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Abstract: Innovation is the engine and accelerator that drives high-quality economic and enterprise
development. In recent years, the output of scientific and technological innovation in China has been
high, but the phenomenon of low efficiency and low quality of innovation occurs frequently. In this
study, first, technological innovation efficiency (TIE) was measured. Then, a dynamic evaluation and
analysis of spatial-temporal characteristics of efficiency were performed. Lastly, the driving factors
of innovation efficiency were explored. TIE was calculated dynamically in 30 provinces of China
from 2011 to 2019 based on the improved super-efficiency SBM-DEA model. Then, the kernel density
estimation method was adopted to analyse the spatial-temporal differentiation characteristics and
dynamic evolution process of provincial efficiency. The findings confirm that from 2011 to 2019, the
top five provinces for TIE in China were Beijing (1.0), Shanghai (0.96), Hainan (0.96), Jilin (0.94) and
Tianjin (0.91). The provinces with lowest average efficiency were Qinghai (0.77), Ningxia (0.73) and
Inner Mongolia (0.73). The significant differences in the level of technological innovation in different
regions were caused by the long-term and in-depth implementation of the government’s strategy of
revitalising science and driving innovation in parts of areas. The findings of kernel function confirm
that the TIE in most parts of China was gradually polarised. Furthermore, the results show that
for every 1 unit of government R&D funding support, the average marginal utility of the expected
TIE will reach 0.192, which is more significant in the central and western regions. On this basis,
combined with environmental factors of innovation market, infrastructure, financing and enterprise
innovation potential, the article also extracts the driving factors that affect the differences in provincial
efficiency. The findings provide a reference for guiding provinces to carry out innovation activities
independently and improve innovation quality and efficiency.

Keywords: technological innovation efficiency; SBM-Tobit model; kernel density estimation

1. Introduction

Under the multiple and complex backgrounds of global economics, environmental
protection and the difficulties of industrial transformation, the sixth plenary session of the
19th Central Committee of the Chinese Communist Party once again emphasised the core
position of innovation in the overall situation of China’s modernisation drive. To make
innovation become the first driving force to “achieve high-quality development”, China
should adhere to the innovation-driven development strategy and strengthen the national
strategic, scientific and technological strength [1]. As a key element in accelerating the
transformation of kinetic energy between the new and the old in the new era, promoting
regional innovation is the essential intention of the five major development concepts,
and it has great significance to the realisation of coordinated development and common
prosperity [2–5].
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Under the high-intensity systemic investment in innovation, China’s overall innova-
tion capability continues to rise. According to the National Bureau of Statistics of China [6],
China ranks first in research and experimental development (R&D) activities in the world’s
major economies. Furthermore, China is the leader in both the proportion of government
funds and the number of people engaged in R&D. As the main forces engaged in R&D
activities, enterprises were invested directly with 76.4% of China’s R&D funds to carry out
innovation activities, which is only exceeded by South Korea (80.3%) and Japan (79.4%) in
the world. In addition, the intensity of R&D investment in China increased from 0.65% to
2.24% of growth domestic product (GDP) from 1998 to 2019, even higher than the average
of 2.12% in the European Union (EU). In the same period, the number of patent applications
granted increased from 68,000 to 2.457 million, rapidly growing nearly 35-fold. From the
perspective of innovation output, China is at the forefront of the world regarding the scale
of patent authorisation and the number of international papers published. However, it is
puzzling that China’s national innovation index has always been outside the top 10 in the
world (in 2021, it ranked 12th). With the increasingly fierce scientific and technological
competition between China and the United States of America (USA), the negative list of
some core technologies from the USA has highlighted the problem of “sticking neck” in
China’s key technologies. It reflects the fact that although China has a large amount of
innovations, many are low-quality innovations. There are core technologies still controlled
by others. The surging output of innovation in China has not been accompanied by the
improvement of innovation quality, which also shows that China’s technological innovation
is facing the dilemma of innovation inefficiency caused by the input–output mismatch.
Technological innovation efficiency (TIE) is a key indicator to measure the output level of
innovation input factors per unit time. Compared with other developed countries, China’s
innovation efficiency is still far away in terms of TIE.

The purpose of this study is to fill the gap between quality and efficiency of TIE by
considering the proportion changes between input and output of the production process
in the framework of TIE. It is relevant to consider the Schumpeter theory of technological
innovation “quantity” under the background of innovation-driven strategy [7,8]. However,
they paid little attention to innovation quality and efficiency. So, how do we use appro-
priate technical methods to measure innovation efficiency? What are the characteristics
of innovation efficiency in different provinces in China from the perspective of time and
space? Furthermore, which factor will significantly affect the induction and promotion of
technological innovation? These problems form the focus of this article. Different from the
previous simple measurement of TIE, this paper adopts the super-efficiency Slacks-Based
Measure (SBM) model. It is based on non-radial, non-angle and non-expected output.
It takes the relaxation variable into the objective function, which can not only solve the
problem of input relaxation but also solve the problem of unexpected output and achieve
the goal of maximising economic benefit. In a word, the method has a good effect on
calculating the actual efficiency value [9]. Therefore, this paper focuses on the input–output
index evaluation system of technological innovation firstly and dynamically calculates the
efficiency level of TIE in 30 provinces of China from 2011 to 2019 based on the improved
super-efficiency Slacks-Based Measure–Data Envelopment Analysis (SBM-DEA) model.
Then, TIE’s temporal and spatial differentiation characteristics and dynamic evolution pro-
cess are described in detail using the kernel density estimation method. In the end, starting
from the four dimensions of innovation market environment, infrastructure, financing
environment and enterprise innovation potential, this paper extracts factors that have a key
impact on TIE. The study constructs a panel Tobit regression model to provide a reference
for different provinces to carry out independent innovation activities.

