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Abstract: Some fusion criteria in multisensor and multitarget motion tracking cannot be directly
applied to nonlinear motion models, as the fusion accuracy applied in nonlinear systems is relatively
low. In response to the above issue, this study proposes a distributed Gaussian mixture cardinality
jumping Markov-cardinalized probability hypothesis density (GM-JMNS-CPHD) filter based on
a generalized inverse covariance intersection. The state estimation of the JMNS-CPHD filter combines
the state evaluation of traditional CPHD filters with the state estimation of jump Markov systems, es-
timating the target state of multiple motion models without knowing the current motion models. The
performances of the generalized covariance intersection (GCI)GCI-GM-JMNS-CPHD and generalized
inverse covariance intersection (GICI)GICI-GM-JMNS-CPHD methods are evaluated via simulation
results. The simulation results show that, compared with algorithms such as Sensor1, Sensor2,
GCI-GM-CPHD, and GICI-GM-CPHD, this algorithm has smaller optimal subpattern assignment
(OSPA) errors and a higher fusion accuracy.

Keywords: generalized inverse covariance intersection; jumping Markov; GM-CPHD; nonlinear
motion tracking

1. Introduction

Random finite sets can solve the complex relationships of data in multitarget tracking.
The commonly used filtering methods for random finite sets include probability hypothesis
density (PHD) [1–4], penalized probability hypothesis density (CPHD) [5–8], generalized
labeled multi-Bernoulli (GLMB) [9–12], and CPHD optimization algorithms, such as those
used by Xu, W. (2023) [13], who proposed the Gaussian mixture (GM) implementation of
HMB-CPHD filters in their research. Kim, S. Y. (2022) [14] proposed a sequential Monte
Carlo-based cardinal probability hypothesis density (SMC-CPHD) filter in their study, and
Li Y. (2022) [15] proposed a variational Bayesian expectation maximization method in
their research and proposed a simulated Student t-distribution replacement PHD filtering
method with multiple Gaussian mixture terms to achieve multiobjective tracking. In the
process of multitarget tracking, there are often multiple sensors, and the results of mul-
tisensor fusion tracking are more time consistent, accurate, and reliable than those of a
single sensor. Commonly used fusion strategies include the generalized covariance inter-
section (GICI), sequential inverse covariance intersection (SICI), parallel inverse covariance
intersection (PICI), etc.; Wang, L. (2023) [16,17] proposed a parallel inverse covariance
intersection Gaussian mixture cardinality probability hypothesis density (PICI-GM-CPHD)
fusion strategy in their research, which utilizes the generalization ability of the PICI-GM-
CPHD algorithm to effectively reduce the nonlinear complexity of the system. Liu, Y.
(2021) [18] proposed a batch processing inverse covariance intersection BICI method in
their research to achieve multisensor fusion localization; Qi, W. (2020) [19] validated the
effectiveness of batch covariance intersection (BCI) fusion and fast sequential covariance

Sensors 2024, 24, 1508. https://doi.org/10.3390/s24051508 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24051508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24051508
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051508?type=check_update&version=1


Sensors 2024, 24, 1508 2 of 18

intersection (SCI) fusion in their study; Jin, Y. (2020) [20] proposed a generalized covariance
intersection (GCI) fusion method for random finite GICI sets in their research, which can
effectively avoid label inconsistency sensitivity issues and target identity information loss;
and Ajgl, J. (2022) [21] combined covariance intersection fusion with the upper bound of
the joint mean square error matrix in their study. The problem of target tracking is actually
the problem of tracking and filtering the target state, which requires accurately estimating
the target state based on the target measurement data obtained by the sensor. Nonlinear
filtering is a very important aspect of target tracking. In practical applications, almost all
control systems are nonlinear, and linearity is an approximate description of nonlinearity
to a certain extent [22]. Therefore, studying nonlinear filtering algorithms to reliably and
accurately track targets is the main purpose of designing target tracking systems. The
above fusion strategies are mainly aimed at achieving the fusion tracking of linear moving
targets, and there is little research on fusion strategies for nonlinear systems.

