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Abstract: Climate change and human interventions (e.g., massive barrages, dams, sand mining, and
sluice gates) in the Ganga–Padma River (India and Bangladesh) have escalated in recent decades,
disrupting the natural flow regime and habitat. This study employed innovative trend analysis
(ITA), range of variability approach (RVA), and continuous wavelet analysis (CWA) to quantify
the past to future hydrological change in the river because of the building of the Farakka Barrage
(FB). We also forecast flow regimes using unique hybrid machine learning techniques based on
particle swarm optimization (PSO). The ITA findings revealed that the average discharge trended
substantially negatively throughout the dry season (January–May). However, the RVA analysis
showed that average discharge was lower than environmental flows. The CWA indicated that the FB
has a significant influence on the periodicity of the streamflow regime. PSO-Reduced Error Pruning
Tree (REPTree) was the best fit for average discharge prediction (RMSE = 0.14), PSO-random forest
(RF) was the best match for maximum discharge (RMSE = 0.3), and PSO-M5P (RMSE = 0.18) was
better for the lowest discharge prediction. Furthermore, the basin’s discharge has reduced over
time, concerning the riparian environment. This research describes the measurement of hydrological
change and forecasts the discharge for upcoming days, which might be valuable in developing
sustainable water resource management plans in this location.

Keywords: flow regimes; innovative trend analysis; range of variability; machine learning; data
science; artificial intelligence; big data; hydrological model; climate change; environmental flows

1. Introduction

One of the most remarkable modifications of the fluvial landscape on earth is the
construction of artificial structures, such as dams and barrages, over the river. Hydrological
alteration downstream of the river after the barrage’s construction is one of the significant
challenges [1]. In Bangladesh, the discharge change downstream of the river because of
the barrage is unequivocal. Hydrological alteration implies the indication of changes by
magnitude or timing, or both, of the factors of a river system. Anthropogenic activities
can alter the natural streamflow pattern [2]. Such activities, characterized by different
artificial structures, including dams, embankments, settlements, and resource abstraction,
can be accelerated due to population and economic growth [3]. Land use and land cover
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(LULC) changes through the construction of dams, bridges, and artificial flow diversion
are the critical anthropogenic factors for the hydrological alteration of a river. The Padma
River basin has been considered as a powerful dynamic river system and is also affected
by excessive human interventions, such as hydropower generation, as well as the adverse
effects from the changing climatic regime in this region [4,5]. Until 1975, the river was in
its natural flow state. However, on 21 April 1975, the FB was installed over the Ganga
River by the Indian government. The barrage location is in Farakka, West Bengal, upstream
(16.5 km) from the Indo–Bangladesh border. Following its operation, dry season flow
reduced significantly [4], while the monsoonal discharge increased in the downstream
part of Bangladesh. Because of the barrage, there is a significant change in the river flow
pattern, which affects the ecological and social systems, evidenced by existing works [6,7].
Moreover, the withdrawal of water in the dry period has induced hydro–geomorphological
alterations [8]. The barrage has also affected the downstream floodplain regime, including
its connectivity, nutrient dynamics, and sediment influxes [9,10].

The hydrological alteration of the river due to the construction of a barrage or dam
on the river is well documented [11–16]. Much research has already been carried out
to understand the impact of the Farakka barrage on the downstream part of the river
in Bangladesh [2], but research predicting the future flow by using machine learning
algorithms is still scarce. Thus, it is essential to predict the streamflow using machine
learning algorithms in the Padma River basin for sustainable water resource management.

Water resource management planners determine the ecological flow condition to
develop the sustainable catchment management plans using the streamflow regime and
the potential flow of the river [17–19]. However, researchers, especially in developing
countries, encounter data scarcity problems because, in developing countries, a good
numbers of gauge stations are not available or installed for all rivers, and many rivers
do not have a gauge station. Therefore, it is challenging to obtain long-term historical
time series datasets for water level and discharge. Similarly, Padma River has only a
single gauge station. Therefore, water resource management planners must rely on the
application of sophisticated statistical and machine learning techniques for quantifying
the trend, streamflow pattern and periodicity, and for predicting streamflow for incoming
days to conserve/restore the fluvial system and sustainable development [20]. Enhancing
the forecasting of the streamflow in an ungauged stream has been an important goal
for hydrologists in the hydrology field [21]. Machine learning algorithms have recently
gained researchers’ and scientists’ attention for forecasting future flow scenarios under
different hydrological conditions. For instance, [22] applied a set of eight machine learning
algorithms to compare the prediction of low-flow indices for an ungauged river in the USA.

Of late, some researchers have examined the possibilities of addressing water engi-
neering problems by using advanced soft computing models. Machine learning algorithms,
such as random forest and random trees (RT), artificial neural network (ANN), support
vector machine (SVM), bagging, etc., have been progressively employed in solving hy-
draulic engineering issues. Many recent works have successfully applied machine learning
algorithms to the field of groundwater hydrology [23–25], water resources [26–28], and
engineering [29,30]. RF is a popular supervised ensemble tree-based model and has been
widely used in different fields, but few studies related to streamflow prediction have been
conducted recently [31]. Several studies have been conducted using REPTree and M5P
in hydrology and climatology [32–34]. The commonly used models, including RF, SVM,
and ANNs, have a very restricted model configuration [34], making it difficult to fully
investigate the intricate nonlinear correlations between the occurrence of hydrological
studies and the cause variables [34]. In such a case, swamp particle optimization (PSO) is
an evolutionary optimized data-driven tool that can alter valuable features from the input
dataset [31,34], which is suitable for analyzing the streamflow discharge. Furthermore,
the PSO method deals with such poor convergence and local optimum issues, making it
a good contender for improving the performance of streamflow discharge investigations.
We introduced particle swarm optimization (PSO)-integrated machine learning models to
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forecast discharge in the proposed study. Few studies have appraised the performance of
different machine learning algorithms used for predicting the streamflow.