Thus, the paper’s structure is as follows: introduction—highlighted actuality of the
TIE analysis; literature review—analysis of the theoretical framework of TIE’s assessment;
methods—explanation of the stages and instruments for TIE analysis, time dimension
evolution of TIE and drivers of TIE; results—the explanation of core findings; discussion—
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comparison of analysis with previous studies; conclusion—core findings, recommendations
and limitations of the investigation.

2. Literature Review

In general, efficiency is the ratio between outputs and the costs required to produce
them [10]. The study [11] applied a DEA model to analyse the technological innovation
efficiency of China’s high-tech industries. The scientists working on [11] confirmed that
required resourses (capital, labour, knowledge, etc.) for innovations are less than the
generated output when comparing similar technologies in the sector. Furthermore, in
the papers [12,13], the innovative activity of companies was analysed as a goal-directed
process. Such an approach allows simultaneous estimating of initial, intermediate and
output data during the entire period of industrial production. The paper [14] defined the
TIE as the capability to maximize the results from innovations compared to innovation cost.
The study [15] confirmed that industry technological innovation efficiency was the core
driver of sustainable development of the mining industry in China. The authors developed
a DEA model to confirm that technological innovation efficiency impacted sustainable
development of the mining industry. Thus, within the investigation, the TIE was analysed
as the proportion changes between input and output of the production process.

In recent years, a large number of low-efficiency or even ineffective innovation be-
haviours (such as dormant patents and innovation bubbles) have emerged under the
guidance of existing innovation policies [16]. Promoting technological innovation being
more efficient and high-quality has become the fundamental way to solve the lack of
stamina of current economic and social development [17] as well as curb the unchecked
spread of innovation bubbles. However, before improving TIE, increasing the level of
innovation efficiency has become the first concern that should be addressed. From the
perspective of method, the non-parametric DEA method is generally used to separate the
technical efficiency from the production efficiency. The Solow residual method is also
used to analyse its regression residual to characterise technological progress [18]. The
super-efficiency SBM-DEA model can better consider the unexpected output. It allows
comparison of an effective decision-making unit (DMU) whose efficiency is not less than 1,
which solves the problem that the previous DEA model may cause deviation in the radial
selection and angle selection, and has become a reliable method to measure efficiency.

From the selection of indicators, the existing research mainly uses a single index to
measure enterprises’ innovation capability or performance, such as R&D investment, the
number of patent applications or patents authorised and the number of science and tech-
nology employees [19,20]. Patents, especially invention patents, have become common
indicators when measuring micro-subject innovation output. Generally, the number of in-
vention patents is used to measure the number of innovations, and the citation of invention
patents is used to measure the quality of innovation [19]. Although patent data can more
accurately measure the output of innovation activities rather than input, only using patent
citation to measure patent quality is not accurate enough. Worse, some enterprises often
misquote or over-quote patents to better cater to the examination of patent examination
institutions. Therefore, there are still many drawbacks to only taking the number of patent
citations as patent quality and then regarding it as the innovation output.

After completing the efficiency measurement, some scholars use the two-stage To-
bit model to explore the factors that affect the efficiency of TIE and finally give targeted
countermeasures and suggestions. For example, the study [21] used the non-radial and
non-angle DEA model, including unexpected output, to measure the ecological efficiency of
urban agglomerations in the Yangtze River Economic Belt from 2005 to 2015, and it empiri-
cally analysed the impact of green-technology innovation on ecological efficiency through
the Tobit model. The paper [22] analysed the effect of material and energy consumption
reduction on innovation efficiency, considering both innovation inputs and outputs, and
then utilised data of 388 manufacturing enterprises in Korea and performed DEA and Tobit
regression analysis. The study [23] used the two-stage network DEA model to measure the
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green innovation efficiency of China’s local high-tech manufacturing industry and estab-
lished a Tobit regression model to analyse the role of different technology transfer modes
in improving green innovation efficiency. The study [24] used the Bootstrap-modified
DEA–Tobit model to evaluate the green-technology innovation efficiency of 21 biomass
power generation enterprises in 2018 and analysed the influencing factors.

Considering the shortcomings of the traditional DEA method and the deficiency of
individual indicators, this paper will use the improved SBM-DEA model to measure the TIE
of each province based on comprehensively considering multiple innovation input–output
indicators and a non-expected output index system. Compared with previous studies, the
paper has the following main contributions: firstly, the evaluation system of technological
innovation, including unexpected output, is constructed, which addresses the deviation of
efficiency value caused by non-expected output. TIE in different provinces is dynamically
calculated using the improved super-efficiency SBM model, which overcomes the difficulty
that all DMU could not be compared horizontally in the past. The panel Tobit model is
used to analyse the important variables that may affect the TIE. The key factors leading
to the differences in technological innovation between provinces are investigated from an
empirical point of view. Secondly, the temporal and spatial differentiation characteristics
and dynamic evolution process of provincial real TIE are described in detail using the
kernel density estimation method. The differences in and possible reasons for innovation
efficiency in different provinces are analysed, which may provide some reference for each
province to improve innovation quality and efficiency.

3. Materials and Methods
3.1. Research Methods

DEA is a standard efficiency evaluation method [25]. However, in the past, the
traditional DEA model was often unable to rank effective DMUs accurately, nor could it
include the unexpected output in the model to accurately calculate the efficiency value.
There may be some deviation in the selection of radial and angle. Nevertheless, these
problems are easily solved with the emergence of the improved super-efficiency SBM
model [26]. The specific SBM model is built as follows.