Scholars have conducted in-depth research on the nonlinear motion tracking of multi-
ple moving targets, such as García Fernándezngel (2020) [23], who proposed filters suitable
for nonlinear motion tracking; Li, G. (2022) [24], who proposed a D-JDTC Bernoulli filter
that can perform nonlinear motion tracking; and Vo, B. N. (2006) [25] et al., who proposed
the JM-CPHD filter, which can be seen as extending the state integration in traditional
CPHD filters to the double integration of mode and state. Yang, W. (2022) [26] and other
scholars have used the Jump Markov system model to achieve filtering and tracking in their
research. However, the above research mainly proposes filters for the nonlinear motion
tracking of multiple moving targets without considering the fusion tracking between multi-
ple sensors. Based on this, this study proposes a distributed Gaussian mixture cardinality
jumping Markov CPHD filter based on a generalized inverse covariance intersection, which
addresses the issues of the fusion criteria not being applicable to nonlinear motion models
and the low fusion accuracy in multisensor and multiobjective motion tracking, achieving
multisensor, multiobjective, and nonlinear motion tracking.

The target tracking problem is actually the problem of tracking and filtering of the
target state, which is required to accurately estimate the target state based on the target
measurement data obtained by the sensor [27,28]. Nonlinear filtering is a very important
aspect of target tracking. In practical applications, almost all control systems are nonlinear,
and linearity is an approximate description of nonlinearity to a certain extent. The above
fusion strategies are mainly aimed at achieving the fusion tracking of linear moving targets,
and there is relatively little research on fusion strategies for nonlinear systems. Based on
this, this study proposes a distributed Gaussian mixture cardinality jumping Markov CPHD
filter based on a generalized inverse covariance intersection, with its main contributions
being implementing a state estimation of the JMNSCPHD filter by combining the state
estimation of traditional CPHD filters with the state estimation of jump Markov systems;
comparing multiple fusion strategies and exploring the fusion strategies applicable to
GM-JMNS-CPHD in nonlinear systems; and verifying the effectiveness and robustness of
the proposed algorithm through planned experiments.

2. Research Background
2.1. GM-CPHD Filter

The CPHD filter’s definition is based on a multiobject distribution and it encompasses
processes that are independent and identically distributed. If we assume that the cardinality
distribution p(n) of the point process is |X| = n, then the functional probability generation
(PGFL) G[h] and the probability assumption density D(x) of the CPHD can be stated as

f (X) , n! · p(n) · f (x1) · · · f (xn) (1)

G[h] =
∞

∑
n=0

p(n)(
∫

h(u) · f (u)du)
n

(2)
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v(x) ,
δ

δx
G[h]|h=1 = f (x)

∞

∑
n=1

n · p(n) (3)

1. Prediction of CPHD

pk,t|t−1(n) =
n

∑
j=0

pb(n− j)
∞

∑
h=j

(
h
j

)
pj

k,t(1− pk,t)
h−j pt−1|t−1(h) (4)

vk|k−1(x) =
∫

X
ps(x′)pt(x

∣∣x′ )vk|k−1(x′)dx′ + vb(x) (5)

N̂k|k−1 = N̂a,k + N̂b,k (6)

where ps(x′) is a known objective transition function with a previous state and pt(x|x′ ) is
the survival probability of a target with a previous state. N̂a,k is the expected number of
new goals, and N̂b,k is the expected number of goals that survived from the time step k− 1.

2. Updates to the CPHD

pk,t|t(n) =
L0

t (dk,t|t−1(·), yt, n)pk,t|t−1(n)
∞
∑

i=0
L0

t (dk,t|t−1(·), yt, i)pk,t|t−1(i)
(7)

dk,t|t(x) = Lyt(x)dk,t|t−1(x) (8)

where Lyt(x) is the generalized likelihood function.
The GM-CPHD tracker utilizes an estimated birth intensity and cardinality distribution

to achieve intensity filtering for target tracking [29].

Assumption 1. Each moving target follows a linear Gaussian dynamic model.

Assumption 2. The survival probability and detection probability of a moving target are not related
to the motion state of the target.

Assumption 3. The strength of the new target’s random set has a Gaussian mixture form.

