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Abstract: Adaptive cruise control and autonomous lane-change systems represent pivotal advance-
ments in intelligent vehicle technology. To enhance the operational efficiency of intelligent vehicles in
combined lane-change and car-following scenarios, we propose a coordinated decision control model
based on hierarchical time series prediction and deep reinforcement learning under the influence of
multiple surrounding vehicles. Firstly, we analyze the lane-change behavior and establish boundary
conditions for safe lane-change, and divide the lane-change trajectory planning problem into lon-
gitudinal velocity planning and lateral trajectory planning. LSTM network is introduced to predict
the driving states of surrounding vehicles in multi-step time series, combining D3QN algorithm to
make decisions on lane-change behavior. Secondly, based on the following state between the ego
vehicle and the leader vehicle in the initial lane, as well as the relationship between the initial distance
and the expected distance with the leader vehicle in the target lane, with the primary objective of
maximizing driving efficiency, longitudinal velocity is planned based on driving conditions recog-
nition. The lateral trajectory and conditions recognition are then planned using the GA-LSTM-BP
algorithm. In contrast to conventional adaptive cruise control systems, the DDPG algorithm serves as
the lower-level control model for car-following, enabling continuous velocity control. The proposed
model is subsequently simulated and validated using the NGSIM dataset and a lane-change scenarios
dataset. The results demonstrate that the algorithm facilitates intelligent vehicle lane-change and
car-following coordinated control while ensuring safety and stability during lane-changes. Compara-
tive analysis with other decision control models reveals a notable 17.58% increase in driving velocity,
underscoring the algorithm’s effectiveness in improving driving efficiency.

Keywords: intelligent vehicles; time series prediction; deep reinforcement learning; lane-change and
car-following; condition identification; trajectory planning; coordinated control

1. Introduction

As artificial intelligence technology advances, intelligent vehicles have emerged as a
prominent application [1]. The rapid evolution of autonomous driving technology in recent
decades is driven by its expansive potential applications [2]. Crafting a well-considered
lane-change trajectory involves weighing various factors including safety, economy, and
comfort [3]. Moreover, it necessitates accounting for the kinematic and dynamic constraints
inherent to the vehicle [4]. Lane-changing trajectory planning stands out as a key area of
research within the transportation domain [5].

Driving behavior decision-making is a pivotal technology in the realm of intelligent
vehicles, with lane-changing decision-making serving as a fundamental requirement for
ensuring the safe transition of vehicles between lanes. Current methodologies for lane-
change decision-making can be broadly classified into traditional-rule-based models [6-9]
and machine-learning-based models [10-15]. Reference [16] proposed the Gipps model, and
formulated decision rules based on the necessity, propensity, and safety considerations of
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lane-change. Subsequent research further refined lane-change behaviors into categories such
as free, collaborative, and forced lane-change [17-19]. However, reference [20] contended
that traditional-rule-based models fall short in accurately representing the myriad factors
influencing drivers during lane-change decision-making, and proposed a lane-change decision-
making model based on Random Forest (RF), which had good prediction accuracy.

Reference [21] analyzed the relationship between feature variables and lane-change
decision, and proposed a lane-change decision model based on Gradient Boosting De-
cision Tree (GBDT), which introduced new feature variables to improve the prediction
performance of the decision model. Reference [22] selected feature variables from the
physical characteristics of vehicles, interaction perception and road structure for different
lane-change conditions to establish a decision model. Reference [23] used reinforcement
learning to solve the accurate decision parameters during lane-change, which improved the
safety performance and could mimic real driving behavior in lane-change scenarios. A large
number of scholars have conducted research on lane-change trajectory planning. Refer-
ence [24] dynamically planned the lane-change time and increased the comfort constraints
of lane change to improve the quintic polynomial planning algorithm. Moreover, they
introduced the concept of a lane-change transit position and proposed a double quintuple
polynomial algorithm. This algorithm effectively ensured collision avoidance with the lead
vehicle. However, an oversight in their study was the neglect of considering the influence of
the state of vehicles in the target lanes on the selection of the transit position. Reference [25]
introduced a lane-change trajectory planning method designed for dynamic environments,
which computed the optimal time interval for horizontal planning, diminished the array of
candidate trajectories, and notably enhanced real-time trajectory planning performance.
However, it exclusively addressed horizontal trajectory, neglecting longitudinal trajectory
planning. Reference [26] delineated the selection of an optimal reference trajectory through
a comprehensive evaluation system grounded in the vehicle’s state. This trajectory was
fitted using a segmented quintic polynomial, enhancing the vehicle’s obstacle avoidance
capabilities. However, a significant disparity existed between the reference trajectory and
the optimized trajectory.

