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Abstract: Passenger detection and occupancy estimation are vital tasks in many fields. The existing
literature emphasises that the increasing demand for such systems will continue to grow. This
paper reviews the existing literature specializing in the field of transportation safety and efficiency
concerning occupancy estimation in vehicles and passenger detection at public transport stations.
A comparison between different approaches to passenger estimation is presented. Discussion on the
advantages and disadvantages is highlighted. Hence, this paper provides an analysis of 146 papers
on the current state of the field. This review paper concludes that invasive methods provide high
accuracy with relatively cheap implementation, while noninvasive systems do not violate passenger
privacy but lack state-of-the-art accuracy. Future work will include a systematic literature review and
a comparative analysis of systems considering the existing window tinting and solar windshields
heavily blocking certain parts of the electromagnetic spectrum. Moreover, future work will investigate
the critical challenges of noninvasive passenger estimation in different types of vehicles: trucks, buses,
or even motorcycles.

Keywords: occupancy estimation; passenger detection; transport safety; transportation sustainability;
road transport; intelligent transport systems; detection methods; detection equipment

1. Introduction

With the advancement of computational power and the improvement of road in-
frastructure, the development of modern passenger detection and occupancy estimation
systems has become the major trend. As a result, many professionals in the field started
developing both invasive and noninvasive systems. These systems can be implemented
in various sectors: transport systems, surveillance systems, autonomous vehicles, and
the military. Different approaches have been presented in the past, starting from simple
roadside visual inspection by police officers to complex and expensive video surveillance
systems with neural networks. On-site observation brings huge difficulties to the safety of
officers, slowing or fully stopping ongoing traffic and not having great accuracy [1].

It is generally easier to implement invasive passenger detection systems with usually
very high accuracy. In the case of noninvasive passenger estimation, many environmental
aspects affect the final accuracy of such systems. High dust concentration, shades, sun
gloss, rain, snowfall, fog, and quality and cleanliness of windows and windshields play
important roles in final accuracy [2]. Other factors are distance to the target, speed of
a vehicle, occupant position, and more. Glass tint is also a very important attribute to
consider in noninvasive passenger detection. Car manufacturers are developing more
and more sophisticated ways to mitigate high vehicle temperatures with special types of
window tint or special glass to reduce sun energy transmission through windows and
windshields.
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This paper takes a new look at various methods of passenger detection. PIR sensors,
infrared and visible cameras, TOF (time-of-flight) sensors, radar, carbon dioxide sensors or
capacitance sensors are a few examples of invasive passenger detection. For noninvasive
passenger detection, multispectral cameras or cameras working in the visible part of the
spectrum are usually used. The first approach to the detection of passengers was face
detection, then technology moved on to methods of extracting other features such as the
bodies of passengers, seat belts, or the detection of skin in the foreground versus the
seats in the background. With increasing computational power, newer methods are being
proposed to detect passengers. Some state-of-the-art methods depend heavily on image
pre-processing and HDR (High Dynamic Range) fusion, others depend on new neural
network architectures. Many modern vehicles are equipped with new solar windshields.
The technology of controlling emitted radiation is relatively young, its global deployment
is estimated at 27% in the automotive industry and 60% in the construction industry. This
factor might lead to even newer methods for noninvasive passenger estimation.

There are many methods for detecting people, but extremely few reliable methods can
be applied to people in vehicles. The development of technologies enables the improvement
of transport systems, their efficiency, and the deployment of intelligent transport systems.
However, it still remains a challenge to create a fast, robust, and secure algorithm for de-
tecting passengers in the vehicle ecosystem, where there is considerable resource limitation
and low computational complexity. The present findings in this review might help to solve
several courses of action in order to solve such a difficult problem of occupancy estimation.
With this in mind, we tried to select the best references and provide a crucial overview to
contribute significantly to the sector.

2. Invasive Passenger Detection Methods

Reliable invasive passenger counting is critical to many existing and future safety sys-
tems. Secondly, it might also be used to improve passenger comfort—occupant-dependent
control of air-conditioning. Such counting systems must work with top-notch accuracy for
safety systems and also in emergency situations. There are many ways to count passengers
inside vehicles. This chapter summarizes possible ways to achieve this goal.