The recursive form of the GM-CPHD can be given as follows:

(1) Prediction of the GM-CPHD Filter

The Gaussian distribution form of vk−1|k(x) is

vk−1|k(x) = ps,k

Jk−1

∑
j=1

ω
j
k−1|kN (x; mj

k−1|k, Pj
k−1|k) (9)

where ω
j
k is the weight of the mixed newborn intensity, mj

k is the average of the mixed

newborn intensity, and Pj
k is the covariance of the mixed newborn intensity.

mj
s,k|k−1 = Fk−1mj

k−1 (10)

P(j)
s,k|k−1 = Qk−1 + Fk−1P(j)

k−1FT
k−1 (11)

where Qk−1 is the covariance matrix of the process noise; Fk−1 is the state transition matrix;
and the Gaussian probability density function with covariance is P.
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Assuming that the posterior intensity at time k− 1 and the predicted time intensity
are both Gaussian mixture forms,

vk−1|k(x) =
Jk−1

∑
i=1

w(i)
k−1|kN (x; m(i)

k−1|k, P(i)
k−1|k) (12)

(2) Update to the GM-CPHD filter

The predicted k-time intensity is in a Gaussian mixture form:

vk+1|k(x) = (1 + pd,k)vk|k−1(x) + ∑
z∈Zk

vd,k(x; z) (13)

Among this set are the following:

vd,k(x; z) =
Jk|k−1

∑
j=1

wj
kN (x; mj

k+1|k, Pj
k+1|k) (14)

ω
j
k(z) =

pd,kω
j
k−1|kqj

k(z)

κk(z) + pd,k

Jk−1|k
∑

l=1
wl

k−1|kql
k(z)

(15)

mj
k+1|k(z) = mj

k−1|k + K j
k(z− Hkmj

k−1|k) (16)

Pj
k+1|k = [I − K j

k Hk]P
j
k−1|k (17)

K j
k = Pj

k−1|k HT
k (HkPj

k−1|k HT
k + Rk)

−1
(18)

where Hk is the observation matrix and Rk is the measurement noise covariance matrix.

2.2. GM-JMNS-CPHD Filter

Based on the research Assumptions 1–3 above, when the JMNS (jump Markov nonlin-
ear system) is applied to CPHD filters, there is no target generation model in the model,
and the target generation model and clutter model must include a probability distribution
of the number of new targets and the number of clutter measurements. Assumptions 1 and
2 must meet the following requirements [30,31].

2.2.1. JMNS-CPHD Filtering

(1) Prediction of the JMNS-CPHD Filter

vk−1|k(
..
x) = rk−1|k(

..
x) +

∫
ps(

..
x′) · vk−1|k(

..
x) · fk−1|k(

..
x
∣∣∣ ..x′ )d ..

x (19)

where bk−1|k(
..
x) fk−1|k(

..
x
∣∣∣ ..x′ ) represents respectively intensity function during the appear-

ance of the target, probability of target survival, and jumping Markov transition density.

pk−1|k(n) = ∑
n′≥0

∞

∑
l=j

Cl
j p(l)

〈
ps,k, D

〉j〈1− ps,k, D
〉j

〈1, D〉l
· pk|k(n′) (20)

At this point, it can be rewritten as

vk−1|k(x,o) = rk−1|k(x,o) + v′k−1|k(x,o) (21)
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v′k−1|k(x,o) = ∑
o′
Xo,o′

∫
ps(x′, o′) · vk−1|k(x

′, o′) · fk−1|k(x
′∣∣x′, o′ )dx′ (22)

(2) Update to the JMNS-CPHD filter

The update to the JMNS-CPHD filter can be expressed as follows below.
Given the distribution of cardinality predictions 1 and 2, the update function of the

PHD at time k can be expressed as

pk|k(n) =
r0

k

[
vk+1|k, Zk

]
(n)pk+1|k(n)〈

r0
k

[
vk+1|k, Zk

]
, pk+1|k

〉 (23)

vk|k(x, o) = (1− pk|k(x, o))

〈
b1

k

[
vk+1|k, Zk

]
, pk+1|k

〉
〈

b0
k

[
vk+1|k, Zk

]
, pk+1|k

〉vk+1|k(x, o) + v′k|k(x, o) (24)

v′k|k(x, o) = ∑
z∈Zk

〈
r1

k

[
vk+1|k, Zk

{z}

]
, pk+1|k

〉
〈

r0
k

[
vk+1|k, Zk

]
, pk+1|k

〉 〈1, κk〉gk(z|x, o )pD,k(x, o)
κk(z)

vk+1|k(x, o) (25)

For which

ru
k [v, Z](n) =

min(|Z|,n)

∑
j=0

(|Z| − j)!pκ
k(|Z| − j)Pn

j+u ×
〈
1− pv,k, v

〉n−(j+u)

〈1, v〉n
ej
{〈

D, ϕk,z
〉

: z ∈ Z
}

(26)

where ej(Z) represents an elementary symmetric function:

ej(Z) = ∑
S⊆Z,|S|=j

∏
i=Si

ie0(Z) = 1 (27)

where O is integrated as an interference variable to obtain the target’s CPHD separately:

vk+1|k+1(x) = ∑
o

vk+1|k+1(x, o) (28)

2.2.2. Gaussian Mixture JMNS-CPHD Filtering

As early as 2011, relevant scholars conducted research and analysis on GM-JNS-
CPHD [32].

