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Abstract: Software-defined networking (SDN) is a revolutionary innovation in network technology
with many desirable features, including flexibility and manageability. Despite those advantages,
SDN is vulnerable to distributed denial of service (DDoS), which constitutes a significant threat due
to its impact on the SDN network. Despite many security approaches to detect DDoS attacks, it
remains an open research challenge. Therefore, this study presents a systematic literature review
(SLR) to systematically investigate and critically analyze the existing DDoS attack approaches based
on machine learning (ML), deep learning (DL), or hybrid approaches published between 2014 and
2022. We followed a predefined SLR protocol in two stages on eight online databases to comprehen-
sively cover relevant studies. The two stages involve automatic and manual searching, resulting in
70 studies being identified as definitive primary studies. The trend indicates that the number of
studies on SDN DDoS attacks has increased dramatically in the last few years. The analysis showed
that the existing detection approaches primarily utilize ensemble, hybrid, and single ML-DL. Private
synthetic datasets, followed by unrealistic datasets, are the most frequently used to evaluate those
approaches. In addition, the review argues that the limited literature studies demand additional
focus on resolving the remaining challenges and open issues stated in this SLR.

Keywords: systematic literature review (SLR); software-defined networking (SDN); machine learning
(ML); deep learning (DL); distributed denial of service (DDoS); intrusion detection system (IDS)

1. Introduction

In the last decade, the network infrastructure has seen a rapid expansion of network
devices, which increases administrative complexity and creates obstacles to future Internet
innovation. Moreover, the rigidity of the conventional network decreases elasticity and
increases operational expenses. As a result, those challenges impede the momentum of
emerging technologies, including cloud computing, IoT technologies, and big data, which
progressively demand more bandwidth, flexibility, and manageability [1,2]. Under those
circumstances, SDN [3] emerged and was touted as an innovative networking model
capable of handling and addressing the growing demands of next-generation networks
and emerging technologies.

Furthermore, the most critical and distinguishing feature of SDN architecture vs.
traditional network architecture is decoupling the logical control plane from the data
plane, where the centralized control plane controls several distributed network devices
(i.e., routers and switches). This feature has many beneficial advantages, including having
a global view of the entire network via a centralized controller, providing programmable
and standard interfaces, enhancing the management of switches, efficient construction
of virtual logical networks, and allowing centralized monitoring modules. The SDN’s
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elasticity, programmability, scalability, and manageability features enable it to make its way
into enterprise networks, wireless networks, backbone networks, and data centers [4].

The SDN architecture contains three planes or layers: application, control, and data.
The application plane hosts various business applications implemented by developers, such
as traffic engineering and network-monitoring apps. The control plane, where the SDN
controller resides, typically comprises single or multiple logically centralized controllers
for managing the data plane using southbound application programming interfaces (APIs)
and providing the application plane with network services through northbound APIs.
Finally, the data plane mainly comprises network forwarding devices. The SDN relies
on the OpenFlow protocol [5], which plays a vital role in providing a central control and
holistic view of the entire network. It is also preferred and widely used for communication
between SDN controllers and OpenFlow switches [6].

Historically, SDN and OpenFlow started purely as academic and scientific research
endeavors but have attracted the attention of industry players. Presently, many network
equipment manufacturers offer OpenFlow API on their commercial switches. Furthermore,
because of the SDN’s popularity, many enterprises, such as Microsoft, Facebook, Google,
Deutsche Telekom, and Verizon, have begun to support the Open Networking Foundation
(ONF) [7] by endorsing SDN technology. However, typical of newly introduced technology,
security vulnerabilities slowly surface as the SDN architecture becomes more popular and
widely adopted. For example, SDN is vulnerable to DDoS attacks that exhaust the network
resources, particularly the SDN controller’s bandwidth, processing, and memory, resulting
in performance degradation or total disruption [8]. The following subsections discuss the
motivation behind this SLR in Section 1.1, related works to this SLR in Section 1.2, and
contributions and organizations of this SLR in Section 1.3.

1.1. Motivation Behind This SLR

The motivation behind conducting an SLR on ML, DL, and hybrid-based approaches
to detect and mitigate DDoS attacks on SDN networks is to provide an exhaustive overview
of the existing research studies in this context and pinpoint the strengths and weaknesses
of these approaches. Moreover, DDoS attacks are significant threats to SDN networks.
However, traditional defense approaches may be ineffective in detecting and mitigating
these attacks since attackers nowadays use new techniques to flood the SDN networks with
different traffic variations (i.e., high and low rates), leading to the degrading of the SDN
controller and making it unavailable to legitimate individuals [9].

ML and DL techniques have also been proposed as potential solutions to classify
such attacks. Those techniques are employed to analyze the network traffic-flow patterns
and detect abnormal traffic behaviors indicating DDoS attacks. However, there is a lack
of consensus on the most effective ML, DL, and hybrid approaches to detecting DDoS
attacks. Therefore, it aims to highlight these research gaps in the literature by systematically
reviewing and synthesizing the existing approaches. By conducting an SLR, the authors
provide a rigorous and transparent overview of relevant studies by identifying the key
challenges and limitations of the existing approaches. This could assist the research society
in determining sufficient techniques for detecting DDoS in SDN networks and developing
a more robust and effective detection approach against such attacks.

1.2. Related Works

Many reviews discussed the impact of DDoS attacks on SDN networks and defensive
security approaches, including several SLRs on SDN DDoS attacks. However, to the best of
our knowledge, no attempt has been made to analyze, synthesize, organize, and structure
systematically the existing studies on ML, DL, and hybrid approaches (combination of ML
and DL algorithms) used in detecting and mitigating SDN DDoS attacks.

We performed a qualitative comparison with the existing SLR to highlight the dis-
tinctiveness of our work using several metrics, as tabulated in Table 1, determined by
thoroughly investigating various existing detection approaches and surveys. The candi-
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date’s surveys selected for comparison must fulfill the following criteria: (i) SLR related to
SDN DDoS attacks; (ii) discuss the SDN architecture model; (iii) demonstrate an example
of the OpenFlow forwarding process; (iv) provide an example of DDoS attacks on SDN
networks; (v) provide online database sources for searching and retrieving the related
studies; (vi) classify DDoS attack detection methods and limitations for ML, DL, and hy-
brid approaches; (vii) define the time span of published studies that coverage by the SLR
(coverage years); and (viii) highlight the SDN datasets used.

Table 1. Qualitative comparison of the previous SLRs.

Publication
Year & Ref. SLR

Approaches
Architecture

SDN
OpenFlow

Forwarding

DDoS
Attack
in SDN

Number
of Online
Databases

Time Span
(Coverage

Years)

Concentrated
on Specific

SDN DatasetsML DL Hybrid

[8], 2020 3 3 3 7 3 3 3 - - 7
[10], 2021 3 3 7 7 3 7 3 4 2015–2021 7
[11], 2021 3 3 7 7 7 7 7 2 2019–2020 7
[12], 2022 3 3 3 7 3 7 3 8 Till April–2022 7
[13], 2022 3 3 3 7 3 7 3 5 2013–2020 7
[14], 2023 3 3 3 3 7 7 7 5 2018–2022 7
This SLR, 2023 3 3 3 3 3 3 3 8 2014–2022 3

(3): Addressed, (7): Unaddressed, (-): Not clearly mentioned.

To shed light on current related works in this context, Singh et al. [8] surveyed DDoS
attack detection and mitigation approaches based on information theory, artificial neural
networks (ANN), ML, and other related techniques. In addition, the authors discuss the
SDN network architecture, the OpenFlow forwarding process, and the SDN DDoS attacks
thoroughly. Moreover, Kaur et al. [10] contributed an SLR covering multiple DDoS security
defense approaches at various locations within the SDN network architecture, including
the control and data planes and the communication channel. In addition, it provides a
comprehensive background on SDN architecture and summarizes many DDoS defense
approaches in SDN networks, including ML-based ones.

Dalmazo et al. [11] focused on SDN and programmable network approaches, including
a brief review of ML-based defense approaches in SDN. Meanwhile, Alashhab et al. [12]
proposed a comprehensive survey of different ML approaches that are designed to protect
SDN networks against low-rate DDoS attacks on SDN. Moreover, Alhijawi et al. [13]
conducted a systematic review that classified the techniques based on detecting, mitigating,
and preventing DoS and DDoS attacks against SDN controllers and SDN switches or based
the SDN characteristics that use the SDN technology as a solution to handle DoS attacks in
other network environments (i.e., traditional network, data center, and cloud computing).

Furthermore, Ali et al. [14] provided a systematic review of ML and DL-based ap-
proaches to detect DDoS attacks on SDN networks. In this SLR, the authors analyzed the
most relevant studies based on ML and DL, then highlighted the strengths and weaknesses
of these approaches. They also discussed the datasets, preprocessing strategies, evaluation
metrics, experimental setups, and hyperparameters used in the literature. In addition, this
thoroughly identifies the research gaps and future directions.

Overall, as shown in Table 1, our SLR study is distinctive qualitatively compared
to other studies in SDN DDoS-attack detection and mitigation approaches. It provides
a holistic overview of state-of-the-art approaches by reviewing and analyzing ML, DL,
and hybrid approaches. Additionally, this SLR identifies the limitations, highlights open
research problem gaps, and highlights the specific SDN realistic benchmark datasets that
are publicly available.

1.3. Contributions and Organization of SLR

Research in SDN technology is still in its early stages of development. As a result,
the SDN network is vulnerable to DDoS attacks. Despite this, several security approaches
based on ML, DL, and hybrid already exist to detect such attacks. However, academicians
and the security community need a clear view of the state and trend of the research in this
area, which require additional effort to systematically review, synthesize, and perform an
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in-depth investigation of existing approaches. Therefore, we contribute an SLR that uses a
systematic review methodology to explore those approaches thoroughly. In addition, this
SLR collects and synthesizes all optimally selected studies to achieve the main objectives of
this SLR. Overall, the contributions of this SLR are summarized as follows:

• Provides a solid background of the SDN architecture, underlines the forwarding
process, and illustrates examples of SDN DDoS attacks.

• Presents theoretical background and practical steps that could be a reference or guide-
line for the research community to conduct SLR in any field.

• Presents new taxonomy of current research directions of state-of-the-art approaches
for detecting DDoS attacks in the SDN network.

• A comprehensive review through critical analysis of 70 studies published from 2014
to 2022 on the existing literature of ML, DL, and hybrid approaches (incorporating
both ML and DL) for detecting and mitigating DDoS attacks in SDN networks. It also
underlines their limitations and highlights potential research gaps.

• Provides a critical analysis of the evaluation metrics, network simulators, hacking
tools, experimental platforms, traffic analyzers, and up-to-date datasets used in the
existing literature or studies related to detecting and mitigating SDN DDoS attacks.

• A list of challenges, open issues, and future research directions as a roadmap for
researchers working on SDN DDoS attack detection approaches are given.

The remainder of this SLR is structured as follows. Section 2 presents the background
of the SDN architecture model, illustrates an example of the OpenFlow forwarding process,
and discusses DDoS attacks against SDN networks. Section 3 presents the research method-
ology of this SLR, while Section 4 underlines the results of this SLR. Section 5 demonstrates
the research questions (RQs) results and discussion. Finally, the conclusions and limitations
of this SLR are presented in Section 6.

2. Background

This section discusses the SDN architecture model, including explanations of the
application, control, and data planes. Next, it explains the OpenFlow forwarding process,
then underlines the DDoS attacks on SDN networks. Finally, this section discusses ML and
DL-based DDoS detection approaches.

2.1. Architecture Model of SDN

The SDN architecture emerged to address the complexity of traditional networks by
enabling the creation of a scalable and adaptable programmable network [15]. It is the
most significant technological revolution in the networking field in the past few decades.
The architecture model’s central premise is the isolation of the data forwarding plane
from the logical control of network devices. The SDN architecture model comprises three
interconnected layers (application, control, and data layers) and two interfaces (southbound
and northbound interface APIs), as illustrated in Figure 1. This segmentation results in an
uncomplicated network that eases its manageability [16].

Figure 1 illustrates the SDN architecture’s three layers, each with a unique function and
a distinct purpose. Some features are mandatory in SDN implementation, such as network
operating systems (NOS), applications networks, southbound API, and northbound API,
while others, such as language-based virtualization or hypervisor, are optional [17]. The
following subsections underline all layers and interface APIs from top to bottom.
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Figure 1. SDN architecture model in planes.

2.1.1. Application Plane

The application plane resides on the upper layer of the SDN architecture model. This
layer manages and configures the data plane network devices through a northbound API
interface. In the meantime, it obtains network information from the control layer. The
application layer includes many applications (software programs) that developers can
quickly develop. This layer consists of six types of applications: (1) traffic engineering apps;
(2) network analysis and monitoring apps; (3) fail-over apps; (4) network maintenance apps;
(5) network security apps; and (6) different apps, such as firewall, prevention, and detection
systems [18]. These applications define the functionality of the forwarding devices. An
SDN device may perform multiple functions, unlike in a traditional network where each
device is limited to performing only a single function [10] due to its static nature.

2.1.2. Northbound API

The SDN architecture consists of two API interfaces: southbound and northbound,
which play vital roles in connecting different layers. The northbound API is a communica-
tion interface between network applications operating in the application and control layers.
The southbound interface primarily utilizes an open standard protocol (OpenFlow), while
the northbound interface is an open standards protocol [19]. Meanwhile, due to advanced
technology, various organizations and enterprises have introduced northbound interfaces
(APIs), such as the RESTful API [20]. This interface is supported by most SDN controller
platforms (i.e., [21] and NOX [22]), whereas other controller manufacturers introduce and
define their own northbound API (i.e., Floodlight [23] and OpenDaylight [24]).

2.1.3. Control Plane

The control plane is an intermediate layer between the application and data planes. It
contains the NOS. It is also known as the SDN controller, which rules the entire network
functionality and makes decisions on forwarding flows and dropping packets using pro-
gramming [8]. It is an elemental plane in the SDN architecture where the complication is
present. Fundamentally, the logical controller architecture is grounded on two ideologies:
SDN controller objectives and SDN controller interfaces.
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The SDN controller has two key goals: first, to control the network using the rules
specified by the application plane and sending them to the infrastructure layer, and second,
to monitor global and local network status. As a result, the controller contains two counter-
reversing info flows, as shown in Figure 2. In the downward flow, the SDN controller
interprets the application layer policies into forwarding packet rules. The critical feature of
this procedure is to guarantee that the forwarding rules are valid and consistent. Meanwhile,
in the upward flow, the SDN controller syncs network status gathered from the infrastructure
layer to create a global view of the entire network and provide critical information (i.e.,
network topology) to the application plane for making network decisions [25].