Mere consideration of lane-change behavior for decision-making and trajectory plan-
ning falls short of addressing the practical requirements of driving. Moreover, there exists
a significant correlation between lane-change and car-following, which are among the most
prevalent traffic behaviors [27-29]. Reference [30] discussed the control requirements of the
ACC system for both accelerating to follow the vehicle in front and executing lane-change.
The proposed cooperative control strategy guaranteed satisfactory longitudinal following
performance and lateral stability. In reference [31], the implementation of Model Predictive
Control (MPC) algorithm enabled dual target tracking and safe lane-change, effectively
resolving conflicts between ACC and lane changing behaviors, thereby enhancing longitu-
dinal comfort. Reference [32] introduced a designed ACC multi-mode switching strategy
based on the cumulative degree of speed dissatisfaction. This strategy achieved adaptive
cruise control with lane-change functionality, leading to improved driving efficiency.

The construction of lane-change scenarios in the aforementioned models are simplistic
and lack a comprehensive consideration of the impact of surrounding vehicles on the safe
lane-change maneuvers of the subject vehicle. Moreover, these models lack the integration
of decision-making and trajectory planning. Additionally, the collaborative decision control
involving adaptive cruise and lane-change behavior warrants more in-depth investigation.
Given the shortcomings of the above research, this paper introduces a coordinated decision-
control of lane-change and car-following for intelligent vehicles based on time series
prediction and deep reinforcement learning. The contributions of this paper are as follows:

(1)  Ahierarchical lane-change and car-following coordinated decision-making control model
aimed at improving driving efficiency is established, which divides the lane-change
trajectory planning problem into longitudinal velocity planning and lateral trajectory
planning, and the trajectory is planned based on the driving condition identification.
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(2) Multi-step time series prediction information is introduced to realize the prediction
of the future driving state of the surrounding vehicles, which provides the basis for
lane-change decision-making and trajectory planning.

(3) A three-layer safety guarantee mechanism of a decision-making layer, planning layer
and control layer is constructed to ensure the safety of the whole lane-change and
car-following process.

(4) The lane-change data in the NGSIM dataset are extracted to construct the training
scenario, and the lane-change scenarios dataset is established to improve the authen-
ticity and complexity of the training environment, and to verify the effectiveness of
the model.

2. Analysis of Lane-Change Behavior

The motion state of surrounding vehicles influences the lane-change behavior of ego
vehicle, and the decision to change lane must entail the consideration of various traffic
factors. Taking change lane to the left as an example, a lane-change scenario with multi-
vehicle influences containing Ego M, the original lane leader Mf, the target lane leader Lf,
and the target lane following Lr is established as shown in Figure 1. In addition, we consider
the overtaking to the right and curved lane-change as dangerous driving behaviors, and
we have not accounted for them.

Figure 1. Schematic diagram of lane-change scenario.

According to the vehicle kinematics, the position of the centroid of each vehicle during
the lane-change process from the starting moment f; to the ending moment t¢, can be
expressed as:

{xi(t) - fttf [0;(t)cosg;(t)]dt
~Jy b )
yi(t) = [, [vi(t)sing;(t)]dt

where v;(t) is the longitudinal velocity, ¢;(t) is the vehicle heading angle, i = M, Mf, Lf, Lr.

In the vehicle coordinate system with the centroid of the vehicle as the origin, the
potential collision points of the vehicle in the lane-change process are the left front end
point of the vehicle body Py, the right front end point P, and the left rear end point P;.
According to the analysis of the potential collision points in the process of lane-change,
combined with the driving state of the leader and following vehicles in the target lane,
taking the left lane-change as an example, establish the constraints for safe lane-change

within the duration ¢ € [ts, t f} , and the calculation formula is shown in (2).

{prl () < xip, (8) +Smrs(ts) — Siifff

Ymp, (1) < yig, (1)

{prz () < xmgp, (£) + Samr(ts) — Sj\flj,rlf/lf @)
Ymp, () < Y, (1)

{pr3 () = X1y, (1) = Smar(ts) + Sy,
}/Mp3 (t) > ]/LVP2 (t)

where S; ;(t;) is the longitudinal distance between the following car and the preceding car

at the moment, Sf‘;f ® is the longitudinal reserved safety distance.
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The purpose of reserving the longitudinal safety distance with the leader and follow-
ing vehicles during the lane-change process is to ensure enough active collision avoidance
distance when the leader and following vehicles have acceleration and deceleration behav-
ior. Since the vehicle is in the following state with the leader vehicles before and after lane
change, this paper uses the following vehicle safety distance model [33], as shown in (3).

