, the nodes are arranged chaotically and non-ordered compared to sentences
in documents and pixels in images. They can be in a multidimensional space and interact
with each other through connection. Therefore, the structural information around a node
can be extracted by the centrality of the node and its edges without the need for a positional
encoding strategy. Recently, several proposed studies have shown remarkable results in
understanding graph structure.
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Several graph transformer models have been proposed to capture the structural
relations in the natural language processing area. Zhu et al. [62] presented a transformer
model to encode abstract meaning representation (AMR) graphs to word sequences. This is
the first transformer model that aims to integrate structural knowledge in AMR graphs. The
model aims to add a sequence of edge features to the similarity matrix and attention score
to capture the graph structure. Formally, the attention score and the vector embedding
could be defined as:

Sij =

(
xiWQ)(xjWK + rijWR)ᵀ

√
d

(131)

Zi =
n

∑
j=1

Softmax(Sij)
(

xjWV + rijWF
)

(132)

where WR and WF are parameter matrices, rij is the vector representation for the relation
between vi and vj, which could be computed by several methods, such as average values
or summation. Khoo et al. [286] introduced the StA-PLAN model, which aims to detect
fake news on social networking sites. Given a node vi, the attention score and the node
embedding could be defined as:

Sij =
qiK

ᵀ
j + aK

ij√
d

(133)

Zi =
n

∑
j=1

Softmax(Sij)
(

Zj + aV
ij

)
(134)

where aK
ij and aV

ij denotes the learned parameter vectors, which represent the relation types

between vi and vj. The aK
ij matrix aims to capture the structural information surrounding

target nodes, while the purpose of aV
ij matrix is to spread to other nodes.

The study from [66] aims to add the edge information between nodes to the similarity
matrix. However, the difference is that they add a label information matrix combined with
node features as input for the graph transformer. Formally, the feature propagation at the
first layer could be defined as:

H(l+1) = σ
((

(1− β)Ã + βI
)

H(l)
)

H(0) = X + ŶWd (135)

where X and Ŷ denote the input feature and partially labeled matrix, respectively.
Ã = D−1 A and β is a predefined hyper-parameter. They then put a message-passing
layer on top of the multi-head attention layers to capture the local graph structures.

Schmitt et al. [47] proposed a model that adds the relative position embedding param-
eter to the proximity and attention score matrices in the graph-to-text problem. The main
objective of this model is to define the attention score of relationships between nodes based
not only on the topology of the nodes but also on their connection weights extracted from
shortest paths. Specifically, the proximity matrix of a node and its attention score can be
defined as:

Sij =
HiKQ(HjWK)

√
d

+ γRij (136)

where γ denotes a scalar embedding, and Rij presents a relative positional encoding
between node vi and vj which are sampled from shortest paths P.
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Ying et al. [67] introduced the Graphormer model, which aims to encode effectively
graph structures. The model first captures the importance of nodes in graphs by describing
the node centrality.The hidden state at the first layer of a node vi could be defined as:

h(0)i = xi + z−
deg−(vi)

+ z+
deg+(vi)

(137)

where z−
deg−(vi)

and z+
deg+(vi)

depict the embedding vectors of in-degree and out-degree of

node vi, respectively. To capture the global structure and the connection between nodes,
they add more information about the node pairwise and edge features to the similarity
matrix S. Mathematically, the similarity matrix S that captures the relation between keys
and queries matrix could be defined as:

Sij =
(hiWQ)(hjWK)

ᵀ

√
d

+ bϕ(vi ,vj)
+ cij (138)

cij =
1
N

N

∑
n=1

xen(w
E
n )

ᵀ
(139)

where bϕ(vi ,vj)
is the learnable scalar indexed by the shortest-path distance from node vi

to node vj, (wE
n ) denotes the weight embedding of edge, and xen denotes the n-th edge

feature in the shortest path from vi to vj. Using the centrality encoding strategy, the
Graphormer model could capture the importance of nodes in graphs that are significant in
several graphs, such as the social network. Furthermore, the spatial encoding based on the
shortest path could help the model capture the local and global structural information in
graphs.

By contrast, Hussain et al. [30] proposed EGT (Edge-augmented Graph Transformer)
model to capture the graph structure more in-depth by only using edge channels. The
main idea of this model is to consider the proximity in an input graph matrix of size k-hop.
In this case, the self-attention captures the edge information channels obtained using the
shortest-path distance (SPD) between two nodes in an input matrix. They added edge
channels to the proximity matrix of the two nodes and hidden layers for each target node.
The attention matrix at layer l-th and m-th attention head could be defined as:

Am,l = Softmax
(

Hm,l
)
� σ

(
Gm,l

)
(140)

Hm,l =

Qm,l
(

Km,l
)ᵀ

√
dk

+ Em,l (141)

where m, l denote the m-th attention head and l-th hidden layer, respectively, Gm,l and
Em,l are the two matrices obtained from edge channels between two nodes by a linear
function, σ(·) is the sigmoid function. To capture the importance of nodes, they introduced
a centrality score for each node which could be obtained from a k-hop distance. The main
idea is to make the model capable of distinguishing non-isomorphic subgraphs, and the
model’s performance is at least better than the 1-WL test. Formally, the centrality scaler
matrix could be defined as:

sm,l
i = ln

(
1 +

N

∑
j=1

σ
(

Gm,leij

))
(142)

where N denotes the number of nodes in a matrix input and eij is the edge between two
nodes vi and vj. In addition, they also added positional encoding, which is based on SVD.
They first decompose the adjacency matrix A ≈ ÛV̂ᵀ, then concatenate two matrices U
and V as positional encoding. However, the experimental results show that the model’s
performance is not significantly improved compared to the original version.
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To sum up, since the graph structure differs from the text and images mentioned
above, various models have adjusted self-attention to apply the transformer to graph data.
Moreover, it can also be considered that graph transformer architecture is a GAT in fully
connected graphs. Therefore, in some specially structured graphs, ideal models combining
GNNs as an auxiliary module for transformers also yield remarkable results. Several
models [30,47] showed remarkable success in an in-depth understanding of the graph
structure using edge channels based on the shortest-path distance. These results could bring
a new approach to applying transformer architecture to graph representation learning.

3.5. Non-Euclidean Models

Graph representation learning models in Euclidean space have shown significant
results for various applications [4,291]. In Euclidean space, graph representation learning
models aim to map the graph entities to low-dimensional vector points. However, in
the real world, graphs could have complex structures and various shapes, and the num-
ber of nodes could increase exponentially over time [292]. Representing such graphs in
Euclidean space could lead to an incomplete representation of the graph structure and
information loss [68,293]. Several recent studies have focused on representing complex
structural graphs in non-Euclidean space and different metrics, which yielded some de-
sirable results [68,70,102,293]. Each type of geometry has the advantage of describing
differently shaped graph structures. For graph representation in non-Euclidean spaces,
there are two typical spaces, spherical and hyperbolic, each one has its advantages. Spher-
ical space could represent graph structures with large cycles, while hyperbolic space is
suitable for hierarchical graph structures. Another method is Gaussian-based models,
which could learn embeddings as a probability distribution in a latent space. This can be
appropriate with the distribution in several graphs since a node could belong to different
clusters based on probability density. This section covers various models in non-Euclidean
space and Gaussian models.

3.5.1. Hyperbolic Embedding Models

Hyperbolic geometry has the advantage of representing hierarchical graph data, which
is tree-like and mostly obeys the power law [292]. Since the Euclidean operators could
not be implemented directly in hyperbolic space, most models focus on transforming the
properties of models from hyperbolic space (e.g., operators, optimization) to a tangent
space where we are familiar with Euclidean operators. We first briefly introduce some
basic notions and definitions of hyperbolic geometry and then cover graph embedding
models later.

Definition 9 (Hyperbolic space [102]). A hyperbolic space (sometimes called Bolyai–Lobachevsky
space) is an n-dimensional Riemannian manifold of constant negative curvature. When n = 2, it is
also called the hyperbolic plane.

Due to the complex structure of hyperbolic space, the visual representation of data
and implementing operators in hyperbolic space seems complicated. Most models use a
tangent space to approximate a manifold as an n-dimensional vector space. Formally, the
manifold and tangent space could be defined as follows:

Definition 10 (Manifold and Tangent space [293]). A manifoldM of multi-dimension n is a
topological space where the Euclidean space Rn could locally approximate its neighborhood. When
n = 2, it is also called surfaces. A tangent space TvM is a Euclidean space Rn that approximates
the manifoldM at any node v in graphs.

The hyperbolic space is a smooth Riemannian manifold, considered a locally Euclidean
space where we could generate Euclidean operations. The Riemannian manifold could be
defined as follows:
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Definition 11 (Riemannian manifold [293]). A Riemannian manifold is defined as a tuple
(M, g), where g denotes a Riemannian metric which is a smooth collection of inner products on the
associated tangent space: 〈· ·〉v : TvM×TvM. The metric space g denotes curvature properties,
such as the angle and the volume.

There are several isometric models which are different metrics. However, two hyper-
bolic models, Poincaré and Lorentz, are widely studied in graph representation learning.
Mathematically, the Poincaré and Lorentz models could be defined as:

Definition 12 (Poincaré Model [70]). A Poincaré ball is a Riemannian manifold with a tuple(
Bn

c , gBx
)
, where c is a negative curvature, and Bn

c =
{

x ∈ Rn : ‖x‖2 < − 1
c

}
is a open ball with

radius r = 1/
√
|c|. The matrix tensor gB

x = (λ2
x)

2gE denotes a conformal factor λc
x = 2

1+c‖x‖2
2

and gE is a Euclidean matrix. Since R2 could present a single hierarchical structure sufficiently, the
Poincaré disk Bn

2 is commonly used to define hyperbolic geometry.