Figure 2. Logical design of SDN controller [25].

Furthermore, various SDN controller interfaces, such as northbound, southbound, and
east–west, are deployed to communicate with other planes and controllers. For example, the
controller uses the southbound interface to cope with the infrastructure layer transactions,
i.e., to update packet forwarding rules at switch devices at the infrastructure plane and
gather network status. Moreover, the controller employs the northbound interface to
interact with the application plane, i.e., to obtain the imposed policies from the application
plane formatted in high-level languages and offer a synchronized global view [25]. At the
same time, eastbound–westbound interfaces are deployed in the case of multiple controllers.
Hence, the roles of these interfaces include sending and receiving data between controllers,
verifying whether the other controller is up, and informing the other controller to control
an asset of forwarding devices, which are essential for connecting additional controllers
and planes [17,26].

Additionally, the control layer significantly impacts the performance of SDN networks,
which relies on the scalability of the SDN controller. Controllers are involved in every
transaction in the SDN network. When the initial packet of each flow arrives, switching
devices must reactively seek matching forwarding rules from the controllers. Frequent com-
munication between controllers and switching devices is paramount for rule updates and
network status gathering. In this regard, bandwidth consumption and connection latency
significantly affect the scalability of the control layer. Researchers suggested distributed
controllers to overcome this scalability issue to enhance their performance, improve their
processing capacity, and reduce the number of handled requests [25,27].

Since the architecture of the SDN controller platform can be centralized or distributed,
a single SDN controller platform could handle all network switching devices in a centralized
environment. However, although a centralized controller is an excellent benefit of the SDN
network and sufficient to manage a small- to large-scale network, it is also a single point of
failure if targeted by DDoS attacks [28]. However, in a distributed architecture, multiple
SDN controllers can manage a cluster of nodes or a physically distributed group of elements.
The controllers could be distributed at different sites or across the network. Each manages
a network part to overcome the effect of a single controller failure [29]. These distributed
controllers are efficient for large-scale networks such as data centers [17]. Indeed, the
distributed controllers are logically centralized and physically distributed in the SDN
architecture. In recent years, many SDN controllers have been highlighted, i.e., POX [21],
NOX [22], Floodlight [23], OpenDaylight [24], and ONOS-distributed SDN [30].
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2.1.4. Southbound API

The SDN physically decouples the forwarding plane functions from the control logic
plane. With the assistance of southbound API interfaces, the forwarding plane is kept on
network devices, whereas the control plane is moved to an independent controller. Thus,
southbound interfaces play a significant role in linking the control plane with the data
plane. This link must stay accessible and secure; otherwise, the forwarding functions will
not work [31]. The fundamental purpose of the southbound interface is to be used by the
control plane to send management and monitoring messages to the data plane.

In contrast, the data plane bundles messages and sends them to the controller to
report the current network status [18]. The southbound interface is commonly highlighted
with the OpenFlow protocol [5] and touted as the standard interface defined by ONF [7].
The OpenFlow protocol is integrated with a secure communication protocol for secure
communication through a southbound interface. Overall, this protocol is not mandatory, as
the ONF suggests, since there are other protocols available, such as OvSDB (Open vSwitch
Database) [32], OpenState [33], and OpFlex [34].

2.1.5. Data Plane

The data plane is the lowest layer in the SDN architecture model. It is also called
the infrastructure layer and comprises a collection of network devices (i.e., switches and
routers) connected to form a robust network. Those devices are simple forwarding elements
without the control logic to make any decisions because the data plane devices are running
without network intelligence, which has been moved to an independent control system
(i.e., SDN controller). It is essential to realize that these innovative network devices are
constructed based on open and standard interfaces (OpenFlow), which guarantee standard
configuration, intercommunication consistency, and compatibility across various data and
control plane devices. Another critical point is that these open-standard interfaces allow the
controller systems to effectively program different forwarding devices, which is problematic
in conventional networks because of the heterogeneity of devices with proprietary and
closed standards and the dispersed structure of the control plane [17].

Figure 3 shows that the SDN and OpenFlow architecture has two critical parts: con-
trollers and forwarding devices. The controller is the network brain that runs on a commod-
ity hardware platform. In contrast, the forwarding device for forwarding network packets
can be in the form of software or hardware. Meanwhile, the OpenFlow device contains
a pipeline of flow tables with three key elements: matching rules, actions, and counters.
The match rule field includes several matching header fields, i.e., TCP or UDP, IP, Ethernet,
and many others, depending on the OpenFlow protocol version. For example, OpenFlow
version 1.0 and 1.5 contains 12 and 44 matching rule fields, respectively. Next, the actions
describe the operation executed on the flow traffic, such as dropping, forwarding, sending
to typical processing pipeline flow tables, and forwarding to the controller. Finally, the
counter is for keeping track of the statistics of packets in every flow [10,17].

Additionally, there is at least one flow table and secure OpenFlow channel in an
OpenFlow switch to ensure secure communication with the controller [35]. A pipeline
between a series of flow tables describes how packets should be treated inside the OpenFlow
device flow tables. Once a new packet is received, the pipeline table matching procedure
begins with the first table and ends once a matching flow table is found [17]. However, if no
matching flow table exists, the switch will act based on the table miss flow entry and report
to the controller. The controller generates a new forwarding rule addressing the network
state and sends it back to the switch. As soon as the OpenFlow switch receives these rules, it
handles the subsequent packets by itself and forwards them accordingly [36]. OpenFlow is
widely used on SDN data plane devices because of its simplicity and high-level paradigm.
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Figure 3. SDN devices with OpenFlow enabled.

2.2. OpenFlow Forwarding Process

The SDN controller is responsible for forwarding processing rules of the flows in
the network by installing flow entries onto the OpenFlow-enabled switches [37]. The
OpenFlow specification permits network switches to operate in proactive or reactive mode.
In proactive mode, the backup flow rules are installed into the switches’ flow tables before
receiving any network flow entries. The significant benefits of a proactive flow are a
minimal setup time and reduced frequency of contacting the SDN controller. However,
because SDN switches memory is a limited and expensive resource, preinstalling all backup
rules in advance is not cost-efficient.

In addition, because the backup rules are only utilized in case of failures, preinstalling
all backup rules wastes the flow tables unnecessarily. Compared to the reactive mode,
more events and interactions are involved, such as requesting, seeking, or computing the
necessary rules. As packets arrive, the flow entry rules are dynamically installed on the
switch, and this set of procedures is time-consuming and could cause packet delay [36].
This procedure is called the OpenFlow Forwarding process [1] and is illustrated in Figure 4
as a series of steps.

Figure 4 shows an example of an OpenFlow network comprising a controller, an Open-
Flow switch, and two hosts, “A” and “B”. First, the OpenFlow switch initiates a TCP session.
Then the controller detects the OpenFlow switch and starts the connection setup. The connec-
tion setup is via an OpenFlow secure channel over TCP, which the controller uses to manage
the switch [38]. Likewise, hosts “A” and “B” connect to the OpenFlow switch via ports 1
and 2, respectively. In this example, the switch’s flow table is empty, and the switch does not
know how to forward packets from source host “A” to destination host “B”. Under these
circumstances, the OpenFlow forwarding process follows the following steps.

1. To deliver a packet to destination host “B”, source host “A” sends a packet to the SDN
switch through port 1.

2. Upon receiving the packet, the switch performs a lookup in its flow tables. Suppose
there is a match, then the switch will execute the instructions associated with the
specific flow entry. Otherwise, the default OpenFlow switch specification (preinstalled
OpenFlow rules) states that the packet must be forwarded to the SDN controller over
the OpenFlow (southbound API) secure channel using a Packet-In message. The
Packet-In message may include the complete packet or just a segment. In another
case, the switch buffers the entire packet, and the Packet-In message contains a buffer
ID of the packet [39].

3. The controller receives a Packet-In message from the switch. Typically, two things can
happen here. First, the controller examines the packet header and checks whether it
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needs to send a Packet-Out message or not. If it does, include the reference buffer ID
in the Packet-In message and the instruction for action to be performed (e.g., forward
to the destination or drop the packet). Second, the controller might also send a flow
modification message (Flow-Mod message) to the switch to install a new flow entry
rule in the flow table to handle a similar subsequent flow in the future [31,39].

4. The switch receives the Packet-Out message from the controller, updates the flow
table with a new flow entry, and then forwards the packet to the destination host “B”.

5. Finally, the destination host “B” receives the packet from source host “A”. When host
“B” sends a return packet to host “A”, the reverse path of this communication follows
the same steps.

Figure 4. OpenFlow forwarding process.

A final note on this example: the switch no longer needs to forward packets to the
SDN controller in subsequent communication between hosts “A” and “B” unless the
OpenFlow switch’s flow entries timed out and expired or the network topology changed.
This forwarding process is known as reactive mode, where the controller reactively installs
the rules in response to Packet-In messages. However, reactively populating the flow rules
in the flow tables exposes the switches to potential DDoS attacks. For instance, an attacker
can easily take advantage of the reactive mode by sending massive Packet-In messages
from the switches targeting the SDN controller, leading to network congestion and DDoS
attacks [1,40].

2.3. DDoS Attacks against SDN Network

The control plane plays many essential roles within the SDN networks, including
monitoring all network devices via secure OpenFlow channels, configuring flow tables,
and providing instructions or rules to switches to manage new traffic flows. In addition,
the controller may oversee the whole network by assuming the manager’s role between
the data plane and application plane via southbound, northbound, and east/westbound
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API interfaces in the case of distributed controllers. Centralizing the controller simplifies
the network operations by having a global view of the entire network. In addition, the
controller uses the network traffic flow statistics as a baseline input (information) to an
attack detection technique to determine whether the network flow is normal or abnormal.
As a result, the controller is critical in any endeavor to improve and enhance the SDN
security productivity against potential attacks. Hence, it must become a highly targeted
point for significant attacks and malicious behaviors [41].

Additionally, the SDN controller is the most complicated part of the network because
of logical centralization, and it is responsible for implementing forwarding rules for every
new flow entry. This complexity increases security threats, especially when overwhelmed
by a massive number of incoming spoofed packets or flows that instantly result in poor
controller performance and lead to a bottleneck. As a result, the controller is very vul-
nerable to DoS and DDoS attacks, one of the most challenging and damaging network
threats [8]. Consequently, many attackers target the SDN controller to make it unavailable.
Unfortunately, not even multiple controllers can offer a practical solution to such attacks
because they only increase the complexity due to additional efforts required to maintain the
consistency, authentication, and scalability of many forwarding policy rules in each domain.
In addition, multiple controllers need extra secure communication channels to communi-
cate. However, there are no standard specifications for the communication protocol and
its security for controllers to transmit state information. As a result, the inter-controller
communication channels may become a target, eventually leading to cascading failure for
other controllers [42].

On top of that, DDoS attacks are easy to execute but challenging to detect and mitigate.
Cyber attacks frequently utilize a botnet, or a network of computers, to conduct successful
DDoS attacks. The most common DDoS attacks evade detection and increase the possibility
of reaching targeted victims by employing several attack scenarios and various DDoS attack
tactics. Depending on the attack protocol level, DDoS attacks can be classified into two
groups. First, DDoS flooding attacks at the transport/network layer. These attacks often
leverage TCP, UDP, ICMP, and DNS packets to disrupt legitimate individual connectivity
by draining the entire SDN network bandwidth capacity. Second, application-layer DDoS
flooding attacks disrupt online services by exhausting the resources of the server that hosts
the corresponding services [43].

An attacker can quickly launch SDN DDoS attacks by flooding the SDN controller with
spoofed UDP, ICMP, or TCP packets to cripple it, rendering it out of service. The strength
of a DDoS attack lies in its destructive impact on the victims, and the effect could multiply
by employing various attack scenarios upon the target. Attackers using DDoS attacks
usually exploit compromised hosts to launch attacks to avoid detection. First, the attacker
scans the network for vulnerable hosts to exploit. Once compromised, the attacker uses
the compromised hosts to send malicious network traffic with forged source IP addresses
toward one or more targeted victims in the SDN network.

In addition using compromised hosts to launch DDoS attacks, attackers also employ
other methods to avoid detection, such as using fewer packets that consume less bandwidth,
mimicking the normal traffic behavior, and varying the attack traffic rates. Attackers vary
attack traffic rates by mixing low-rate and high-rate DDoS attacks, which confuses the
majority of DDoS attack detection mechanisms. In addition to avoiding detection, those
methods also increase the efficacy of the attacks [44,45].

Since attackers spoof attack packets’ source IPs, the OpenFlow switches will fail to
find a matching rule for the incoming malicious packets, resulting in the packets being
forwarded to the SDN controller and eventually exhausting its resources. Then the SDN
controller becomes unreachable for the subsequent incoming packets. Even with a backup
controller, it ultimately will suffer the same fate of cascading failure [46]. Therefore,
protecting the SDN controller efficiently against low-rate and high-rate DDoS attacks is
crucial. Figure 5 illustrates the DDoS attack mechanism on the SDN network.
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Figure 5. OpenFlow forwarding process.

Furthermore, DDoS attacks pose critical threats to the SDN network, especially if the
controller becomes a target, directly or indirectly [9]. For example, when a switch receives
invalid network packets, it buffers all packets and then forwards only the packets’ headers to
the controller using Packet-In messages. However, once the switch’s memory is full, a buffer
overflow will occur at all switches in the data plane, causing heavy congestion that impacts
the entire data plane switches and the secure OpenFlow control channels (Southbound API).
Therefore, the DDoS attack victims are not just the SDN controller but also the network
switches and the southbound IPA that connects the switch and the SDN controller. The
network switches will experience a buffer overflow attack, and the southbound IPA will suffer
a bandwidth saturation attack. Therefore, DDoS attacks on the SDN controller will fall under
a global impact attack category since they could cause failure to the entire network [1].