V2

e gty 4 2 g O )
L] 2a, 2a ¥

where v, is the initial velocity of following vehicle before braking, ¢, is the brake coordina-
tion time, L is the safe distance between leader vehicle and following vehicle after stopping,
ay, is the maximum braking deceleration of following vehicle, a ris the maximum braking
deceleration of leader vehicle.

As shown in Figure 2, circular arc P3AP3’,, PfPl’ and P{Pﬁ constitute the critical collision
interval, in this area, lane-change vehicles will not collide with surrounding vehicles.
After introducing the safe distance maintenance model between vehicles, circular arc P3AP" ,

P{P{' and circular arc PzAPé' constitute the safe lane-change interval, which ensures that
there will be no collision when the leader and following vehicles have acceleration and
deceleration behavior.

Critical Collision Interval

Safe Lane Change Interval

Figure 2. Safe lane change interval.

3. Overview of the Framework

In order to pursue higher driving efficiency, this paper establishes a coordinated
decision-control model for lane-change and car-following based on hierarchical time series
prediction and deep reinforcement learning, which consists of a decision-making layer, a
trajectory planning layer and a lower control module. The framework proposed in this
paper is shown in Figure 3.

The decision-making layer comprises the time series prediction and lane-change deci-
sion module. The Long Short-Term Memory (LSTM) network undertakes the processing of
time series information pertaining to both the surrounding vehicles and the self-vehicle.
Concurrently, it engages in a multi-step time series prediction of the state information
associated with the surrounding vehicles. The resulting time series prediction information
is then fed into the Dueling Double Deep Q Network (D3QN) algorithm. Subsequently,
the D3QN model produces the decision-making outcome for the lane-change behavior,
drawing upon the current moment’s state and time series prediction information. Upon
receiving the lane-change command, the planning layer assumes responsibility for lateral
and longitudinal planning based on Genetic Algorithm (GA) improved LSTM-BP neural
network (GA-LSTM-BP), which realizes the driving condition identification and predicting
the time of lane-change. Different longitudinal velocity planning according to different
driving conditions, based on the time series prediction information and boundary condition
for safe lane-change, allows us to determine the safety by simulating the lane-change. And
the lower control module is the Deep Deterministic Policy Gradient (DDPG) algorithm,
which is responsible for the realization of the car-following action under different driving
conditions. The assurance of lane-change and car-following safety is achieved across three
levels: decision-making level, trajectory planning level, and lower control level.
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Figure 3. Overview of the framework.

4. Lane-Change Decision-Making Model
4.1. Time Series Prediction Module

The safety constraints during vehicle lane-change are influenced by both the lateral
and longitudinal positions of surrounding vehicles. Given the inherent uncertainty in the
driving behaviors of these surrounding vehicles, precise prediction of their future motions
becomes paramount. This precision is essential for determining optimal safe lane-change
intervals and subsequently planning trajectories that ensure safe and effective lane-change.

The time series prediction module must comprehend the vehicle’s driving pattern
using acquired state information and anticipate its future driving state, aligning with the
demands of multi-step timing prediction. While neural networks yield favorable results
in predicting nonlinear system problems, straightforward feed-forward models like BP
neural networks and radial basis neural networks lack the necessary memory function for
handling time-dependent data sequences. Consequently, these models are ill-suited for
predicting the driving state of a vehicle based on time series data.

In the multi-step time series prediction problem, compared to NARX (Nonlinear Auto
Regressive with exogenous inputs) network, LSTM (Long Short-Term Memory) network
can learn more complex time patterns and regularities [34] for more accurate and reliable
multi-step time series prediction. The inputs to the LSTM network contain the historical
trajectory information of the surrounding vehicles, which can be expressed as:

Fhiy = [xi(1), 0i(t), ()] t =T =Ty, T=1,T @
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where i = Mf. L{, Lz, x;(¢) are the historical positions, v;(t) are the historical velocities, a;(t)
are the historical accelerations, and T}, is the historical time domain, reflecting the length of
input information.

Without considering the lane-change behavior of surrounding vehicles, the output can
be expressed as:

Fpy = [Xi(t), Vi(t), Ai(D)) t = T, T+1,-- , T+T, ©)

where X;(t) are the predicted longitudinal positions of surrounding vehicles, V;(t) are the
predicted longitudinal velocities, A;(t) are the predicted longitudinal accelerations, and
Ty is the predicted time domain, reflecting the prediction length of multi-step time series
prediction. If the historical time domain is set too small, it cannot capture enough historical
state information, leading to a lack of comprehensive understanding of the current state
in the model, resulting in erroneous decisions. Conversely, it will make the model overly
focus on historical information, increase fitting, and lead to overfitting and low training
efficiency. After testing, the Tj, is set to 5 s, and the T} is 4 s. The time series prediction
information will be fed into the decision-making module, trajectory planning module and
lower level control module.