Unlike the Poincaré disk, the Lorentz model is suitable for representing cyclic graphs.
The Lorentz model has different characteristics from the Poincaré disk, but they are equiv-
alent and could be transformed into each other. Mathematically, the Lorentz model is
defined as follows:

Definition 13 (Lorentz/hyperboloid Model [102]). A Lorentz or hyperboloid model is a Rie-
mannian manifold with a tuple

(
Ln

c , gLx
)
, where Ln

c =
{

x ∈ Rn+1 : 〈x, x〉L < 1
c

}
with a negative

curvature c, and gn
c = diag([−1 1 1 . . . 1])n.

Most studies flatten a hyperbolic manifold and then apply graph operations in tangent
space, which are similar to Euclidean space. Once the results are available, they will be
mapped back into the hyperbolic space. The projection of components from hyperbolic
space to the manifold and back projection is handed through exponential and logarithmic
mapping functions, which will be shown in the models below in detail. Table 16 summarizes
hyperbolic models for graphs.

Table 16. A summary of hyperbolic models.

Models Graph Types Hyperbolic Models Model Types

[70] Homogeneous graphs Poincaré disk Shallow models
[102] Homogeneous graphs Lorentz model Shallow models
[71] Heterogeneous graphs Poincaré disk Shallow models
[293] Homogeneous graphs Poincaré disk Convolutional GNNs
[294] Homogeneous graphs Poincaré disk,

Lorentz model
GNNs

LGCN [69] Homogeneous graphs Lorentzian model GNNs
[68] Homogeneous graphs Gyrovector model GAT

Nickel Kiela [70] was among the first studies to learn graph embeddings in Poincaré
ball based on similarities and hierarchies of nodes. They first put all nodes in graphs into
the Poincaré disk and optimize the distance between pairwise nodes. Mathematically, the
distance measure in Poincaré disk between two nodes vi and vj could be defined as:

d
(
Zi, Zj

)
= arccosh

1 + 2

∥∥Zi − Zj
∥∥2(

1− ‖Zi‖2
)(

1−
∥∥Zj
∥∥2
)
 . (143)

They then define operators and compute the loss function on the tangent space. The
loss function can be minimized using Riemannian SGD (RSGD) optimization. Formally,
the loss function is defined as:
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L(V) = ∑
(vi ,vj)∈E

log
e−d(vi ,vj)

∑vk∈Nneg(vi)
e−d(vi ,vk)

. (144)

Similarly, the study of Nickel and Kiela [102] tried to improve embeddings in the
Poincaré model by learning pairwise hierarchical relations in graphs. However, the dif-
ference between [70,102] is that they adopted the Lorentz model to learn embeddings.
Wang et al. [71] tried to learn embeddings of heterogeneous graphs in the Poincaré disk.
The meta-paths are generated using random-walk sampling strategies. They then use
Equation (143) to calculate the distance between two nodes in the vector space. The Rie-
mannian stochastic gradient descent (RSGD) is used to optimize the objective function,
which minimizes the proximity between target nodes and their neighbors. Mathematically,
given a node vi and set of its neighbors N(vi), the objective function could be defined as:

L(V) = ∑
(vi ,vj)∈E

[
α log σ

(
Zᵀ

i Zj
)
+ (1− α)

n

∑
k=1

(
Evk∼P(vi)

log σ(Zᵀ
i Zk)

)]
. (145)

Since there is no definition of GNN operations in the hyperbolic space, most models
tried to transform GNN operators from the hyperbolic space to the tangent manifold and
performed the operators in this space. The work of Chami et al. [293] aimed to transform
features from the Euclidean space to a tangent manifold and perform aggregation and
activation functions on this space. The results are then projected to the H space. Exponential
and logarithmic functions are used to map between T and H space. Given a vector x0,E ∈ Rd

in Euclidean space, the mapping features from Euclidean space into hyperboloid manifold
could be defined as:

x0,H = expC
o

(
0, x0,E

)
=

(√
C cosh

(
||x0,E||2√

K

)
,
√

C sinh
(
||x0,E||2√

K

)
x0,E

||x0,E||2

)
(146)

where o :=
{√

C, 0, · · · , 0
}
∈ Hd,C denotes the original pole in the hyperbolic space. The

model defines trainable curves C at different layers and mapping operations between the
hyperbolic space and manifold. After mapping input features into hyperbolic space, the
definition operators for the message mapping mechanism can be defined as:

hl,H
i =

(
W l⊗Kl−1 xl−1,H

i

)
⊕Cl−1 bl (147)

ml,H
i = AGGCl−1

(
hl,H

)
i

(148)

Zl,H
i = σ⊗

Cl−1,Cl
(

ml,H
i

)
(149)

where AGG(·) denotes the hyperbolic aggregation, which is based on the attention mecha-
nism and could be calculated as:

AGGC (xH)i = expC
xH

i

 ∑
vj∈N(vi)

wij logC
xH

i
xH

j

 . (150)

Similarly, Zhang et al. [68] used Gyrovector space to build GNN layers in hyperbolic
space. The Gyrovector space is an open d-dimensional ball which could be defined as:

Dd
c :=

{
x ∈ Rd : c‖x‖2 < 1

}
(151)
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where c denotes the radius of the ball. They first put input features x from Euclidean space
into the Gyrovector ball by an exponential mapping:

xH = expc
o(x) = tanh

(√
c‖x‖

) x(√
c‖x‖

) . (152)

After exponential mapping, a linear transform is used as a latent representation of
each node. Formally, the hidden state of a node is obtained by applying a shared linear
transformation matrix M:

hi = M⊗cxH =
1√
c

tanh

(∥∥MxH
∥∥

‖xH‖
tanh−1(√c‖x‖

))
. (153)

Liu et al. [294] employed a similar approach for HGNNs. However, the main objective
of this study aimed to compare which space could be suitable for graph data represen-
tation between Poincaré disk and Lorentz space in terms of implementing GNN models.
Zhang et al. [69] proposed an LGCN model to learn embeddings on the Lorentzian model.
They first map input features from Euclidean space to hyperbolic space and rebuild GNN
operators, such as dot product and linear transformation. In addition, they aggregate infor-
mation from neighborhood nodes by computing the centroid of nodes in the hyperbolic
space. Given a node vi and its feature hd,C

i ∈ Hd×C and a set of its neighbors N(vi), finding
a centroid of nodes could be considered as an optimization problem:

c̄d,C = arg min
cd,C∈Hd,C

∑
j∈N(vi)

wijd2
L

(
hd,C

j , cd,C
)

(154)

cd,C =
√

C
∑j∈N(vi)

wijh
d,C
j∣∣∣∥∥∥∑j∈N(vi)

wijh
d,C
j

∥∥∥
L

∣∣∣ (155)

where wij denotes the weights that could be normalized and computed via an attention
coefficient µ as:

wij =
exp(µij)

∑vm∈N(vi)
exp(µim)

(156)

µij = −d2
L

(
M⊗Chd,C

i , M⊗Chd,C
j

)
(157)

where d2
L denotes a squared Lorentzian distance [295], M is a matrix to transform node

feature to attention-based space.

3.5.2. Spherical Embedding Models

Spherical geometry is a topological space that could represent graph structure with
large cycles [296]. A spherical space is an n-dimensional Riemannian manifold of constant
positive curvature (c > 0). The implementation of operators is similar to hyperbolic space.
For each point x in the spherical space S, the connection between the spherical space S and
a tangent space TxSn

c could be computed through exponential and logarithmic mapping,
which could be defined as:

expc
x(v) = x⊕c

(
tanh

(√
c

λx‖v‖
2

)
v√

c‖v‖

)
(158)

logc
x(y) =

2√
cλx

tanh−1(√c‖−x⊕cy‖
) −x⊕cy
‖−x⊕cy‖ (159)
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where x and y are two points in the S space and v ∈ TxSn
c . The distance between x and y,

and the operator ⊕c is the Möbius addition for any x, y ∈ S which could be defined as:

dc(x, y) =
2√
c

tanh−1(√c‖−x⊕cy‖
)

(160)

x⊕cy =

(
1 + 2c〈x, y〉+ c‖y‖2

)
x +

(
1− c‖x‖2

)
y

1 + 2c〈x, y〉+ c2‖x‖2‖y‖2 (161)

A few studies on spherical space have yielded promising results in recent years [103,297].
For instance, Cao et al. [103] proposed combining the representation of the knowledge
graphs into three different spaces, including Euclidean, hyperbolic, and spherical spaces.
Specifically, each entity e of the knowledge graph could be presented by three embeddings:
Euclidean space Ee, hyperbolic space Eh, and hypersphere space Es. For a triplet (h, r, t)
denotes the head, relation, and tail, respectively, in the knowledge graph, the embedding
of an entity e in the hyperbolic and hypersphere space could be defined as:

He = r⊗v expv
o(e) (162)

Se = r⊗u expu
o (e) (163)

where He and Se denote the embedding of entity e in the hyperbolic and hypersphere space
with two negative and positive curvatures u and v, respectively. They then can obtain the
embedding for each entity by combining embedding components from different spaces
through the exponential function.

3.5.3. Gaussian Embedding Models

Most of the aforementioned graph embedding models represent graph entities as
vector points in latent space. However, several models proposed using probability distribu-
tions to learn embeddings, considering each entity as density-based embedding. Unlike
vector-point embedding models, density-based models learn embeddings as continuous
density in latent space. Vector embeddings could be represented as a multivariate Gaussian
distribution P ∼ N (µ, Σ). Table 17 presents a summary of Gaussian embedding models
for various types of graphs.

Table 17. A summary of Gaussian embeddings models.