Ultimately, the SDN design might increase network security threats by providing pro-
grammability properties to assist modern intelligent systems, such as intrusion-prevention
systems (IPS) and intrusion-detection systems (IDS). However, even though the importance
of SDN characteristics in enhancing network security has been underlined, the techniques
for securing the SDN controller have not been adequately addressed, leaving the network
vulnerable to attacks. For example, conventional DDoS attack detection methods are ineffi-
cient because conventional networks differ from SDN network environments. In addition,
the DDoS attacks against SDN controllers may be readily carried out using low-cost hack-
ing tools and do not necessitate high-performance computation or much effort from the
attackers [41].

2.4. ML and DL-Based Approaches

Artificial intelligence (AI) is a broad term for techniques that let dummy machines
mimic the human brain or intelligence to solve real-world problems using ML and DL
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algorithms [47]. ML is a subclass of AI that contains various algorithms that enable a
machine to learn systematically by running mathematical models to detect and classify
SDN DDoS attacks. Some examples of the most commonly used ML algorithms in IDS
are the K-nearest neighbor (K-NN), support vector machine (SVM), decision tree, ANN,
K-mean clustering, and fast learning network [48].

ML algorithms are known as shallow learning algorithms, as opposed to DL, a sub-
class of ML that incorporates multiple invisible layers to obtain deep network properties.
Because of their deep and critical construction to learn the relevant features of the dataset
all by itself and provide an output, those algorithms outperform the ML techniques. Some
examples of the standard DL algorithms are recurrent neural networks (RNN), convolu-
tional neural networks (CNN), deep belief networks (DBF), deep neural networks (DNN),
deep Boltzmann machine, and the autoencoder [49].

Moreover, the ML-DL consists of algorithms that operate on autonomous learning
capability and predict the final results. For example, IDS can use these algorithms to
protect SDN networks against multiple threats, including DDoS attacks. ML-DL algorithms
workflow learns from a dataset during the model training stage. The IDS-based ML-DL
algorithms can be categorized as supervised, unsupervised, and semi-supervised. The
IDS model discriminates between normal and malicious traffic patterns using supervised
ML algorithms by giving a collection of network flows labeled before training. However,
manually labeling each dataset is time-consuming [50]. Moreover, the ML-DL consists of
algorithms that operate on autonomous learning capability and predict the final results.
For example, IDS can use these algorithms to protect SDN networks against multiple
threats, including DDoS attacks. ML-DL algorithms workflow learns from a dataset during
the model training stage [51]. The IDS-based ML-DL algorithms can be categorized as
supervised, unsupervised, and semi-supervised. The IDS model discriminates between
normal and malicious traffic patterns using supervised ML algorithms by giving a collection
of network flows labeled before training. However, manual labeling of each dataset is
time-consuming [50].

In addition, the unsupervised ML-DL techniques extract critical information or features
directly from the unlabeled dataset. At the same time, semi-supervised learning trains the
model by using the labeled and unlabeled dataset. According to earlier research, supervised
ML-DL techniques outperform unsupervised ML-DL techniques in IDS efficiency. Further,
as has been noticed, the ML and DL models, either supervised or unsupervised, have been
used recently in ensemble methods to benefit from various classifiers, since some algorithms
perform well for detecting a particular type of attack and others show poor performance on
different kinds of attacks. The ensemble technique combines weak classifiers through training
many classifiers and then forming the more robust classifier by voting [49].

3. Research Methodology

This paper conducts an SLR to classify studies relevant to the research area or answer
specific research questions related to SDN DDoS attack detection approaches. The SLR
is the most suitable and dependable method to document and evaluate existing research
studies. The SLR approach allows researchers to summarize the strengths and weaknesses
of the existing research studies, conduct a comprehensive investigation to identify potential
research gaps and future trends and challenges, and contribute a solid framework and
background to establish a new research area.

The SLR protocol followed in this research is based on the Kitchenham and Charters
guidelines for conducting SLR in software engineering [52,53]. This SLR methodology
consists of three main parts: planning, conducting, and reporting. Each part involves
distinct stages, and those stages are: defining the review protocol, Section 3.1, defining
research questions, Section 3.2, qualifying conditions (Inclusion and Exclusion Criteria),
Section 3.3, search plan, Section 3.4, research studies selection procedure, Section 3.5, quality
assessment (QA) criteria, Section 3.6, and Data extraction and Data synthesis, Section 3.7.
The details of each stage will be discussed in the following subsections.



Sensors 2023, 23, 4441 13 of 48

3.1. Defining the Review Protocol

The methods utilized to conduct a systematic review are specified in the review protocol
to eliminate the risk of researcher bias. Therefore, a preplanned methodology is required.
Without a procedure, it is conceivable that the researchers’ expectations would influence the
selection of studies or the analysis. This would result in investigations being left out of the
sample studies required to conduct a thorough examination and gain a broad knowledge
of the phenomena. The review protocol identifies the research questions, search plan, study
selection procedures, quality assessment, and data extraction and synthesis [52].

3.2. Defining Research Questions (RQ)

Fundamentally, defining the research question(s) is vital in the planning strategy to
build a robust SLR protocol. The research question formulation demands a significant
review of literature studies. The main objective of this SLR is to conduct a comprehensive
review of the existing approaches for the detection and mitigation of SDN DDoS attacks. In
addition, to highlight the research findings and demonstrate the valuable outcomes clearly
and achieve these objectives, the following research questions are defined:

• RQ(1). What are the existing ML-based approaches to detect and mitigate DDoS
attacks against SDN networks?

• RQ(2). What are the existing DL-based approaches to detect and mitigate DDoS attacks
on SDN networks?

• RQ(3). What are the existing hybrid-based approaches to detect and mitigate DDoS
attacks on SDN networks?

• RQ(4). What evaluation metrics, network simulators, hacking tools, and experimental
platforms are used in the literature studies?

• RQ(5). What datasets are used to evaluate and validate the existing approaches, and
are there any publicly available realistic datasets for DDoS attacks on SDN networks?

• RQ(6). What are the challenges, open-issue perspectives, and future research directions
for DDoS attacks on SDN networks?

This SLR formulated six in-depth research questions, demonstrating each question’s
motivation as follows. RQ(1), RQ(2), and RQ(3) contribute to the comprehensive exploration
of different types of existing detection and mitigation approaches (based on ML, DL, or
hybrid) on SDN DDoS attacks. Meanwhile, RQ(4) identifies the prevalent evaluation metrics,
network simulators, hacking tools, and experimental platforms used in existing literature
studies. RQ(5) contributes to determining the characteristics of the used datasets to evaluate
the current approaches. Finally, RQ(6) contributes to underlining DDoS attacks’ challenges
and future research directions in securing SDN networks from DDoS attacks. The following
subsection elaborates on the inclusion and exclusion criteria used for this SLR.

3.3. Inclusion and Exclusion Criteria Terms

The SLR protocol must define the inclusion and exclusion criteria terms to ensure that
the selected studies are related to the study area and answer the defined research questions.
The main reason for setting up the criteria is to ensure that the included studies are relevant
and related to ML, DL, and hybrid approaches (a combination of ML and DL algorithms)
to detect and mitigate SDN DDoS attacks. Therefore, the selected studies must match all
the predefined criteria terms. Table 2 tabulates the inclusion and exclusion criteria terms of
this SLR.

In addition, the studies that do not meet the inclusion criteria (in Table 2) are excluded.
Moreover, a screening operation is conducted to select the relevant literature studies related
to this review context. The screening operation has three stages:

(i) Title and abstract stage: this stage excluded the irrelevant studies based on title and
abstract. Next, the studies that meet at least some criteria terms in Table 2 are selected
and passed to the next stage for further processing.
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(ii) Full-text reading stage: this stage excluded the studies based on full-text or partial
reading if they did not meet the criteria terms in Table 2.

(iii) Final selection stage: This stage applies the criteria terms in Table 2 for final selection
and excludes studies that do not match any of the following criteria.

- The research study must be relevant and related to the research questions.
- The research study discusses the comprehensive solution ML, DL, and hybrid-

based approaches to detect and mitigate DDoS attacks on SDN networks.
- The research study provides a sufficient volume of technical implementation and

methodology information.
- The research study presents an adequate description of the obtained results.

Table 2. Summary of the inclusion and exclusion criteria.

No. This SLR Include Articles That Are: This SLR Exclude Articles That Are:

1 From conferences, journals, and book chapters
are written in the English language. Written in other languages.

2 Listed at one of the database sources. Not accessible full version.

3 Related to DDoS attacks detection and mitigation
approach against SDN network.

Related to SDN DDoS attacks on IoT, cloud computing,
5G networks, mobile networks, wireless networks, and
Ad hoc networks or DDoS attacks on conventional
networks.

4
Empirical or experimental studies since the
systematic reviews are generally concentrated
on them.

Duplicated and unrelated (i.e., review/survey research
papers, books, editorials, and not accessible) studies.

5 Published up to 2022. Not within the search period.

6 Related to research questions. Not related to research questions or score less than or
equal to 3.5 in the quality assessment criteria.

3.4. Search Plan

The search plan involves querying several digital databases, as shown in Table 3. The
databases, Scopus, IEEE Xplore, Taylor & Francis Online, Science Direct, Web of Science (WOS),
Wiley Online Library, Springer Link, and ACM Digital Library, cover almost all impact factor
journals, magazines, and relevant conference proceedings to this SLR.

Table 3. Online database sources.

No. Online Database Search Within Links

1 IEEE Xplore. Title, Abstract, Keywords (https://ieeexplore.ieee.org, accessed on 1 January 2022).
2 Scopus-Elsevier. Title, Abstract, Keywords (https://www.scopus.com, accessed on 1 January 2022).
3 Taylor & Francis Online. Title, Abstract, Keywords (https://www.tandfonline.com, accessed on 1 January 2022).
4 Science Direct. Title, Abstract, Keywords (https://www.sciencedirect.com, accessed on 1 January 2022).
5 Web of Science (WoS). Title, Abstract, Full Text (https://www.webofknowledge.com, accessed on 1 January 2022).
6 Wiley Online Library. Title, Abstract, Keywords (https://onlinelibrary.wiley.com, accessed on 1 January 2022).
7 Springer Link. Title, Abstract, Full Text (https://link.springer.com, accessed on 1 January 2022).
8 ACM Digital Library. Title, Abstract, Keywords (https://dl.acm.org, accessed on 1 January 2022).

In this stage, an advanced search was performed using Boolean OR/AND operators
to link the keywords, terms, synonyms, and abbreviations. The search plan consists of
two main stages, automatic and manual search. The first stage involves performing an
automatic search using the predefined keywords based on the research questions of this
SLR. For example, the following keywords are used: (“Software Defined Networking” AND

“Distributed Denial-of-Service”) OR (“SDN” AND “DDoS”) AND (“Intrusion Detection System”
OR “IDS” AND “Network Security”). Those keywords are derived from the defined research
questions and the structure of this SLR to cover the most relevant and related studies.

In addition, the search string is created and explored in the digital database sources
by utilizing predefined keywords. Furthermore, the search string is stored on all database
sources to ensure we receive a notification of every newly published article after completing
the search. Once retrieved from the database sources, the acquired research papers are
chosen according to the research questions and inclusion and exclusion criteria. The second
stage involves manual screening of the primary studies’ references using backward and for-

https://ieeexplore.ieee.org
https://www.scopus.com
https://www.tandfonline.com
https://www.sciencedirect.com
https://www.webofknowledge.com
https://onlinelibrary.wiley.com
https://link.springer.com
https://dl.acm.org
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ward search techniques to track the primary studies’ citations. We utilized Google Scholar
to move forward to discover relevant studies cited by the primary studies, identifying any
missing ones (from the first stage) to ensure this SLR is sufficiently comprehensive [54].
Therefore, after every primary study’s references are reviewed and the inclusion and exclu-
sion criteria applied, the obtained studies from this stage are added to Mendeley. Mendeley
helps us to efficiently manage the collected studies and quickly remove duplicate studies
to develop a final set of selected studies.

3.5. Research Study Selection Procedure

The research study selection procedure plays a vital role in identifying the research
studies that are related to the research questions of this SLR. Using the automatic search
technique identified 1968 studies. Section 3.4 describes the predefined keywords used
to retrieve relevant research studies from every database source. According to [55], the
retrieved studies must go through several stages to ensure that the excluded studies are
unrelated to this SLR topic.

The first stage excludes duplicate research studies using Mendeley references manager,
resulting in 1489 studies. The second stage, applying the inclusion and exclusion criteria
terms (as presented in Table 2), extracts the relevant studies and excludes the irrelevant
and unrelated ones, resulting in 613 studies. The third stage, applying the inclusion and
exclusion criteria based on the title and abstract, resulted in a total of 260 studies. Simulta-
neously, from those studies, we provide a new taxonomy of state-of-the-art approaches for
detecting SDN DDoS attacks, as shown in Figure 6.

Figure 6. Taxonomy of existing approaches for detection of DDoS attacks in SDN networks.

In addition to this stage, after retrieving studies from the predefined online digital
databases, a notification alert was configured on every digital database to notify us of any
newly published articles, which resulted in 13 studies. Then, those studies count towards
the third stage for screening titles and abstracts, and the selected studies are passed to the
subsequent stage. The fourth stage involves employing the inclusion and exclusion criteria
based on a full-text reading of the studies. It then makes the decision to include or exclude
the selected studies, resulting in 68 studies.

The final stage involves manual search using forward and backward techniques on
the primary study’s references to trace any relevant missing studies. The search finds an
additional ten relevant studies missed in the previous stage. Therefore, the comprehensive
studies resulted in a total of 78 studies. However, after the full-text reading stage to evaluate
the studies’ quality, 8 studies were excluded according to the inclusion and exclusion criteria
(see Table 2) and quality assessment (QA) criteria. Therefore, the total number of studies
recognized as primary studies is 70, which served as the foundation of the QA criteria.
Figure 7 illustrates a flow diagram of the selected study’s procedure and presents the
overall research methodology.
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Figure 7. Overall research methodology protocol.

3.6. Quality Assessment (QA) Criteria

A QA generally uses instruments such as a checklist of factors or several questions
to evaluate primary studies. In addition, the main reason for applying QA is to judge the
quality of the selected studies [56,57]. Therefore, this SLR defines nine quality assessment
criteria to evaluate the quality of every study, as listed in Table 4, inspired by [58], covering
all the research study characteristics, including design, conduct, analysis, and conclusion.
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Table 4. Quality assessment (QA) criteria.