2.1. Vision-Based Systems

Vision systems are gaining more and more popularity in security applications. The
use of computer vision is also very challenging due to extreme variations in lightning
from extremely bright to dark nights. This problem also exists in noninvasive detection.
Shadows, both moving and stationary, further complicate the problem. To improve the
safety and comfort of the passengers, Gautama et al. proposed a stereo system to observe
the cockpit scene and to improve airbag firing control [3]. In this paper, the authors compare
different techniques and the influence of random and systematic errors on final parameters
(robustness, processing speed). The census transform technique is preferred over zero-mean
normalized cross-correlation due to better results in precision and it is also well-suited for
real-time applications.

A stereo system by Faber for an intelligent airbag system is proposed in [4,5]. The
system classifies seats and tries to estimate the geometry and position of the head. The
shape of the human head can be modelled by an ellipsoid. Two monochromatic cameras
are mounted on the windshield. No additional lighting was used. The proposed software
system consists of the correction of distortions, epipolar rectification of stereo images,
feature extraction, feature-based matching, seat occupation detection, and verification with
an approximation of the head. Further research is needed to integrate arms and hands.

Devy et al. proposed a stereovision system in their paper [6] and seat situation is
recognized with a case-based classification method. A pair of cameras are mounted at
the head console combined with infrared illumination. One main issue remains—concern
about the reliability of the classification function and computation time. The performance
of the proposed stereovision in terms of algorithm execution is set to 250 ms.
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Later, in 2003, Schoenmackers and Trivedi discussed a system to determine the position
of the head, torso, and arms in front seats inside vehicles [7] with a real-time stereo camera
and corresponding depth map of the interior. Firstly, the position of the head is determined,
and next is approximated position of the torso.

In 2000, Marcus Klomark in his master’s thesis described and investigated methods
for occupant and object detection using computer vision in a car [8]. Autoliv designed
an adaptive airbag system with ultra-sonic, weight, buckle, and seat position sensors.
Based on data from these sensors, the microprocessor regulates the inflation of the airbag.
Stereovision is also discussed is greater detail. Changes in lighting do not affect the system
greatly because both images are taken simultaneously. At the same time, the challenge
remains in finding corresponding regions in the images and calibration of two cameras.
This method is also considered too complex and slow. The structured light method is
performed with active special illumination. Deformation caused by an object is extracted
by the camera. This method is robust but requires this special lightning that might possibly
distract passengers. Moreover, this method is prone to failing under certain conditions.
Motion detection is an effective way to distinguish objects in a set scene. This method
should be used alongside another method. Sleeping persons or children hidden by a
blanket will not be detected. Poor robustness to shadows and rapid light variations is
another huge problem. Colour vision with segmentation and binary erosion followed by
dilation was also proposed. Hue and saturation space might look promising, but if the
background is similar in colour to the skin, this method fails. This method can detect only
persons. A neural network can be trained to detect faces and other objects. To correctly train
it, the network needs a lot of training data. Training a network might be computationally
expensive, especially with large networks or lots of training data, and training can take
several months. For an evaluation of the above-mentioned computer vision methods see
Table 8.1 in [8]. Some criteria used in this evaluation consisted of robustness, reliability,
stand-alone method, difficulty, calibration, etc.

To achieve 100% success, more than one camera or sensor is needed to achieve this
and to ensure greater robustness. The main disadvantage of invasive methods is related to
the way to communicate a number of passengers to the outside world safely and reliably.

HOV lanes continue to grow in cities as they provide a viable alternative to more
efficient transportation and reduction of vehicles with driver only [9,10]. In support of
HOV lane monitoring, Schijns presented in his final study ways to detect the number of
people using HOV/HOT facilities [11]. The technology used for invasive sensing includes
mechanical systems, various forms of photography, LED imaging, infrared sensors, thermal
imaging, weight sensors, capacitive and electric field sensors, ultrasonic range sensing,
“medical” application sensors (heartbeat, breathing monitors, etc.), smart cards and readers
or biometric recognition. At that time, the following major concerns remained: personal
privacy, legal changes, cost and economics, and practical issues. Until 2014, there did
not exist any system capable of the high efficiency and reliability required for automatic
enforcement of HOV lanes apart from invasive ones [12].