Model Graph Type Model Structure Preservation

VGAE [72] Homogeneous graphs Autoencoder-based
GCNs

Random-walk sampling

DVNE [298] Homogeneous graphs Autoencoder 1-order, 2-order proximity
[104] Heterogeneous graphs MLP Meta-path
[23] Homogeneous graphs Autoencoder k-order proximity
KG2E [299] Knowledge graphs Triplet score (h, t, r) 1-order proximity

Most Gaussian embedding models are inspired by the Word2Gauss approach [300]
in natural language processing. Each word is projected into an infinite-dimensional space
rather than a vector which could enable a rich geometry for better quantification of the word-
type properties in the latent space. Kipf and Welling [72] introduced a VGAE (Variational
Graph Autoencoder) model based on an autoencoder architecture. The encoder part
includes two convolutional graph layers. The model takes an adjacency matrix A and
features X as input for GCNs layers. Mathematically, the µ and log Σ2 parameters can be
defined as:
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µ = σµ

(
H0, A

)
= ÃH0W1 (164)

log Σ2 = σΣ

(
H0, A

)
= ÃH0W1 (165)

The vector embedding Zi for each node vi could be defined as:

q(Zi|X, A) = N
(

Zi|µi, diag
(

Σ2
i

))
. (166)

Zhu et al. [298] proposed DVNE (Deep Variational Network Embedding) model to
preserve the similarity between the distributions based on autoencoder architecture. The
DVNE model aims to preserve 1st-order and 2nd-order proximity in Wasserstein space.
The main objective is to minimize the Wasserstein distance between distributions over the
Gaussian distribution. For p ∈ [0, ∞), the Wasserstein p-distance between two distributions
P and Q could be defined as:

dp(P, Q) := inf
x,y
‖x− y‖p (167)

where (x, y) is all pairs of random variables. Since Gaussian distribution is used to present
the uncertainty of nodes in latent space, they aim to preserve the Wasserstein distance,
which could be formulated as:

W2(N (µ1, Σ1);N (µ2, Σ2))
2 = ‖µ1 − µ2‖2

2 + ‖Σ1 − Σ2‖2
F (168)

where Σ1 and Σ2 are diagonal covariance matrices. They use the square-exponential loss to
minimize the proximity and the reconstruction loss that could be defined as:

L(V) = L1(V) + αL2(V) (169)

L1(V) = ∑
vi ,vj ,vk∈V

E2
ij + exp(−Eik) (170)

L2(V) = in f
X,X̂

∥∥X ◦
(
X− X̂

)∥∥2
2 (171)

where (i, j, k) denotes a tuple (vi, vj, vk) from k-hop neighborhood of vi with constraints
defined in Equation (174).

Santos et al. [104] targeted node representation associated with the uncertainty in
classification tasks for heterogeneous graphs. Specifically, each node vi is projected into
latent space, which is followed by a Gaussian distribution Zi = N (µi, Σi). The key ob-
jective of the model is to minimize the loss function for the classification problem and
regularization for structural loss using stochastic gradient descent. In terms of structure
preservation, they aim to preserve the 1-hop distance for each target node in graphs. They
use KL Divergence to minimize the difference between two probability distributions which
could be defined as:

L(V) = ∑
vi∈V

∑
vj∈N(vi)

wijDKL
(
Zi||Zj

)
, (172)

DKL
(
Zi||Zj

)
=

1
2

tr
(

Σ−1
i Σj

)
+
(
µi − µj

)ᵀΣ−1
i
(
µi − µj

)
− d− log

det
(

Σj

)
det
(
Σi
)
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where wij denotes the weight of eij.
Similar to [104], Bojchevski and Gunnemann [23] proposed a G2G (Graph2Gauss)

model, an idea of learning node embeddings as uncertain. The difference between G2G
and [104] is that the G2G model could preserve up to k-hop neighborhood proximity, which
captures the global graph structure. Given a target node vi and set of its neighbors within
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k-hop distance Nik, the objective of G2G is to build a set of constraints that the dissimilarity
measure from node vi to all nodes in Ni1 should be smaller compared to all nodes in Ni2
and so on, up to k-hop. Mathematically, the pairwise constraints could be defined as:

E
(
Zi, Zj

)
< E(Zi, Zm), ∀vi ∈ V, ∀vm ∈ Nik, ∀j < m . (174)

Similar to [104], Equation (173) is used to measure the dissimilarity between two
distributions, and they adopt square-exponential loss for optimization. Since there has
been an uncertain lack of information about node embedding in latent space, the G2G model
could learn node embeddings efficiently by representing nodes as Gaussian distribution.
In addition, the personalized ranking could learn the order of nodes in graphs and the
distance between them, eventually capturing local and global structural information.

To learn embeddings in knowledge graphs, He et al. [299] proposed the KG2E model
to learn the certainty of entities and relations in knowledge graphs. This first study aims
to learn node embeddings based on density in knowledge graphs. Furthermore, KG2E
adopted two methods to measure the scores of triplets to learn embeddings based on
symmetric and asymmetric similarity. For each triplet (h, r, t) which denotes head, relation,
and tail, respectively, there are three different Gaussian distributions H ∼ N (µh, Σh),
R ∼ N (µr, Σr),T ∼ N (µt, Σt).

The score function of the KG2E model could be defined as:

s(h, r, t) = s(Pe, Pr) = DKL(Pe, Pr) (175)

where Pe denotes probability distribution Pe ∼ N (µh − µt, Σh − Σt), and DKL(· ·) is defined
in Equation (173).

4. Applications

This section focuses on practical applications of graph representation learning in
various fields. We first explain how a graph can be constructed in different contexts and
then discuss how graph-based models could be applied in practice. In several areas,
graph embedding models may not be applied directly to solve specific tasks in the real
world. However, they could act as auxiliary modules to help improve the performance of
specific tasks.

4.1. Computer Vision

In image processing, a graph could be constructed for image processing problems by
representing each pixel as a node and each edge describing the relationship between nodes.
Several CGNNs have been proposed for the task of learning convolutional filters in the
frequency domain [56,96,301,302] for classification tasks. For instance, Defferrard et al. [96]
transform images from the spatial domain to the spectral domain using a Fourier trans-
form. They then learn the convolution filter on the frequency domain to produce a sparse
Laplacian matrix as input for classification tasks.

Each image segment or an entire image could be considered to be nodes and edges
describing the relationships between them. Several graph-based methods adopt this
strategy for the clustering tasks [303,304]. For example, Yang et al. [304] first extract image
features from a CNN model and then build a large face image dataset. By considering k
nearest neighbors as super nodes and the relationship between them as edges, they could
construct graphs and use CGNNs to learn the cluster labels.

By considering each object in images as nodes and the relations between them as edges,
several GNNs are applied to learn the proximity between the objects [305,306]. The graph
embedding models can help image processing algorithms understand images’ semantic re-
lationships and spatial structure more deeply. CGNNs could aid in connecting relationships
between objects in images and scene graphs [307,308]. For example, Johnson et al. [308]
used scene graphs to predict corresponding layouts by calculating embeddings for objects
and their relationships in the image. The model is used to learn the vector embeddings for



Sensors 2023, 23, 4168 69 of 105

objects. CGNNs could also help build a reasoning network for objects in images to capture
the interaction between objects [309,310]. Chen et al. [309] proposed CGNNs for relation
reasoning for new actions, which should be more friendly in interaction space. CGNNs
with a self-attention mechanism could help enhance the object representation in images
combined with text guidance [310]. This strategy could capture relations between arbitrary
regions in images and the interactions between objects in images.

Graphs are also constructed by combining general knowledge of text and images with
image-question-facts. Specifically, each node in the graph is an embedding processed from
the word and image processing algorithms, and edges represent the relationship between
them. CGNNs are used to learn embeddings to retrieve the correct fact. For instance,
Cui et al. [306] build a joint model by combining the semantic and spatial scene graphs to
find internal correlations across object instances in images. They first use object detection
approaches to detect objects in the images. Then, a semantic graph is constructed with
nodes as objects, and edges connect objects in the image.

The sequence of skeletons is treated as a dynamic graph consisting of a sequence of
snapshots. Each snapshot corresponds to a skeleton frame where each node is a joint, and
the edge describes the connection of bones. Several graph-based models effectively learn
features containing joint and bone information and their dependencies, which can facilitate
action recognition. For instance, spatial and motion information in skeleton data could be
presented in graphs for pose prediction [311]. CGNNs could also help to understand and
recognize action sequences in videos and object relationships [312–314]. The models could
assign candidate moments by structural reasoning to model relations between moments
in videos. Each moment could be considered to be a node, and the edges are relations
between them.

4.2. Natural Language Processing

A graph can be built by considering each word/document as a node, and edges could
describe the relationship between the nodes or their occurrence frequency in a given context.
Recently, graph-based models, which are mainly based on GNNs have attracted much
attention in several applications to text classification tasks [16,18,22,211]. These models can
capture the rich relational structure and preserve global structure information of documents.
For instance, the DGCN model [211] was proposed to classify scientific publications by
considering each paper as a node and edges as reference citations. Hamilton et al. [22]
build document graphs from Reddit post data and citation data to predict paper and
post categories.

Each sentence could be represented as a graph, with each node being a word and
an edge describing the dependency between them. Recently, the graph-based models
applied in machine translation show the potential of syntax-aware feature representations of
words [315,316]. For instance, CGNNs could be used to predict syntactic dependency trees
of source sentences to produce representations of words [315,316]. Bastings et al. [315] first
transformed sentences into syntactic dependency trees. They then use convolution layers
to learn dependency relation types which could support language models to understand
the meanings of words in depth. SynGCN [317] could capture the structural relation
between words in sentences from a dependency graph. They consider nodes as words and
edges as the co-occurrence frequencies of two words in the entire corpus. The structural
semantics could then be used to improve the performance of the Elmo model. F-GCN
model (fusion GCN) from [318] can help a dialog system deal with diagram questions. They
then use RNNs to capture the meaning of answers by considering the answer representation
obtained from F-GCN as inputs.