Checklist Questions

Design

1. Are the objectives expressed clearly?
2. Is the topic addressed in the paper associated with this SLR?
3. Are the studies capable of answering any one of the research questions?
4. Are the study evaluation metrics fully defined?

Conduct 5. Is the dataset of the research paper clearly described?
6. Are the implementation methods sufficiently represented?

Analysis 7. Are the analysis of the results sufficiently explained?
8. Are the analysis of the results compared with existing approaches?

Conclusion 9. Are the research limitations stated?

The QA procedure determines a study’s level of quality based on nine quality as-
sessment criteria to check the credibility of 70 primary studies. The study’s quality is
determined by whether it scored high, medium, or low on each quality criterion listed
in Table 4. Consequently, the studies that fulfill the criterion have a score of 1. If a study
partially meets the standard, a score of 0.5 is given. However, studies that do not meet any
criterion will score 0 points. Therefore, studies with a total score greater than or equal to 6
will be considered high-quality. Studies with a score between 5 and 5.5 will be considered
medium-quality. In contrast, studies with a total score of 4 to 4.5 will be considered low-
quality studies. Finally, we excluded studies with a score of 3.5 or lower since they failed to
meet the criteria for inclusion and exclusion (refer to Table 2).

3.7. Data Extraction and Data Synthesis

This stage underlines the procedure of data extraction and synthesis by carefully
reading all 70 selected studies and abstracting and saving the related data using Microsoft
Excel spreadsheets plus the Mendeley reference manager. This stage creates a form of data-
extraction items and reports all information collected from primary studies [52]. Therefore,
this SLR considered the following columns: Study ID, bibliographic info (title, author, publi-
cation source, and publication year), type of publication, study objective(s), method used, datasets
type, evaluation metrics, study finding, study limitations, and study experiment. In addition,
this review selected those items following the objectives and research questions. Table 5
shows the form used to extract data items for the 70 studies. In addition, as soon as the data
is extracted from the primary studies and recorded to identify the final view of the SLR
results, the analysis stage is processed using descriptive synthesis. The following section
explains the synthesis results.

Table 5. Extraction of data items of primary studies and their descriptions.

No. Data Extracted Description

1 Study ID Specific identity numbers for each study.
2 Bibliographic Info Title, author, publication source, and the publication year (up to 31 Mar 2022).
3 Type of publication Conference or journal paper.
4 Study objective(s) Aim of the study.
5 Method used. The method used by the study (i.e., ML, DL, and hybrid (both ML and DL)).
6 Datasets type. The dataset used by the study (i.e., benchmark dataset and realistic or unrealistic datasets).
7 Evaluation Metrics. (i.e., detection performance/efficiency metrics or computational performance metrics).
8 Study finding. Results of the study.
9 Study limitations. Limitations of the study.

10 Study experiment. Network simulators, hacking tools, and experimental platforms.

4. SLR Results

Before discussing the data analysis of the SLR, this section gives significant statistical
results of the primary studies in terms of publication sources and timeline, study character-
istics, and quality assessment results. The following section will discuss and go through
this SLR data synthesis analysis.
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4.1. Sources and Year of Publication

The distribution of the primary studies based on their publication sources is depicted
in Figure 8. It can be seen that the majority of the studies were published in scientific
journals, with a percentage of 61%, which equates to 43 primary studies. Meanwhile,
21 studies were published at conferences proceeding, with 30%. In addition, 4 studies
were published in symposiums, with a percentage of 6%, and 2 studies were published
in workshops, with 3% of the total primary studies. Thus, most primary studies were
published in scientific journals, which increases the SLR’s reputation and overall quality
assessment criteria.

Figure 8. Distribution of primary studies by sources of publications.

Furthermore, the primary study period of this SLR is from 2014 to 2022, as shown
in Figure 9. Additionally, Figure 9 illustrates the distribution of the primary studies
over eight years. The progressive growth in the number of publications related to DDoS
attacks on the SDN network since 2014 shows a steady increase, particularly from 2016
onward. Furthermore, Figure 9 shows that most of the studies were published in 2020,
with 21 studies, and then in 2021, with 19 studies. We find this surprising, since SDN DDoS
attacks have only been around for a few years.

Figure 9. Distribution of primary studies by year of publications.

4.2. Primary Studies’ Methods

This section highlights the most frequent methodologies of primary studies. The se-
lected studies are based on ML, DL, or hybrid approaches for detecting DDoS attacks in the
SDN network. Figure 10 shows the distribution of primary studies based on methodology.
As can be seen, most selected studies were based on ML techniques, with a percentage of
53%, equating to 37 primary studies. Meanwhile, 27 studies were based on DL techniques,
accounting for 38% of the selected studies. The remaining six studies, with a percentage of
9%, were based on a hybrid approach that combines machine and DL techniques, which is
considered the minority of the primary studies. Overall, ML and DL methods have been
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regularly used, and in a few studies, both ML and DL methodologies are integrated to
complement each other.

Figure 10. Distribution of primary studies based on methodology.

4.3. Quality Assessment Results

The quality assessment has been performed as subjectively as possible. However,
despite the possibility of subjectivity, we feel that the quality assessment gave us a general
sense of the included studies. Therefore, this SLR evaluated every empirical study based
on the nine criteria described in Section 3.6 Table 4. During this process, 8 studies did
not fulfill the inclusion and exclusion criterion, so they were excluded from the list. Thus,
based on QA criteria, the primary studies of this SLR included 70 articles, and the majority
of the remaining studies got a relatively high-level score. Figure 11 shows the results of
the quality assessment score levels. However, most of the studies scored at a high level,
equating to 48 primary studies, which is sufficient to make this SLR a valuable contribution.
In comparison, medium and low levels correlated to 14 and 8 of the primary studies,
respectively. The results of utilizing the quality criteria are stated in Table A1.

Figure 11. Distribution of primary studies based on QA levels.

5. Research Questions Results and Discussion

Generally, IDS protects the network by detecting traffic to determine any adversarial
attacks in the network. This SLR focuses on anomaly-based IDS based on ML and DL
techniques or integrated (also called hybrid approaches) to increase the detection accuracy
of DDoS attacks on SDN networks. Thus, this SLR scope on ML, DL, and hybrid-based
approaches to detect and mitigate DDoS attacks against the control plane, data plane, and
secure communication channel of the data-control plane in the SDN network. Therefore,
this section discusses and answers the RQs (as stated in Section 3.2) based on the selected
(70) primary studies and their analyses. The RQs are discussed in the following subsections.
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5.1. RQ(1). What Are the Existing ML-Based Approaches to Detect and Mitigate DDoS Attacks
against SDN Networks?

This section presents a comprehensive overview of ML-based approaches for detect-
ing and mitigating DoS and DDoS attacks against SDN networks. Three different ML
approaches are classified based on the methodology: first, the enhancement of ML ap-
proaches through the ensemble technique of multiple ML algorithms to improve the overall
performance, particularly the detection accuracy; second, the development of ML-based
approaches through hybridization or relying on multiple ML algorithms; and third, tech-
niques that investigate a single ML classification algorithm. This section also underlines
the essential findings of every study, followed by a summary table that tabulates ML
approaches with their limitations. Finally, these approaches are thoroughly discussed
as follows.

5.1.1. Ensemble ML Approaches

Ensemble approaches might include several types of classifiers, and the ensemble
itself may consist of different ML classifiers. The training process may also be concluded
by combining several independent classifiers. For example, Ref. [59] propose an optimized
weighted voting ensemble (OWVE) model to detect and mitigate DDoS attacks. The
ensemble model uses SVN, random forests (RF), and gradient-boosted machine classifiers
with different hyperparameter values. The ensemble model shows high classification
accuracy of 99.41% and 99.35% for CIC-DDoS-2019 and CAIDA-2007 datasets. Ref. [60]
proposed an ensemble ML model called the voting-based intrusion detection framework
for protecting SDN against DDoS attacks. The proposed voting model was trained and
tested using three datasets: UNSW-NB15, CICIDS2017, and NSL-KDD, and achieved better
detection accuracy than other approaches.

Ref. [61] developed an ensemble ML method called K-mean and RF to improve
the accuracy and efficiency of classifying and detecting DDoS attacks. The proposed
system was tested and trained with the InSDN dataset and achieved a perfect detection
accuracy (100%). Finally, an ensemble ML based on K-NN, naïve Bayes (NB), SVM, and
self-organizing map (SOM) algorithms to detect abnormal behavior was proposed by [62].
The approach uses CAIDA 2016 dataset for testing and triaging the model. However, the
ensemble approach achieved low detection accuracy and false-positive rates for ensemble
and single ML algorithms.

5.1.2. Hybrid ML Approaches

Several hybrid ML-based approaches, such as [63], combined SVM and random forest
(RF) classification algorithms to classify normal and DDoS attack traffic. The approach
was tested and evaluated with a realistic SDN dataset, achieving high accuracy (98.8%|)
and few false alarms. Ref. [64] proposed a hybrid approach based on SVM and SOM
to enhance the classification performance for detecting DDoS flooding attacks against
OpenFlow switches and SDN controllers. The approach was tested on the CAIDA dataset,
achieving 98.13% and 97.6% for detection rate and accuracy, respectively.

Ref. [65] investigated P4 programmable and K-NN, RF, SVM, and ANN algorithms
for implementation in a real-time detection systems. They proposed an automated DDoS
attack detection (DAD) method. The DAD approach detects SYN flood attacks locally on
SDN switches with an overall performance of 98%. To protect the SDN controller against
DDoS attacks, Ref. [66] employed RF, SVM, K-NN, naïve Bayes (NV), and decision tree
(DT) algorithms. The approach was evaluated with the NSL-KDD dataset, achieving a high
accuracy (99.97%) for DT but a very low accuracy (60.19%) for SVM.

Ref. [67] investigated a variety of ML classification models, such as DT, random forest
(RF), AdaBoost (AB), multiayer perceptron (MLP), and logistic regression (LR), to analyze
and detect TCP-SYN flood DDoS attacks against the SDN controller. The experiment
results show that all classification models achieved high performance. Ref. [68] employed
ML algorithms, such as K-NN, DT, ANN, and SVM, to classify SDN network traffic as
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normal or DDoS attacks. They showed that DT has the best accuracy rate (99.75%) among
classification algorithms, and the worst is the SVM algorithm with 81.48%.

Ref. [69] proposed a detection and classification model based on ML. They adopted
four popular classifiers (i.e., K-NN, quadratic discriminant analysis (QDA), Gaussian naïve
Bayes (GNB), and classification and regression tree (CART)) to detect TCP, UDP, and
HTTP flood DDoS attacks. CART outperforms others in average training time (12.4 ms),
prediction accuracy (98%), and prediction speed. Ref. [70] proposed a detection and
mitigation approach against DDoS attacks. They utilized an SVM as the primary classifier,
followed by kernel principal component analysis (KPCA) for feature selection strategy and
a Genetic Algorithm (GA) for enhancing the parameters of the SVM. The proposed model
achieved a detection accuracy of 98.907%.

In addition, different approaches rely on multiple ML algorithms, such as [71]. They
used six machine-learning algorithms (NB, SVM, K-NN, extreme gradient boosting (XG-
Boost), DT, and RF) to protect an SDN network from DDoS attacks. The XGBooSt algorithm
obtains the highest accuracy (99.7%), and the rest achieve low accuracy. Ref. [72] proposed
a detection approach based on DT and SVM algorithms for detecting DDoS attacks. The
proposed approach was tested and evaluated using the KDD CUP dataset. However, they
only achieved low performance. For example, DT and SVM have accuracy rates of just 78%
and 85%, respectively.

Ref. [73] use four ML classification algorithms (i.e., KNN, SVM, ANN, and NB) to
detect DDoS attacks in an SDN environment. The proposed approaches were evaluated
with a synthetic dataset, achieving a high detection accuracy (98.3%) for KNN in detecting
DDoS attacks. In contrast, the rest of the ML classifiers only achieved a relatively low
detection accuracy. [74] proposed a flexible IDS to detect and mitigate low-rate SDN DDoS
attacks. They train the IDS with six ML algorithms (i.e., RT, REP tree, RF, SVM, MLP,
and J48), then evaluated using the CIC-DoS-2017 dataset. The proposed IDS achieved a
moderate detection rate performance of 95%.

Ref. [75] proposed a framework based on K-Means and K-NN algorithms to detect
DDoS attacks. They utilized the data plane switches to deploy a detection trigger mecha-
nism to reduce the controller’s overhead. The framework was evaluated with synthetic
and NSL-KDD datasets, and both achieved high detection accuracy. Ref. [76] proposed
a DDoS attack mitigation scheme for the SDN network based on a bandwidth-control
mechanism and the extreme gradient boosting (XGBooST) algorithm for precise attack
detection and optimal network resource utilization. They validated the scheme in an SDN
environment and achieved 99.9% accuracy and a low false-positive rate. In addition, the
proposed system runs on the controller.

Ref. [77] proposed an approach inspired by the human body’s immune system called
the “Artificial Immune System-IDS” (AIS-IDS). The proposed approach utilizes biologically
inspired fuzzy logic that automates network anomaly detection and mitigation. The system
was evaluated with synthetic and CICDDoS 2019 datasets, surpassing other classifiers in
detection accuracy and other performance metrics. In addition, the proposed approach
was implemented on the SDN controller. Ref. [78] proposed an approach based on SVM,
DT, NB, and logistic regression (LR) to detect DoS and DDoS attacks in the SDN network.
The approach was evaluated with a synthetic dataset and achieved an accuracy of 97.5%
for SVM, 96% for NB and DT, and 89.98% for LR.

Ref. [79] proposed an approach based on SVM, DT, K-NN, and BN classifiers for
detecting DDoS attacks. The approach was tested and trained with the NSL-KDD dataset,
showing that no classifier achieved a higher detection rate than the DT classifier (95.16%).
Ref. [80] employed MLP, RF, SVM, and DT algorithms to detect TCP SYN and UDP flood
DDoS attacks against the SDN controller and flow-table switch and bandwidth saturation
attacks. The proposed model was tested and trained with a synthetic dataset, showing that
the controller DDoS attack has the lowest classification results (less than 90% accuracy for
SVM and MLP) than flow-table switch and bandwidth attacks. Ref. [81] proposed a system
defense based on SVM, J48, and NB algorithms for detecting DDoS attacks. The proposed
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defense system was trained and tested on the NSL dataset and had a detection accuracy of
99.40% for classification.