Adopting the formalization by [27,28], consider N DMUs (j = 1, . . . , N) observed in T
(t = 1, . . . , T) periods using m inputs (i = 1, . . . , m, X = (x1, x2, . . . , xm) ∈ R+

m) and S outputs,
which including expected output S1 (Y =

(
y1, y2, . . . , ys1

)
∈ R+

s1
) and non-expected output

S2 (Z = (z1, z2, . . . , zs2) ∈ R+
s2

). Assuming that the non-expected output is joint weak
disposability, the expected output Y and input X are strongly disposable, the expected
output Y and non-expected output Z are zero-sum convex sets and closed sets, and the
production possible sets are:

P = {(x,y,z)|x ≥ Xλ, y ≤ Yλ, z ≥ Zλ; λ ≥ 0} (1)

λ is the weight vector of the cross-sectional observation in the above equation. For a
specific DMU, the SBM model is as follows:

ρ = min
1− 1

m ∑m
i=1

S−i
xi0

1 + 1
S1+S2

(
∑S1

r=1
Sg

r
yg

r0
+ ∑S2

r=1
Sb

r
yb

r0

) (2)

S.t. x0 = Xλ+ S−, yg
0 = Yλ− Sg, yb

0 = Yλ+ Sb, S− ≥ 0, Sg ≥ 0, Sb ≥ 0, λ ≥ 0 (3)

ρ (0 ≤ ρ ≤ 1) in Formula (2) represents the efficiency value of DMU technological
innovation in each province. While S− and Sb represent the relaxation of input and non-
expected output, respectively, Sg indicates the deficiency of expected output, while the
relaxation variable refers to the difference between the actual value and the expected value
of the input variable.
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Kernel density estimation is a non-parametric method for estimating probability
density function. The smooth peak function fits the observed data points to simulate
the actual probability distribution curve. Let x1, x2, . . . , xn satisfy an independent and
identically distributed F with n sample points, and x represents the mean value. While
taking f(x) as the probability density function, the kernel density estimation can be depicted
as follows:

1 
 

f̑      ୦(x) = 1n ෍ K୦(x − x୧)୬
୧ୀଵ = 1nh ෍ K(x − x୧h )୬

୧ୀଵ  h(x) =
1
n ∑n

i=1 Kh(x− xi) =
1

nh ∑n
i=1 K(

x− xi

h
) (4)

K(.) is the kernel function, h > 0 is the smoothing parameter, also called the bandwidth
or window, and Kh(x) = 1

h K( x
h ) is a scaling kernel function. For the convenience and

rationality of density function estimation, kernel functions are usually required to meet the
following conditions:

K(−x) = K(x), K(x) ≥ 0 Sup| K(u)| < +∞,
∫ ∞

−∞
K(u)du = 1 (5)

The kernel function is a smooth-conversion and weighted function [29–31]. Gaussian
kernel estimation is the most widely used one above several other functions. In this paper,
the Gaussian kernel function is also used to estimate TIE’s distributed dynamic evolution
process in various provinces of China.

f(x) =
1√
2π

exp(−x2

2
) (6)

In the process of density function estimation, it is essential to choose the appropriate
bandwidth because of its sensibility. Generally, the denser the distribution is, the narrower
the chosen bandwidth should be. Otherwise, we should choose the wider bandwidth [32].
In practice, we often use Formula (8) to select the appropriate bandwidth, and the following
conditions are usually satisfied between the bandwidth h and the observation n:

lim
N→∞

h(n) = 0, lim
N→∞

nh(n) = n→ ∞ (7)

In order to further explore which innovative environmental factors could affect the
efficiency, it is necessary to carry out a regression analysis. However, because the efficiency
calculated by the DEA model is usually limited to [0,1], if ordinary OLS regression is used,
the estimated values of parameters will be biased and inconsistent [33]. Therefore, to solve
the problem of data blocking, Tobin [34] put forward the restricted-dependent-variable
Tobit model in 1958, which is detailed as follows:

y∗ = βxi + ε yi = y∗i , if y∗ > 0 yi = 0, if y∗ ≤ 0 (8)

In this model, ε satisfies the normal distribution(N
(
0,σ2), β is the regression parameter

vector, xi is the independent variable vector, y∗i is the dependent variable vector, and yi
is the efficiency value vector. This model can effectively analyse regression problems in
which the dependent variable is in a fixed interval, and the judgment results will be close
to the actual parameters.

Considering what is mentioned above, the framework of the study is shown in Figure 1.
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Figure 1. The steps of the investigation.

3.2. Index Selection and Data Sources

TIE, in this article, is defined as the input–output efficiency of technological innova-
tion activities, namely, the relative capability of a firm to maximise innovation outputs
given a certain quantity of innovation inputs [14]. Technological innovation is a complex
dynamic system of multiple agents and multiple input–output factors [35]. The input
in the whole process involves many indicators such as talent, capital [36], knowledge,
technology and information. Drawing lessons from the practices of [7,8,37], this paper
considers the investment indicators selection based on three aspects, talent investment,
capital investment and energy input, and uses the full-time equivalent of R&D personnel
in industrial enterprises above the designated size, the stock of internal expenditure and
the total energy consumption to characterise three indicators of each province, respectively.
Meanwhile, the R&D expenditure is accounted for by the perpetual inventory method [38]:

srdi,t = rdi,t + srdi,t−1(1−φ) (9)

where srdi,t represents the stock of investment of region i in technical renovation at
year t; rdi,t represents the annual added investment in technical renovation or R&D
activities in region i at year t; srdi,t−1 represents the stock of investment of region i in
technical renovation at year t− 1; φ represents the depreciation rate for investment, which
is generally set up as 15 percent.