4.3. Computer Security

The development of technology has increased the cyber security risk that is a social
concern. Researchers have proposed various solutions, such as firewalls and intrusion
detection systems against network attacks. The intrusion detection system could be divided
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into two main approaches: predefined rule-based and artificial intelligence-based. In
recent years, several GNNs have also been applied to improve the detection of network
attacks [231,319].

A graph network is constructed by nodes that are IP addresses and edges that are
packet data flows exchanged between IP addresses. Hao et al. [319] proposed a Packet2Vec
model to capture the proximity features based on graph representation to build an intrusion
detection system. They consider each network traffic flow as a graph where nodes are pack-
ets and edges denote the similarity between two packets. They then prune the relational
graph to obtain a local proximity feature for each graph and use this as input for an autoen-
coder that could learn embeddings for each network flow. By contrast, Lo et al. [231] built
an intrusion detection system by improving the GraphSAGE model for building intrusion
detection systems. They construct a computer graph by considering each IP address as a
node and the edges as links between IP addresses. By constructing the computer network
graph, they can train the model with packet information from clients to the server to detect
anomalous information.

Since the source code can be represented as an abstract syntax tree, several graph
embedding models have been proposed to help detect malware code by learning depen-
dency graphs. The dependency graph is built with API function nodes and directed edges
representing other functional queries from the current function [320,321]. For instance,
Narayanan et al. [320] built rooted subgraphs that capture the connection between API
functions in source code. The model learns latent representations of rooted subgraphs and
detects malware code in an Android operating system.

4.4. Bioinformatics

Drug discovery is vital in finding new chemical properties to treat diseases. A graph
could represent the interaction between drug–drug, drug–target, and protein–protein
by considering each node as a drug or a protein, and the edges describe the interaction
between them. Since searching for successful drug candidates is challenging, graph-based
models can aid experiments in the chemistry area. Several models [322–324] use a matrix-
factorization-based model to predict the interaction between the clinical manifestations
of diseases and their molecular signatures. This could contribute to predicting potential
diseases based on human genomic databases. Yoshihiro et al. [325] constructed a bipartite
graph as a chemical and genomic space to capture the interaction between drug and protein
nodes. The matrix factorization-based model is used to learn embeddings and detect
potential drug interactions [326,327]. The matrix factorization-based model is also used to
project drugs and targets into a common low-rank feature space and create new drugs and
targets for predicting drug–target interactions [328–330].

For protein–protein interaction presentation, the atoms could be considered to be nodes
and edges are bonds that link two atoms. CGNNs help to predict the properties of molecular
and classification tasks [323,324]. The attention-based CGNN model could predict chemical
stability [331]. For identifying drug targets, several CGNNs are used to present the structure
of protein–protein interaction assessment and function prediction [332]. The DeepWalk
model measures similarities within a miRNA-disease association network [333].

In recent years, various GNN-based models have been proposed to predict drug–drug
interactions [334–337]. A knowledge graph is constructed by a set of entity-relation-entity
triples that describe the interactions between drug–drug nodes. Most knowledge graphs
comprise drug features gained from DrugBank or KEGG dataset. GNN-based models
could then explore the topological structure of drugs in the knowledge graph to predict the
potential drug–drug interactions. For example, Lin et al. [337] proposed a GNN model to
learn drug features and knowledge graph structure to predict the drug–drug interaction. Su
et al. [334] proposed a DDKG model based on attentive GNNs to learn the drug embedding.
The key idea of this model is first to initialize the node features based on SMILE sequences
gained from a random-walk sampling strategy. This could construct the node features,
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bringing a global structure at the initial step. The model then learns node embeddings
based on attention from the neighborhood and triple facts.

For drug–target interaction, which is a crucial area in drug discovery, several graph-
based models could help to predict the drug–target interactions [325,338–340]. For example,
Hao et al. [338] proposed a GNN-based model to learn drug–target interaction. A heteroge-
neous graph is constructed by nodes denoting a drug–target pair, and the edges describe the
connection strength between the pairs. The model then applies the graph convolution filter
to learn the feature of drug–protein pairs. Peng et al. [340] introduced EEG-DTI (end-to-end
graph drug–target interactions) model to predict the relations between drugs and targets
based on the GCN model. A heterogeneous graph represents the interactions between
drugs and targets (e.g., drug–drug interaction and drug–protein interaction). Each edge
type denotes the interactions between two entities in the heterogeneous graph, computed
based on Jaccard similarity. GCN model then could help to learn node representation and
predict the drug–target relation.

4.5. Social Media Analysis

Social networks have played an essential role in communication among users world-
wide. Various graph embedding models have been applied to social media to learn em-
beddings [72,216]. In social networks, most graphs are initialized by defining nodes as
users and edges describing user relationships (e.g., messages). Several GNNs are applied to
help detect fake news shared on social networking platforms [341,342]. Nguyen et al. [343]
employed GraphSAGE to classify fake news in social media.

For social interaction network representation, directed graphs can be built with nodes
as users and edges describing user social relationships or action interactions [344,345].
GAT model [346] is used to predict the influence of essential users in the social network.
Piao et al. [344] proposed a motif-based graph attention network to predict the social rela-
tionships between customers and companies. CGNNs [345] could classify relations between
political and regular news media users.

4.6. Recommendation Systems

Bipartite graphs could be used to represent user–item interactions in recommendation
systems. In the graph, nodes can be presented as users and categories, and directed edges
denote interactions between users and items. Several traditional models based on matrix
factorization have been applied to help the system understand the predictions of users’
ratings on items or click actions [347,348].

The side information is mainly the attributes of categories and users. This information
helps to represent the relationship between users and items [349,350]. Heterogeneous
graphs with properties of nodes and relationship types have been proposed to represent side
information. Several shallow models [351,352] and GNNs [353,354] have been proposed to
capture the interaction between users and items with side information.

Knowledge graphs can represent entities and their relationships from the knowledge
base. Knowledge graphs, therefore, can collect high-order proximity between items and
user interactions [267,355]. Exploiting social correlations such as homophily and social influ-
ence can improve the performance of online recommendation systems. Several applications
put user and item interaction into CGNNs to learn embeddings and solve collaborative
filtering problems [356,357].

4.7. Smart Cities

People encounter current traffic-related issues in big cities, such as traffic jams and
difficulty finding parking spaces. Addressing these issues that play an essential role in
building smart cities and transportation has been studied in the literature. Traffic forecasting
is one of the crucial factors in improving traffic efficiency and solving related problems.

In this context, a graph can be considered a whole city map with nodes as intersections
and edges describing paths connecting the nodes [358]. For the traffic prediction problem,



Sensors 2023, 23, 4168 72 of 105

nodes and edges can have properties that describe the traffic state. Besides static graphs,
dynamic graphs with dynamic adjacency matrices are also used to describe the dynamic
state of overtime traffic. In recent years, GNNs have been widely applied to predict
traffic conditions [359–361]. CGNNs are applied to predict traffic flow conditions in big
cities. For example, the attention-based GNNs are applied to predict traffic congestion
status [359]. The self-attention mechanism can capture the state around the target vehicles
by considering connections to its ego network.

Dynamic graphs can represent a spatial-temporal dependency. Several applications
are also practical to spatial-temporal transportation networks [358,360,361] to predict traffic
flow. A study from [360] applied CGNNs to capture the traffic’s current state and historical
conditions to predict the next state of the traffic condition. They construct a dynamic graph
including a collection of snapshots, and each snapshot is the current state of the traffic. The
model then uses temporal convolution layers to learn dynamic node features.

There are several applications of graph embedding for energy-related problems, such
as predicting electricity consumption and predicting wind and solar energy through IoT
systems [362–364]. For example, in the problem of solar irradiance forecasting, a graph
can be presented with nodes being the locations of energy measurements and edges
describing the correlation between them according to historical data. By contrast, with
wind speed forecasting systems, nodes describe wind farms, and edges represent two
nodes as neighbors. For instance, a convolutional graph autoencoder-based model is used
to help predict the radiative state of solar energy [362]. Khodayar et al. [363] presented a
CGNN model to predict wind speed and direction.

4.8. Computational Social Science

The analysis of social issues and human behavior has been expanded due to the
increased availability of big data. The application of computational science has created
new opportunities for researchers in social science to achieve more detailed information by
examining the trends and patterns of social phenomena.

Graph-based models provide an improved understanding of social issues, ranging
from social inequity to the spread of child maltreatment across generations, using data,
theory, and diverse media sources. In existing studies, directed acyclic graphs are typically
used to represent the research hypotheses about causal relationships among variables based
on existing literature [365]. They encode nodes in DAG graphs using color and predicting
factors affecting children’s psychology.

The graph-based models have also been applied to political problems to explore the
phenomena and trends of influence of political populations in social networks [366–368].
For example, the Community2Vec model [369] is used in [366] to identify political popula-
tions in a community. They measure the similarity between politically different communi-
ties and identify changes and trends in the community.

4.9. Digital Humanity

There is a growing interest in computational narrative analysis in the field of digital
humanities. A character graph is one of the essential ways of expressing narratives, repre-
senting various relationships formed between characters as the story progresses. There are
various methods of constructing a character graph. Typically, they use conversations in
the story [370,371], consider events that make up the story [372,373], or are based on the
co-occurrence of characters [374,375]. Recently, high-quality distributed representations of
characters have been attempted for efficient and easy machine learning of character graphs.
Lee and Jung [168] applied a subgraph-based graph embedding model to the dynamic
networks of movie characters to compare similarities between stories. Inoue et al. [376]
presented GNNs that could help to learn character embedding. If the characters in dif-
ferent works share similar properties, their connection relationships can be represented.
Kounelis et al. [377] presented the movie’s plot to improve the movie recommendation
system’s performance using the Graph2Vec model. First, a character relationship graph
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containing all necessary information for plot representation was built using the movie script.
Graph embedding was then generated from the character relationship graph through the
embedding method.