Keeping in view the significance of machine learning algorithms, this paper developed
and applied three hybrid machine learning algorithms, such as PSO-RF, PSO-REPTree,
and PSO-M5P, to forecast the streamflow, which was measured at Hardinge bridge station,
Pabna, Bangladesh. Thus far, there is no study on predicting streamflow in the Padma River
basin, Bangladesh, using PSO-based ensemble machine learning algorithms. To the best of
the authors’ knowledge, the applications of PSO-M5P, PSO-RF, and PSO-REPTree integrated
with ITA, RVA, and CWT methods have not yet been applied to quantify the hydrological
alteration and predict the streamflow in the Padma River basin, Bangladesh. The novelty of
this work is the utilization of three machine learning algorithms for streamflow prediction
with integrated multiple approaches, including ITA, CWA, and RVA, for the hydrological
alteration of the basin. Therefore, this study is an attempt to quantify the hydrological
alteration because of the FB and predict the streamflow by using ensemble machine learning
algorithms for the first time in Bangladesh. The outcome of this study might be helpful
in the negotiation of transboundary water resource conflict management and rationally
managing the water resources.

2. Materials and Methods
2.1. Description of the Study Area

With an area of over 2562 km2, the Padma River is the most significant downstream
section of the Ganges River, which originates from the Gangotri glacier in the Himalayas.
The Ganges River basin is one of the most heavily inhabited areas on the planet. The
Ganges and its downstream, the Padma River, provide advantages to about 407 million
people in India and Bangladesh. This river heavily influences these nations’ socio-ecological
contexts. The Padma River flows through Bangladesh for 108 km until it meets the Meghna
at Chandpur. The Padma River receives a combined flow of 30,000 m3s−1 from the Ganges
and Brahmaputra rivers, with peak discharges of 75,000 m3s−1 when the banks are full [35].
The river’s gradient drops about 5 cm per kilometer [36]. This research was carried out in
the Padma River basin, encompassing eight districts, including Pabna, Shirajganj, Natore,
Bogura, Jaypurhat, Naogaon, Rajshahi, and Chapainawabganj (Figure 1). The river receives
900 metric tons of sediment each year, 60% of which is silt or clay, and the remainder is bed
load [37]. The river’s floodplain has a “wandering” pattern, according to [35]. People’s
livelihoods depend on the Padma River basin’s capacity to support agricultural and other
industries and provide sustenance and aquaculture. This freshwater distribution system is
critical to the survival of a riparian ecosystem in Bangladesh’s south-western area, which
is primarily comprised of the world’s most extensive mangrove forest, the Sundarbans,
by retaining salinity on the anterior downstream side of the Bay of Bengal (BOB) and
preventing it from deteriorating [38]. This basin also experiences severe fluctuation in
flow regime (water and sediment), triggered by monsoonal precipitation and the melting
of Himalayan glaciers, and this results in regular major floods of unprecedented scale in
Bangladesh. In addition, bank erosion and river shifts are prevalent in this basin, which
has resulted in environmental deterioration and population movement. This is expected
to worsen in the future due to climate change, which is expected to augment the amount
of water flowing into the Ganges–Brahmaputra–Meghna River basins [39]). There are
four distinct seasons in this area: summer (March to May), monsoon (June to September),
post-monsoon (October to November), and winter (December to February).



Sustainability 2022, 14, 5233 4 of 26

Figure 1. Map showing the location of the Padma River basin, Bangladesh.

2.2. Materials

Daily river water flow data (1970 to 2018) of the Padma River basin for the representa-
tive gauge station (Hardinge Gauge station over Padma River, Pabna) were collected from
the Bangladesh water development board.

2.3. Methods for Innovative Trend Analysis

In this paper, we used ITA, which was first proposed by Sen [40]. Sen (2012) [40]
reported some limitations in most commonly employed Mann–Kendall and Spearman’s
rho tests; for instance, they usually need distributed datasets, long-term time series datasets,
independent variables [41], which work under a Cartesian coordinate system. For the ITA
approach, it needs the time series data to be classified into two classes. The following
equation expresses the original trend indicator 1

Φ =
1
n

n

∑
1

10Xj − Xi

µ
(1)

where Φ means the indicator of trend; number of total observations are denoted by n; Xi
denotes the data of first sub-series; Xj and µ are represented as the data of the second
sub-series and mean value of the data of the first sub-series, respectively. The increasing
and decreasing trend can be identified by the positive and negative value of Φ.

2.4. Methods for Hydrologic Alteration Using the Range of Variability Approach

Large numbers of flora and fauna make a river’s ecosystem and its floodplain. A
particular amount of streamflow is required for their survival and good health [42]. If the
required water availability is unavailable in the river, the species do not receive adequate
water, and it becomes difficult to survive. This study attempted to identify the ecological
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range of flow, which can be suitable for sustaining ecosystems, and presented the effect of
streamflow change on the ecological state. It is difficult to calculate the threshold water
volume level needed for the valuable existence of the riparian ecosystem.

Therefore, Richter et al. [42] recommended several dispersion measures (e.g., ±1 or
±2 standard deviations and eightieth percentile) for assessing primary threshold levels of
streamflow conditions. Here, the standard deviation drives RVA for the monthly average,
the maximum and minimum water levels are calculated. Gain and Giupponi [43] computed
±1 SD-based RVA for different months to determine exceedance flow condition over time
using the following Equation (2)

(Mean− SD) ≤ Parameter ≤ (Mean + SD) (2)

Richter et al. [44] described that setting a flow range (RVA) is not the plan for com-
puting all values of how the downstream of the river lies within the range. However, the
principal goal of RVA is to count the downstream flow of post-change years, which lie
within this flow range with the same frequencies observed during the pre-change period. In
this way, the frequency of pre- and post-change years was counted for every IHA parameter.
The frequency of years during the pre-change period that attains the threshold limits of
RVA is regarded as the “expected” values. During the post-Farakka Barrage period, the
frequency of years occupies the threshold levels of RVA, considered the “observed” values.
Considering this computation, we evaluate hydrologic alteration [45]. In this manner,
Equation (3) computes each variable’s degree of hydrological alteration (DHA).