(1) Prediction of the GM-JMNS-CPHD Filter

The Gaussian distribution forms of rk+1|k(x,o) and vk−1|k(x,o) for new targets are

bk+1|k(x,o) =
JB,o

∑
j=1

bj
k(o)N (x; mj

B,k(o), Pj
B,k(o)) (29)

vk−1|k(x,o) =
Jo,k−1

∑
i=1

v′k−1|k(o)N (x; mi
k−1(o), Pi

k−1(o)) (30)

pk+1|k(n) pk+1|k(n|n′) can be expressed as

pk+1|k(n) = ∑
n′≥0

pk+1|k(n|n′) · pk|k(n′) (31)
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The Markov transition probability pk+1|k(n|n′) is

pk+1|k(n|n′) =
∞

∑
l=j

Cl
j p(l)

∑
o

ps(o)
Jo,k−1

∑
i=1

v′ ik−1|k(o) · Γj〈1− ps,k, v
〉

Γl〈1, v〉
(32)

At this point, it can be rewritten as:

vk+1|k(x,o) = rk+1|k(x,o) + ∑
o′

Jo,k−1

∑
i=1
Xo,o′ ps(x′, o′)v′ ik−1(x

′, o′)N (x; M′) (33)

Among them:

M′ =

M
∑

j=1
xi,j
+

M
,

M
∑

j=1

[
mi

S,+(o
′)− xi,j

+

][
mi

S,+(o
′)− xi,j

+

]T

M
(34)

xi,j
+ ∼ f+(x

∣∣∣xi,j
k−1, o′ )xi,j

k−1 ∼ N (x; mi
k−1(o

′), pi
k−1(o

′)) (35)

(2) Update to the GM-JMNS-CPHD filter

The update to the GM-JMNS-CPHD filter can be expressed as follows below [33,34].
Given the distribution of the cardinality predictions pk+1|k(n) and vk+1|k(x,o), the update

function of the PHD at time k can be expressed as

pk|k(n) =
b0

k

[
vk+1|k, Zk

]
(n)pk+1|k(n)〈

b0
k

[
vk+1|k, Zk

]
, pk+1|k

〉 (36)

vk|k(x, o) = ∑
z∈Zk

J0,+

∑
i=1

αi
k(z, o)βz(o)δi

z(x, o) + (1− pk|k(x, o))vk+1|k(x, o)

〈
r1

k

[
vk+1|k, Zk

]
, pk+1|k

〉
〈

r0
k

[
vk+1|k, Zk

]
, pk+1|k

〉 (37)

αi
k(z, o) =

1
M′

M′

∑
j=1

uk(z
∣∣∣xi,j

k , o )N(xi,j
k ; mi

+(o), Pi
+(o))

πi
k(xi,j

k |Z1:k−1, z, o )
(38)

βz(o) = pk|k(x, o)
〈1, κk〉

〈
b1

k

[
vk+1|k, Zk

]
, pk+1|k

〉
κk(z)

〈
b0

k

[
vk+1|k, Zk

]
, pk+1|k

〉 (39)

δi
z(x, o) = vi

k+1|k(o)N(x; mi
k(z, o), Pi

k(z, o) (40)

Pi
K(z, o) =

M′

∑
j=1

gk(z
∣∣∣xi,j

k ,o )N(xi,j
k ;mi

+(o),P
i
+(o))

πi
k(xi,j

k |Z1:k−1 ,z,o)
[mi

k(z, o)− xi,j
k ][mi

k(z, o)− xi,j
k ]

T

M′

∑
j=1

gk(z
∣∣∣xi,j

k ,o )N(xi,j
k ;mi

+(o),P
i
+(o))

πi
k(xi,j

k |Z1:k−1 ,z,o)

(41)

At this point, xi,j
k ∼ πi

k(·|Z1:k−1 , z, o), which is represented as a probability distribution

of xi,j
k , obeys πi

k(·|Z1:k−1 , z, o).