To guarantee adherence of the planned trajectory to the actual driving state and to
ensure optimal traffic efficiency, safety, and comfort, the duration of lane-change is restricted.
This is under the assumption of favorable road surface conditions and the vehicle being
subject to constraints in both lateral and longitudinal dynamics. Each parameter is detailed
in Table 1.

Table 1. Kinetic constraints.

Parameter Symbols Value Range
Lane-change time tr [3s,7s]
Longitudinal velocity UM [8m/s, 34 m/s]
Longitudinal acceleration am [-3m/s2, 2 m/s?]
Lateral acceleration iy [-24m/s2,2.4m/s?]

4.2. Lane-Change Decision-Making Based on Time Series Prediction and Deep
Reinforcement Learning

The D3QN algorithm is developed based on Deep Q-Network (DQN) and Double
Deep Q-Network (DDQN) in Deep Reinforcement Learning. Compared with the latter
two, the D3QN algorithm is improved in terms of the model structure, the estimation of
the value function, and the improvement of the policy to improve the stability and the
performance of the algorithm. D3QN introduces three neural networks: the main network,
the target network and the averaging network, where the main network is used to update
the values and select the actions, the target network is used to compute the target values
and assist in the training, and the averaging network is used to average the two networks
in order to further reduce the error and improve the performance. The main network is
divided into two neural networks for estimating the state value function and the dominance
function, respectively. The state value function is used to estimate the expected cumulative
reward obtained in the current state, while the dominance function is used to estimate the
additional benefit of performing a specific action relative to the average, and the value can
be viewed as a weighted sum of the state value function and the dominance function:

Q(s,3;,0,0) =V (s;6,B) + (A(s,a; 0,ua)— 114|ZA(S' a; 9,@) (6)

where s is states, a4 is action, «, 6 and B are parameters of different neural networks,
‘17‘2 A(s,a’;0,a) is the sum of the average dominance functions of all possible actions a’.
a/
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The core idea of the deep Q-network algorithm lies in approximating the optimal Q-value
function Q* (s, a), by means of a neural network, which can be expressed as:

Q(s,a;0) ~ Q*(s,4) )

where Q(s, a;0) is the predicted Q value for a given state s and action a.

The reward function is established from the aspects of lane-change benefit and safety.
In the coordinated control of lane-change and car-following model, the purpose of ego
vehicle is to obtain higher driving velocity. Ego vehicle maintains the following relationship
with the leader vehicle before and after the lane-change, and the maximum velocity that the
ego vehicle can achieve in the initial lane is vs, and the maximum velocity in the target
lane is vy ¢. The premise of the vehicle lane-change is to ensure the safety, not to collide
with other vehicles, the whole process of lane-change needs to maintain a safe distance
from other vehicles. The composite reward function is:

. v
reward = g[kl(vdesued —1, 4~ 1) +kaS; ] (8)
UMf UMf

where vgesired 15 the desired velocity of ego vehicle, k1, ky are the weighting coefficients of
each weighting, which were set to 0.9 and 0.6 after testing; S; ; is the distance between the
ego vehicle and each of the surrounding vehicles; and g is the compensation function, which
aims to reduce the order of magnitude difference of the different values of each reward.

state = {sp, s;, Fp; } )

where sy; = (vp, ap) is the state information of ego vehicle, s; = (exist, x;, v;,4;) means
the state information of surrounding vehicles, exist = [0, 1] represents whether there are
leader or following vehicles in the lane, with 0 indicating no presence and 1 indicating
presence, when no vehicle exists in the lane, the state information of the vehicle i is set to:
following vehicle x; = —oo, leader vehicle x; = 400, v; = V1.

In the structured road scenario, the model proposed in this paper does not consider the
right lane-change behavior, and the D3QN algorithm outputs binary classification results
with the action space defined as:

action = {1,0} (10)

where 1 represents a lane-change to left, 0 represents a lane-keeping behavior.

5. Lateral and Longitudinal Trajectory Planning Based on Driving
Condition Recognition

5.1. Lateral Trajectory Planning and Driving Condition Recognition

At the level of lateral trajectory planning, a quintic polynomial curve is employed to
plan the lateral trajectory. The pivotal factor influencing comfort during lateral displace-
ment is the maximum lateral acceleration. The magnitude of the lateral acceleration is
only related to the lane-change time, and the maximum lateral acceleration determines the
minimum lane-change time. As lane-change time increases, lateral acceleration decreases,
correlating with improved comfort. However, it comes at the expense of reduced traffic
efficiency. Addressing diverse driving conditions and recognizing the vehicle’s dynamic
state as a time series process, a hybrid LSTM-BP neural network model, incorporating a
genetic algorithm, is formulated. The LSTM neural network algorithm captures sequential
relationships preceding and following lane-changing data, while the subsequent appli-
cation of the BP neural network excavates nonlinear connections between each variable,
lane-change time f¢, and driving conditions recognition.