In 2004, the camera equipped with a 360◦ parabola-shaped mirror and NIR LEDs
was proposed with Viola’s classifier cascade in [13]. Wender and Loehlein proposed
modifications to Viola’s cascade classifier system. The goal of the project was to gather
and transmit information about the crash and the state of the car occupants in 2004. This
is very similar to the existing e-Call system in the EU. The proposed improvement is to
replace the binary output of the weak learners with a floating point output of the sigmoid
function. Additionally, special small form-factor IR sensors are proposed by Géczy et al.
in [14]. AMG8833 sensor from Panasonic is an 8x8 array of IR thermal sensors and with
the Arduino platform, the authors achieved exciting results. It was shown that the system
could detect people in the front with a sensor placed at the front. In this scenario, back
passengers blend into the ambience due to the large distance and low resolution. More
sensor nodes are needed to detect back passengers.
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Monocular 360◦ NIR camera with 7.5 fps, 8-bit grey scale values, and a resolution of
720 × 576 pixels is used in the paper [15]. The vehicle was also equipped with five NIR
lighting modules. Makrushin et al. evaluated different approaches to pattern matching, the
impact of local normalization, edge detection, multi-algorithm, and temporal matching-
score fusion. The authors included all five seats to detect passengers. Frames are stabilized
by aligning the centre of the current video to the reference. The steering wheel was used as
the search pattern. As expected, the accuracy is not competitive compared to non-optical
passenger detection systems but can achieve similar results.

Two computer vision methods (Viola and Jones face detector and Bag of visual words)
integrated as a vehicle-to-infrastructure cooperative system are proposed in [16]. A wireless
module is used to send images from the in-vehicle camera to the receiver at the infras-
tructure side. There they are processed with sufficient computing power. Three regions
of interest—one for each front passenger and a third for behind passengers—are exper-
imentally separated into each frame. A Bag of Visual Words framework is suggested to
improve the performance of the Viola and Jones faces detector during changes in lighting,
lens distortion, or head position. A dataset of 1400 photos was divided in half, with 700
patches representing faces and the other half the background. A year later, the authors
published another paper [17]. They implemented two classification methods—Naive Bayes
and multi-class SVM.

A tiny convolutional model with input from an in-vehicle thermal camera was pro-
posed by Nowruzi et al. [18]. The number of people was estimated with great accuracy, but
the main drawback of this solution is the situation when the ambient temperature inside
the vehicle is too high. Additionally, all vision-based solutions introduce privacy concerns
and sometimes might distract the driver with a bad sensor position.

The front-facing camera mounted on the vehicle capturing images of nearby vehicles
was investigated by Amanatiadis et al. in paper [19]. This system is capable of counting
the number of passengers in nearby vehicles. Vehicle detection is achieved by applying
Haar-like and HOG-SVM (Histogram of Oriented Gradients—Support Vector Machine)
techniques. To eliminate the motion, frame registration is performed and ROI (Region
of Interest)—windshield is extracted. To detect passengers, CNN (Convolutional Neural
Network) was used. The proposed method showed promising results in most cases. Kumar
et al. investigated front and side pictures of the car to estimate the occupants using ResNet-
50, VGG-19, and GoogLeNet networks [20]. Two seconds are needed for this system to
classify a vehicle as violator or not with 96% accuracy.

Vision-based systems still remain the favourite approach for occupancy detection and
they bring new possibilities and improved algorithms every year. The only problem is
communication with the outside world.

2.2. Pressure Sensing

Zhu et al. studied the characteristic of pressure when the human body gets on or off
the stairs in the public transportation environment in paper [21]. This proposed method can
distinguish the direction of passengers. Other existing technologies have disadvantages—
many of them cannot distinguish passengers’ forward direction and many of them are very
expensive. In the next paper, the authors propose a counting method of passenger flow
based on human body kinematics and SVM [22]. The pedal on the stair of the bus has four
pressure sensors for analogue output. The walking process of a person can be divided into
the supporting phase and the swing phase. It is also possible to estimate the number of
occupants using indirect methods. Luo et al. proposed to extract the motion signature of
boarding occupants in paper [23]. After that, the weights of the occupants are estimated
by fitting the response with a transient vehicle dynamic model. Existing onboard motion
sensors such as accelerometers, angular rate sensors, and suspension height sensors are
utilized for this task.
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2.3. Capacitive Sensing