Degree o f hydrological alteration (%) =

(
Observed f requency− Expected f requency

Expected Frequency

)
∗ 100 (3)

The streamflow alteration could be zero, positive, or negative values. When it equals
zero, the present condition is within the expected range, and no alteration happens with
good ecosystem health. When it equals a positive value, expressing the observed values of
the variables attained the threshold limit more times than expected, which shows a good
sign for the ecosystem, although it will not be suitable for some species as they prefer
to survive in the optimal range. However, the negative value of DHA shows that the
observed value does not attain the threshold limit as the expected value, which represents
lousy ecosystem health. The species living there may have faced critical situations for
survival. The HDA of maximum, average, and minimum streamflow was represented in
the graphical form of the heat map.

2.5. Periodicity Analysis by Using Continuous Wavelet Transforms

The periodicity analysis of the time series data using wavelet transformation is not
ancient and is a changed form of Fourier transformation. The Fourier transform reveals
the information in one dimension. If it gives information about the time domain, the scale
domain will be lost and vice versa. In contrast, the wavelet transformation can give both
time and scale domain information [46]. Therefore, wavelet transformation has become
a popular technique for solving time series problems. The nonstationary time series data
(mean, variance, covariance, and autocorrelation are changed over time and cannot get
back to their original state) are most appropriate to use the wavelet analysis to explore the
volatility of the data. Therefore, hydro-meteorological time series data are nonstationary
data; the wavelet transformation is valuable. Goupillaud et al. [47] first used wavelets as a
family of functions derived from the translations and dilations of a single function, known
as “mother wavelet”.

2.6. Proposing PSO-Based Novel Hybrid Machine Learning Algorithms for Streamflow Prediction

In this study, we proposed PSO-RF, PSO-REPTree, and PSO-M5P algorithms to predict
and forecast the streamflow of the Padma River. Earlier studies have applied several
stochastic models, such as the average and autoregressive moving average (ARMA), mov-
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ing average models, and autoregressive moving average (ARIMA) models, to predict and
forecast highly nonlinear streamflow behavior. These approaches performed well when the
data were placed within the range of former observations. When the data show extreme
events, these models perform poorly. However, these problems have been solved by ad-
vancing machine learning algorithms, although they have several flaws, which prevent
models from performing accurately. Therefore, good optimization can overcome the flaws
of the machine learning techniques. Therefore, in this paper, for the first time, PSO-RF,
PSO-REPTree, and PSO-M5P algorithms have been applied for streamflow forecasting.

In the present study, the machine learning (ML) algorithms work as follows to forecast
the streamflow:

The whole time series records from 1970 to 2018 were used to estimate discharge
values for future years. Time series forecasting works by applying models to past data
and then using the results to forecast incoming observations. For example, an hour, a day,
or a month before the measurement is used as an input to estimate the following hour,
day, or month. Lag periods or lags are the steps believed to move the data backward in
time (sequence). As a result, a time series issue may be turned into a supervised ML using
measurement lags as supervised ML inputs. As a result, we employed six lags as inputs for
forecasting future discharge in this investigation. For all models, we kept the lags the same.
We chose six lags after testing 1–5 lags and determined that the six lags’ outcomes were
adequate. We also investigated other discharge-controlling factors, including rainfall and
temperature, and found that these factors had very little influence on discharge generation
(https://openjicareport.jica.go.jp/pdf/11788502_02.pdf (accessed on 8 April 2020)). As a
result, the forecasting process may be scientific and reliable.

2.6.1. Particle Swarm Intelligence

Eberhart and Kennedy [48] were the first to propose the PSO, a robust meta-heuristic
resilient evolutionary algorithm based on population behavior. An essential inspiration
for the PSO concept was the cooperative behaviour of fish and birds in search of food [49].
Because of the PSO algorithm’s high learning speed and low memory requirements, it has
recently been widely used to solve nonlinear problems in a variety of fields, including
geology [50], flood susceptibility modeling [51], landslide susceptibility modeling [52],
and forest fire mapping [53]. The PSO algorithm’s swarm of particles is constantly on the
lookout for the best solution to address the situation at hand. PSO’s particles follow the
search space at random. Particles in a swarm move about in search space depending on
their own and neighbors’ information. Particles in the group learn from each other and
move toward the best neighbor, depending on their information. It may be summarized by
saying that the PSO is based on the premise that each swarm of particles moves about in
the search space to find the best position or location it has ever been in and the best location
closest to its neighbor.

2.6.2. Machine Learning Algorithms
Application of RF

RF is a bagging-based artificial intelligence model frequently utilized for prediction
and classification. For the prediction of time series datasets, we recently used this approach,
and the results were impressive [54]. The RF algorithm is a nonparametric ensemble
classification algorithm based on Breiman’s algorithm’s flexible decision tree [55]. The RF
constructs decision trees, with each tree being formed by leveraging the bootstrap training
samples [55]. In order to build a better model, it is necessary to build a large tree [55]. Each
node of the trees must contain the appropriate number of selected predictor variables. The
least number of observations would be taken at the tree’s terminal nodes in this situation.
This model was built using a strategy that randomly selected training data from the actual
dataset [55,56]. The parameters of a model that are optimized have a significant impact on
its performance. In contrast, the RF model’s performance has been improved by using the
PSO approach.

https://openjicareport.jica.go.jp/pdf/11788502_02.pdf


Sustainability 2022, 14, 5233 7 of 26

Application of REPTree

The REPTree method leverages entropy-based information gain computations to speed
up the decision-making process, which also helps reduce the variance error [57,58]. REPTree
makes use of the regression tree technique and creates numerous trees using various calcula-
tion processes, from which it selects the best tree out of all the trees that were generated [58].
In REPTree, constructing training datasets is flexible and straightforward when the output
is large, reducing the complexity of the tree structure [59]. This method’s pruning technique
takes backward over-fitting complexity into account and uses a post-pruning approach to
obtain the simplest possible version of the best precision tree logic [57,60]. It only picks
values for numeric properties one time throughout the process [61]. Entropy, reduced vari-
ance, and decreased error pruning all contribute to the model’s success [62]. The REPTree
algorithm can be explained in terms of the sum of the squared error (S)

S = ∑X ∑i∈X(Yi −Mn)
2 (4)

Mn =
1
Pc

∑i∈X Yi (5)

where X denotes the leaf of REPTree, Y denotes the response parameters, and W ⊆ X. The
combination of Equations (4) and (5) generated the Equation (6)

S = Pc·Vc (6)

where Pc represents the leaf class’s prediction, and Vc denotes the variance within.