The scientific and technological output is expressed by published scientific and tech-
nological papers [39–41] and the number of patent applications. The economic output
is expressed by the sales income from new products of industrial enterprises above the
designated size, and the environmental pollution index calculated by the entropy method
is used to express non-expected output. In addition, due to China’s lack of environmental
data in 2019, this paper uses the linear fitting method to supplement the missing data.

In the practice of innovation-driven development strategy, enterprises have become the
main force of technological innovation to achieve sustainable development [42–47]. In view
of the characteristics of innovation, and based on existing research, this paper constructs
the environmental variable system that affects the innovation of each province from four
dimensions: innovation market environment, innovation infrastructure [48], innovation
financing environment and enterprise innovation potential. See Table A1 (Appendix A)
for details.

Considering the heterogeneity of the market environment in each place and existing
research, this paper selects the indicators of economic development level, regional open-
ness and market competition intensity to describe the basic market environment of each
province. Theoretically, the more relaxed and developed the market environment is, the
more conducive it is to the germination of enterprise innovation behaviour. In general,
the innovation level of a region is closely related to its economy, the productivity of eco-
nomically developed areas is higher, and these areas’ innovation activities should also be
more active [49]. Innovation activities often require a great amount of intellectual resources
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and material capital. Economically developed areas can gather many outstanding talents
and rich funds, so enterprises usually have a more vital drive for technological innovation
under this condition [7]. To a certain extent, the intensification of market competition
can force enterprises positively to carry out innovation activities to gain more market
advantage. However, in this process, it may also arouse competition for human resources,
capital and energy, augmenting innovation cost and then causing innovation efficiency to
decline. Therefore, market competition will affect industrial enterprises’ TIE externally.

In addition, scientific and technological infrastructure is the material basis and infor-
mation guarantee of technological innovation [50], and the level of regional information
construction also determines knowledge spillover efficiency [49]. In the era of the digital
economy, the Internet has become the most important way for people to obtain information,
and the development level of regional networks can measure the convenience of access to
information. The more developed the regional information network is, the more convenient
it is for innovation. Therefore, this paper brings Internet penetration into its model.

Schumpeter’s innovation theory holds that the availability of funds plays an important
role in technological innovation. Innovation activities quickly face severe external financing
constraints because of income uncertainty, information asymmetry and high regulatory
costs, while financing constraints significantly inhibit enterprise innovation activities [8,17].
Therefore, the regional innovative financing environment is particularly important and
should be considered.

According to the theory of evolutionary economic geography, the growth of innovation
in a region is a dynamic process of continuous accumulation and growth of knowledge [49].
Moreover, some studies have pointed out that high-tech enterprises and high-level talents
still dominate technological innovation. Therefore, it is undeniable that the entrepreneurial
level of high-tech enterprises will significantly affect the potential and strength of re-
gional innovation.

To sum up, the regression model of this paper can be set as follows:

score∗ = ∑N
i=1 βixit + εit (10)

where score means the TIE; xit represents the variables of PGDP, Rely, Compet, Tech,
Internet and Fund; εit represents the residual term.

This study selected 30 provinces and cities in China from 2010 to 2019 as the research
sample (Tibet, Hong Kong, Macau and Taiwan are excluded due to a severe amount of
missing data). Since 2011, the starting point standard of industrial enterprises has changed
from 5 million to 20 million yuan of annual primary business income, so this paper limits
the data collection period to 2011 to 2019.

The data processing and statistical analysis were completed by the software Stata 15.0.
Based on the fact that the input and output of innovation activities have a specific time
lag [51], the research [52] processed the output variable in a lag period. When using Maxdea
software to measure the TIE of each province, the input index uses the data from 2010-18,
while the output index uses the data from 2011–2019. From Table 1, it can be seen that the
value of TIE measured by the super-efficiency SBM model is between [0.683 and 1.010], and
the average value of efficiency is 0.86. The most important data standard deviation is PGDP,
whose maximum value is about seven times the minimum. From the descriptive data
results of other variables, we can see significant differences in the innovation environment
among different provinces.

In order to eliminate the adverse effects from data dimensions, extreme values and
outliers, logarithmic processing was carried out, except for percentage variables. Fur-
thermore, the extreme data of 1% above and below the continuous variable were treated
with Winsorized tail reduction [7]. Before logarithmization, the data related to the money
were processed based on the 2010 deflator so that we could compare intertemporal data
conveniently.
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Table 1. Descriptive statistics of variables.

Variable Mean Std. Dev. Min Max

Score 0.860 0.067 0.683 1.010
PGDP 47,617.14 23,146.84 18,951.46 132,494.2
Rely 0.266 0.273 0.014 1.269

Compet 8.825 1.195 5.820 10.794
Tech 0.074 0.044 0.013 0.250

Internet 0.505 0.124 0.248 0.780
Fund 0.240 0.135 0.070 0.572

4. Results
4.1. Calculation Results of TIE

The TIE of 30 provinces in China was calculated by Maxdea software, and the results
are shown in Table A2 and Figure A1 (Appendix A).

From the overall innovation performance of each province, on the whole, most areas’
TIE is high. From 2011 to 2019, the top five provinces of TIE in China were Beijing (1.0),
Shanghai (0.96), Hainan 0.96, Jilin—0.94 and Tianjin—0.91, respectively. They are still
mainly concentrated in the eastern region, which has a more developed economy, denser
population and higher education level, especially in Beijing, which has been ranked first
for a long time and has stable performance. Comparatively speaking, the three provinces
with lowest average efficiency are Qinghai (0.77), Ningxia (0.73) and Inner Mongolia (0.73),
which are located in the underdeveloped west region. Thus, it can be seen that there are
significant differences in the level of technological innovation in different regions. They
are caused by the long-term and in-depth implementation of the government’s strategy
of revitalising science and driving innovation in parts of areas. Furthermore, government
keeps adhering to the industrial development direction of high-tech, green and innovative
development. This could move TIE close to the overall frontier, while others still have
effective options for improvement.