Capacitive occupant sensing is a great contactless method to distinguish between the
presence, and position of an object or person. In comparison to pressure sensing, capacitive
sensors do not have wearing parts. A new modelling approach for capacitive occupant
detection in vehicles is proposed by Satz and Hammerschmidt [24]. A new electrode area
variation method is also introduced. The receiver and transmitter electrodes are placed
on a vehicle seat. Four capacitances are contributing to the signal and are forming a
bridged T-network. The proposed method allows the extraction of a full set of physical
model parameters. In [25], a system with employed carrier frequency method and lock-
in-amplifier technique is used to measure the capacitances and the influence of external
electromagnetic fields is minimal. A single receiving and eleven transmitting electrodes are
used. With a single receiving electrode, the calibration of such a system is easier than with a
system with multiple electrodes. Electrodes are stitched to a cloth and placed on the sitting
and backrest areas of the car seat. To complete a full set of measurements, 200 µs is needed.

The high-frequency measurement principle is introduced in [26]. The electromagnetic
emissions of a system may be the issue at high frequencies and signal intensities. Techniques
were used by Zangl et al. to lessen these emissions. Fully exposed electrodes must be in
the environment for an occupancy detection system to function. One common receiver
electrode and a variety of transmitter electrodes are utilized. To decrease emissions and
adhere to EMC (Electromagnetic Compatibility) requirements, frequency-hopping spread
spectrum and direct sequence spread spectrum are utilized.

If the passenger touches the chassis during the measurement, the capacitive sensors
work inaccurately. Tumpold and Satz investigated in detail the effect of a variable passenger
grounding in [27]. The proposed system can differentiate between empty and occupied
seats and detect passengers out of position. To mitigate the effects of grounded passengers,
a combined inductive-capacitive proximity sensor is presented in papers [28,29]. Both in-
ductive and capacitive measurements are achieved by a single sensor. A Signal conditioning
unit based on a carrier frequency principle is used.

Sensing of dielectric dispersion effects of biological tissues is used for occupant de-
tection in [30]. Satz et al. proposed an innovative impedance model for seated passengers
in vehicles. The impedance is analysed between electrodes as a function of frequency.
By mapping the sensor signal onto model parameters, the passenger impedance model
allows detectors to be very sensitive to the presence of biological tissues. Measurements
are executed between 50 kHz and 5 MHz. Seat occupancy detection based on capacitive
sensing is also proposed in papers [31].

Monitoring of vital signs was investigated in paper [32]. Non-contact methods for
capacitive ECG monitoring, mechanical heart activity, and magnetic impedance moni-
toring were used. Results might be used in embedded operator supervision, health care
applications, and monitoring of citizens.

2.4. Seat Belt Detection with Vision Systems

An important and mandatory safety measure for passengers is to wear seat belts
properly. Many countries enforce wearing them, otherwise, the drivers will be punished.
Nowadays, checking is usually done manually during road inspection with high risk and
low efficiency. In [33], Huiwen et al. proposed a system to first locate the driver area,
secondly detect potential seat belt edges from HSV (hue, saturation, value) colour space,
and lastly, judge rules are used for final verification. Many existing methods are based on
edge detection. For complex road backgrounds, a deep learning approach is presented in
paper [34]. To train CNN (Convolution Neural Network), multi-scale features from the
regions of the vehicle, windshield, and seat belt are extracted. To train a classification model
through SVM, relative positions of these vehicle components are used. CNN ConvNet
trained on the Seatbelt dataset is proposed in [35] and a YOLO (You Only Look Once)-based
model is proposed in [36]. A cascade Adaboost classifier-based seat belt detection system is
used to find windows and Canny edge detection on a gradient map with Hough transform
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is proposed in [37]. Straight lines of seat belts are extracted for law enforcement purposes.
A seat belt reminder system using IR-UWB radar to check the presence of a person for each
seat is proposed in [38]. Elihos et al. developed a model that utilizes both RGB and NIR
images in the decision-making process in paper [39].

Seat belt detection may appear to be a suitable system for passenger counting, but
not all passengers necessarily have seat belts on, and seat belt detection also fails on
black clothing.

2.5. Ultrasonic and Radar

To overcome the limitations of the common occupancy sensors, the quadrature
Doppler radar is used in [40]. Yavari et al. measured heart and respiratory signals to
improve stationary subject detection with a back-scattered electromagnetic signal. The
antennas were 1 to 1.5 m from the subject depending on the intensity of activities. True
presence detection is achieved when the human subject is at rest and moving at different
activity levels.