Upon receiving the lane-change decision instruction output from the D3QN model,
the GA-LSTM-BP model processes a set of time series data A; spanning 4 s prior to the
initiation of the lane-change. These data include critical parameters such as the velocity of
the ego vehicle, the relative velocity, and the relative distance between the ego vehicle and
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the leader vehicle in the initial lane. Similarly, it considers the relative velocity and distance
concerning both the target lane’s lead vehicle and the following vehicle. The GA-LSTM-BP
model produces outputs indicating the lane-change time and the recognition results for
the driving conditions throughout the lane-change process. A structural depiction of the
network is presented in Figure 4.

Figure 4. GA-LSTM-BP structure diagram.

5.2. Longitudinal Velocity Planning Considering the Car-Follow Characterization

When the ego vehicle is not following the leader vehicle in the initial lane, the ego
vehicle will travel at the desired velocity. On the contrary, when it is following the leader,
it will travel at the velocity of the leader, the velocity of leader is greater than the desired,
there will be no benefit to change lane, then the velocity relationship of each vehicle in the
scenarios is set to:

Udesired = ULf > UMf (11)

According to whether the ego vehicle and the leader vehicle in the initial lane are
in the following state or not, and the relationship between the initial distance and the
desired distance between the ego vehicle and the leader vehicle in the target lane, this
paper describes the lane-change and car-following scenarios in six driving conditions, as
shown in the Table 2.

Table 2. Driving conditions.

Relationship To The Leader Relationship to the leader Vehicle in

Conditions Vehicle In The Initial Lane the Target Lane
1 following Initial distance > desired distance
2 .
3 Not following Initial distance > desired distance
4 .
s Not following Initial distance < desired distance
6 following Initial distance < desired distance

The primary objective of vehicular following is twofold: firstly, to maintain the de-
sired distance from the leader vehicle, and secondly, to facilitate velocity synchronization,
ensuring a stable trailing condition. The essence of both lateral and longitudinal planning
lies in the achievement of lane-change and the optimization of driving efficiency.

In contrast, the conventional adaptive cruise control system adjusts velocity only
after attaining the desired distance from the preceding vehicle, focusing solely on velocity
following. Regrettably, this approach falls short in meeting the demands of a concurrent
working scenario involving both lane-change and car-following. Recognizing this limita-
tion, longitudinal velocity planning, which takes into account the following characteristics,
aims to concurrently achieve the desired distance and enable velocity following:

{ AS =S — Sdesired

Av =vp — v (12)
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where AS is the following distance error, Av is the relative velocity, and S.jr.4 is the desired
distance from the leader vehicle, which can be expressed as:

Sdesired =omip + dO > S?Zfe (13)

where t), is time headway, dj is a constant distance.

Upon obtaining the driving condition recognition results from the GA-LSTM-BP
model, diverse longitudinal velocity planning strategies are implemented based on distinct
driving conditions.

Driving Condition 1: In instances where the initial distance between the ego vehicle
and the leader vehicle in the target lane surpasses the desired distance, a three-phase ap-
proach is adopted by the ego vehicle to ensure optimal driving efficiency while establishing
and maintaining a following relationship with the front vehicle. These phases involve accel-
erating or decelerating with maximum acceleration to reach the desired velocity ¢, € [to, 1],
maintain a constant velocity t, € [t1, 2], subsequently decelerating to match the velocity
of the leader vehicle as the distance decreases t; € [tp,t3]. At the point when the ego
vehicle attains the desired distance, it aligns its velocity with the leader vehicle, as depicted
in Figure 5a. Conversely, when the initial distance with the front vehicle is shorter, the
ego vehicle is constrained to accelerate to a specific velocity and promptly decelerate, as
illustrated in Figure 5b.

Velocity Velocity
N N
Vdesired Vdesired
L7 - Vif
Un, Vi r [ F T — VmVnrl — =
>
ty ty t, t3 Time to €1 3 Time

(a) (b)

Figure 5. Velocity planning for Condition 1: (a) large distance; (b) shorter distance.