From the perspective of the dynamic evolution trend of technological innovation in
China’s three major economic regions, a significant “east-middle-west” ladder decreasing
feature and a non-equilibrium spatial distribution pattern of innovation efficiency exist.
Despite the slight fluctuation, the TIE of most eastern provinces can still withstand the
downward pressure of the economy and realise the improvement of the input–output index
ratio and the steady improvement of efficiency. At the same time, the efficiency of Guang-
dong, Hebei, Jiangxi and other provinces has been on the rise. The central and western
provinces such as Gansu, Shaanxi, Inner Mongolia, Xinjiang, Ningxia and Heilongjiang,
which have had a relatively weak foundation for innovation in the past, have constantly
adjusted the input resources based on the innovation-driven development strategy in recent
years. Their structure of innovation investment has been further optimised, so their TIE
has been improved.

However, it cannot be neglected that the TIE of central districts such as Anhui, Hunan
and Henan has declined significantly in recent years. Compared with the eastern provinces,
the TIE level is low, and the growth stamina is insufficient. The overall situation of efficiency
improvement in these provinces is still severe.

4.2. Analysis of Time Dimension Evolution Based on Kernel Density Estimation

In order to describe the dynamic evolution characteristics of the TIE of each province
more comprehensively from the perspective of time dimension, the paper took the year
2012, 2014, 2016 and 2019 as the sample observation points. It used the kernel density
function to estimate the kernel density curve of each DMU’s innovation efficiency. The
results are shown in Figure 2, where Figure a to d represents the kernel density curves of
the national, eastern, central and western regions, respectively.
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Figure 2. Kernel density curve of four regions. (a) the TIE of the whole country; (b) the TIE of the
eastern region; (c) the TIE in the central region; (d) the TIE in the western region.

The findings (Figure 2a) allow for concluding that the peak value of the curve at the
national level increases with time, the peak shifts slightly to the right, and the right tail
gradually shortens. Furthermore, the tail shows an obvious double-peak trend, which
suggests that the TIE in most parts of China is gradually polarised.

Furthermore, the peak value of the curve in the first three sample observation sites
of the eastern region increases over time, and the peak shifts significantly to the right
(Figure 2b). Especially in 2016, the peak reaches the highest level, and the right tail shows a
trend of elongation, which indicates that the overall situation of TIE in the east tended to
be better from 2012 to 2016. The longer trailing shows that the polarisation of efficiency
here is improved. However, there is an apparent uncoordinated problem with TIE [7].

The curve’s trend in the central region changes from unimodal to bimodal during
2012–2019 (Figure 2c), with the peak rising considerably and shifting slightly to the right,
the kurtosis becoming narrower. The right tail is constantly lengthening, which indicates
that the TIE improved, and there is little difference within the region. In 2019, its peak
value not only increases significantly but also shifts to the left, indicating that the efficiency
distribution of TIE in the central region tends to be dispersed with time. The efficiency val-
ues of some provinces are concentrated at a high level. In contrast, others are concentrated
at a lower level, and the tendency of polarisation is becoming more and more obvious.

The nuclear density curve of TIE in the western region shows a slender left tail and
disappears. The peak rises and then shifts to the right (Figure 2d). From 2012 to 2016,
parts of provinces’ efficiency are at a low level, which seriously affected the regional
improvement of the overall innovation capability and competitiveness. However, after
2016, the situation gradually changed, and the curve in 2019 shows a multi-peak shape.
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The distribution of efficiency values tended to be concentrated, indicating that the TIE
gradually improved significantly. The regional differences in efficiency during the sample
period first expanded and then narrowed.

To sum up, TIE’s temporal and spatial differentiation characteristics are apparent in
different regions. As far as the region is concerned, since 2011–2019, the TIE of the whole
country and the eastern region increased for a few years, but its value decreased slightly
from 2016–2019, while the efficiency of the central region has become increasingly polarised,
and the trend is strengthened. On the contrary, the western region improved steadily, which
is expected to break the stereotyping of long-term inefficiency of technological innovation
input and output in the underdeveloped western provinces.

4.3. Empirical Analysis of the Driving Factors of TIE

This paper adopts the panel Tobit model to analyse the key factors that will affect local
technological innovation, and the specific empirical results are shown in Table 2. Due to its
limited length, this paper will focus on the empirical results of Model (1).

Table 2. Regression results of Tobit model.

Variables
(1) (2) (3) (4)

Whole Country Eastern Region Central Region Western Region

PGDP −0.005
(−0.30)

−0.017
(−1.02)

−0.022
(−0.72)

−0.024
(−0.96)

Rely 0.073 ***
(2.76)

−0.006
(−0.26)

0.139
(0.88)

0.334 **
(2.40)

Compet 0.012 *
(1.94)

−0.007
(−1.15)

0.030 *
(1.65)

0.013
(1.06)

Tech 0.291 *
(1.87)

0.459 ***
(3.31)

0.497
(1.10)

−0.076
(−0.19)

Internet 0.048
(1.02)

0.130 ***
(2.96)

0.018
(0.17)

−0.237 **
(−2.19)

Fund 0.192 ***
(4.68)

0.034
(0.72)

0.279 ***
(3.81)

0.248 ***
(3.44)

constant 0.685 ***
(3.62)

1.028 ***
(5.07)

0.682 **
(2.01)

0.927 ***
(3.46)

N 270 99 72 99
Wald chi2 119.010 56.770 77.250 56.240
Prob>chi2 0.000 0.000 0.000 0.000

Log likelihood 566.859 267.667 175.162 183.690
Note: *** p < 0.01, ** p < 0.05 and * p <0.1; The representation in parentheses indicates t statistics. (1), (2), (3),
(4)—number of model.