2.6.3. Application of M5P

Quinlan [63] proposed the M5P tree, which consists of a regular decision tree with the
choice of linear regression functions at each node [64]. The Standard Deviation Reduction
(SDR) metric (Equation (7)) is the divergence measure utilized to create the decision tree in
this case.

SDR = sd(T)−∑i

∣∣∣∣Ti
T

∣∣∣∣ ∗ sd(Ti) (7)

where T denotes the sets of observations that reach the node, sd refers to the standard
deviation, Ti represent the sets obtained from the splitting the node as per the split value
and attribute.

It also uses a linear regression method to create tree models. Pruning, evacuation, and
replacement of trees are all part of the process. After that, a final tree model is produced
for analysis [64]. After examining the datasets, a tree model is used to predict the output
from various input values. This method deals with continuous class problems rather than
discrete class difficulties, and it is capable of dealing with tasks with higher dimensionality.
When a linear function is built to estimate the nonlinear relationships of a dataset, the M5P
tree displays piecewise information about each linear function. M5P trees are simple yet
effective methods for modeling tree patterns and associations in big datasets [63].

2.6.4. Procedure for Ensemble

Specifically, the current work used the PSO method to determine the optimal structural
parameters of machine learning algorithms. The following is the ensemble technique for the
proposed PSO-REPTree, PSO-RF, and PSO-M5P: PSO algorithm parameterization; training
and testing of machine learning algorithm with the initialized parameters; calculation
of fitness function; fitness value for each swarm of particles concerning local and global
best values; updating the velocity and position of each swarm of particles in response to
these updates; reaching the maximum number of iterations. If the maximum number of
iterations is not attained, the process is repeated from the beginning of the second stage
until the maximum number of iterations is reached. These are the best settings for the
machine learning algorithms. The initialization of PSO’s parameters was chosen as the
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method of initialization. The detailed initialized parameters and the optimized parameters
for machine learning algorithms are provided in Table S1 in Supplementary Materials.

After the algorithms produced better prediction results, we forecast the streamflow
for upcoming days. The flowchart adopted for this study is shown in Figure 2.

Figure 2. Flow chart of assessing the impacts of hydrological alteration due to Farakka Barrage in the
Padma River basin.

2.7. Validations

For assessing the precision of the models, different statistics were established and
used. We used the best known and most widely used techniques in the present study.
In this work, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE) measures were used to estimate the performance of
the different prediction models. The RMSE, MAE, and MAPE were calculated by using
Equations (6)–(8), respectively.

RMSE =

√
1
n

n

∑
i=1

(P(Predicted f low)i
−Q(Observed f low)i

)2 (8)

MAE =
∑n

i=1

∣∣∣(P(Predicted f low)i
−Q(Observed f low)i

)
∣∣∣

n
(9)

MAPE =

(
1
n ∑

|Observed f low− Predicted f low|
|Observed f low|

)
∗ 100 (10)

Since the research region is prone to flooding each year, historical flooding inventories
were created based on a field survey and local residents’ perceptions. We acquired many
data types for flood susceptibility modelling in this investigation. We used land use and
land cover data from the United States Geological Survey website (spatial resolution: 30 m).
We utilized Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer
Global Digital Elevation Model (ASTER GDEM) (Version 2) to derive topographical and hy-
drological variables (spatial resolution: 30 m). The Bangladesh Meteorological Department
provided the rainfall data. We utilized a general soil type data from the Geology Survey
of Bangladesh.
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3. Results and Analysis
3.1. Trend Analysis

We present the outcome of innovative trend analysis in Table 1 showing slope (D value)
for average, maximum, and minimum river discharge. Here, the positive values show an
increasing trend, and the negative values depict the decreasing trend. From Table 2, it was
found that the average discharge of January, February, July, November, and December had
a positive D value, which shows the mean discharge of the river increased. Meanwhile,
March–June and August–October showed negative D values, i.e., decreasing streamflows
(Table 2). Moreover, we show the graphical results of the ITA for the average discharge
for all IHA parameters in the Supplementary Figure S1. Streamflow was very low in May,
and the discharge started from 500 m3s−1, possibly reflecting dry seasonal withdrawals of
waters by the FB.

Table 1. Slope (D) value of innovative trend analysis for average, maximum, and minimum discharge
in the Padma River basin.

Month Slope (D) Value
for Average

Slope (D) Value
for Maximum

Slope (D) Value
for Minimum

January 0.878 1.23 0.237
February 0.339 0.92 0.024

March −0.190 0.47 −0.780
April −0.468 −0.083 −1.64
May −1.174 −0.011 −1.475
June −1.05 −0.137 −0.297
July 0.612 1.01 1.71

August −0.016 0.041 0.125
September −0.643 −0.552 −0.178

October −0.025 0.340 0.683
November 0.344 0.81 0.420
December 1.23 2.28 0.89

However, January–March, July, August, and October–December for maximum dis-
charge showed positive values (Table 2). In July, December, and January, the streamflow
increased significantly. We observed negative D values in April, May, June, and September
(Table 2). The graphical form of ITA showed an increasing trend from January, May, July,
and October to December (Figure S2). The D value showed a significant decreasing trend in
April and May with minimum discharge. Other IHA parameters, such as March, June, and
September, also showed negative trends. July and January showed a slightly positive trend
for minimum discharge. Figure S3 shows the decreasing trend for the minimum discharge
of March, April, May, June, and September.