2.3. Integration Criteria

The commonly used ellipsoidal methods for multisensor fusion include CI, ICI, BC, LE,
and other methods. To verify the effectiveness of our algorithm, multiple ellipsoidal meth-
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ods for multisensor fusion were compared. The CI and ICI fusion methods demonstrated
good results. Therefore, this study investigated two fusion strategies, the CI and ICI.

2.3.1. CI Fusion Strategy

Covariance Intersection (CI) [35,36] fusion: in two sensor systems, if the subsystem
estimation error variance matrix P1, P2 is known and the cross covariance P1,CI , P2,CI is
unknown, the covariance cross-fusion algorithm is

xCI = PCI(ωCIP−1
1 x1 + (1−ωCI)P−1

2 x2) = PCI(P−1
1,CIx1 + P−1

2,CIx2) (42)

PCI = (ωCIP−1
1 + (1−ωCI)P−1

2 )−1 = (P−1
1,CI + P−1

2,CI)
−1 (43)

P−1
1,CI , ωCIP−1

1 (44)

P−1
2,CI , (1−ωCI)P−1

2 (45)

As such,

minJ = min
ω∈[0,1]

trPCI = min
ω∈[0,1]

tr
{[

ω(P1)
−1 + (1−ω)(P2)

−1
]−1
}

(46)

2.3.2. ICI Fusion Strategy

Inverse covariance intersection (ICI) [37] fusion: in two sensor systems, if the subsys-
tem estimation error variance matrix is known and the cross covariance is unknown, the
inverse covariance cross-fusion algorithm is

xICI = KICIx1 + LICIx2 (47)

PICI = P−1
1,ICI + P−1

2,ICI − (ωICI P1 + (1−ωICI)P2)
−1 (48)

KICI = PICI(P
−1
1 −ωICI(ωICIP1 + (1−ωICI)P2)

−1 (49)

LICI = PICI(P
−1
2 − (1−ωICI)(ωICIP1 + (1−ωICI)P2)

−1 (50)

As such,

minJ = min
ω∈[0,1]

trPICI

= min
ω∈[0,1]

tr
{[

(P1)
−1 + (P2)

−1 − (ωP1 + (1−ω)(P2)
−1
]−1
} (51)

3. Application of a Generalized Covariance Intersection for Multitarget Tracking in
the GM-JMNS-CPHD
3.1. GCI-GM-JMNS-CPHD

Two Gaussian components, x ∼ N(x̂1, P̂1) and x ∼ N(x̂2, P̂2), using the CI strategy,
can be expressed as

Np̂ω (x− x̂ω) =
[Np̂1(x− x̂1)]

ω [Np̂2(x− x̂2)]
1−ω∫

[Np̂1(x− x̂1)]
ω [Np̂2(x− x̂2)]

1−ωdx
(52)

where ω ∈ [0, 1].



Sensors 2024, 24, 1508 8 of 18

The GCI fusion strategy is a generalized rule that combines multiobjective density
functions with arbitrary densities. The GCI strategy can be described as follows:

fω(x
∣∣∣Gk

1 , Gk
2) ,

[ f1(x
∣∣∣Gk

1 )]
ω
[[ f2(x

∣∣∣Gk
2 )]

ω
]
1−ω

∫
[ f1(x

∣∣Gk
1 )]

ω
[[ f2(x

∣∣Gk
2 )]

ω
]
1−ω

dx
(53)

Assuming that s(x) is a local density function, the local multiobjective density that
should be fused into the GM-JMNS-CPHD is

f1(X) = n!p1(n)∏
x/∈X

s1(x) (54)

f2(X) = n!p2(n)∏
x/∈X

s2(x) (55)

The GCI fusion strategy can be applied to the GM-JMNS-CPHD as follows:

s(x) =
sω

1 (x)s
1−ω
2 (x)∫

sω
1 (x)s

1−ω
2 (x)dx

(56)

p(n) =
pω

1 (n)p1−ω
2 (n)(sω

1 (x)s
1−ω
2 (x))

n

∞
∑

m=0
pω

1 (m)p1−ω
2 (m)(

∫
sω

1 (x)s
1−ω
2 (x)dx)

m
(57)

The GM-GCI integration strategy can be described as follows:

sGCI(x) =
sω

1 (x)s
1−ω
2 (x)∫

sω
1 (x)s

1−ω
2 (x)dx

=

N1
G

∑
i=1

N2
G

∑
j=1

α12
ij N (x̂12

ij , P12
ij )