Since the digitization of large-scale literature works enables computer analysis of
narratives, character graph embedding can be used in various ways in digital humanities.
First, it is easy to measure similarities between stories. Second, since the unique aesthetic
characteristics of a specific writer can be identified through machine learning on character
graph embedding, it can be used to compare the styles of writers or to develop a story
generation system that imitates the writing style of a specific writer. Third, characters can be
classified based on their roles and personalities through character graph embedding. Fourth,
character graph embedding can play an essential role in improving the computer’s narrative
understanding in research on the narrative intelligence of computers, which has been
attracting significant interest in recent years. Riedl [378] defined narrative intelligence as
the ability to create and understand stories and argued that when computers are equipped
with narrative intelligence, systems benefit humans, such as human-computer dialog
systems can be developed.

4.10. Semiconductor Manufacturing

Recently, graph representation learning models have expanded their field of appli-
cations to semiconductor research and development, including semiconductor material
screening [379], circuit design [380,381], chip design [382], and semiconductor manufactur-
ing and supply chain management [383,384]. A graph could be constructed from crystal
networks with nodes being atoms and edges describing the relation between them. GNNs
could help to predict material properties for the fast screening of candidate materials. A
tuples graph neural network exhibits an improved generalization capability for unseen
data for bandgap prediction in perovskite crystals, 2D material, materials for solar cells,
and binary and ternary inorganic compound semiconductors [379].

For circuit [380,381] (or chip [382]) design tasks, a graph could be constructed with
nodes being transistors (or macro-cells/blocks) and edges being wires (or routings). A
computer chip could be considered to be a hypergraph of circuit components as a netlist
graph. Chip designers adopted GNNs to unleash themselves from extensive design space
exploration, i.e., running many parallel physical design implementations to achieve the
best timing closure [385]. It can be significantly fast and efficient by combining the GNN
and LSTM, responsible for netlist encoding and sequential flow modeling [382].

For semiconductor manufacturing tasks, a graph could be constructed as nodes repre-
senting an operation of a job on a device and directed edges representing a relation between
nodes (e.g., process flow). Graph2Vec model was adopted to learn fab states, which are the
processing of lots on machines and transfer between machines and setup and maintenance
activities [386].

4.11. Weather Forecasting

Graph-based models have shown great effectiveness in learning correlations of spatial
and temporal features for weather prediction tasks. Typically, a graph is built with nodes
that describe stations that collect information in different geographical locations, edges that
describe the spatial neighbors of the stations, and attributes that describe meteorological
variables. Meteorological variables include measurements over a specified time period,
such as temperature, humidity, soil moisture, seismic source, etc. Several CGNNs have been
proposed to capture spatial relations between different geographical locations [363,387,388].
The models could help to combine with an LSTM model to process temporal time series in
solar radiation prediction.

Since the interactions of meteorological variables at different locations could show
dynamic behaviors and mutual influence, several graph-based models could help to cap-
ture these dynamic influences. For example, Lira et al. [389] proposed spatio-temporal
attention-based GNNs to predict frost by capturing the influences between round envi-
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ronmental sensors (nodes). GNNs could help to capture the spatial dependency patterns
for predicting several weather tasks (e.g., temperature and humidity prediction) [390].
Jeon et al. [391] proposed the MST-GCN model (Multi-attributed Spatio-Temporal GCN)
to predict hourly solar irradiance using GCNs to learn the spatio-temporal correlations
between meteorological variables (e.g., temperature, wind speed, relative humidity, etc.). A
graph could be constructed by considering each station as a node, and edges were defined
in two ways: distances between stations and correlations between historical meteorological
variables of stations.

For air quality prediction, several graph-based models could help to predict air quality
by learning the correlations between air pollution variables (e.g., CO2, O3, etc.) and
meteorological variables. Since the diffusion of air pollutants is affected by multiple factors
(e.g., meteorological conditions, vehicle emissions, and industrial sources), Xiao et al. [392]
used CGNNs to help predict the diffusion of PM2.5 concentration. A dynamic-directed
graph could be constructed by considering nodes as stations, and edges denote the distance
of stations that denotes the edges’ strength. Several studies [393,394] used a heterogeneous
graph to represent the type of each station as a node type and the connection between them
as an edge. They then adopt RGNNs to learn spatial and temporal correlations to predict
air quality.

Graph-based models could also help to predict surface-related tasks, such as seismic
source characterization, seismic wave analysis, and earthquakes [395–397]. A graph could
be constructed by nodes as stations and edges are the relationships of nodes if seismic
events can occur simultaneously. For example, GNNs could help to estimate earthquake
location by leveraging waveform information from multiple stations [397].

Several graph-based models could help predict sea surface temperature (SST), which
plays an important role in various ocean-related predictions (e.g., global warming, oceanic
environmental protection, and disaster reduction) [398–400]. A graph could be constructed
as longitude and latitude grids where nodes are coordinates and edges represent the
relationship between nodes. For example, GCNs [401] could help to learn temporal shifts
to predict the sea surface temperature.

A graph can be constructed as a hierarchical tree representing different variables’
influences on global-scale weather forecasting. Lam et al. [402] transformed the 3D data into
a multi-resolution icosahedral network as a mesh hierarchy. GNNs could help to capture
long-range spatial interactions for modeling global forecasting systems. Shi et al. [403]
designed an adaptive mesh grid based on Voronoi polygons for ocean simulations and
used GNNs to investigate environmental parameters for arbitrary visual mapping.

For El Niño-Southern Oscillation (ENSO) prediction and global ocean-atmosphere
interaction, graph-based models could help to improve climate prediction tasks. For
example, Cachay et al. [404] constructed the climate graph that defines each grid cell as
a node, and the edge denotes the similarity between nodes. GNNs could help to capture
correlations between spatio-temporal samples to improve the El Niño forecasting task.
CGNNs is used to capture interactions of different air-sea coupling strengths in various
period of time [405].

5. Evaluation Methods

Since we cannot evaluate the performance of learned graph embedding models, nu-
merous benchmarks have been used to investigate the performance of various models to
solve specific downstream tasks. A good graph embedding model should provide vector
representations of graph entities that preserve the graph structure and entity relationship.
In this section, we first discuss benchmark datasets and then examine typical downstream
tasks such as classification, ranking, and regression tasks.

5.1. Benchmark Datasets

The goal of benchmark datasets is the standard for developing, evaluating, and
comparing graph representation learning models. Table 18 presents a summary of bench-
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mark datasets for graph embedding models. Typically, the benchmark datasets are cat-
egorized into four main groups: citation networks, social networks, webpages, and
biochemical networks.

Table 18. A summary of benchmark datasets for graph embedding models. # Nodes and # Edges
indicate the number of nodes and edges in graphs, respectively.

Dataset Graph Type Category # Nodes # Edges

Cora [406] Homogeneous graph Citation network 2808 5429
Citeseer [407] Homogeneous graph Citation network 3312 4732
Reddit [22] Homogeneous graph Social network 232,965 114,615,892
PubMed [406] Homogeneous graph Citation network 19,717 44,338
Wikipedia [406] Homogeneous graph Webpage 2405 17,981
DBLP [408] Homogeneous graph Citation network 781,109 4,191,677
BlogCatalog [408] Homogeneous graph Social network 10,312 333,983
Flickr[1] Homogeneous graph Social network 80,513 5,899,882
Facebook[409] Homogeneous graph Social network 4039 88,234
PPI [22] Homogeneous graph Biochemical network 56,944 818,716
MUTAG [410] Homogeneous graph Biochemical network 27,163 148,100
PROTEIN [411] Homogeneous graph Biochemical network 43,500 162,100
Wiki Homogeneous graph Webpage 4,780 184,81 K
YouTube Homogeneous graph Video streaming 1,130,000 2,99 M
DBLP [412] Heterogeneous graph Citation network Author (A): 4057

Paper (P): 14,328
Term (T): 7723
Venue (V): 20

A-P: 19,645
P-T: 85,810
P-V: 14,328

ACM [412] Heterogeneous graph Citation network Paper (P): 4019
Author (A): 7167
Subject (S): 60

P-P: 9615
P-A: 13,407
P-S: 4019

IMDB [412] Heterogeneous graph Movie reviews Movie (M): 4278
Director (D): 2081
Actor (A): 5257

M-D: 4278
M-A: 12,828

DBIS [413] Heterogeneous graph Citation network Venues (V): 464
Authors (A): 5000
Publication (P): 72,902

-

BlogCatalog3 [414] Heterogeneous graph Social network User: 10,312
Group: 39

348,459

Yelp [415] Heterogeneous graph Social media User: 630,639
Business: 86,810
City: 10
Category: 807

-

U.S. Patents [180] Heterogeneous graph Patent,
Trademark Office

Patent: 295,145
Inventor: 293,848
Assignee: 31,805
Class: 14

-

UCI [416] Dynamic graph Social network 1899 59,835
DNC [416] Dynamic graph Social network 2029 39,264
Epinions [417] Dynamic graph Social media 6224 19496
Hep-th [418] Dynamic graph Citation network 34,000 421,000
Auto Systems [419] Dynamic graph BGP logs 6000 13,000
Enron Dynamic graph Email network 87,000 1,100,000
StackOverflow [420] Dynamic graph Question&Answer 14,000 195,000
dblp [408] Dynamic graph Citation network 90,000 749,000
Darpa [421] Dynamic graph Computer network 12,000 22,000

Citation networks depict a network of documents linked together in a particular
manner. The citation graph could be constructed by considering each node as a docu-
ment, and each edge of two nodes describes the citation. Since citations are directed
from a source document to a destination document, citation graphs usually are directed
graphs. Since the labels of the citation network could represent document topics, there
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are several downstream tasks for citation network analysis, such as link prediction and
node classification.