3.2. Modeling of Hydrological Alteration

The monthly hydrological alteration of the post-barrage period (1970 to 2018) for
average flow has been severely altered (Supplementary Table S2) from its natural con-
dition, which shows the river has been affected from moderate to the high condition of
hydrological alteration while comparing with the scale developed by Talukdar and Pal [65].
We evaluated the monthly alteration through the DFA to determine the magnitude of the
basin’s hydrological alteration.

In Supplementary Table S2, we computed the high, low, and ecological thresholds
using the RVA based on pre-barrage discharge data. The ecological threshold values
depicted the range of natural flow required for sustaining a healthy ecosystem. Values
more significant than the higher threshold and smaller than the lower threshold show
positive and negative hydrological alteration. Positive hydrological alteration can be
good, but for some species this can affect their optimal required water and be harmful to
their ability to complete their survival cycle. The RVA analysis for maximum discharge
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illustrated less water flow in February, March, April, and May than in the lower RVA
threshold (Supplementary Table S2). However, with minimum discharge, it was observed
that the discharge was lower than the low RVA threshold in the entire year. It shows that the
observed discharge was lower than the expected discharge (Supplementary Table S2). The
discharge of post-barrage conditions was lower than the computed threshold of ecological
water throughout the year, showing the altered hydrological condition. Subsequently,
the FB caused the hydrological alteration of the Padma river in Bangladesh. Heat maps
were constructed to quantify the hydrological alteration in micro-scale caused by FB
installations (considered all years) (1976–2018) for maximum, minimum, and average
discharge conditions (Figure 3a–c). Results showed that the degree of alteration has
gradually increased since the FB construction, which is expected to be continued in the
future. The dendrogram revealed a pattern with the recorded months regarding the
magnitude of the river’s hydrological alteration. Multilevel hierarchy showed a distinction
in the degree of hydrological alteration on a monthly scale.

Figure 3a shows the magnitude of hydrological alteration considering the maximum
discharge. The dark yellow color denotes the decrease in the flow or adverse hydrological
alteration, while the green color denotes the increase in the water flow or positive hydro-
logical alteration. The adverse hydrological alteration gradually increased after the FB
installation. Results show the discharge increased in July, August, and October, showing
a change in the flow because of monsoonal rainfall. The increasing pattern extended to
September, November, December, and June only until 2007. The discharge decreased from
January to May except in the year 2007. Perhaps this happened because of a residual effect
of the extensive flood that occurred that year. In 2018, the decreasing rate was high. In
fact, after 2007, the decreasing flow has been becoming elevated (Figure 3a). We show
the degree of hydrologic alteration for minimum discharge in Figure 3b. We observed
that the post-barrage period records shallow discharge. This has been expected almost
every year after the commissioning of the FB. The mentioned situation is a very concerning
issue for the hydrological regime of Padma River, Bangladesh. Two recent consecutive
years, 2017 and 2018, showed a worsening scenario (Figure 3b). We show the heat map of
the hydrological alteration for average discharge in Figure 3c, which shows a decreasing
discharge in January, February, March, April, May, June, September, and October. July and
August had slightly upward discharges; however, from 2009 to 2018, the rate of decreasing
is high (Figure 3c).

Figure 3. Degree of hydrological alteration for (a) average, (b) maximum, (c) minimum discharge.
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3.3. Periodicity Analysis

Figure 4a–c show the monthly average, maximum, and minimum discharge periodicity
analysis from 1970 to 2018. The color pallet of the wavelet transform maps show the
distribution of power (absolute value squared) of the wavelet transform computed from the
time series discharge datasets. The dark red color represents the more substantial power,
while the light violet color expresses the weak power. The solid black line bands are a
strong power significant at the level of 0.05. With average discharge, the intense wavelet
power spectrum was found in the 1-month band for whole periods, which was significant
at the level of 0.05, while a 0.5-month (15 days) band was observed in 1978, 1981, 1987,
1988, and 1998–2000 (Figure 4a). We observed a relatively more robust power after 2003,
showing the disturbance of the regular periodic cycle of discharge. In the case of maximum
discharge, the strong wavelet power was found in the 1-month band for the entire time
frame, while a 0.5-month (15 days) band was observed from 1987 to 1989, and in 1998; 0.125
to the 0.5-month band was recorded in 2006 (Figure 4b).

Figure 4. Periodicity analysis using Morlet’s wavelet transformation (a) average, (b) maximum, and
(c) minimum discharge.
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In the case of minimum discharge, an intense wavelet power spectrum was found
in the 1-month band for the whole study period, while a 0.5-month (15 days) band was
found in 1974, 1975, 1978, 1980, 1985, 1994, 1998–2000, 1998, 2007, and 2011 (Figure 4c).
This intense wavelet power spectrum represents the variance of flow. From the average,
maximum, and minimum analysis, we find that the highest power is in the band of
1 month. This means that it has changed almost all flow properties in the same direction
and magnitude, while, the maximum concentration of potent power was observed after
2003 for average, maximum, and minimum discharge, which shows that the natural process
of the periodic cycle has been disturbed significantly after 2003.

Figure 5a–c show the significance level of wavelet power against time. The findings
show that the significant power at the 95% level was centered in a 1-month band, providing
an impartial and balanced estimation of the time series analysis.