From the perspective of the innovation market environment, the level of regional
openness and the intensity of market competition positively drive TIE. In addition, the
promoting effect of market competition intensity is significant at the statistical level of
10%. In comparison, the positive effect of regional opening up is still significant at 1%,
indicating that for every 1% increase in the degree of regional openness and market
competition intensity, its average marginal utility to the expected TIE will reach 0.073
and 0.012, respectively. Some studies have found that the improvement of the degree of
openness is conducive to the absorption and utilisation of advanced external technology,
especially in talent and capital resources. Therefore, the higher the degree of dependence
on foreign trade, the more significant the technology spillover effect will be, and the more
technological innovation will appear. The higher the intensity of market competition is,
the more enterprises will be brought into the market, and the more fierce the market
competition will be. In order to gain a competitive first-mover advantage, enterprises
are more focused on technological innovation. To a certain extent, the intensification
of competition can force enterprises to take initiative to carry out innovative activities.
However, the sub-regional empirical results show that TIE in the eastern region is neither



Sustainability 2022, 14, 8321 11 of 16

sensitive nor significant to the market environment factors, and the excellent market
environment and perfect market mechanism do not stimulate more innovation behaviour.

5. Discussion

Contrary to the studies [11–13,24–26], this investigation was based on the SBM-DEA
model. It allows for analysing the proportion changes between input and output of the
production process in the framework of TIE.

Previous studies have shown a severe resource mismatch within innovative enterprises.
The mismatch effect of resource market distortion is far greater than the inter-enterprise
resources reallocation effect caused by enterprise innovation [53]. In addition, the level
of economic development harms TIE, but it is not statistically significant. The higher the
market level and the more developed the economy, the more conducive they are to the
incubation of enterprises’ new technological achievements, but long-term research has
found that innovation activities confront information asymmetry, externalities, income
uncertainty, high risk, etc. Once innovation is obtained, due to technology spillover or
other reasons, enterprises cannot enjoy innovation benefits exclusively [37]. Therefore, in
different stages, the specific effects of economic development level on enterprise innovation
may not be consistent.

For enterprises’ innovation potential, the entrepreneurial level significantly positively
affects the TIE. When the proportion of high-tech enterprises increases by 1%, TIE’s average
positive marginal utility increases by 0.291. The entrepreneurial level is prominent in
promoting technological innovation in the eastern region. It shows that guiding local
enterprises vigorously to transition to high-tech methods, eliminating backward production
capacity, and setting up more enterprises with advanced science and technology and low
resource consumption can essentially improve efficiency.

In terms of innovation infrastructure, Internet penetration contributes to innovation.
However, it is not significant in this model, and the impact of information infrastructure on
the eastern and western regions is quite different. The high Internet coverage in the eastern
region is more conducive to improving efficiency, while the western region is the opposite,
which may be due to it being sparsely populated. The Internet penetration rate is low (the
eastern average is 0.602, while the western average is only 0.452), the infrastructure is not
refined, and its positive effect on innovation has not yet been released.

The empirical results show that greater government R&D funding support intensity is
more conducive to local technological innovation behaviour. For every 1 unit of government
R&D funding support, the average marginal utility of the expected TIE will reach 0.192,
which is more significant in the central and western regions. According to the statistical
data, the average government subsidy level in the eastern region is much lower than in
other places. With a good economic foundation, high living standards and developed
private lending, funds for technological innovation depend more on the enterprises than
the government.

6. Conclusions

This paper dynamically measures the TIE of 30 provinces in China from 2011 to 2019
based on the improved super-efficiency SBM-DEA model. It uses kernel density estimation
to analyse the spatial-temporal differentiation characteristics and the dynamic evolution
process of provincial TIE. On this basis, combined with the innovation market environ-
ment, innovation infrastructure, innovation financing environment, enterprise innovation
potential and other factors, this article deeply explores the key driving factors of TIE. It has
been found that there is a significant "east-middle-west" decreasing non-equilibrium spatial
distribution pattern of TIE in China, and the spatial-temporal differentiation of efficiency
in different regions is obvious. Secondly, it is found that the degree of regional openness,
the intensity of market competition, government support and the level of enterprise en-
trepreneurship can significantly improve TIE. Based on the above empirical results, this
paper puts forward the following suggestions.
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6.1. For Government

China should increase the government support for technological innovation and
endowment of regional innovation resources. This could be realised by providing financial
subsidies and taxation, which was also proposed by [51]. The government should become
the main body of the top-level design in the innovation system.

As the leaders in innovation, high-tech enterprises play an essential role. The gov-
ernment should develop policy for high-tech enterprises’ development. The number of
high-tech enterprises will help invigorate regional resources and improve the allocation
efficiency of input resources, as well as the efficiency of regional technological innovation.

Economic globalisation is an irreversible trend of this era, and General Secretary Xi
Jinping has stressed that China should persist in opening its doors for construction. The
higher the degree of economic opening to the outside world, the higher TIE might be. Some
studies have shown that opening wider to the outside world is more conducive to the im-
provement of China’s industrial environmental performance rather than deterioration [23],
which also means that further opening to the outside world is a reliable way to promote
sustainable economic and social development in China’s backward areas.

6.2. For Practice

Some regions should build a sharing cooperation mechanism and scientific and techno-
logical innovation platform. They could enhance the regional original innovation capability
and promote the diffusion and transformation of innovation achievements. It is necessary
to improve the construction of information infrastructure and provide a good hardware
environment for cultivating innovation. As the material basis and information guarantee
of technological innovation, information infrastructure has become a significant force in
promoting regional innovation. The innovation spillover effect led by the Internet should
be taken seriously. At present, society has entered the era of the digital economy. As the
primary carrier of knowledge and information, the Internet and other infrastructure is
of great significance to speed up the construction of modern information networks and
further promote technological innovation.