N1
G

∑
i=1

N2
G

∑
j=1

α12
ij

(58)

P12
ij = [ωGCI(P1

i )
−1

+ (1−ωGCI)(P2
j )
−1

]
−1

(59)

x̂12
ij = P12

ij [ωGCI(P1
i )
−1

x̂1
i + (1−ωGCI)(P2

j )
−1

x̂2
j ] (60)

α12
ij = (α1

i )
ω
(α2

j )
1−ω

κ(ω, P1
i )κ(1−ω, P2

j )N(x̂1
i − x̂2

j ; 0;
P1

i
ω

+
P2

j

1−ω
) (61)

The GCI-GM-JMNS-CPHD algorithm process is shown in Algorithm 1. The GM-JMNS-
CPHD is calculated according to Formulas (25)–(38) above, and its weight is calculated according
to the GCI fusion algorithm. Finally, the fusion result is modified and improved.

Algorithm 1: GCI-GM-JMNSCPHD filtering algorithm process.

1. Calculate the distribution GM-JMNS-CPHD results according to Formulas (25)–(38), calculate
the prediction of GM-JMNS-CPHD, and update
2. For M sensors
3. Using the Formulas (56)–(58) GCI fusion strategy to calculate weights ωGCI

4. Calculate different P1(m)
k|k , P2(m)

k|k separately
5. Calculate the next level fusion result based on the previous level fusion result
6. Modify and improve GCI-GM-CPHD through “pruning” and “merging”
7. end for
8. Estimate extraction
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3.2. GICI-GM-JMNS-CPHD

WOO JUNG PARK [38] (2021) proposed a generalized inverse covariance dilation
method, and this study used this method for its calculations. The core of the inflation
method is the removal of the weight part of the CI fusion strategy and the change of the
original structure of the ICI to

xICI = KICIx1 + LICIx2 (62)

PICI = (P−1
1,ICI + P−1

2,ICI)
−1

(63)

P−1
1,ICI , P−1

1 −ωICI(ωICIP1 + (1−ωICI)P2)
−1 (64)

P−1
2,ICI , P−1

2 − (1−ωICI)(ωICIP1 + (1−ωICI)P2)
−1 (65)

The verification of the above scholars demonstrates that xTP1,CIx > 0, xTP2,CIx > 0
and P1,CI , P2,CI have positive definiteness.

xTP1,ICIx = xTP1x +
ω

1−ω
yTP−1

2 y > 0 (66)

xTP2,ICIx = xTPBx +
ω

1−ω
yTP−1

A y > 0 (67)

The GM-GICI fusion strategy can be described as follows:

ŝGCI(x) =
s1(x)s2(x)∫
s1(x)s2(x)dx

=

N1
G

∑
i=1

N2
G

∑
j=1

α12
ij N (x̂12

ij , P12
ij )

N1
G

∑
i=1

N2
G

∑
j=1

α12
ij

(68)

P12
ij = [(P1

i )
−1

+ (P2
j )
−1

]
−1

(69)

x̂12
ij = P12

ij [(P
1
i )
−1

x̂1
i + ((P2

j )
−1

x̂2
j ] (70)

α12
ij = (α1

i )
ω
(α2

j )
1−ω

N(x̂1
i − x̂2

j ; 0; P1
i + P2

j ) (71)

The GICI-GM-JMNSCPHD algorithm process is shown in Algorithm 2. The GM-
JMNSCPHD is also calculated according to Formulas (25)–(38) above, and its weight is
calculated according to the GICI fusion algorithm. Finally, the fusion result is modified
and improved.

Algorithm 2: GICI-GM-JMNSCPHD filtering algorithm process.

1. Calculate the distribution GM-JMNSCPHD results according to Formulas (28)–(41), calculate
the prediction of GM-JMNSCPHD, and update
2. For M sensors
3. Using the Formulas (59)–(61) GCI fusion strategy to calculate weights ωGICI
4. Replace the covariance of a single sensor probability density of Py

1, Py
2 with{

Pm
1,ICI = Pm

1 + ωICI
1 − ωICI

Pm
1 (P

m
2 )
−1Pm

A
Pm

2,ICI = Pm
2 + ωICI

1 − ωICI
Pm

B (P
m
A)
−1Pm

B
5. Calculate the next level fusion result based on the previous level fusion result
6. Calculate GM covariance through (54)–(61)
7. Modify and improve GCI-GM-CPHD through “pruning” and “merging”
8. End for
9. Estimate extraction
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4. Modeling and Simulation