Figure 5. Global power spectrum at 0.05 significance level for (a) average, (b) maximum, and
(c) minimum discharge (N.B. WPS denotes wavelet power spectrum).
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3.4. Streamflow Prediction by Proposing Novel Hybrid Machine Learning Algorithm

The average, maximum, and minimum discharges for 1970–2018 have been predicted
(Figures 6–8) and then forecast up to 2030 using the PSO-RF, PSO-REPTree, and PSO-M5P
algorithms, respectively. We could forecast the discharge for all situations based on the
lagged input parameters. The historical time series discharge datasets were predicted
with the lagged parameters (Figures 6–8). Then, the error was evaluated between the
actual discharge and predicted discharge (Figures 6–8). In the present study, we utilized
different error measures, such as RMSE, MAE, and MAPE, to quantify the errors between
the observed and simulated discharge. If the closeness or adjacency between the flows
were recorded as low, the error would be less, and vice versa. In Figure 6, we observed high
closeness between the actual and predicted average discharge, especially for PSO-REPTree
(Figure 6b) and PSO-RF (Figure 6c), while the PSO-M5P (Figure 6a) could not predict well
the high discharge value for several times. Therefore, the performance of PSO-RF and PSO-
REPTree are relatively better for predicting average discharge than PSO-M5P. This has also
been quantified using error matrices (Table 2) in terms of RMSE (0.21 for PSO-RF, 0.25 for
PSO-M5P, and 0.14 for PSO-REPTree), MAE (0.23 for PSO-RF, 0.27 for PSO-M5P, and 0.21 for
PSO-REPTree), and MAPE (0.32 for PSO-RF, 0.36 for PSO-M5P, and 0.24 for PSO-REPTree).
Therefore, it can be stated that PSO-REPTree outperformed the other models for average
discharge prediction. In the case of maximum discharge prediction, PSO-RF outperformed
other models as per the analysis of closeness between the actual and predicted discharge
(Figure 7) and error matrices (Table 2). The error matrices (Table 2) showed that in respect
to RMSE (0.3 for PSO-RF, 0.36 for PSO-M5P, and 0.41 for PSO-REPTree), MAE (0.29 for
PSO-RF, 0.42 for PSO-M5P, and 0.35 for PSO-REPTree), and MAPE (0.53 for PSO-RF, 0.46 for
PSO-M5P, and 0.51 for PSO-REPTree), PSO-RF performed better for maximum discharge
prediction, followed by PSO-M5P, and PSO-REPTree (Table 2). In the case of minimum
discharge prediction, PSO-M5P outperformed other models as per the analysis of closeness
between actual and predicted discharge (Figure 8) and error matrices (Table 2). The error
matrices (Table 2) showed that with respect to RMSE (0.26 for PSO-RF, 0.18 for PSO-M5P,
and 0.24 for PSO-REPTree), MAE (0.17 for PSO-RF, 0.26 for PSO-M5P, and 0.22 for PSO-
REPTree), and MAPE (0.29 for PSO-RF, 0.21 for PSO-M5P, and 0.25 for PSO-REPTree),
PSO-M5P performed better for minimum discharge prediction, followed by PSO-REPTree,
and PSO-RF. The predicted and observed values were practically identical compared to
the training dataset, with greater closeness. As a result, a minor error was discovered in
all prediction models. When comparing the three models in Table 2, it was discovered
that PSO-REPTree seemed to be the best suited for average discharge prediction, PSO-RF
appeared to be the best fit for maximum discharge prediction, and PSO-M5P appeared to
be the best fit for minimum discharge prediction.

Table 2. Performance measures between observed and simulated flow datasets for different models
in this study.

PSO-RF PSO-M5P PSO-REPTree

RMSE
Average 0.21 0.25 0.14

Maximum 0.3 0.36 0.41
Minimum 0.26 0.18 0.24

MAE
Average 0.23 0.27 0.21

Maximum 0.29 0.42 0.35
Minimum 0.17 0.26 0.22

MAPE
Average 0.32 0.36 0.24

Maximum 0.53 0.46 0.51
Minimum 0.29 0.21 0.25



Sustainability 2022, 14, 5233 14 of 26

Figure 6. Comparisons of the actual average discharge and predicted average discharge by (a) PSO-
M5P, (b) PSO-REPTree, (c) PSO-RF model (N.B. blue line represents the 95% confidence interval of
the predicted data).
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Figure 7. Comparisons of actual maximum discharge and predicted maximum discharge by
(a) PSO-M5P, (b) PSO-REPTree, (c) PSO-RF model (N.B. blue line represents the 95% confidence
interval of the predicted data).
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Figure 8. Comparisons of the actual minimum discharge and predicted minimum discharge by
(a) PSO-M5P, (b) PSO-REPTree, (c) PSO-RF model (N.B. blue line represents the 95% confidence
interval of the predicted data).



Sustainability 2022, 14, 5233 17 of 26

3.4.1. Average Discharge Forecasting

Figure 9a shows the discharge of water from 1970–2018 and the predicted discharge
up to 2030. The actual discharge showed a gradual decrease in the flow. The predicted
discharge up to 2030 showed the gradual decreasing trend. The highest value among
the predicted discharges is 37,260.7601 m3s−1, which was less than 55,000 m3s−1 in the
observed year. Thus, the impact of the barrage is clear.

Figure 9b shows the average discharge of the observed and predicted years. Here,
the prediction is performed by the PSO-REPTree method, which denotes that from 2019 to
2030 the discharge decreases. After the year 1990, the discharge rate decreases in most of
the months. Most of them are in the range of 40,000 m3s−1. The predicted data show that
in the future, the highest discharge will be 35,810.22 m3s−1, which is less than the actual
discharge of the previous years.

Figure 9c shows the average discharge prediction using the PSO-M5P method, indicat-
ing that the average discharge will decrease in the future. The highest average discharge is
predicted to be about 30,566.1274 m3s−1.

Figure 9. Average discharge prediction up to 2030 using (a) PSO-M5P, (b) PSO-REPTree, (c) PSO-RF.
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3.4.2. Maximum Discharge Forecasting

The maximum discharge of the Padma River is predicted using the PSO-RF, PSO-
REPTree, and PSO-M5P methods. Figure 10a–c shows that the discharge decreases in the
future. Figure 10a depicts that the highest discharge will be around 40,000 m3s−1 in the
predicted year until 2030. The highest discharge will be 41,768.32 m3s−1 in the year 2022.
This is lower than the maximum discharge of the observed years from 1970 to 2018 as the
maximum discharge is up to 50,000 cubic meter per second. The maximum discharge is
lowered after the year 2000 with two- or three-months exception.