6.3. For Society

Increasing of TIE allowed achieving direct and indirect effects. Thus, the penetrating
of effective innovations among society lead to improving quality of life, accessibility to
the knowledge, providing well-being, etc. Furthermore, technological innovation reduces
destructive impacts on the environment [47], which subsequently reduces morbidity and
mortality. Notably, the ability of society to implement innovations determines the level of
social, cultural and economic development of a country.

Despite the actual findings pertaining to the drivers of TIE, this study had several
limitations. In further investigation, it would be necessary to consider the cointegration
analysis between all variables that impact TIE. Furthermore, the number of drivers should
be extended (social, digital, ecological, etc). This allows for identifying the relevant and
significant drivers for boosting countries’ innovative development.
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Appendix A

Table A1. Variables and data.

Category Variable Meaning Calculation Method and Data Resources Units

Input
variables

Equ Talent investment Full-time equivalent of R&D personnel of
industrial enterprises above designated size a year/person

Ifu Capital investment Funds for R&D expenditure a 10,000 yuan

Energy Energy input Total energy consumption c
standard coal
thermal value
(kJ/kg)

Output
variables

Paper Science and technology output
Published scientific and technological papers
(including papers published abroad) a piece

Patent Number of patent applications a piece

Pro Economic output Sales revenue of new products of industrial
enterprises above designated size a 10,000 yuan

Pollu Unexpected output Environmental pollution index d tun

Environmental
variables

Pgdp Level of economic development The logarithm of real GDP per capital b CNY/person

Rely Degree of regional openness The ratio of total imports and exports to
regional GDP b %

Compet Market competition intensity The number of industrial enterprises above the
designated size a UNITS

Tech Enterprise
entrepreneurship level

The proportion of high-tech enterprises in
industrial enterprises above designated size b %

Internet Level of information
infrastructure Internet penetration rate b %

Fund Government funds The ratio of government R&D expenditure to
regional R&D expenditure b %

Note: the statistical yearbook of the data source is abbreviated as: a—China Science and Technology Yearbook,
b—China Statistical Yearbook, c—China Energy Statistical Yearbook, d—China Environmental Yearbook.

Table A2. TIE in all provinces during 2011-2019.

Year DMU Score Year DMU Score Year DMU Score Year DMU Score Year DMU Score

2019 Anhui 0.869 2019 Guizhou 0.808 2019 Hunan 0.832 2019 Ningxia 0.801 2019 Sichuan 0.86
2018 Anhui 0.886 2018 Guizhou 0.816 2018 Hunan 0.852 2018 Ningxia 0.802 2018 Sichuan 0.854
2017 Anhui 0.896 2017 Guizhou 0.818 2017 Hunan 0.866 2017 Ningxia 0.776 2017 Sichuan 0.866
2016 Anhui 0.905 2016 Guizhou 0.827 2016 Hunan 0.87 2016 Ningxia 0.722 2016 Sichuan 0.861
2015 Anhui 0.884 2015 Guizhou 0.796 2015 Hunan 0.862 2015 Ningxia 0.686 2015 Sichuan 0.863
2014 Anhui 0.886 2014 Guizhou 0.811 2014 Hunan 0.857 2014 Ningxia 0.669 2014 Sichuan 0.857
2013 Anhui 0.875 2013 Guizhou 0.801 2013 Hunan 0.851 2013 Ningxia 0.734 2013 Sichuan 0.853
2012 Anhui 0.866 2012 Guizhou 0.808 2012 Hunan 0.839 2012 Ningxia 0.691 2012 Sichuan 0.848
2011 Anhui 0.874 2011 Guizhou 0.804 2011 Hunan 0.831 2011 Ningxia 0.688 2011 Sichuan 0.847
2019 Beijing 1.01 2019 Hainan 1.005 2019 Jilin 1.01 2019 Qinghai 0.822 2019 Tianjin 0.903
2018 Beijing 1.001 2018 Hainan 0.955 2018 Jilin 0.944 2018 Qinghai 1.002 2018 Tianjin 0.898
2017 Beijing 1 2017 Hainan 0.987 2017 Jilin 0.969 2017 Qinghai 0.858 2017 Tianjin 0.9
2016 Beijing 1.003 2016 Hainan 0.924 2016 Jilin 0.951 2016 Qinghai 0.763 2016 Tianjin 0.906
2015 Beijing 1 2015 Hainan 0.934 2015 Jilin 0.916 2015 Qinghai 0.753 2015 Tianjin 0.907
2014 Beijing 1.002 2014 Hainan 0.94 2014 Jilin 0.922 2014 Qinghai 0.7 2014 Tianjin 0.912
2013 Beijing 0.989 2013 Hainan 0.979 2013 Jilin 0.861 2013 Qinghai 0.69 2013 Tianjin 0.909
2012 Beijing 0.992 2012 Hainan 0.938 2012 Jilin 0.952 2012 Qinghai 0.666 2012 Tianjin 0.897
2011 Beijing 1.001 2011 Hainan 1.015 2011 Jilin 0.972 2011 Qinghai 0.683 2011 Tianjin 0.912
2019 Fujian 0.835 2019 Hebei 0.834 2019 Jiangsu 0.889 2019 Shandong 0.849 2019 Xinjiang 0.912
2018 Fujian 0.841 2018 Hebei 0.825 2018 Jiangsu 0.888 2018 Shandong 0.846 2018 Xinjiang 0.852
2017 Fujian 0.847 2017 Hebei 0.815 2017 Jiangsu 0.889 2017 Shandong 0.853 2017 Xinjiang 0.847
2016 Fujian 0.846 2016 Hebei 0.81 2016 Jiangsu 0.893 2016 Shandong 0.851 2016 Xinjiang 0.868
2015 Fujian 0.846 2015 Hebei 0.801 2015 Jiangsu 0.891 2015 Shandong 0.848 2015 Xinjiang 0.869
2014 Fujian 0.837 2014 Hebei 0.799 2014 Jiangsu 0.893 2014 Shandong 0.848 2014 Xinjiang 0.868
2013 Fujian 0.836 2013 Hebei 0.787 2013 Jiangsu 0.884 2013 Shandong 0.857 2013 Xinjiang 0.862
2012 Fujian 0.838 2012 Hebei 0.787 2012 Jiangsu 0.885 2012 Shandong 0.852 2012 Xinjiang 0.849
2011 Fujian 0.858 2011 Hebei 0.775 2011 Jiangsu 0.876 2011 Shandong 0.845 2011 Xinjiang 0.84
2019 Gansu 0.889 2019 Henan 0.841 2019 Jiangxi 0.874 2019 Shanxi 0.842 2019 Yunnan 0.817
2018 Gansu 0.844 2018 Henan 0.857 2018 Jiangxi 0.868 2018 Shanxi 0.854 2018 Yunnan 0.824
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Table A2. Cont.