In Figure 5a, the ego vehicle is able to achieve the desired velocity:

~—

/axmax
/axmin
/z/axmux
/2/axmin

th = (vdesired — UM

N—

tg = (ULf — Udesired

_ 2 2
Sp = (vdesired — UM

— 2 2
Sa= (ULf — Udesired

(14)

~

where S, is the longitudinal displacement in time period ¢;, and S; is the longitudinal
displacement in time period £;.

In order to achieve velocity following while reaching the desired distance from the
leader vehicle, when the ego vehicle reaches the reaction distance S, from the leader vehicle,
the ego vehicle starts to decelerate and achieves velocity following:

Sr = Sdesired + Sa (15)
The longitudinal displacement to maintain the desired velocity can be calculated as:

Su = tuOdesired (16)
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In Figure 5b, the ego vehicle can only slow down immediately after reaching a certain
velocity v, v, t; and t; can be solved by the system of equations:

ttl = (vC - UM)/axmux
td = (UC - va) /axmax (17)
SM,Lf(tS) + Upf X (ta + td) -5, = (Z)C +UM) X %’1 + (UC —|—ULf) X tjd

Driving Condition 2: When the initial distance between the ego vehicle and the leader
vehicle in the target lane is larger than the desired distance, and the autonomous vehicle
is not in the following state with the leader vehicle in the initial lane, the ego vehicle will
change lane in advance if the safety conditions of lane-change are satisfied, and directly
realize the following with the leader vehicle in the target lane, as shown in Figure 6a.

Velacity Velocity
”~

Vs Vdesired Vs Vdesired

Vs Vs

Uy [ —— LS — Uup | — |

5

to L 3 Time ta 1 t; &3

(a) (b)
Figure 6. Velocity planning: (a) Condition 2; (b) Condition 3.

Driving Condition 3: If the safety conditions for lane-change cannot be met, the ego
vehicle continues to travel, follows the leader vehicle in the initial lane first, and then carries
out the operation of changing lane to follow the leader vehicle in the target lane, as shown
in Figure 6b.

Driving Condition 4: When the initial distance between the ego vehicle and the leader
vehicle in the target lane is less than the desired distance, and the ego vehicle is not in the
following state with the leader vehicle in the initial lane, if the distance between the ego
vehicle and the leader vehicle in the initial lane is large, the ego vehicle will change lane
after overtaking the leader vehicle in the target lane in accordance with the desired velocity
in the initial lane as shown in Figure 7a.

Velocity Velocity
"~

Vs Vdesired Unts Vdesired

Vi Vir

Vif o = = — — — ] . By | e | i, ot

N
to t; Time oty
t L

(a) “(b)
Figure 7. Velocity planning: (a) Condition 4; (b) Condition 5.

Driving Condition 5: When the distance to the leader vehicle in the initial lane is not
enough to overtake the vehicle and then change lane, the ego vehicle needs to adjust its
velocity first to widen the distance to the leader vehicle in the target lane, and then follow
it as shown in Figure 7b.

Condition 6: When the initial distance between the ego vehicle and the leader vehicle
in the target lane is less than the desired distance, the ego vehicle needs to adjust its velocity
to open up the distance first, and then follow the vehicle. When v; ¢ > vy, in order to
ensure the driving efficiency, the ego vehicle first maintains a constant velocity and then
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accelerates to realize the following, as shown in Figure 8, and the time of driving at a
constant velocity can be calculated as:

t;j—S ts)— S
g st mLf(ts) =S a8)

Odesired — ULf

Velocity
<~

Vdesired

va

Vi Vmy -

5

to fz t3 Time
5]

Figure 8. Velocity planning for Condition 6.

After the lateral and longitudinal trajectory planning, the planning safety is verified
by simulating the lane-change by combining the timing prediction information and the
safety boundary for lane-change. If the planned trajectory does not meet the boundary, lane
keeping behavior is still adopted. The whole implementation method of the lane-change
and car-following model is shown in Figure 9.
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Figure 9. Technical route of the coordinated decision control model.



Sensors 2024, 24, 403

12 of 17

6. DDPG-Based Lower Level Control Model

The DDPG algorithm is an extension of the deep Q-network by applying it to the
problem of continuous action space. It solves this problem by simultaneously training an
Actor network, which learns approximate policy functions and is able to output continuous
action values directly, and a Critic network, which is used to evaluate the Q-value function
of state—action pairs. A key component of DDPG is the Experience Replay Buffer (ERB),
which is used to store previous experience samples and randomly sample from them for
training. This can effectively solve the problem of correlation between data and increase
the efficiency of sample utilization.