Figure 10. Maximum discharge prediction up to 2030 using (a) PSO-M5P, (b) PSO-REPTree,
(c) PSO-RF.
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Figure 10b shows the maximum discharge using PSO-REPTree and its prediction up
to 2030, illustrating the gradual decreasing trend of the water flow. The method predicted
that the discharge will be around 45,128.11 m3s−1 in the future. Figure 10c represents the
maximum discharge prediction using the PSO-M5P method. This gives a similar result to
maximum discharge. The maximum discharge could be around 45,000 m3s−1.

3.4.3. Minimum Discharge Forecasting

The minimum discharge and its prediction up to 2030 is found by using the PSO-RF,
PSO-REPTree, and PSO-M5P methods. The minimum discharge was lower than 40,000
from 1970 to 2018. However, the predicted values show a huge decrease in the minimum
discharge from 2019 to 2030, which would be very alarming. The prediction shows that
the highest minimum discharge will be around 23,982.73 m3s−1. The maximum predicted
values are near 20,000 m3s−1 (Figure 11a).

Figure 11. Minimum discharge prediction up to 2030 using (a) PSO-M5P, (b) PSO-REPTree, (c) PSO-RF.
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Figure 11b shows the prediction of the minimum discharge from 2019 to 2030. This
illustrates the discharge will be very low, and it will be around 10,000 m3s−1. Figure 11c
shows the prediction of the minimum discharge. It denotes that the discharge is decreasing
gradually up to 2030. The predicted value shows that it will be 13,237.72 m3s−1 in 2030.

4. Discussion

The findings from the analysis showed the effects of the FB on the river flow. The FB
has significantly obstructed the river flow over the entire downstream of the Padma River in
Bangladesh. Although people upstream of the dam benefit, it has become a serious burden
on the people living downstream of the dam. The river’s hydrology has transformed
because of the installation of the barrage and the Padma River’s wetland areas has been
altered. Because of the withdrawal of the Ganges water by the FB, Bangladesh has been
experiencing severe environmental degradation due to low flow in the Padma River.

The analysis showed that the discharge of the Padma River decreased during the
post-Farakka period. The innovative trend analysis showed the changing trend of the
discharge. In maximum cases, negative trends were found. The ITA evaluated that the
average, maximum, and minimum values were negative, mainly in the dry season. March,
April, May, and June depicted a highly negative decreasing trend. The dry season of
Bangladesh comprises these months, and in these months, the water flow decreases as, in
the upstream, the water of the Ganga is diverted to other parts. The analyses identified that
the water flow obstruction by the FB is responsible for many changes in the hydrological
regime during the dry season in the Padma river in Bangladesh [66,67].

The results showed that a low annual flow (minimum) achieves the threshold value of
river flow (Table 1). The natural flow condition after the dam construction is critical in each
case. The outcome is the entire study area experiencing anomalous floods and unexpected
droughts. The present study depicted the progressive rise in the degree of hydrological
alteration through a heat map (Figures 4 and 5). This degree of alteration is caused by
the increasing eco-deficit in the river [68]. Table 3 shows the measured thresholds limit
(high and low) flow obtained from the RVA for the maximum, minimum, and average flow.
After the barrage was commissioned, most of the months in each year showed the highest
discharge restricted below the lower threshold or very close to the lower threshold flow of
the river. However, the minimum flow condition usually flows below the lower threshold.
The average discharge is lower than the threshold limit, except for August. Therefore,
there are undeniable threats to the river’s natural environment in terms of its resources,
ecosystem balance, biodiversity, hydrodynamics, livelihoods, and other socio-economic
components of the river basin in Bangladesh. The result found in this study is similar to
the work of Khatun et al. [69], Smakhtin et al. [70], and Gain and Giupponi [2]. From the
periodicity analysis, a significant change was found in the streamflow. Sanz et al. [71],
Richter et al. [72], and Olden and Poff [73] reported the possible impacts of hydrological
alteration on the biogeochemical cycle as well as biotic species diversity living in the
aquatic systems.

Saha and Pal [74] rightly documented that climate change or anthropogenic control
may be responsible for such changes. Talukdar and Pal [75] accounted for the construction
of the Komardanga dam over the Dhepa river, a major contributing tributary of river
Punarbhaba, and diversion of water through the canal system is the primary reason. Islam
et al. [76] claimed that the construction of the Teesta Barrage on the Teesta River is a
significant human interference. Pal [77] studied the impact of the Massanjore dam on the
Mayurakshi river and accounted that the dam was the main reason for the declining flow
in the downstream segment of the river. Pal [78] condemned the barrage as a vector for
attenuating the flow of the Atreyee and Tangon rivers of the Barind tract crossing India
and Bangladesh. These studies support the results.

Three alternative methods (PSO-RF, PSO-REPTree, and PSO-M5P) are used for dis-
charge prediction; one method’s result can help validate others. The results may be
acceptable, as the three methods of forecast flow are almost in the same rhythm. RMSE,
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MAE, and MAPE of the actual and predicted discharge from 1970 to 2018 identified the
method’s accuracy and suitable methods for prediction. PSO-REPTree appears the best fit
for average discharge prediction, PSO-RF appears the best fit for maximum discharge, and
PSO-M5P is the best for minimum discharge prediction. The predicted results show that
the average highest discharge will be 35,810.22 m3s−1 in the future using the best method,
and more than 40,000 m3s−1 in the observed years. By using PSO-RF, the maximum highest
discharge will be 41,768.31 m3s−1 in the year 2022, which increases up to 50,000 m3s−1.
The minimum highest discharge will be 13,237.71 m3s−1 in 2028 using PSO-M5P, but in
observed years, the highest minimum discharge was up to 40,000 m3s−1.

The analysis suggests a significant hydrologic change because of the construction of
the Farakka dam induced in the Padma river watershed in Bangladesh. This alteration
forced an unusual quasi-natural river ecosystem by replacing the original components of
the biodiversity in the river. Alteration of the hydrological flow has increased the risk of
ecological change over the globe [79].