The social networking datasets describe the connections between users on social
networking sites such as Facebook [409], Twitter, or blog forums [422]. An online social
network describes the links between users or groups, usually through the link of adding
friends. In addition, the user properties could also be included in the graphs. Due to
privacy policies, several user information could be hidden in social networks. Therefore,
there are several downstream tasks for social network analysis, such as missing node
classification and link prediction.

Webpage datasets are a term used to refer to a collection of webpages of information
organized and linked together to represent information such as text and images. A webpage
can be an article, a category, or any information page. For instance, Wikipedia dataset [406]
in Table 18 is a directed network with 2405 nodes and 17,981 edges linking nodes. There
are several downstream tasks for webpage analysis, such as node classification and link
prediction.

Biochemical networks are data sources containing information in the field of bio-
chemistry area. Several downstream tasks are used for the biochemical networks, such as
predicting the composition of cancer classification proteins [423] or drug–drug interaction
prediction. Protein dataset [411], for example, are biochemical graph sets with 1113 graphs.
The protein dataset includes more than 435,000 nodes and 1,621,000 links between nodes.

5.2. Downstream Tasks and Evaluation Metrics

After the models learn vector embeddings, various downstream tasks can benefit
from such embeddings, such as classification tasks, regression tasks, and prediction tasks.
Therefore, we first discuss the downstream tasks and then examine the standard evaluation
metrics for each task.

The classification problem denotes the graph entities classification tasks, including
node classification, edge classification, subgraph classification, and graph classification.
There are also link prediction tasks that can be considered to be classification problems
where the output is discrete. The goal of classification tasks is to predict the classes of
unlabeled graph entities given a set of labeled entities. For example, in the Cora citation
network, the task of node classification is to classify publications grouped into seven main
classes that correspond to the research area. Several evaluation metrics could be used for
classification tasks, such as Accuracy (A), Precision (P), Recall (R), and Fβ score.

Consider a dataset consisting n multi-label examples D = {xi, Yi} where 1 ≤ i ≤
n and Yi = {0, 1}m with a labelset L: |L| = m. Let C be a multi-label classifier and
Ŷi = C(xi) = {0, 1}m denotes the set of the label for the classification of the sample xi.
Accuracy measures the number of correct classifications over all the number (predicted
and actual) of labels for that instance. The higher the accuracy, the more accurate the
models. The precision metric P is measured as the ratio of predicted correct labels to the
total number of actual labels. The Recall metric R is measured as the ratio of predicted
correct labels to the total number of predicted labels. In several classification tasks, where
both Precision and Recall metrics are important in the model evaluation, a common metric
that combines both Recall and Precision is called Fβ-score. Mathematically, the Accuracy
(A), Precision (P), Recall (R), and Fβ score for all instances could be computed as:

A =
1
n

n

∑
i=1

∣∣Yi ∩ Ŷi
∣∣∣∣Yi ∪ Ŷi
∣∣ , P =

1
n

n

∑
i=1

∣∣Yi ∩ Ŷi
∣∣∣∣Ŷi

∣∣ , R =
1
n

n

∑
i=1

∣∣Yi ∩ Ŷi
∣∣

|Yi|
, Fβ = (1 + β)2 PR

β2P + R
, (176)

where β denotes a positive factor to change the impact between P score and R score. Besides
measuring based on samples, we could measure the performance based on label evaluation.
This could be beneficial when the number of labels is large, and it is challenging to compute
a performance snapshot. Therefore, we can compute the score in each class label first
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and then average over all classes (macro averaging) or across all the classes and samples
(micro averaging).

Several regression metrics could be used for rating prediction in recommendation
systems to evaluate the user–item interaction pairs [424,425]. Similar to graph classification,
graph regression problems aim to predict the labels of entities in a graph by learning
neighbor node labels. However, the difference between classification and regression prob-
lems is that the metrics for regression problems are explained in error, which measures
the difference between predicted and actual labels. Another metric that is widely used
for measuring the performance of regression models is the Coefficient of Discrimination
(R2). R2 measures the ratio between the unexplained variations over total variations. The
standard metrics, which are Mean Square Error (MSE), Root Mean Square Error (RMSE),
and Mean Absolute Error (MAE), and R2 could be computed as:

MSE =

∥∥Yi − Ŷi
∥∥2

2
N

, MAE = ∑n
i=1

∣∣Yi − Ŷi
∣∣, (177)

RMSE =

√∥∥Yi − Ŷi
∥∥2

2
N

, R2 = 1−
∥∥Yi − Ŷi

∥∥2
2∥∥Yi − Ȳ
∥∥2

2

, (178)

where Ȳ denotes the mean of the dependent variable in the dataset.
In graph ranking tasks, the models try to predict the rank (or relevance index) of a

list of items for a particular task. The models can learn the order of the predicted labels
for multi-label classification problems where each sample has more than one label. For
example, in the case of most recommendation systems, a user could have more than one
preference. Several commonly used metrics evaluate model performance for the raking
problems, including Mean Reciprocal Rank (MRR), P@k, MAP@k, and R@k.

The Mean Reciprocal Rank (MRR) metric is one of the simplest metrics in evaluating
ranking models. The MRR metric calculates the average of the corresponding terms of the
first related item for a set of queries Q, which can be defined as:

MRR =
1
|Q|

Q

∑
i=1

1
ranki

. (179)

One of the limitations of the MRR metric is that it only counts from the first item to the
rank of actual labels in the query list. Precision at k (P@k) is a metric that could compute
the proportion of the number of the first k predicted labels in the actual labelset over the
k. The predicted label order is not taken into account in the P@k metric. Similar to the
P@k metric, Recall@k is a metric that computes the proportion of the number of the first k
predicted labels in the actual labelset over all relevant items.

P@k =

∣∣{Yi} ∩ {Ŷi[: k]}
∣∣∣∣{Ŷi[: k]}

∣∣ R@k =

∣∣{Yi} ∩ {Ŷi[: k]}
∣∣∣∣{Ŷi}

∣∣ . (180)

Mean Average Precision (MAP@k) can be applied to the entire dataset because of
the stability in ranking the labels. Compared to P@k, MAP focuses more on how many
predicted labels are in the actual labelset, where the order of predicted labels is taken
into account. Mathematically, MAP@k is the average across all instances, which could be
calculated as:

MAP =
1
n

n

∑
i=1

1
K

K

∑
k=1

P@k× rel(k) (181)

where rel(k) denotes the relevance at k for each sample.
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5.3. Libraries for Graph Representation Learning

Several libraries provide state-of-the-art graph representation learning models which
have a variety of sampling strategies and downstream tasks. To ease researchers to develop
graph representation learning models, this section introduces a collection of libraries, which
are summarized in Table 19.

Table 19. A summary of libraries of graph embeddings models. The accessibility of URLs for
open-source repositories of the libraries have been checked on 16 April 2023.

Library URL Platform Model

PyTorch Geometric
(PyG) [426]

https://github.com/pyg-team/
pytorch_geometric

PyTorch Various GNN models and basic graph deep-
learning operations

Deep Graph Library
(DGL) [427]

https://github.com/dmlc/dgl TensorFlow, PyTorch Various GNN models and basic graph deep-
learning operations

OpenNE https://github.com/thunlp/
OpenNE/tree/pytorch

TensorFlow, PyTorch Shallow models: DeepWalk, Node2Vec, GAE,
VGAE, LINE, TADW, SDNE, HOPE, GraRep,
GCN

CogDL [428] https://github.com/THUDM/
cogdl

TensorFlow, PyTorch Various GNN models

Dive into Graphs
(DIG) [429]

https://github.com/divelab/
DIG

PyTorch Various GNN models and research-oriented
studies (Graph generation, Self-supervised
learning (SSL), explainability, 3D graphs, and
graph out-of-distribution).

Graphvite [430] https://github.com/
deepgraphlearning/graphvite

Python DeepWalk, LINE, Node2Vec, TransE, RotatE,
and LargeVis.

GraphLearn [431] https://github.com/alibaba/
graph-learn

Python Various GNN models, the framework can sup-
port the sampling batch graphs or offline train-
ing process.

Connector https://github.com/NSLab-
CUK/connector

Pytorch Various shallow models and GNN models.

PyTorch Geometric (PyG) [426] is a graph neural network framework based on Py-
Torch. PyG can handle and process large-scale graph data, multi-GPU training, multiple
classic graph neural network models, and multiple commonly used graph neural net-
work training datasets. PyG already contains numerous benchmark datasets, including
Cora, Citeseer, etc. It is also effortless to initialize such a dataset, which will automatically
download the corresponding dataset and process it into the required format for various
GNNs. Furthermore, many real-world datasets are stored as heterogeneous graphs, which
prompted the introduction of specialized functions in PyG.

Deep Graph Library (DGL) [427] is an easy-to-use, high-performance, scalable Python
package for building graph representation learning models. DGL has better memory man-
agement for GNNs that can be expressed as sparse matrix multiplication. Therefore, the
DGL library provides flexible, efficient strategies for building new GNN layers. Further-
more, DGL has a programming interface for flexible applications, which helps researchers
understand the process of designing GNNs for large graphs.