The design of the reward function directly affects the effect of the deep reinforcement
learning algorithm, and the reward function is set as follows:

2
reward = a; (Uref(t) - Z)M(t)> + agag, (t — 1) (19)

where a1, ) are the weight coefficients, which are tested and take the values of —0.1 and
1, respectively, v,.f(t) is the reference velocity at the current moment, and ap(t — 1) is
the acceleration of the ego vehicle at the previous moment. According to the content of
longitudinal velocity planning in Section 5, when the reaction distance S; is not reached,
Ures is set according to different driving conditions, and when the reaction distance is
reached, v,or = v .

The action space is defined as:

action = {ay € [-3,2]} (20)

The state space is defined as:

state = {UM,va,va,Sr,aLf} (21)

The deep reinforcement learning-based model realizes safe car-following in a dynamic
environment, and together with the upper decision-making module and the velocity planning
module, it ensures the safety of the combined lane-change and car-following conditions.

7. Simulation Verification

NGSIM US-101 and I-80 vehicle trajectory data are widely used in the study of vehicle
lane-change behavior [35]. This dataset is obtained through video analysis of the vehicle’s
position, velocity, acceleration and other state information. Since there is a certain degree
of noise, this paper uses the sliding average filtering method [36] to process the raw data,
after which the free lane-change data in the dataset are extracted, according to [37], and
an analysis of the lane-change decision-making process is carried out to process the lane-
change data and to extract the state information of the vehicles around the ego vehicle.
Based on the constraint of lane-change time, this paper extracts 247 vehicle trajectory
datasets with a duration of 20 s. The whole trajectory is divided into three phases: before
lane-change, after lane-change and lane-change, and the average velocities of the ego
vehicles in the dataset in the three phases are 8.61 m/s, 9.55 m/s, and 9.12 m/s, and that of
the leader vehicles in the target lane are 9.58 m/s, 10.08 m/s, and 9.06 m/s, and the average
velocities of the leader vehicle in the initial lane in the first phase is 8.53 m/s. As shown
in Figure 10. It can be seen that in the real lane-change scenarios, the ego vehicle tends
to gain higher velocity and change lane, which is in line with the lane-change gain of the
lane-change decision module in this paper. Meanwhile, 500 lane keeping data are extracted
and used for training to validate the time series prediction, lane-change decision-making,
and lateral trajectory planning modules.
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Figure 10. NGSIM dataset Descriptions.

7.1. Lane-Change Decision-Making Model Training Results

In the driving scenario proposed in this paper, the lane-change decision is a binary
classification problem, and a control group is set up to verify the effectiveness of the
proposed time series prediction and deep reinforcement learning decision-making model.
In addition, a test control group is set up with (1) the support vector machine model
proposed in the reference [8], and (2) DDQN with the same settings of reward function,
state space and action space as the algorithm proposed in this paper. In addition, in order
to verify the effect of time series prediction on the lane-change decision, each group of
the above experiments is divided into a module with time series prediction and a module
without it, and the training results are shown in Table 3.

Table 3. Decision-making comparison results.

Decision Model LSTM+D3QN D3ON LSTM+DDQON DDQON LSTM+SVM SVM
TPR 89.37% 88.64% 87.48% 84.90% 81.27% 80.98%
TNR 95.10% 93.79% 92.30% 91.90% 87.96% 83.03%
Accuracy 94.30% 93.27% 91.93% 90.08% 83.20% 81.60%

Evaluation of machine learning models’ training effectiveness is needed from the
quantitative indicators perspective. The Accuracy, True Positive Rate (TPR), and True
Negative Rate (TNR) are introduced to evaluate the training effectiveness of the model.
The Accuracy of a model reflects its ability to correctly classify samples and is calculated
as the ratio of correctly classified samples to the total number of samples. Similarly, the
TPR measures the rate at which positive instances are correctly predicted to be positive,
while the TNR measures the rate at which negative instances are correctly predicted to
be negative. Since the decision to change lane depends on other vehicles in the traffic
environment, misclassifying non-lane-changes as lane-changes poses greater risks than
misclassifying lane-changes as non-lane-changes. Therefore, a good lane change decision
model should have high ACC and TNR.

Overall, different classification decision models have improved all three quantita-
tive metrics after adding LSTM time series prediction information, indicating that the
prediction of the future driving state of surrounding vehicles has a positive impact on
lane-change decision. The method based on the combination of time series prediction and
deep reinforcement learning substantially improves the prediction accuracy compared to
the traditional machine learning model, and the proposed lane-change decision model
achieves the best training results, with 94.30% correct prediction rate and 95.10% true
negative class rate, which is able to make safe and accurate lane-change decisions.
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7.2. Validation of Lateral Trajectory Planning

The lane-change data in the NGSIM dataset are extracted to train and validate the
trajectory planning module, and a comparison of the 50 sets of prediction results for the
lane-change time of the LSTM-GA-BP neural network and GA-BP neural is shown in
Figure 11. Table 4 shows the comparison results of the overall data.
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Figure 11. Prediction results of GA-LSTM-BP neural work.