Ref. [82] proposed a rapid SDN defensive system against DDoS and port scan at-
tacks by analyzing IP flow traffic every five seconds. The proposed system runs on the
SDN controller and uses particle swarm optimization (PSO), MLP, and discrete wavelet
transform (DWT) for anomaly detection. In addition, it mitigates DDoS attacks by using a
game-theoretical approach. The proposed defense system performance is functioning for
detecting DDoS and port scan attacks, and the mitigation techniques successfully restored
the SDN to its previous state. Finally, Ref. [83] proposed an approach based on seven ML
algorithms (i.e., K-NN, RF, NB, SVM, linear regression (LR) DT, and ANN) to classify and
detect DDoS (i.e., HTTP, UDP flooding attacks, and Smurf). The proposed approach is
implemented at the SDN controller and achieves high average detection accuracy for all
classification algorithms.

5.1.3. Single ML Approaches

Several approaches employ a single ML algorithm to detect and mitigate DDoS attacks,
such as [84]. The proposed approach uses an RF to classify normal and abnormal traffic
based on the flow of entries. The packets classified as a DDoS attack will be mitigated
by implementing specific switches’ rules. As a result, the detection system detects DDoS
attacks with an overall accuracy of 98.38%, with the shortest mitigation time. Ref. [85]
proposed an Advanced-SVM algorithm for detecting UDP and SYN flood DDoS attacks in
SDN networks. The proposed system was tested and trained using SDN-TrafficsDS and
KDDCUP99 datasets, achieving overall average evaluation performance of 87%, 84%, and
93% for precision, recall, and F1-score, respectively.

Ref. [86] proposed a detection approach based on the factorization machines (FM) to
detect low-rate DDoS attacks against SDN data planes with improved accuracy. Although the
method works well at detecting low-rate DDoS attacks on SDN data planes, the proposed
approach achieved a relatively moderate detection accuracy at 95.80%. Ref. [87] proposed an
approach in the SDN controller to detect UDP and SYN flood DDoS attacks on SDN networks
by employing an ASVM algorithm. The proposed approach was tested and trained using a
synthetic dataset, achieving 97% detection accuracy and a 2% false-alarm rate.

Ref. [88] proposed an approach based on SVM to detect SDN DDoS attacks. The
approach was evaluated with the DARPS dataset, achieving 95.11% accuracy and a low
false-positive rate. Wang et al. [89] proposed a safety guard scheme (SGS) on SDN switches
to protect the SDN control plane from DDoS attacks. The proposed system employs the
back-propagation neural networks (BPNN) technique for anomaly detection. The proposed
scheme can detect and respond to DDoS attacks directly.

Ref. [90] proposed an approach based on the fast K-NN model because of its efficiency
and accuracy in detecting DDoS attacks. The proposed method was evaluated and trained
on an unrealistic NSL-KDD dataset. As a result, the proposed approach enhanced the
K-NN detection efficiency in detecting DDoS attacks, achieving high accuracy, precision,
and stability. Another study by [91] proposed a method based on an improved K-NN
algorithm that runs on the SDN controller for detecting DDoS attacks, which also achieved
high performance in detecting DDoS attacks.

Ref. [92] proposed an approach for detecting and mitigating ICMP, SYN flood, and
UDP flood DDoS attacks. Based on the traffic flow classifier, they used a BPNN for online
DDoS detection and evaluated their model with a synthetic dataset. The proposed approach
shows a moderated detection accuracy of 96.13%. Ref. [93] proposed an approach based on
an SVM to detect DDoS attacks. The approach was tested and trained using the KDD-99
dataset, preserving 99.8% detection accuracy.

Ref. [94] employed a distributed self-organizing map (DSOM) with OpenFlow switches
to combat the flooding attacks and address other issues such as alleviating performance
bottlenecks of the communication channel and reducing controller overhead. The Open-
Flow switches carry the security modules, and the application layer handles each module
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running within the OpenFlow switches. The DSOM efficiently detects abnormal traffic and
reduces computation overhead. Ref. [95] proposed an approach named “Software-Defined
Anti-DDoS” (SD-Anti-DDoS) to reduce the heavy workload of the SDN controller and
switches. This approach relies on the BPNN technique to classify normal and abnormal
traffic flow. As a result, the SD-Anti-DDoS approach can respond to DDoS attacks and
reduce the controller’s workload. Table 6 provides an overview of the ensemble, hybrid,
and single-ML-based approaches, including their limitations.

In summary, Table 6 shows that most approaches in the literature fall under the hybrid
category, followed by single- then ensemble-ML category. Furthermore, most researchers
use self-generated realistic datasets to evaluate and train their proposed approach, while
few others resort to publicly available unrealistic datasets due to the lack of benchmark
datasets for SDN DDoS attacks. In addition, most studies use feature-selection techniques
to select the optimum features to improve the detection accuracy and classification of
network traffic. However, some studies did not use them, such as [66,91]. At the same time,
most studies ran their approaches on the SDN controller, adding unnecessary overhead to
the controller, such as [70,76,82–84].

In addition, some researchers run their approaches out of the SDN controller to reduce
the load and overhead, mainly during DDoS attacks, such as [74,95]. In contrast, some
studies did not provide details about where they deploy their approaches, such as [80,85,88].
Moreover, most approaches are designed to detect or mitigate DDoS attacks, and only a few
can do both [83,92]. In addition, most ML approaches are limited to detecting or mitigating
high-rate DDoS attacks [63,68,75], which are achievable with high accuracy due to the
availability of a large amount of malicious traffic. However, only a few ML approaches can
detect low-rate DDoS attacks in SDN networks, such as [67,74,86]. Overall, most ML-based
approaches achieve high detection accuracy, such as [59,61,63,69].

5.2. RQ(2). What Are the Existing DL-Based Approaches to Detect and Mitigate DDoS Attacks on
SDN Networks?

This section discusses ensemble, hybrid, and single DL techniques for detecting
SDN DDoS attacks. Once again, this section highlights the key findings of each research,
followed by a table that summarizes the key parameters and their limitations. The following
subsections underline DL techniques.

5.2.1. Ensemble DL Approaches

Ref. [96] used CNN, gated recurrent unity (GRU), and long-short-term memory
(LSTM) for classifying DDoS attacks. The proposed model was trained with the CICIDS
2017 dataset and achieved 99.77% detection accuracy in the case of a small number of
features. Ref. [97] proposed an IDS based on DL ensemble techniques, using CNN, RNN,
and DNN for detecting DDoS attacks. The ensemble model trained with the CICIDS2017
dataset achieved a high detection accuracy of 99.05%. Another CNN-based ensemble
approach to detect SDN DDoS attacks was proposed by [98]. The ensemble model was
evaluated with the ISCX 2012 dataset and achieved 98.48% detection accuracy.
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Table 6. Summarized ML-based approaches for detecting DDoS attacks in SDN Networks.

Ref.

ML-Based
Approaches Realistic

Dataset

Feature
Selection

Technique
(f)

Deployment
of Detection

Approach

DDoS Attack
Techniques

Rates
of DDoS
Attacks

Detection
Accuracy Limitation(s)

E. H. S. In Out D. M. High Low High Low

[59] 3 7 7 7 3 3 7 3 3 3 7 3 7
The proposed approach was evaluated with unrealistic datasets, which did
not reflect the characteristics of the SDN network.

[60] 3 7 7 7 3 3 7 3 7 3 7 3 7
The proposed approach was evaluated with unrealistic datasets,
which did not reflect the characteristics of the SDN network.

[61] 3 7 7 3 3 3 7 3 7 3 7 3 7
Implementing the proposed model on a real SDN network is
superior to testing its performance in detecting such attacks.

[62] 3 7 7 7 3 3 7 3 7 3 7 7 3

The proposed approach was evaluated with unrealistic datasets,
which did not reflect the characteristics of the SDN network.
The ensemble approach achieved low performance.

[63] 7 3 7 3 3 3 7 3 7 3 7 3 7
The approach is limited to high DDoS attacks, which are
manageable to predict with high accuracy due to high forged traffic

[64] 7 3 7 7 3 3 7 3 7 3 7 3 7
The approach was trained and tested with an unrealistic dataset,
which does not reflect the character of the SDN network environment.

[65] 7 3 7 3 3 7 3 3 7 3 7 3 7

The DAD is limited to SYN DDoS flood attacks on a data plan
since the DDoS attacks against the SDN controller have a global impact.
The proposed model was trained and tested using a small dataset.

[66] 7 3 7 7 3 3 7 3 3 3 7 3 7
The proposed model was tested and trained with unrealistic datasets,
which do not reflect the characteristics of SDN networks

[67] 7 3 7 3 3 3 7 3 7 3 3 3 7
The proposed approach is limited to TCP-SYN flood attacks.
The proposed method has been evaluated with a small dataset.

[68] 7 3 7 3 3 3 7 3 7 3 7 3 7

It needs to be tested on a real SDN testbed, which would be preferable.
It is limited to high-rate DDoS attacks, which are easy to detect due to
massive network traffic flow.

[69] 7 3 7 3 3 3 7 3 7 3 7 3 7
It was trained with the default settings because MLworks
best when hyper-parameters or control parameters are tuned or optimized.
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Table 6. Cont.

Ref.

ML-Based
Approaches Realistic

Dataset

Feature
Selection

Technique
(f)

Deployment
of Detection

Approach

DDoS Attack
Techniques

Rates
of DDoS
Attacks

Detection
Accuracy Limitation(s)

E. H. S. In Out D. M. High Low High Low

[70] 7 3 7 3 3 3 7 3 3 3 7 3 7

The approach does not compare the results with other approaches.
The proposed system runs on the controller, which adds unnecessary
load and overhead to the controller.

[71] 7 3 7 7 3 - - 3 7 3 7 3 7

The remaining algorithms achieve low performance.
The proposed method was evaluated using an unrealistic dataset,
which does not reflect the characteristics of the SDN network environment.

[72] 7 3 7 7 3 3 7 3 7 3 7 7 3

The method achieves deficient performance; for example, an accuracy
rate of 78% and 85% for DT and SVM, respectively.
The proposed method was evaluated using an unrealistic dataset,
which does not reflect the characteristics of the SDN network environment.

[73] 7 3 7 3 3 3 7 3 7 3 7 3 7

The remaining ML classifiers achieve relatively low performance
regarding detection accuracy.
There is no information about the proposed approach’s false positive rate.

[74] 7 3 7 7 3 7 3 3 3 7 3 7 3

The proposed approach achieves a low detection accuracy of 95%.
The proposed model was evaluated using an unrealistic dataset that does
not reflect the characteristics of the SDN network environment.

[75] 7 3 7 3 3 3 7 3 3 3 7 3 7

The framework is evaluated to detect high-rate DDoS attacks, which are
easy to detect due to the massive amount of forged traffic.
The proposed framework increases the controller’s workload.

[76] 7 3 7 7 3 3 7 3 3 3 7 3 7

The proposed system runs on the controller, which adds unnecessary
load and overhead to the controller.
The proposed approach suffers from high processing and communication overhead.

[77] 7 3 7 3 3 3 7 3 3 3 7 3 7
The proposed method implemented on the SDN controller adds an
unnecessary burden in the case of DDoS attacks

[78] 7 3 7 3 7 - - 3 7 3 7 7 3

The proposed approach still achieves lower performance for detecting DDoS attacks,
and needs to execute the approach on a real SDN network to test its performance
in detecting such attacks.

[79] 7 3 7 7 3 3 7 3 7 3 7 7 3

The proposed approach reveals low performance and needs improvement.
The proposed approach was evaluated with an unrealistic dataset that
does not reflect the characteristics of the SDN network.
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Table 6. Cont.

Ref.
ML-Based

Approaches Realistic
Dataset

Feature
Selection

Technique
(f)

Deployment
of Detection

Approach

DDoS Attack
Techniques

Rates of DDoS
Attacks

Detection
Accuracy Limitation(s)

E. H. S. In Out D. M. High Low High Low

[80] 7 3 7 3 3 - - 3 7 3 7 3 7

The proposed approach showed that the controller DDoS attack
has the lowest classification results (for SVM and MLP, less than 90%
accuracy rates) than flow-table and bandwidth attacks.
There is no information about the proposed approach’s false positive rate.

[81] 7 3 7 7 3 7 3 3 3 3 7 3 7
The defense system was evaluated, tested, and trained on an unrealistic
dataset that does not reflect the characteristics of the SDN network environment.

[82] 7 3 7 3 3 3 7 3 3 3 7 3 7

The proposed model runs at the controller, adding unnecessary load and overhead.
The defense system was evaluated, tested, and trained on an unrealistic
dataset that does not reflect the characteristics of the SDN network environment.

[83] 7 3 7 7 3 3 7 3 7 3 7 3 7
The proposed approach implemented at the SDN controller increases the
controller overhead in case of DDoS attacks.

[84] 7 7 3 3 3 3 7 3 3 3 7 3 7

The proposed approach runs on the SDN controller as an application
system, adding unnecessary load and overhead, particularly during DDoS
attacks against the controller.

[85] 7 7 3 3 3 - - 3 7 3 7 7 3 The ASVM method achieves low performance for detecting DDoS attacks.

[86] 7 7 3 3 3 3 7 3 7 7 3 3 3
The proposed approach achieves a low detection accuracy of 95.80%.
The method’s detection performance is worse under different attack rates.

[87] 7 7 3 3 3 3 7 3 7 3 7 7 3
The proposed approach implemented at the controller adds unnecessary load
and overhead. It also needs to be improved in terms of detection accuracy.

[88] 7 7 3 7 7 - - 3 7 3 7 3 3

The performance of the proposed approach achieved low accuracy. Furthermore, the
proposed approach was tested and trained using an unrealistic dataset that
does not reflect the characteristics of the SDN network environment.

[89] 7 7 3 3 3 3 7 3 7 3 7 3 7
The proposed approach on SDN switches makes the proposed method suffer
from a scalability issue since the scheme must be implemented on every switch.