OpenNE is a standard Network Representation Learning framework that enables
graph embedding models with multi-GPU training. Most of the graph embedding models
in OpenNE framework are matrix factorization-based and shallow models, including
DeepWalk, LINE, Node2Vec, GraRep, TADW, GCN, HOPE, GF, and SDNE. Furthermore,
the framework could also provide dimension-reduction techniques, such as t-SNE and
PCA, for visualization.

Developed by Tsinghua University, CogDL [428] framework could integrate various
downstream tasks and match evaluation methods. Therefore, the framework could help
researchers efficiently run the results of various baseline models and develop new graph
embedding models. Furthermore, the framework could integrate algorithms task-oriented
and assigns each algorithm to one or more tasks. In addition, CogDL also supports

https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://github.com/dmlc/dgl
https://github.com/thunlp/OpenNE/tree/pytorch
https://github.com/thunlp/OpenNE/tree/pytorch
https://github.com/THUDM/cogdl
https://github.com/THUDM/cogdl
https://github.com/divelab/DIG
https://github.com/divelab/DIG
https://github.com/deepgraphlearning/graphvite
https://github.com/deepgraphlearning/graphvite
https://github.com/alibaba/graph-learn
https://github.com/alibaba/graph-learn
https://github.com/NSLab-CUK/connector
https://github.com/NSLab-CUK/connector
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researchers in customizing models and datasets and is embedded in the overall framework
of CogDL to help them improve efficiency.

For complex downstream tasks, such as graph generation and graph neural network
interpretability, DIG [429] provides APIs for data interfaces, commonly used algorithms and
evaluation standards. DIG is designed to make it easy for researchers to develop algorithms
and conduct experimental comparisons with benchmark models. The framework could
help researchers solve tasks, including graph generation, graph self-supervised learning,
graph neural network interpretability, and 3D graph deep-learning tasks.

GraphVite [430] is a general-purpose graph embedding framework to help researchers
learn embeddings with high speed and large scale. One of the advantages of the framework
is that GraphVite can support multi-GPU parallelism. Therefore, the framework could
quickly handle large-scale graphs with millions of nodes and learn the node representation.
GraphVite provides complete training and evaluation for various types of graphs, including
homogeneous and knowledge graphs.

GraphLearn [431] is a graph learning framework designed to develop and apply large-
scale GNN models in practical situations. The framework could help researchers parallel
negative sampling from industrial application scenarios to speed up training. Therefore,
the framework could implement sampling optimization, sparse scene model optimization,
and GPU acceleration for PyTorch. As a result, GraphLearn has been successfully applied
in Alibaba and several scenarios, such as recommendation systems and security risks.

Another library for graph representation learning is Connector which can help re-
searchers develop new graph embedding models efficiently. The framework provides
various widespread graph representation learning models, such as matrix factorization-
based, shallow, and GNN models. Furthermore, Connector can analyze various types
of graphs, ranging from homogeneous and heterogeneous graphs to knowledge graphs
with different sampling processes. Therefore, Connector could help researchers efficiently
construct various baseline models and design new graph embedding models.

6. Challenges and Future Research Directions

Graph representation learning models have gained significant results recently, showing
the model’s power and practical applications in the real world. However, there are still
several challenges for existing models since graph data are complicated (e.g., nodes are
disordered and have a complex relationship). Therefore, this section presents challenges
and promising directions for future research. The main challenges and future research
directions of graph embedding models are summarized as follows:

• Graph representation in a suitable geometric space: Euclidean space may not capture
the graph structure sufficiently and lead to structural information loss.

• The trade-off between the graph structure and node features: Most graph embedding
models suffer from noise from non-useful neighbor node features. This could lead to
a trade-off between structure preservation and node feature representation, which can
be the future research direction.

• Dynamic graphs: Many real-world graphs show dynamic behaviors representing
entities’ dynamic structure and properties, bringing a potential research direction.

• Over-smoothing problem: Most GNN models suffer from this problem. The graph
transformer model could only handle the over-smoothing problem in several cases.

• Disassortative graphs: Most graph representation learning models suffer from this
problem. Several solutions have been proposed but have yet to fully solve to the
whole extent.

• Pre-trained models: Pre-trained models could be beneficial to handle the little avail-
ability of node labels. However, a few graph embedding models have been pre-trained
on specific tasks and small domains.

The performance of graph embedding models is determined by how well the geometric
space for graph representation matches the graph structure [292]. Therefore, choosing a
suitable geometric space to represent the graph structure is a crucial step in building
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efficient graph representation learning models. Most existing graph embedding models
represent the graph structure in Euclidean space, which defines the similarity between
entities by the inner product, Euclidean distance, and so on. However, representing the
graph structure in Euclidean space may not capture the graph structure sufficiently and
lead to structural information loss [432]. For example, models in Euclidean space fail to
represent adequate tree-like graph data where the nodes grow exponentially and follow
the power law. In the case of webpage networks with millions of nodes, there are a few
important websites that are hubs and dominate the network, while most other websites
have few connections, which leads to most existing models in the Euclidean space failing to
learn embeddings. Recently, several studies have been trying to represent graph data in the
non-Euclidean space, and the results are relatively promising [69,103,432]. Nevertheless,
it still needs to be resolved whether representing graph data in non-Euclidean space is
more efficient and significantly improves accuracy. One major issue is the choice of suitable
isometric models, and the reasons why and when to use the models are still an open
question that existing models have yet to analyze to a whole extent [294]. Another problem
is that developing operators and optimization in the non-Euclidean space for deep neural
networks is challenging. Most existing models aim to approximate graph data in a tangent
space where we are familiar with Euclidean operators. However, several studies presented
that tangent space approximation could negatively influence the training phase [293,433].
Therefore, developing operators, manifold space, and optimization for various embedding
models are significant problems for implementing models in non-Euclidean space.

A good graph representation learning model should preserve the graph structure and
represent appropriate features for nodes in graphs. This inspires many shallow models to
explore various substructures of graph data (e.g., random walk [4,14], k-hop distance [16],
motifs [87,89–91], subgraphs [145], graphlets [88], and roles [21]). Several of these sampling
strategies ignore the substructures surrounding target nodes [4,14,16], while others omit the
node features which could also carry significant information [145]. Recently, models based
on message-passing mechanisms effectively capture graph structures and represent node
feature embeddings. The message-passing could suffer from noise coming from non-useful
neighbor node features, which cause a barrier to the downstream tasks and eventually
reduce the performance of models. There are several studies have been proposed to
overcome weaknesses of message-passing, such as structural identity [60], and dropout [434,
435]. However, collecting sufficient structural topology and a trade-off between structure
preservation and node feature representation still needs to be explored to a full extent.

Most existing graph embedding models work with static graphs where the graph
structure and entity properties do not change over time [4,14]. However, in the real world,
graphs are dynamic, consisting of both graph structure and properties that evolve over
time [10,82]. There are several dynamic behaviors of graph evolution, including topological
evolution (the set of nodes and edges change over time), feature evolution (the node and
edge feature or its label changes over time), degree distribution, and the node role changes
over time. However, most existing models only aim to find out which patterns of evolution
should be captured and represented that do not represent fully dynamic behaviors in
general [10,112]. For example, in the case of social networks, users could change personal
attributes such as hometown, occupation, and their role in a specific small group over time.
This leads to how models can represent the dynamic structure and properties of entities
bringing a potential research direction.

Graph neural networks have shown significant advantages in working with large-scale
graphs for specific tasks. However, these existing models still have limitations regarding
the over-smoothing problem when stacking more GNN layers. Recently, several works
have attempted to handle the over-smoothing problem, such as adding initial residual
connection [28], using dropout [436], and PageRank [437]. However, most of them need to
be effectively adaptable to a wide and diverse scope of various graph structures. Several
graph transformer models have been proposed in recent years to overcome the limitation
of the message-passing mechanism by self-attention [63,438]. However, the self-attention
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mechanism considers input graphs as fully connected graphs that have yet to entirely
solve the over-smoothing problems, especially in small and sparse graphs [61]. Therefore,
building a deep-learning model to address the over-smoothing problem is still an open
question and a promising research direction.

Another challenge for graph embedding models is the problem of working with
disassortative graphs for various downstream tasks, especially classification tasks. Disas-
sortative graphs are graphs where pairs of nodes with different labels tend to be connected.
For example, in the case of amino acid networks, amino acids with different labels tend to
be connected by peptide bonds [439]. Looking back at the sampling mechanism of GNNs
and graph transformer models, the target nodes update the vector embeddings based on
the k-hop neighbor features [24,310]. This is a problem for classification tasks where the
aggregation mechanisms assume that interconnected nodes should have the same label,
which is completely different from the disassortative graph structure. Several methods
have been proposed in recent years to overcome classification problems for disassortative
graphs [58,440]. However, the message-passing-based mechanisms are still a problem and
challenge when working with disassortative graphs.

Another problem in challenging deep-learning models is to pre-train the graph em-
bedding models and then fine-tune the models on various downstream tasks. Most current
models are designed independently to be suitable for some specific tasks that have yet to
be generalized, even with graphs in the same domain [8]. Although several graph trans-
former models have been pre-trained on related tasks, the transfer of the models across
other tasks is still limited in a few specific graph data [30,63]. This leads to the problem
that the models must train from scratch when we have new graph data and other tasks,
which is time-consuming and limits practical applicability. The pre-trained models are also
beneficial to handle the little availability of node labels. Therefore, if the graph embedding
models are pre-trained, they could be transferred and used to handle new tasks.