A line of evidence has established the changing scenario of the social-ecological
determinants because of the construction of the Farakka water diversion project in India. For
instance, Swain [80] estimated that about 35 million inhabitants in the Padma basin faced
misery and severe hardship because of the diversion project. The river basin encompasses
about one-third of the country’s land area and has been affected socio-economically by the
dam. As well as this, the country is already under a level of vulnerability because of tropical
cyclones and other forms of artificial hazards [81,82], and the altered streamflow intensifies
the situation. Reducing the freshwater supply through the Padma River increases the
salinity in some areas, increasing the ecosystem’s vulnerability. These were assessed by
Meijer et al. [83] and Hossain et al. [84]. After the dam’s construction, the available surface
and groundwater for farming fell drastically, leading to a decrease in crop production in
the southwest region of Bangladesh [85].

Talukdar and Pal [15] recognized that alteration of the streamflow is a vital factor
for the river’s ecosystem and invites a dearth of hydro-ecological deficit in the riparian
wetlands and floodplain. Additionally, the previous studies reported that due to the
installation of the FB, the streamflow regime downstream has been affected adversely,
causing damage to the riverine ecology (Table 3).

Table 3. Literature review for addressing the impact of FB on the riverine ecology.

Authors Publication Year Findings Remarks

Rahman and Rahaman [86] 2018

During the dry season
(January–May), maximum, average
and minimum discharges have been
recorded to be decreased by around
23–43 and 65 percent, respectively,

compared to pre-Farakka
(1935–1975).

The south-western part of
Bangladesh has witnessed

environmental degradation for
nearly 40 years because of a

considerable decline in the Ganges
flow at Farakka.

Gain and Giupponi [2] 2014

The Farakka Dam’s water diversion
has drastically altered many

threshold parameters, such as the
monthly mean dry season

(December–May) and annual
minimum flows.

The destruction of breeding and
raising sites for many Gangetic

species, increased salinity in
Bangladesh’s southwest coastal area,

and reduced fish and agricultural
variety are ecological repercussions

of such hydrologic changes.
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Table 3. Cont.

Authors Publication Year Findings Remarks

Mirza [66] 1997

The barrage has caused
nonhomogeneity in the Ganges

River’s yearly peak flow in
Bangladesh. The dry season water

supply has been drastically
decreased, while siltation of the

Gorai River (a Gange’s offtake) has
intensified.

There are potentially wide-ranging
social and environmental

consequences for Bangladesh from
the lower flow in the Ganges system.

Rahman et al. [87] 2000

The Ganges’ average lowest flow is
552 m3s−1, which is around 73
percent less than pre-Farakka

conditions, resulting in high saline
surface water and medium to high

salinity groundwater.

If the current scenario persists, it will
have a devastating effect on the
ecosystem of the region in the

long-term.

Gazi et al. [88] 2020

After the Farakka Barrage, both
segments’ bar surface areas rose
unnaturally. This has resulted in

massive sedimentation in the
Gorai-Madhumati. The river channel
morphology changed dramatically,

with seasonal flow and
sedimentation variations. The river’s

migration tendency has regularly
altered from NW to NE. The total
accretion exceeded the net erosion

on both sides of the river.

According to discharge, bar
accretion, and erosion history, the

Gorai-Madhumati River will vanish
if the current flow condition is

persisted.

Samad et al. [89] 2022

Dolphin occupancy in deep river
pools in the Ganga River (upstream
of FB) remained consistent, although

there was more overlap with
fisheries when river flow decreased.

The feeder canal saw increased
dolphin colonization with consistent

flows, but there was also more
danger of bycatch in fishing nets. As
a result, the canal, which looked like

a hydrological haven, became an
‘ecological trap’.

In developing river dolphin
conservation plans and

trans-boundary water-sharing
guidelines, ecological flow

parameters and fisheries rules are
incorporated to limit dolphin

bycatch mortality.

Therefore, our findings are in line with the previous researches (Table 3). Hence, it
can be stated that if the future projected flow is considered accurate, the situation may
soon be further degraded soon. Thus, necessary measures need to be taken to decrease
further changes in the river systems and tackle the water resource management-related
trans-boundary challenges (water-sharing negotiation with India) for the mighty Padma
River basin in Bangladesh. Thus, this study opens the scope to raise the evidence-based
information to formulate policy planning and management intervention of the water
resources in the river basin, which has already been considered the ‘hot spot’ in the
Bangladesh Delta Plan 2100.

5. Conclusions

The study provides a comprehensive idea about the impact of the FB in the Padma
River basin for the past to future conditions. The research adds a new dimension in the
assessment of the hydrological alteration due to the FB. We found that in the case of the
average, maximum, and minimum discharge, the ITA shows a negative decreasing trend. In
the dry season (January–May), the trends are almost antagonistic. Moreover, hydrological
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alteration has accumulated over time and is expected to be further altered in the future.
The variations are significant in yearly average discharges and water levels, but changes
are more significant in yearly minimum discharges and water levels. The forecasting of
the discharge up to 2030 reveals the decreasing possibilities for the streamflow. Since the
present work presented the status of the ecological condition due to the FB installation with
future insights using advanced statistical and ensemble machine learning algorithms, the
work has scientific and practical implications. The impacts of Farakka on the discharge of
Padma are clear.

This study helps the policymakers and water managers to take effective measures
to rehabilitate ecosystems and make a treaty with the Indian government to reduce the
impacts of Farakka and also regional networks for the data sharing and collaboration
required for future adaptation policy. Although the present study has several implications,
the study has some limitations. In the present study, we only examined the river flow of
one gauge station, therefore it could have erroneous findings. We did not consider the
climatic variables, such as rainfall, for predicting the streamflow. Therefore, the present
study lacks the impact of climate change. However, these limitations can be resolved in
future study by considering the river flow data for several gauge stations and climatic
variables.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su14095233/s1, Figure S1 Innovative trend analysis for average discharge, Figure S2 Innovative
trend analysis for maximum discharge, Figure S3 Innovative trend analysis for minimum discharge:
Table S1 The optimized parameters of machine learning algorithms by PSO for groundwater, Table S2
Monthly RVA analysis for average, maximum and minimum discharge in this study
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