[90] 7 7 3 3 3 3 7 3 3 3 7 3 7

The proposed model suffers from processing and communication overhead
at the SDN controller.
The proposed method was evaluated and trained on an unrealistic NSL-KDD
dataset that does not reflect the characteristics of the SDN network environment.
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Table 6. Cont.

Ref.

ML-Based
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Feature
Selection

Technique
(f)

Deployment
of Detection

Approach

DDoS Attack
Techniques

Rates of DDoS
Attacks

Detection
Accuracy Limitation(s)

E. H. S. In Out D. M. High Low High Low

[91] 7 7 3 3 7 3 7 3 7 3 7 3 7

The proposed model runs at the controller, which adds excessive load and
overhead of the SDN controller in the event of DDoS attacks.
There is a lack of information about the tested and training datasets.

[92] 7 7 3 3 3 3 7 3 3 3 7 7 3
The proposed approach shows a low detection accuracy of 96.13% because the
proposed approach suffers from high false-positive and false-negative effects.

[93] 7 7 3 7 3 7 7 3 7 3 7 3 7

The proposed approach has been evaluated with an unrealistic dataset,
which does not reflect the characteristics of the SDN network environment.
The proposed approach needs to be evaluated in terms of false-positive rates
or any other evaluation metrics.

[94] 7 7 3 7 3 7 7 3 7 3 7 3 7

The OpenFlow switches of the data layer have an attack-detection module
that can analyze all packet flows that come through the switches, which takes
more time to process and classify.

[95] 7 7 3 3 3 7 3 3 3 3 7 3 7

This approach still suffers from overhead in the case of high DDoS
attack flows because the SDN controller collects all flows from the switches
for detection purposes, which results in congestion and degradation of the response time.

ML-based approaches: (E. ) ensemble, (H. ) hybrid, (S. ) single. Realistic dataset: (3) realistic, (7), unrealistic dataset. Deployment of detection approach: (In) inside or (Out) outside the SDN controller. DDoS
attack techniques: (D. ), detection, (M. ), mitigation. Detection accuracy: High detection accuracy ≥ 98%, for low detection accuracy ≤ 97%. (3): addressed, (7): not addressed, and (-) not specified.
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5.2.2. Hybrid DL Approaches

Ref. [99] utilize CNN and LSTM for detecting traffic anomalies caused by DDoS attacks.
The proposed approach was evaluated using the InSDN dataset and achieved detection
accuracy of 96.32%. Ref. [100] proposed a hybrid DL model running on the SDN controller.
They employ the CNN and LSTM DL algorithms for early detection of DDoS attacks. The
hybrid approach was evaluated with the CICIDS2017 dataset and achieved a high detection
accuracy of 99.45%. Ref. [101] proposed an approach implemented on the SDN controller
by employing CNN and LSTM for detecting low-rate SDN DDoS attacks. The proposed
approach was evaluated with a synthetic dataset and achieved a high performance of more
than 99%. [102] proposed a system implemented on the SDN controller by deploying an
RNN, a GRU, and an LSTM to protect the SDN controller against DDoS attacks. They
evaluated their proposed approach using the InSDN dataset and achieved a high detection
accuracy.

Ref. [103] proposed a method to protect the SDN controller against DDoS attacks
after investigating many classifiers, such as LSTM and CNN. The proposed approach was
evaluated with the synthetic dataset and achieved a low detection accuracy of 89.63%.
Ref. [104] propose an approach based on RNN with an autoencoder for detecting SDN
DDoS attacks. The proposed method was evaluated using the CICDDoS-2019 dataset and
achieved a high detection accuracy of 99% compared to other ML techniques. Ref. [105]
proposed a DL-based IDS (DeepIDS) to detect zero-day DDoS attacks. They employ the
DNN and gated recurrent neural network (GRU-RNN) algorithms. The proposed system
was evaluated using the NSL-KDD dataset and achieved low detection accuracy of 80.7%
and 90% for DNN and GRU-RNN, respectively.

Ref. [106] resorted to RNN and GRU to improve the detection rates of their previous
and current anomaly-based IDS for SDN networks. They used NSL-KDD and CICIDS2017
datasets for training, testing, and evaluating their proposed approach, achieving an ac-
curacy of 89% for the NSL-KDD dataset and 99% for the CICIDS2017 dataset to detect
DDoS attacks. Ref. [107] proposed a detection approach based on CNN, RNN, and LSTM
algorithms to detect DDoS attacks. The proposed approach was evaluated using ISCX 2012
dataset. The verification accuracy of the proposed model for detecting DDoS attacks is 98%
for test data and 99% for training data.

Ref. [108] proposed an IDS based on GRU and RNN (GRU-RNN) to classify SDN
network traffic, whether normal or anomalous (attack). Unfortunately, the detection rate
of the proposed approach achieved a relatively low detection accuracy of 89% and 90% for
normal and attack traffic, respectively. Ref. [109] proposed a two-level DDoS attack detection
in SDN networks using entropy to detect spoofed switch ports and CNN as a classifier to
increase accuracy and efficiency and reduce training costs. As a result, the proposed approach
achieved a high accuracy of 98.98% for the DL model, but low accuracy of 92.37% and 96.97%
for information entropy and the two-level method, respectively. Ref. [110] proposed a hybrid
approach based on CNN and a transformer (composed of an encoder and a decoder) to detect
DDoS attacks. The proposed approach was tested on the CICDDoS2019 dataset and achieved
the highest performance compared to other approaches.

5.2.3. Single DL Approaches

Several approaches employ a single DL algorithm, such as [111], who proposed a
controller-based security system to detect various attacks as early as possible. The proposed
approach was trained and tested using the InSDN dataset and achieved a high traffic
classification accuracy and highly efficient latency and throughput performance. At the
same time, Ref. [112] proposed a GRU-based SDN defensive system to detect DDoS attacks.
The proposed system analyzes each IP flow traffic record to reduce the severity of the attack
against SDN and enables quicker mitigation reactions. The approach was tested using two
scenarios with two datasets (CICDDoS 2019 and CICIDS 2018), and both achieved high
detection accuracy.
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Ref. [113] proposed a detection and defense system implemented on the SDN con-
troller. The system utilizes a generative adversarial network (GAN) to detect DDoS attacks.
The proposed defense system was evaluated using a real SDN network dataset for the first
scenario and CICDDoS 2019 dataset for the second scenario, achieving 99.78% and 95.54%
DDoS attack detection rates, respectively. Ref. [114] employ stacked autoencoder multi-
layer perceptron (SAE-MLP) algorithm to detect DDoS attacks. The proposed approach
was tested and trained with a realistic SDN dataset and achieved a high detection accuracy
of 99.75%.

Ref. [115] proposed an IDS based on the CNN algorithm to improve the detection
of intrusions. The proposed approach was evaluated and tested with the InSDN dataset,
achieving 93.01% detection accuracy. Makuvaza et al. [116] explored the use of DNN to
detect SDN DDoS attacks. The proposed approach was evaluated with the CICIDS 2017
dataset and achieved 97.25% detection accuracy. Meanwhile, Ref. [117] investigated the bi-
directional recurrent neural network (BRNN) algorithm for classifying SDN DDoS attacks.
The proposed approach was trained and tested with a synthetic dataset and achieved
99.21% detection accuracy.

Ref. [118] proposed a real-time mitigation agent based on deep reinforcement learning
to mitigate TCP, UDP, ICMP, and SYN flood DDoS attacks in the SDN network environment.
As a result, around 85% of normal traffic reaches the server when the mitigation agent is
operational. Arivudainambi et al. [119] proposed an IDS based on the lion optimization al-
gorithm (LOA) for feature selection and CNN for DDoS attack classification. The proposed
system was evaluated with the NSL-KDD dataset and achieved an overall classification
accuracy of 98.2%. [120] proposed a network application system in the SDN controller to
detect DDoS attacks against the control and data planes. The proposed approach employs
the stacked autoencoder (SAE) to detect multi-vector DDoS attacks (i.e., TCP, UDP, and
ICMP) in SDN network environments. As a result, the proposed system detects the DDoS
attack classes with 95.65% accuracy.

Ref. [121] implemented a network intrusion detection system (NIDS) in the SDN
controller to monitor network traffic flows. The proposed NIDS uses DNN to detect flow-
based anomalies in SDN networks and classify the flow as normal or abnormal. However,
their proposed NIDS achieved a low accuracy of 75.75% when evaluated using the NSL-
KDD dataset. Meanwhile, Ref. [122] proposed a detection system for detecting SDN DDoS
attacks that uses an unsupervised restricted Boltzmann machine algorithm. The proposed
system was evaluated with a synthetic dataset and achieved 92% detection accuracy and
8% false-positive rate. Table 7 summarizes the DL-based approaches with their limitations.

Table 7 shows that most existing approaches fall under hybrid and single-DL cat-
egories, followed by ensemble DL. The most popular dataset used for evaluating and
training proposed approaches is an unrealistic dataset. However, at the same time, many
researchers resort to private synthetic datasets due to the lack of publicly available bench-
mark datasets. Furthermore, most studies use feature selection techniques to select the
optimum features to improve the detection accuracy and classification of network traffic.
However, a few studies, such as [96,103], did not use them.

As for the deployment location, most approaches run on the SDN controller, resulting
in additional overhead to the controller. On the other hand, a few approaches [107,109]
operate outside of the SDN controller, which avoids adding unnecessary load and overhead
to the controller, especially during DDoS attacks. Unfortunately, some studies [98,110,114]
lack details about the deployment location. Even though most approaches are designed
only to detect DDoS attacks, a few can also mitigate them. In addition, most DL approaches
are limited to detecting or mitigating high-rate DDoS attacks with high accuracy, which is
feasible due to the abundance of abnormal traffic flow. Only one DL-based approach [101]
can detect low-rate SDN DDoS attacks. As a result, most DL-based approaches achieve
high detection accuracy for high-rate DDoS attacks but not for low-rate ones.
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Table 7. Summary of DL-based approaches for detecting DDoS attacks in SDN networks.

Ref.

DL-Based
Approaches Realistic

Dataset

Feature
Selection

Technique
(f)

Deployment
of Detection

Approach

DDoS
Attack

Techniques

Rates
of DDoS
Attacks

Detection
Accuracy Limitation(s)

E. H. S. In Out D. M. High Low High Low

[96] 3 7 7 7 7 - - 3 7 3 7 3 7
The proposed method was evaluated using an unrealistic dataset, which
does not reflect the characteristics of the SDN network environment.

[97] 3 7 7 7 3 - - 3 7 3 7 3 7
The proposed approach was evaluated using an unrealistic dataset, which does not
reflect the characteristics of the SDN network environment.

[98] 3 7 7 7 3 - - 3 7 3 7 3 7
The proposed ensemble model was evaluated, tested, and trained on an unrealistic
dataset that does not reflect the characteristics of the SDN network environment.

[99] 7 3 7 3 3 - - 3 7 3 7 3 7
The hybrid approach achieved low accuracy but relatively high false-positive
and false-negative rates.

[100] 7 3 7 7 3 3 7 3 7 3 7 3 7

The approach is limited to detecting high-rate DDoS attacks.
The proposed method was evaluated using an unrealistic dataset that does
not reflect the characteristics of the SDN network environment.

[101] 7 3 7 3 3 3 7 3 7 7 3 3 7

The dataset was not presented clearly and lacked information about low-rate
DDoS attacks. Implementing the hybrid model in an SDN system is
preferable to test its performance in detecting such attacks.

[102] 7 3 7 3 3 3 7 3 7 3 7 3 7

The proposed approach performs better when the model detects the entire
dataset of attacks. The proposed model runs at the controller, which adds
unnecessary load and overhead to the controller.

[103] 7 3 7 3 7 3 7 3 7 3 7 7 3

The proposed approach was evaluated using an unrealistic dataset and achieved
low detection accuracy.
The proposed model runs at the controller, which adds unnecessary load
and overhead to the controller.

[104] 7 3 7 7 3 3 7 3 7 3 7 3 7

The proposed approach was evaluated and trained using an unrealistic
dataset, which does not reflect the characteristics of the SDN network
environment. In addition, the proposed model runs at the controller, adding
unnecessary load and overhead.

[105] 7 3 7 7 3 3 3 3 7 3 7 7 3
The proposed system was evaluated with NSL-KDD dataset and
achieved low detection accuracy.
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[106] 7 3 7 7 3 3 7 3 3 3 7 3 7

The proposed approach is trained, tested, and evaluated using an unrealistic
dataset, which does not reflect the characteristics of the SDN network environment.
The proposed approach achieved low
detection accuracy of 89% for the NSL-KDD dataset.
The proposed model runs at the controller, adding unnecessary load and overhead.

[107] 7 3 7 7 3 7 3 3 7 3 7 3 7
The proposed approach was evaluated and trained using an unrealistic dataset,
which does not reflect the characteristic of the SDN network environment.

[108] 7 3 7 7 3 3 7 3 3 3 7 7 7

The detection rate of the proposed approach achieved a low detection
accuracy. The proposed method was evaluated, tested, and trained
using an unrealistic dataset that does not reflect the characteristics of
the SDN network environment.

[109] 7 3 7 3 3 7 3 3 7 3 7 3 7

The proposed method achieved low performance, particularly in the
two-level method and information entropy, because it does not consider
adaptive parameters

[110] 7 3 7 7 3 - - 3 7 3 7 7 3
The proposed method was evaluated using an unrealistic Dataset,
which does not reflect the characteristics of the SDN network environment.

[111] 7 7 3 3 3 3 7 3 7 3 7 3 7

The proposed system is complicated since it must first convert the selected
features into RGB images to rescale the data and then forward them to the
CNN classifier model, and the proposed system runs at the SDN controller,
adding unnecessary overhead during DDoS attacks.

[112] 7 7 3 7 3 3 7 3 3 3 7 3 7

The proposed system was evaluated using unrealistic datasets,
which do not reflect the characteristics of the SDN network environment.
The proposed method suffers from computational overhead and needs
to improve the mitigation results.

[113] 7 7 3 3 3 3 7 3 3 3 7 3 7
The proposed approach runs on the SDN controller, which adds unnecessary
load and overhead, particularly during DDoS attacks against the controller.

[114] 7 7 3 3 3 - - 3 3 3 7 3 7
The proposed system needs to be tested in an SDN environment.
The approach needs to be compared with the findings of other existing approaches.