This study adopts the GM-JMNS-CPHD filter as its research focus and mainly explores
the fusion strategies of nonlinear Gaussian models. For this purpose, nonlinear models
are selected and simulated using the constant turn rate and velocity (CTRV) model. The

nonlinear CTRV model is CTRV(x) = (x ϑ y ψ
.
ψ)
>

, where the five variables are as follows:
x is the abscissa, y is the ordinate, v is the line velocity, ψ is the yaw angle (counterclockwise
to the included angle), and

.
ψ is the angular velocity.

xk =


1 sin ΩT

Ω 0 − 1 − cos ΩT
Ω 0

0 cos ΩT 0 − sin ΩT 0
0 1 − cos ΩT

Ω 1 sin ΩT
Ω 0

0 sin ΩT 0 cos ΩT 0
0 0 0 0 1

xk−1 + vk (72)

The measurement noise is

wk ∼ N(0, R), R = diag[σ2
r σ2

θ ] (73)

Q = diag[q1M q1M q1T] (74)

To verify the effectiveness of this study, the generalized covariance intersection of
multiobjective tracking is applied to several aspects of the GM-JMNS-CPHD algorithm.

4.1. Effectiveness of the GM-JMNS-CPHD Algorithm

The GM-JMNS-CPHD filter is applied to a sensor with a detection probability of 0.9
and a survival probability of 0.99. The Poisson average rate of the uniform clutter of the
moving target is 8, and its birth density is located at (±2000 m, ±2000 m). All simula-
tions are completed using 200 Monte Carlo experiments, with the truncation threshold
T = 10−5, merging threshold U = 2, and maximum allowable number of Gaussian terms
Jmax = 100 set in the GM-JMNS-CPHD algorithm. The tracking performance of the moving
targets is measured by their optimal subpattern allocation (OSPA) distance. The parameters
for the OSPA distance are set as a cutoff parameter c = 100 and order parameter p = 1. A
nonlinear Gaussian measurement model is selected, and the initial state of the target in the
nonlinear linear Gaussian measurement model is shown in Table 1.

Table 1. Initial state of the target in the nonlinear Gaussian measurement model.

Target Initial State Appearing Frame Disappearing Frame

1 [1000; −10; 1300; −10; wturn/8] 1 truth.K + 1
2 [−1500; 11; 250; 10; −wturn/6] 10 truth.K + 1
3 [−250; 20; 1000; 3; −wturn/3] 10 truth.K + 1
4 [−1200; 12; 250; 10; −wturn/3] 10 truth.K + 1
5 [−1300; 40; 200; 0; −wturn/2] 10 66
6 [250; 11; 750; 5; −wturn/6] 20 80
7 [−250; −12; 800; −12; wturn/2] 40 truth.K + 1
8 [1000; 0; 1500; −10; wturn/4] 40 truth.K + 1
9 [220; −10; 750; 10; −wturn/4] 40 80
10 [800; −20; 1200; 0; wturn/4] 60 truth.K + 1
11 [250; −10; 650; −15; wturn/8] 60 truth.K + 1
12 [−1400; 20; 330; 0; −wturn/5] 60 150
13 [800; −30; 1500; 0; wturn/3] 60 truth.K + 1
14 [300; −10; 550; −15; wturn/8] 80 truth.K + 1
15 [−200; 10; 800; 3; −wturn/3] 120 200

Figures 1 and 2 show the moving target’s trajectory in the nonlinear CTRV model,
as well as its true trajectory, measured values, and estimated values in the Cartesian
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coordinate system of the nonlinear model. The GM-JMNS-CPHD has good performance in
the multitarget tracking of nonlinear systems and is suitable for the multitarget tracking of
nonlinear systems. From a comparison of the OSPA distance errors between the algorithms
in the nonlinear model shown in Figure 3 and a comparison of the cardinality distributions
between the algorithms in the nonlinear model shown in Figure 4, it can be seen that the
GM-JMNS-CPHD has a good implementation effect and can be used for multiobjective
nonlinear motion tracking.
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To verify the robustness of the GM-JMNS-CPHD, this study will conduct research and
analysis on the performance of the algorithm under different noise levels. The impact of
different object detection probabilities pD on the algorithm’s performance will be tested in
different scenarios, and the effects under different conditions of pD will be determined, as
shown in Figures 5 and 6. The results in the figure show that the GM-JMNS-CPHD can
maintain its stability at the same noise level and that it has a certain degree of robustness.
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4.2. Implementation of the GICI-GM-JMNS-CPHD Algorithm