7. Conclusions

This paper has presented a comprehensive view of graph representation learning.
Specifically, most models have been discussed, ranging from traditional models, such
as graph kernels and matrix factorization models, to deep-learning models with various
graphs. One of the most thriving models is the GNN with the power of an aggregation
mechanism in learning the local and global structures of the graph. The achievements of
GNN-based models have been seen in various real-world tasks with large-scale graphs. Re-
cently, graph transformer models have shown promising results in applying self-attention
to learn embeddings. However, the self-attention mechanism need also be improved to
solve the over-smoothing problem to a whole extent.

Practical applications in various fields are also presented, showing the contribution of
graph representation learning to society and related areas. Our paper not only shows the
applications of graph embedding models but also describes how a graph is initialized in
each specific domain and the application of the graph embedding model to each application.
In addition, evaluation metrics and downstream tasks were also discussed to understand
more about graph embedding models. Although deep graph embedding models have
shown great success in recent years, they still have several limitations. The balance between
the graph structure and the node features is still challenging for deep graph embedding
models in various downstream tasks. Our paper also points out the current challenges and
future directions of promising research.
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Appendix A. Open-Source Implementations

We deliver a summary of open-source implementations of graph embedding models
described in Section 3. Table A1 provides open-source implementations of graph kernels
(Section 3.1), matrix factorization-based (Section 3.2), and shallow models (Section 3.3).
Table A2 provides open-source implementations of deep-learning-empowered models
(Section 3.4). Table A3 presents open-source implementations of non-Euclidean models
(Section 3.5).

Table A1. A summary of open-source implementations of graph kernels, matrix factorization-based,
and shallow models, which are introduced in Section 3.1, Section 3.2, and Section 3.3, respectively.
The accessibility of URLs for the open-source implementations have been checked on 16 April 2023.

Model Category URL

[84] Graph kernels https://github.com/BorgwardtLab/WWL
[111] Graph kernels https://github.com/hasanmdal/GraTFEL-Source
[113] Graph kernels https://github.com/ferencberes/online-node2vec
[36] Graph kernels https://github.com/yeweiysh/MSPG
[35] Graph kernels https://github.com/haidnguyen0909/weightedWWL
[34] Graph kernels https://github.com/chrsmrrs/glocalwl
[7] Matrix factorization-based models https://github.com/andompesta/ComE.git
GLEE [122] Matrix factorization-based models https://github.com/DefuLian/lightne
GraRep [15] Matrix factorization-based models https://github.com/ShelsonCao/GraRep
HOPE [5] Matrix factorization-based models https://github.com/ZW-ZHANG/HOPE
ProNE [43] Matrix factorization-based models https://github.com/THUDM/ProNE
TADW [131] matrix factorization-based models https://github.com/thunlp/tadw
PME [138] matrix factorization-based models https://github.com/TimDettmers/ConvE
DeepWalk [14] Shallow models https://github.com/phanein/deepwalk
Node2vec [4] Shallow models https://github.com/aditya-grover/node2vec
Node2Vec+ [148] Shallow models https://github.com/krishnanlab/node2vecplus_benchmarks
Struct2Vec [21] Shallow models https://github.com/leoribeiro/struc2vec
Gat2Vec [154] Shallow models https://github.com/snash4/GAT2VEC
NME [160] Shallow models https://github.com/HKUST-KnowComp/MNE
[162] Shallow models http://www3.ntu.edu.sg/home/aspatra/research/Yongjin_BI2010.zip
[166] Shallow models https://github.com/higd963/Multi-resolution-Network-Embedding
EvoNRL [170] Shallow models https://github.com/farzana0/EvoNRL
STWalk [172] Shallow models https://github.com/supriya-pandhre/STWalk
[173] Shallow models https://github.com/urielsinger/tNodeEmbed
LINE [16] Shallow models https://github.com/tangjianpku/LINE
DNGR [196] Shallow models https://github.com/ShelsonCao/DNGR
TriDNR [441] Shallow models https://github.com/shiruipan/TriDNR
[188] Shallow models https://github.com/fuguoji/event2vec
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Table A2. A summary of open-source implementations of deep-learning-empowered graph embed-
ding models discussed in Section 3.4. The accessibility of URLs for the open-source implementations
have been checked on 16 April 2023.

Model Category URL

SDNE [50] Graph autoencoder http://nrl.thumedia.org/structural-deep-network-embedding
[57] Graph autoencoder https://github.com/minkky/Graph-Embedding
Topo-LSTM [49] Graph autoencoder https://github.com/vwz/topolstm
GCN [18] Spectral GNNs https://github.com/tkipf/gcn
[211] Spectral GNNs https://github.com/ZhuangCY/Coding-NN
[214] Spectral GNNs https://github.com/Tiiiger/SGC
FastGCN [52] Spatial GNNs https://github.com/matenure/FastGCN
GraphSAINT [53] Spatial GNNs https://github.com/GraphSAINT/GraphSAINT
Hi-GCN [54] Spatial GNNs https://github.com/haojiang1/hi-GCN
GIN [24] Spatial GNNs https://github.com/weihua916/powerful-gnns
ST-GDN [220] Spatial GNNs https://github.com/jill001/ST-GDN
SACNNs [223] Spatial GNNs https://github.com/vector-1127/SACNNs
[227] Spatial GNNs https://github.com/rdevon/DIM
[229] Spatial GNNs https://github.com/dinhinfotech/PGC-DGCNN
PHC-GNNs [233] Spatial GNNs https://github.com/bayer-science-for-a-better-life/phc-gnn
Dyn-GRCNN [236] Spatial GNNs https://github.com/RingBDStack/GCNN-In-Traffic
DMGI [243] Spatial GNNs https://github.com/pcy1302/DMGI
EvolveGCN [245] Spatial GNNs https://github.com/IBM/EvolveGCN
GAT [19] Attentive GNNs https://github.com/PetarV-/GAT
GATv2 [58] Attentive GNNs https://github.com/tech-srl/how_attentive_are_gats
SuperGAT [258] Attentive GNNs https://github.com/dongkwan-kim/SuperGAT
GraphStar [256] Attentive GNNs https://github.com/graph-star-team/graph_star
HAN [25] Attentive GNNs https://github.com/Jhy1993/HAN
[260] Attentive GNNs https://github.com/AvigdorZ/ADaptive-Structural-Fingerprint
DualHGCN [264] Attentive GNNs https://github.com/xuehansheng/DualHGCN
MHGCN [266] Attentive GNNs https://github.com/NSSSJSS/MHGCN
[334] Attentive GNNs https://github.com/Blair1213/DDKG
Graformer [47] Graph transformer https://github.com/mnschmit/graformer
Graph-Bert [63] Graph transformer https://github.com/jwzhanggy/Graph-Bert
EGT [30] Graph transformer https://github.com/shamim-hussain/egt
UGformer [61] Graph transformer https://github.com/daiquocnguyen/Graph-Transformer
Graphormer [67] Graph transformer https://github.com/microsoft/MeshGraphormer
Yao et al. [101] Graph transformer https://github.com/QAQ-v/HetGT
[282] Graph transformer https://github.com/jcyk/gtos
[29] Graph transformer https://github.com/graphdeeplearning/graphtransformer
SAN [284] Graph transformer https://github.com/DevinKreuzer/SAN
HGT [285] Graph transformer https://github.com/UCLA-DM/pyHGT
NI-CTR [287] Graph transformer https://github.com/qwerfdsaplking/F2R-HMT

Table A3. A summary of open-source implementations of non-Euclidean graph embedding models,
which are described in Section 3.5. The accessibility of URLs for the open-source implementations
have been checked on 16 April 2023.

Model Category URL

[70] Hyperbolic space https://github.com/facebookresearch/poincare-embeddings
[293] Hyperbolic space http://snap.stanford.edu/hgcn/
[294] Hyperbolic space https://github.com/facebookresearch/hgnn
Graph2Gauss [23] Gaussian embedding https://github.com/abojchevski/graph2gauss

http://nrl.thumedia.org/structural-deep-network-embedding
https://github.com/minkky/Graph-Embedding
https://github.com/vwz/topolstm
https://github.com/tkipf/gcn
https://github.com/ZhuangCY/Coding-NN
https://github.com/Tiiiger/SGC
https://github.com/matenure/FastGCN
https://github.com/GraphSAINT/GraphSAINT
https://github.com/hao jiang1/hi-GCN
https://github.com/weihua916/powerful-gnns
https://github.com/jill001/ST-GDN
https://github.com/vector-1127/SACNNs
https://github.com/rdevon/DIM
https://github.com/dinhinfotech/PGC-DGCNN
https://github.com/bayer-science-for-a-better-life/phc-gnn
https://github.com/RingBDStack/GCNN-In-Traffic
https://github.com/pcy1302/DMGI
https://github.com/IBM/EvolveGCN
https://github.com/PetarV-/GAT
https://github.com/tech-srl/how_attentive_are_gats
https://github.com/dongkwan-kim/SuperGAT
https://github.com/graph-star-team/graph_star
https://github.com/Jhy1993/HAN
https://github.com/AvigdorZ/ADaptive-Structural-Fingerprint
https://github.com/xuehansheng/DualHGCN
https://github.com/NSSSJSS/MHGCN
https://github.com/Blair1213/DDKG
https://github.com/mnschmit/graformer
https://github.com/jwzhanggy/Graph-Bert
https://github.com/shamim-hussain/egt
https://github.com/daiquocnguyen/Graph-Transformer
https://github.com/microsoft/MeshGraphormer
https://github.com/QAQ-v/HetGT
https://github.com/jcyk/gtos
https://github.com/graphdeeplearning/graphtransformer
https://github.com/DevinKreuzer/SAN
https://github.com/UCLA-DM/pyHGT
https://github.com/qwerfdsaplking/F2R-HMT
https://github.com/facebookresearch/poincare-embeddings
http://snap.stanford.edu/hgcn/
https://github.com/facebookresearch/hgnn
https://github.com/abojchevski/graph2gauss
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