[115] 7 7 3 3 3 - - 3 7 3 7 7 3 The proposed approach achieved a low detection accuracy.
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[116] 7 7 3 7 3 - - 3 7 3 7 3 7
The proposed method was evaluated using an unrealistic dataset, which does
not reflect the characteristics of the SDN network environment.

[117] 7 7 3 3 3 3 7 3 7 3 7 3 7
The proposed approach must be evaluated using other evaluation metrics
(i.e., false-positive rates) and compared with other existing approaches.

[118] 7 7 3 3 3 7 3 3 3 3 7 7 3

Around 85% of the regular traffic reaches the server when the mitigation agent
starts against the flooding attacks.
The mitigation agent may not perform as a stand-alone IDS for detecting
such attacks.

[119] 7 7 3 7 3 - - 3 7 3 7 3 7
The proposed system was tested and trained with an unrealistic dataset, which
does not reflect the characteristics of the SDN network.

[120] 7 7 3 3 3 3 7 3 7 3 7 7 3

The proposed DL-based DDoS detection model has low detection accuracy.
The approach runs on the SDN controller, which adds unnecessary load and overhead,
particularly when detecting DDoS attacks against the controller.

[121] 7 7 3 7 3 7 3 3 7 3 7 3 7

The proposed approach achieved a low detection accuracy.
The proposed method was evaluated and trained using an unrealistic dataset
that does not reflect the characteristics of the SDN network environment.

[122] 7 7 3 3 3 3 7 3 7 3 7 7 3 The proposed system’s performance needs to be improved.

DL-based approaches: (E. ) ensemble, (H. ) hybrid, (S. ) single. Realistic dataset: (3) realistic, (7), unrealistic dataset. Deployment of detection approach: (In) inside or (Out) outside the SDN controller. DDoS attack

techniques: (D. ), detection, (M. ), mitigation. Detection accuracy: high detection accuracy ≥ 98%, for low detection accuracy ≤ 97%. (3): addressed, (7): not addressed, and (-) not specified.
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5.3. RQ(3). What Are the Existing Hybrid-Based Approaches to Detect and Mitigate DDoS
Attacks on SDN Networks?

The literature reveals that a wide range of anomaly detection systems based on meth-
ods such as ML and DL algorithms have been assembled and used recently. However,
several researchers combined ML and DL techniques to develop a hybrid approach. This
subsection presents an overview of these hybrid approaches to detecting SDN DDoS attacks.
Ref. [123] proposed a hybrid IDS by combining CNN with classical ML algorithms (i.e.,
SVM, KNN, and RF). The hybrid model was evaluated using InSDN, CSE-CIC-IDS2018,
and UNSW-NB15 datasets, showing the approach can detect abnormalities even with a
minimal number of a subset of 9 features. Compared to a single CNN, the combination of
CNN, SVM, and, most importantly, the RF algorithm produces superior results.

Ref. [124] employed various ML algorithms (i.e., KNN, SVM, and RF) and DL (i.e.,
MLP, CNN, GRU, and LSTM) algorithms for detecting transport and application-layer
DDoS attacks. The proposed approach was simulated in an SDN environment and achieved
98% and 95% detection accuracy for transport and application layer DDoS attacks, respec-
tively. Ref. [125] proposed a hybrid model running on the SDN controller. The hybrid
approach combines an autoencoder with a one-class SVM to detect DDoS attacks. The
proposed model was evaluated with the CIC-IDS-2017 dataset and achieved a high average
accuracy of 99.35%. In the meantime, Ref. [126] proposed an approach that runs on the SDN
application plane to detect and mitigate DDoS and port-scanning attacks. They employed
Shannon entropy, LSTM, and fuzzy logic algorithms and then evaluated them with two
scenarios. The first scenario utilized a synthetic dataset, and the second CICDDoS 2019
dataset achieved high performance for the first scenario and satisfactory performance for
the second one.

Additionally, a hybrid model proposed by [127] aimed for better classification out-
comes with the lowest training time. They employed LSTM, autoencoder, and one-class
SVM (OC-SVM) to detect potential attacks. The model was trained and tested using the
InSDN dataset but only achieved a relatively low detection accuracy of 90.5%. Ref. [128]
proposed a detection system that employs an SVM and a DNN to detect anomaly-based
DDoS attacks, and they used the KDD CUP dataset for training and testing the model,
achieving a low detection accuracy of 74.3% and 92.3% for SVM and DNN, respectively.
Table 8 summarizes the hybrid-based approaches and their limitations.

Table 8 underlines the hybrid approaches that integrate the ML and DL algorithms
in the final analysis. As can be seen, most studies trained their approaches with realistic
datasets. In contrast, a few evaluated and trained their approaches with unrealistic datasets,
such as [125,126]. In addition, most studies used feature selection techniques to select
the optimum features to improve the detection accuracy and classification of normal or
abnormal network traffic, except [126,128].

In addition, some studies [124,126,128] ran their approaches on the SDN controller, which
added unnecessary overhead to the controller. However, some studies did not mention the
deployment location of their approaches, such as [123,125,127]. Moreover, most approaches
either detect or mitigate DDoS attacks, but not both, except [126]. In addition, all the hybrid-
based approaches are designed for high-rate DDoS attacks, not low-rate ones. As a result, most
hybrid approaches achieve high accuracy, such as [123–126], while some have low accuracy in
detecting or mitigating SDN DDoS attacks, such as [127,128].
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Table 8. Summary of hybrid-based approaches for detecting DDoS attacks in SDN networks.

Ref.
Hybrid-
Based

Approaches

Realistic
Dataset

Feature
Selection

Technique
(f)

Deployment
of Detection

Approach

DDoS
Attack

Techniques

Rates of
DDoS

Attacks

Detection
Accuracy Limitation(s)

In Out D. M. High Low High Low

[123] 3 3 3 - - 3 7 3 7 3 7
It needs to be implemented in an SDN environment to test
its performance in detecting such attacks.

[124] 3 3 3 3 7 3 7 3 7 3 7

The proposed approach runs at the controller, which
adds unnecessary load and overhead to the controller and achieves
low performance for application-layer DDoS attack.

[125] 3 7 3 - - 3 7 3 7 3 7

The proposed approach runs on the SDN controller, adding
unnecessary load and overhead.
The approach was trained and evaluated using an unrealistic
dataset, which does not reflect the characteristics of the SDN
network environment.

[126] 3 3 7 3 7 3 3 3 7 3 7

The proposed anomaly detection and mitigation approach
achieved high performance for the first scenario, and satisfactory
performance for the second scenario.
The proposed approach runs on the SDN application plane,
which adds unnecessary load and overhead to the controller
in the event of DDoS attacks against the SDN controller.

[127] 3 3 3 - - 3 7 3 7 7 3

The proposed approach achieved a relatively low detection
accuracy of 90.5%.
Implementing the proposed model in a real SDN network is
superior to testing its performance in detecting such attacks
and extending the binary classification into multi-class
classification problems to identify network attacks.
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Table 8. Cont.

Ref.
Hybrid-
Based

Approaches

Realistic
Dataset

Feature
Selection

Technique
(f)

Deployment
of Detection

Approach

DDoS
Attack

Techniques

Rates of
DDoS

Attacks

Detection
Accuracy Limitation(s)

In Out D. M. High Low High Low

[128] 3 7 7 3 7 3 7 3 7 7 3

The proposed approach achieved low detection accuracy
of 74.3% and 92.3% for SVM and DNN, respectively.
The proposed method was evaluated, tested, and trained
on an unrealistic dataset that does not reflect the characteristics
of the SDN network environment.

Hybrid-based approaches: a combination of ML and DL-based approaches. Realistic dataset: (3) realistic, (7), unrealistic dataset. Deployment of detection approach: (In) inside or (Out) outside the SDN controller. DDoS
attacks techniques: (D. ), detection, (M. ), mitigation. Detection accuracy: high detection accuracy ≥ 98%, for low detection accuracy ≤ 97%. (3): addressed, (7): not addressed, and (-) not specified.



Sensors 2023, 23, 4441 36 of 48

5.4. RQ(4). What Evaluation Metrics, Network Simulators, Hacking Tools, and Experimental
Platforms Are Used in the Studies?

This RQ discussed the extracted data related to the evaluation metrics. Furthermore,
this section underlines the experimental platforms researchers used to run their approaches.
Finally, this section further explores the hacking tools and network simulators used in the
literature studies.

5.4.1. Network Simulator and Tools

Based on the data extracted from the literature studies in RQ Sections 5.1–5.3, this
section analyzes the employed SDN network environment and SDN controllers, hacking
tools, and network traffic analyzer. As for the used SDN network environment, it is clear
from Figure 12 that most researchers utilize the Mininet network emulator to create their
SDN testbed environment. Furthermore, most studies used the Python-based open-source
POX controller in their network environment as their SDN controllers and Hping3 and
Scapy as hacking tools to generate normal and malicious SDN DDoS traffic. Lastly, the
Wireshark program is the most popular network traffic analyzer used to collect and filter
network traffic for analysis.

Figure 12. Distribution of using network simulator, hacking tools, and traffic analyzer.

5.4.2. Experimental Platforms

The existing approaches are designed, implemented, and executed on different experi-
mental platforms. Based on the literature studies in RQ Sections 5.1–5.3, four experimental
platforms are the most frequently used platforms to design and implement their approaches.
Figure 13 indicates that most existing studies implemented their approaches using the
Python programming language with the help of well-known back-end libraries, such as
Tensorflow and Keras. Those approaches make up 49%, representing 34 of the literature
studies. Meanwhile, three studies used MATLAB, and three others used WEKA data
mining tools to implement and execute their approaches. In addition, only one study
used the C programming language for implementation. The remaining 29 studies that
showed promising results in detecting SDN DDoS attacks did not specify the experimental
platforms used in their implementation.
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Figure 13. Distribution of experimental platforms.

5.4.3. Evaluation Metrics

The evaluation metrics are extracted from literature studies in RQ Sections 5.1–5.3. As
shown in Figure 14, there are two main classes of performance evaluation metrics: detection
and computational. The detection performance metrics contain all measures commonly
used by researchers to validate the results of their approaches. These measures are based on
a confusion matrix used to evaluate the performance of classification algorithms (i.e., true
positive (TP), true negative (NT), false positive (FP), and false negative (FN). In total, 14
performance matrices belong to this class and have been adopted by many existing studies.

Moreover, Figure 14 shows that accuracy is the most frequently used evaluation
metric. It was used in 58 studies, followed by recall (50), precision (47), F-measure (40),
false positive rate (FPR) (20), and receiver operating curve (ROC) (19). In addition, the
detection rate, specificity, and area under curve (AUC) are only found in 7, 6, and 5 studies,
respectively. In the meantime, only a small number of studies use other evaluation metrics,
such as the true-positive rate (TPR), the false-negative rate (FNR), the error rate (ER), the
packet drop ratio, and the true-negative rate (TNR).

Figure 14. Distribution of evaluation metrics in the existing studies.

The computational performance metrics measure the computational performance
of the proposed approach. There are 24 different computational performance metrics
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pinpointed from the literature studies. For example, Figure 14 illustrates that ten stud-
ies evaluated their approaches based on taring and testing time. Then, CPU utilization,
throughput and latency, controller response time, and mitigation of DDoS packets were
examined in 8, 4, 2, and 2 studies, respectively.In addition, as stated in Figure 14, the
remaining computational performance metrics were investigated by few studies, indicating
that these metrics are unique computational performance metrics. In summary, it is recom-
mended that the research community evaluate their approaches with various evaluation
metrics rather than relying on one or three conventional evaluation metrics, which are no
longer valid criteria for evaluating the contributed approaches.

5.5. RQ(5). What Datasets Are Used to Evaluate and Validate the Existing Approaches, and Are
There Any Publicly Available Realistic Datasets for DDoS Attacks on SDN Networks?

The dataset types have been extracted based on literature studies in RQ Sections 5.1–5.3.
Figure 15 shows the distribution of the datasets used to evaluate and validate the existing
approaches. As can be seen, most studies used synthetic datasets. Typically, these datasets
are self-generated datasets using a simulated network environment. Therefore, most
researchers prefer to generate private datasets due to various reasons, such as difficulties
in setting up real-world SDN networks, privacy concerns, and security issues. Another
reason for resorting to a private dataset is the flexibility to evaluate their approaches in
various scenarios. Finally, since there are no standards or criteria to set up the network
environment and visualize the simulation scenarios, it is harder for researchers to compare
their proposed approach with others [129].

Figure 15. Distribution of datasets used in the existing studies.

Figure 15 shows two primary dataset types used by researchers. The first type is
realistic datasets, which include synthetic, InSDN, DDOS attack SDN, real-time, and SDN
TrafficsDS datasets. These datasets are considered realistic synthetic datasets that reflect the
SDN network characteristics since they are explicitly made for SDN-based DDoS attacks.
Three of those realistic synthetic datasets are publicly available: [126], InSDN [130], and
DDOS attack SDN datasets [131]. The second type is unrealistic datasets, including the
remaining datasets in Figure 15. Although publicly available, the benchmark datasets were
not designed for SDN networks but for traditional networks.

5.6. RQ(6). What Are the Challenges, Open-Issue Perspectives, and Future Research Directions for
DDoS Attacks on SDN Networks?

SDN technology enables better manageability and more flexibility to address the
limitations of conventional networks. However, at the same time, it poses many security
threats that must be investigated. Therefore, this section highlights the security challenges
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and open issues related to existing security approaches. Further, this section provides
future research directions and gaps to be addressed. The implications for researchers and
practitioners of security challenges and open-issue perspectives are discussed as follows.

5.6.1. Security Challenges

The security challenges for researchers and practitioners are listed as follows:

• DDoS attacks against SDN controllers: This SLR argues that DDoS attacks against
SDN controllers can be classified as “global impact” attacks since they could cause the
failure of the entire network. Many approaches, such as [63,67,80,102,104,112,113,120],
are designed to detect DDoS attacks on SDN controllers since the controller is an
essential component of the SDN network, providing critical functionality and network
management authority. It is responsible for coordinating and managing network
traffic flows, implementing network configuration, and installing forwarding rules on
the data plane devices. Consequently, it becomes an enticing target for attackers to
attempt DDoS attacks. Thus, DDoS attacks against SDN controllers remain an open
security challenge that needs consideration.