After verifying the effectiveness of the GM-JMNS-CPHD filter, the GCI and GICI fusion
strategies were applied to the GM-JMNS-CPHD filter. Because the fusion performance
of the GCI and GICI sensors is proportional to the number of sensors, this study selected
two sensors as the research objects to verify the target tracking performance of the Sensor1,
Sensor2, GCI-GM-JMNS-CPHD, and GCI-GM-JMNS-CPHD methods. According to the
above GCI-GM-JMNSCPHD filtering algorithm flow and GCI-GM-JMNSCPHD filtering
algorithm flow, the algorithm flow is implemented, as shown in Figures 7 and 8.
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A comparison of the OSPA distance errors in the nonlinear model in Figure 7, using the
GCI-GM-JMNS-CPHD, and a comparison of the cardinality distributions in the nonlinear
model in Figure 8, using the GCI-GM-JMNS-CPHD, reveals that the GCI fusion criterion
can be applied to the GM-JMNS-CPHD algorithm. Compared with that of the GCI-GM-
JMNS-CPHD, the performances of the single sensors Sensor1 and Sensor2 in nonlinear
multitarget tracking can be improved.

By comparing the OSPA distance errors in the nonlinear model in Figure 9 and the car-
dinality distributions in the nonlinear model in Figure 10, it can be seen that the GICI fusion
criterion can be applied to the GM-JMNS-CPHD algorithm. Compared to the GICI-GM-
JMNS-CPHD, the proposed sensor can improve the performance of nonlinear multitarget
tracking in comparison to the single-sensor performances of Sensor1 and Sensor2.
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To compare the effectiveness of the GCI-GM-JMNS-CPHD and GICI-GM-JMNS-CPHD
methods, this study selected the Sensor1, Sensor2, GCI-GM CPHD, GICI-GM-CPHD, GCI-
GM-JMNS-CPHD, and GICI-GM-JMNS-CPHD methods for comparison, as is shown in
Figures 11 and 12.

From the comparison of the OSPA distance errors of several commonly used GM-
CPHD algorithms in nonlinear models, seen in Figures 11 and 12, and the comparison of
the cardinality distributions of several commonly used GM-CPHD algorithms in nonlinear
models, seen in Figures 11 and 12, it can be seen that, compared to those of other methods
such as the GCI-GM-CPHD and GICI-GM-CPHD, the errors of these algorithms are rela-
tively large, while the direct effects of these two methods on nonlinear multimotion target
tracking are not significant. The comparison results between the GCI-GM-JMNS-CPHD
and GICI-GM-JMNS-CPHD are relatively similar, and their fused results can outperform
the multitarget tracking performance of the Sensor1 and Sensor2 single sensors.
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5. Summary and Prospects

This study proposes a fusion method based on the GICI-GM-JMNS-CPHD filter,
which applies the GCI and GICI fusion criteria to the GM-JMNS-CPHD filter to achieve the
multitarget tracking of the GM-CPHD in multisensor and multitarget nonlinear motion. In
the simulation experiment, the effectiveness of the two methods was first verified. Second,
the comparison between the GCI-GM-JMNS-CPHD and GICI-GM-JMNS-CPHD shows
that both have a better performance than the single-sensor multitarget tracking of Sensor1
and Sensor2. The performances of the CI-GM-JMNS-CPHD and GICI-GM-JMNS-CPHD in
nonlinear multitarget tracking are superior to those of the traditional fusion methods of
the GCI-GM-CPHD and GICI-GM-CPHD. This approach is more suitable for the nonlinear
motion tracking of multiple moving targets with sensors.

Although the above methods have validated the effectiveness of this study, it has been
confirmed that the GCI-GM-JMNS-CPPHD and GICI-GM-JMNS-CPPHD can be applied to
multitarget tracking in nonlinear systems. However, it is worth noting that both methods
take a significant amount of time. The above methods model noise errors, not sensor data,
which may affect the accuracy of the fusion method to a certain extent. Additionally, issues
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such as sensor bias and suboptimal CIs can also affect fusion accuracy. The limitations and
future research directions of this study include studying how to efficiently implement these
algorithms and reduce their runtime, as well as considering the impact of other related
factors on fusion accuracy.
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