Year DMU Score Year DMU Score Year DMU Score Year DMU Score Year DMU Score

2017 Gansu 0.849 2017 Henan 0.857 2017 Jiangxi 0.875 2017 Shanxi 0.84 2017 Yunnan 0.824
2016 Gansu 0.841 2016 Henan 0.852 2016 Jiangxi 0.87 2016 Shanxi 0.837 2016 Yunnan 0.82
2015 Gansu 0.89 2015 Henan 0.849 2015 Jiangxi 0.847 2015 Shanxi 0.797 2015 Yunnan 0.819
2014 Gansu 0.899 2014 Henan 0.833 2014 Jiangxi 0.834 2014 Shanxi 0.783 2014 Yunnan 0.826
2013 Gansu 0.892 2013 Henan 0.841 2013 Jiangxi 0.834 2013 Shanxi 0.794 2013 Yunnan 0.811
2012 Gansu 0.893 2012 Henan 0.805 2012 Jiangxi 0.811 2012 Shanxi 0.795 2012 Yunnan 0.826
2011 Gansu 0.893 2011 Henan 0.806 2011 Jiangxi 0.773 2011 Shanxi 0.792 2011 Yunnan 0.827
2019 Guangdong 0.904 2019 Heilongjiang 0.832 2019 Liaoning 0.878 2019 Shaanxi 0.878 2019 Zhejiang 0.892
2018 Guangdong 0.896 2018 Heilongjiang 0.824 2018 Liaoning 0.882 2018 Shaanxi 0.864 2018 Zhejiang 0.892
2017 Guangdong 0.901 2017 Heilongjiang 0.818 2017 Liaoning 0.874 2017 Shaanxi 0.859 2017 Zhejiang 0.894
2016 Guangdong 0.896 2016 Heilongjiang 0.789 2016 Liaoning 0.882 2016 Shaanxi 0.841 2016 Zhejiang 0.9
2015 Guangdong 0.881 2015 Heilongjiang 0.78 2015 Liaoning 0.861 2015 Shaanxi 0.831 2015 Zhejiang 0.894
2014 Guangdong 0.88 2014 Heilongjiang 0.778 2014 Liaoning 0.871 2014 Shaanxi 0.84 2014 Zhejiang 0.896
2013 Guangdong 0.88 2013 Heilongjiang 0.788 2013 Liaoning 0.871 2013 Shaanxi 0.839 2013 Zhejiang 0.877
2012 Guangdong 0.859 2012 Heilongjiang 0.778 2012 Liaoning 0.853 2012 Shaanxi 0.834 2012 Zhejiang 0.873
2011 Guangdong 0.854 2011 Heilongjiang 0.771 2011 Liaoning 0.845 2011 Shaanxi 0.846 2011 Zhejiang 0.873
2019 Guangxi 0.899 2019 Hubei 0.898 2019 In. Mong. 0.77 2019 Shanghai 0.954 2019 Chongqing 0.881
2018 Guangxi 0.911 2018 Hubei 0.907 2018 In. Mong 0.774 2018 Shanghai 0.948 2018 Chongqing 0.878
2017 Guangxi 0.929 2017 Hubei 0.9 2017 In. Mong 0.76 2017 Shanghai 0.955 2017 Chongqing 0.893
2016 Guangxi 0.917 2016 Hubei 0.895 2016 In. Mong 0.733 2016 Shanghai 0.953 2016 Chongqing 0.907
2015 Guangxi 0.91 2015 Hubei 0.891 2015 In. Mong 0.708 2015 Shanghai 0.944 2015 Chongqing 0.898
2014 Guangxi 0.878 2014 Hubei 0.886 2014 In. Mong 0.685 2014 Shanghai 1 2014 Chongqing 0.879
2013 Guangxi 0.886 2013 Hubei 0.884 2013 In. Mong 0.728 2013 Shanghai 0.953 2013 Chongqing 0.882
2012 Guangxi 0.859 2012 Hubei 0.869 2012 In. Mong 0.711 2012 Shanghai 0.958 2012 Chongqing 0.864
2011 Guangxi 0.845 2011 Hubei 0.864 2011 In. Mong 0.705 2011 Shanghai 0.96 2011 Chongqing 0.885

Note: DMU–decision making unit; In. Mong–Inner Mongolia.
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