• Availability of realistic datasets: This SLR notes that most researchers used self-
generated datasets using different hacking tools, network simulators, and various
experimental platforms. At the same time, few researchers still rely on the existing un-
realistic benchmark datasets, such as NSL-KDD, CIC-DDoS2019, and KDD-CUP1999,
to train and evaluate their approaches, even though the datasets do not reflect the
characteristics of an SDN network environment and do not represent flow-based
SDN architecture adequately. Finally, some researchers contribute realistic synthetic
datasets by publicly making them available [126,130,131]. The variety of datasets
utilized results in the research community finding it challenging to compare their
works with others [129]. Therefore, the availability of a realistic SDN dataset remains
an open research challenge that needs addressing.

• Distributed SDN controllers: This SLR remarked that the security approaches pro-
posed in most literature studies are based on a topology with a single network con-
troller, such as [69,75,77,86,113]. However, this topology is vulnerable to single points
of failure in the case of DDoS attacks. In contrast, a network with distributed con-
trollers in a flat or hierarchical design is much more efficient in load distribution,
consistency, and scalability. In addition, as the severity of DDoS attacks increases,
these distributed controllers can maintain network efficiency whenever the central
controller becomes a bottleneck. They can reduce the impact of DDoS attacks and com-
munication overhead, eliminate single points of failure, and ease the load balancer’s
traffic flow among multiple controllers. Therefore, the operation of distributed SDN
controllers remains an open security challenge that needs further investigation.

• High-rate and low-rate DDoS attacks: This SLR highlights that most approaches
in literature studies detect and mitigate high-rate DDoS attacks with high accuracy
and a low false-positive rate. High-rate DDoS attacks are easy to predict due to a
noticeable increase in the attack traffic volume in the flow. However, in recent years,
a different type of DDoS attack has surfaced, known as low-rate or stealthy attacks,
which are very challenging to detect and mitigate with high detection accuracy and
low false-positive rates due to the similarity of attack traffic flow with legitimate
network traffic flow. Some studies, such as [74,86], try to detect low-rate DDoS attacks,
but only achieve low performance. Therefore, detecting and mitigating low-rate DDoS
attacks with high accuracy and a low false-positive rate remains an open research
challenge that needs addressing.

• Deployment of detection approaches: This SLR found that most literature studies
deployed their approaches at the SDN controller, such as [82,91,102–104,106,111]. The
main reason is that the forwarding switches send normal and abnormal traffic flows
to the controller for attack detection or requesting new forwarding rules. Furthermore,
the controller needs to regularly collect and monitor the network flow statistics, which
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could add communication overhead and interrupt the detection process. Typically, the
SDN architecture experience overload while detecting and mitigating SDN DDoS at-
tacks; therefore, an efficient approach must be implemented outside the SDN controller
to address these challenges and reduce the controller’s overhead. If implemented this
way, the proposed approach for detecting and mitigating SDN DDoS attacks must
cooperate with the controller and the data plane switches.

• Prevention approach for DDoS attacks: This SLR demonstrated that most literature
studies, such as [59,66,70,74–77,81,84,90,92,95,106,109,112–114,118,126] focus on de-
tection and mitigation instead of prevention of SDN DDoS attacks. There is a lack of
approaches concerning prevention besides the detection and mitigation approaches.
Preventing DDoS attacks protects the SDN network’s functionality from deteriorat-
ing, which is more urgent than detecting and mitigating them by stopping their
propagation into the network and consuming its resources. Therefore, DDoS attacks’
prevention, detection, and mitigation are still an open research challenge that needs
addressing.

• Feature-selection techniques and hyper-parameter tuning: This SLR highlights that
most literature studies, such as [61,67,77,87,95,97,102,109,122,125,127] use various
feature selection techniques to select the most relevant network traffic features. A
thorough feature selection process significantly enhances the ML-DL approach’s
performance. Thus, feature selection techniques warrant further investigation using
other strategies that could further improve ML and DL-based approaches. In addition,
it is essential to hyper-tune the ML and DL models to obtain the best parameters for
practical training and avoid negative impacts. Through hyper-parameters, the ML
and DL models perform well when the hyper-parameters are tuned or optimized.
Therefore, the feasibility of incorporating novel feature selection techniques and hyper-
parameters to improve ML-DL-based detection, mitigation, or prevention of SDN
DDoS attacks remains an open research challenge that needs addressing.

5.6.2. Future Research Directions

Based on the findings of this SLR and its perspectives, the future research directions of
DDoS attack approaches on SDN networks are listed as follows:

• Towards DL-based approaches: This SLR studied and analyzed the three most popu-
lar approaches (i.e., ML, DL, and hybrid) to detect and mitigate SDN DDoS attacks.
However, the trend is shifting towards the DL-based approach according to the
amount of interest it has generated within the research community in recent years.
The most crucial benefit of DL over classic ML is higher performance in analyzing
massive datasets. Moreover, several technologies, such as cloud computing and IoT
systems, have adopted SDN technology to handle enormous amounts of data that
needs to be processed [132]. Hence, DL-based approaches and techniques naturally fit
into SDN and emerging technologies since their computational architecture already
includes many processing layers that can train data at different grades of complexity.
Therefore, the outcomes or new findings in DL-based research have a promising future
for incorporation into SDN security approaches.

• Towards P4-programmed switches: We noticed from the literature reviewed that
all researchers used default OpenFlow-enabled switches in their studies, except for
[65], who employed programmable switches to work with a dynamic and flexible
network. Utilizing P4-programmed switches within the SDN architecture could lower
the controller’s overhead in case of DDoS attacks. Therefore, it is one of the promising
future research directions for SDN network security defense approaches.

6. Conclusions and Limitations

This study provided an overview of the SDN architecture model, an example of the
OpenFlow forwarding process, DDoS attacks on SDN networks, and a brief insight into the
ML and DL techniques. In addition, this study formed six research questions related to ML,
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DL, and hybrid-based approaches (a combination of ML and DL) to detect and mitigate
SDN DDoS attacks. The method used to answer those questions is the systematic literature
review, providing a comprehensive analysis and synthesis of eight years of literature from
2014 to 2022, resulting in 70 studies being selected as primary studies relevant to the
research questions. The studies that did not fulfill the inclusion and exclusion criteria or
did not match the quality assessment levels were excluded.

Moreover, the significant findings of this SLR show that the number of publications is
progressively increasing, particularly from 2020 onward, and we find that DDoS attacks
have recently been around for a few years. In addition, we found that most of the literature
studies used ML techniques (53%) for analysis, followed by DL (38%) and hybrid methods
(9%). ML and DL-based detection techniques are commonly categorized as ensemble,
hybrid, or single. However, ensemble-based ML and DL techniques are the most promising
for detecting and mitigating SDN DDoS attacks. Another finding is that this SLR examined
the network simulators and tools used to implement and design their approaches. We
discovered that most researchers utilize the Mininet network emulator as an SDN testbed
environment with a Python-based POX controller. Furthermore, the researchers mainly
utilized Hping3 and Scapy hacking tools to generate DDoS attacks or normal traffic genera-
tion. Lastly, the researchers utilized the Wireshark network analyzer to collect the network
traffic flows for further processing.

Furthermore, this SLR sheds light on the evaluation metrics researchers used to evalu-
ate and validate their approaches. We found two main classes of performance evaluation
metrics: first, the detection performance metrics contain all the measure evaluation metrics
(i.e., confusion matrix, ROC, AUC, and detection accuracy, which are the most commonly
used in the literature studies). Second, the computational performance metrics evaluate
their approaches based on training and testing time, CPU utilization, and throughput. In
addition, this SLR reveals that most of the literature studies prefer to generate their datasets,
and there are a few publicly available realistic datasets. Finally, the SLR presented the ex-
tracted challenges, open-issue perspectives, research gaps, and feature directions to identify
and address these aspects by the researchers for advancing research and development in
detecting SDN DDoS attacks.

This SLR is limited to ML, DL, and hybrid-based approaches. However, other ap-
proaches based on information theory, blockchain, and other techniques, also need con-
sideration in the future. This SLR raised many essential research questions, but not all
techniques are covered or all questions answered. Instead, we tried our best to bridge the
open research issues and perspectives, providing future directions and identifying the gaps
in the literature studies as guidance for future research. In future works, we plan to extend
this SLR to cover the newly published studies from 2022 onwards and conduct another
SLR on SDN DDoS based on information theory and blockchain-based approaches.
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Table A1. Quality Assessment (QA) Scores of Primary Studies.

Ref. Study
ID

Design Conduct Analysis Conclusion Total
Score

QA Studies Level

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 High Medium Low

[59] S1 1 1 1 1 1 1 1 1 1.5 8.5 3 7 7
[60] S2 1 1 1 1 0.5 0.5 0.5 0.5 0 6 3 7 7
[61] S3 0.5 1 1 1 0.5 0.5 0.5 0.5 0 5.5 7 3 7
[62] S4 0.5 1 1 0.5 0.5 0.5 0.5 0.5 0 5 7 3 7
[63] S5 1 1 1 1 0.5 1 1 1 0.5 8 3 7 7
[64] S6 1 1 1 0.5 0.5 0.5 0.5 0.5 0 5.5 7 3 7
[65] S7 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[66] S8 1 1 1 1 1 0.5 0.5 0.5 0.5 7 3 7 7
[67] S9 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[68] S10 1 1 1 1 1 0.5 0.5 0.5 0.5 7 3 7 7
[69] S11 1 1 1 1 0.5 1 1 0.5 0.5 7.5 3 7 7
[70] S12 1 1 1 1 1 0.5 1 0.5 0.5 7.5 3 7 7
[71] S13 1 1 1 1 0.5 0.5 0.5 0 0 5.5 7 3 7
[72] S14 0.5 1 1 0.5 0.5 0.5 0.5 0 0 4.5 7 7 3
[73] S15 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[74] S16 1 1 1 1 0.5 0.5 1 0.5 0.5 7 3 7 7
[75] S17 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[76] S18 1 1 1 1 0.5 0.5 1 0.5 0.5 7 3 7 7
[77] S19 1 1 1 1 0.5 1 1 0.5 0.5 7.5 3 7 7
[78] S20 0.5 1 1 0.5 0.5 0.5 0.5 0 0 4.5 7 7 3
[79] S21 1 1 1 1 1 1 1 0.5 0.5 8 3 7 7
[80] S22 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[81] S23 0.5 1 1 1 0.5 0.5 0.5 0.5 0 5.5 7 3 7
[82] S24 1 1 1 1 1 1 1 0.5 0.5 8 3 7 7
[83] S25 0.5 1 1 0.5 0.5 0.5 0.5 0.5 0 5 7 3 7
[84] S26 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0 4.5 7 7 3
[85] S27 1 1 1 1 0.5 0.5 0.5 0.5 0 6 3 7 7
[86] S28 1 1 1 1 0.5 0.5 0.5 0.5 1 7 3 7 7
[87] S29 1 1 1 1 1 0.5 0.5 0.5 0.5 7 3 7 7
[88] S30 0.5 1 1 0 0.5 0.5 0.5 0 0 4 7 7 3
[89] S31 1 1 1 1 0.5 1 1 0.5 0.5 7.5 3 7 7
[90] S32 1 1 1 1 0.5 0.5 1 1 0.5 7.5 3 7 7
[91] S33 1 1 1 1 0.5 1 1 0.5 0 7 3 7 7
[92] S34 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[93] S35 1 1 1 1 0.5 0.5 0.5 0 0 5.5 7 3 7
[94] S36 1 1 1 1 0.5 1 1 0.5 1 8 3 7 7
[95] S37 1 1 1 1 0.5 1 1 0.5 1 8 3 7 7
[96] S38 1 1 1 1 1 0.5 0.5 0.5 0.5 7 3 7 7
[97] S39 1 1 1 0.5 0.5 0.5 0.5 0.5 0 5.5 7 3 7
[98] S40 0.5 1 1 0.5 0.5 1 1 0 0 4.5 7 7 3
[99] S41 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[100] S42 1 1 1 1 0.5 0.5 1 1 0.5 7.5 3 7 7
[101] S43 0.5 1 1 1 0.5 0.5 0.5 0.5 0 5.5 7 3 7
[102] S44 1 1 1 1 0.5 0.5 0.5 0 0 5.5 7 3 7
[103] S45 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[104] S46 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 6 3 7 7
[105] S47 1 1 1 1 0.5 1 0.5 0.5 0.5 7 3 7 7
[106] S48 1 1 1 1 0.5 0.5 0.5 1 0 6.5 3 7 7
[107] S49 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[108] S50 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[109] S51 1 1 1 1 1 1 1 0.5 0.5 8 3 7 7
[110] S52 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[111] S53 1 1 1 1 1 1 1 0.5 0.5 8 3 7 7
[112] S54 1 1 1 1 1 1 0.5 0.5 0.5 7.5 3 7 7
[113] S55 1 1 1 1 1 1 1 0.5 0.5 8 3 7 7
[114] S56 0.5 1 1 0.5 0.5 0.5 0.5 0 0 4.5 7 7 3
[115] S57 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[116] S58 1 1 1 1 0.5 0.5 0.5 0.5 0 6 3 7 7
[117] S59 0.5 1 1 0.5 0.5 0.5 0.5 0 0 4.5 7 7 3
[118] S60 1 1 1 1 0.5 0.5 0.5 0 0 5.5 7 3 7
[119] S61 1 1 1 1 0.5 0.5 0.5 0.5 0 6 3 7 7
[120] S62 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[121] S63 1 1 1 0.5 0.5 0.5 0.5 0.5 0 5.5 7 3 7
[122] S64 0.5 1 1 0.5 0.5 0.5 0.5 0 0 4.5 7 7 3
[123] S65 1 1 1 1 1 1 1 1 1 9 3 7 7
[124] S66 1 1 1 1 0.5 1 1 0.5 0.5 7.5 3 7 7
[125] S67 1 1 1 0.5 0.5 0.5 0.5 0 0.5 5.5 7 3 7
[126] S68 1 1 1 1 0.5 0.5 0.5 0.5 0.5 6.5 3 7 7
[127] S69 1 1 1 1 1 0.5 0.5 0.5 0.5 7 3 7 7
[128] S70 1 1 1 1 0.5 0.5 0.5 0 0 5.5 7 3 7
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