Table 4. Prediction comparison results.

Maximum Error = Average Absolute Error  Root Mean Square Error

GA-BP 1.68 s 0.77 0.88
GA-LSTM-BP 1.24s 0.48 0.56

It can be seen that the LSTM-GA-BP neural network has higher prediction accuracy, the
average error and the root mean square error are smaller, the model can meet the prediction
requirements and has better stability, and it can be used for the accurate prediction of
lane-change time.

7.3. Car-Following Model Validation
In the single lane environment, the DDPG heeling model is trained to compare the

traditional ACC-MPC. The training process and the training results in the set scenario are
shown in Figure 12. It can be seen that the DDPG-based adaptive cruise control can realize

more stable following control in the case of the velocity change.
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Figure 12. Car-following comparison results.
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7.4. Overall Model Validation

The NGSIM dataset was used for the experimental scenarios, and the performances of
different lane-change and car-following models were compared. The comparison results
are shown in Table 5.

Table 5. Model comparison results.

Lane Change Model NGSIM SVM SVM MOBIL MOBIL CD D3QON
Car Following Model NGSIM ACC DDPG ACC DDPG ACC DDPG
Collisions 0 12 10 4 0 0 0
Average Acceleration (m/s?) 0.17 0.35 0.37 0.44 0.51 0.23 0.54
Average Velocity (m/s) 9.09 9.31 9.25 10.36 10.49 9.78 10.68

It can be seen that in real lane-change scenarios, SVM as a decision model has collision
risk, which is related to its lower accuracy in predicting lane-change behavior. MOBIL-ACC
also has a certain collision risk. The three-layer security mechanism proposed in this article
performs well in terms of safety. Compared with the original NGSIM data, all models
have improved driving efficiency. When combined with various decision models, DDPG
has a smaller velocity improvement compared to ACC. The lane-change decision model
based on the cumulative degree of velocity dissatisfaction (CD) has a smaller improvement
in driving efficiency. The lane-change and car-following model proposed in this article
achieved the maximum acceleration and velocity improvement while ensuring safety, with
a velocity increase of 17.58%.

In the NGSIM scenarios, the vehicle velocities are relatively low, and the number
of samples that meet the lane-change and car-following scenarios is relatively small. In
order to verify the adaptability of the proposed model in high-velocity scenarios and
also verify the comprehensive performance of the six driving conditions mentioned in
Section 5 above, a lane-change scenarios dataset was established. The duration of a single
lane-change scenario is 20 s, and the velocities of surrounding vehicles in the scenario all
range between 20-30 m/s. The expected velocity of the ego vehicle is 30 m/s. Based on
the six driving conditions determined in the Table 2, the initial position, initial velocity,
acceleration, acceleration start time, and acceleration duration of surrounding vehicles are
randomly combined to simulate different traffic scenarios. After the acceleration duration
ends, the vehicles simulate different traffic scenarios in a uniform manner. They are then
driven at high velocity, with 100 sets of lane changing scenarios set for each operating
condition. The simulation results are shown in the Figure 13.
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Figure 13. Lane-change scenarios simulation results.

It can be seen that compared to the leader vehicle in the initial lane, the proposed model
can improve driving efficiency in different driving conditions. Among them, in driving
conditions 2 and 4, the scenario type is one where the ego vehicle is not following the leader
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vehicle in the initial lane, which significantly improves driving velocity by changing lane
in advance and after overtaking. It can be seen that the lateral and longitudinal trajectory
planning based on driving conditions recognition is beneficial for improving driving efficiency
in different scenarios. The proposed model is suitable for high-velocity scenarios.

8. Conclusions

This paper establishes a hierarchical decision control model based on time series
prediction and deep reinforcement learning to achieve lane-change and car-following
coordinated control of intelligent vehicles. The effectiveness of the proposed model was
verified by extracting the NGSIM lane-change dataset and establishing a lane-change scene
dataset. The results showed that the three-layer safety guarantee mechanism ensured safety,
while increasing driving velocity by 17.58%. There are also shortcomings in this article. The
accuracy of predicting the state information of surrounding vehicles needs to be improved.
In addition, the driving conditions recognition module cannot fully cover the real driving
conditions, and the poor quality of the training sample data in the NGSIM dataset has an
impact on model training. In the future, we will consider collaborative control of intelligent
connected vehicles in heterogeneous environments and develop decision control models
for vehicles in extreme environments.
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