Seat occupancy and breathing rate estimation from the amplitude peaks are proposed
in paper [41]. A low-cost pulsed mm-Wave radar operating in the 60 GHz band is used due
to license-free bandwidth with high data rates. Unlike the previous system, this method
does not have high complexity and nor require higher computational costs than simple
CW (Continuous Wave) radars or the proposed pulse coherent radar. FMCWs (Frequency-
Modulated Continuous-Wave Radar) can also determine the range of multiple persons
and angles using beamforming techniques. Novel systems using radar applications have
recently been proposed [42–48].

To reduce the complexity as well as the cost of the overall system, Sterner et al.
proposed an RF-transmission system to measure the attenuation of high-frequency radio
waves in paper [49]. The amplitude and the phase signals received by the antenna change
after a person is seated, thus allowing for passenger counting. A typical memory lapse that
could have tragic results is forgetting children. Diewald et al. [50] describe a commercial
development for applications inside automobiles. The sensor can also be used to track
heartbeat and breathing patterns as vital signs. Noise, traffic, or weather have no effect on
the proposed sensor.

The most popular sensors in buildings for individual presence are PIR (Passive in-
frared) sensors. However, these sensors are fundamentally motion detectors and react to
incident radiation variation leading to false negative detections and inaccurate occupancy
estimation. Thus, Wu and Wang proposed LAMPIR (Lavet motor PIR) sensor for true
presence detection [51]. Classification accuracy of 100% could be achieved for stationary
occupants within 4.5 meters and moving up to 10 meters. PIR sensors with an IoT (Internet
of Things) system are proposed in [52] with the implementation of a GPS module for
localization of the bus. Data are sent to the Firebase database for quick and easy access
with mobile devices.

2.6. Smart Cards, Identity Documents, and Cell Phones

For occupancy monitoring, items such as driver’s licenses, cellular phones, or personal
identity cards may be used. It is noted that items like smart cards and cell phones have
become increasingly widespread. These items may be read and then information sent
outside via appropriate communication channels [53]. Many studies have been reported
on such occupancy sensing. Smartphones with enabled Wi-Fi send out probe requests
containing unique MAC addresses and Pattanusorn et al. investigated the possibility to
estimate the number of passengers in the vehicle by monitoring these requests in paper [54].
This method fails if passengers have disabled their Wi-Fi and succeed even in crowded
environments with the use of GPS in Raspberry Pi 2 model B. To differentiate between
legitimate passengers and non-passenger, the time period and signal strength from each
probe request are analysed. In [55], the authors estimate the number of bus passengers with
the collection of RSS data from mobile phones that passengers carry on them. To reduce



Sustainability 2023, 15, 1332 7 of 27

overestimation from nearby vehicles, several Wi-Fi sensors are deployed. Moreover, some
passengers might carry several devices or young might carry none.

3. Noninvasive Occupancy Estimation Methods

Noninvasive passenger detection plays an important role in developing better and
safer transport infrastructure without sacrificing the privacy of passengers inside vehicles.
Many modern vehicles are equipped with an onboard eCall system capable of sending
information about the number of passengers or fastened seat belts at the time of the crash.
Possible methods are discussed in papers [56,57]. eCall system comes with a microphone
installed inside the vehicle, making it vulnerable to eavesdropping and occupants have no
control over the remote activation of this microphone. Therefore, there are also noninvasive
solutions to estimate the occupancy of a vehicle, and the current state is described in this
section. There are already proposed systems for enhancing the eCall system [58]. The most
difficult task is to detect sleeping adults and children. The number of missed people was
dependent on the camera angle and ranged from 21% to 51% [59]. The reliability of machine
vision systems is therefore unlikely to be high enough or groundbreaking compared to
invasive methods.

Billheimer et al. proposed the first system to detect passengers inside a vehicle with
the use of cameras in 1990 for HOV lane surveillance and enforcement [1]. They also
pointed out the high cost of enforcement of 10 HOV lanes in personnel costs and estimated
it at 400,000$. Four years later, Mecocci et al. proposed an automatic system utilizing
images recorded on two VHS tapes to count persons getting in and out of a bus [60].
Systems based on the idea of counting passengers when entering a public transport vehicle
or entering stations are discussed in separate Section 4: Counting passengers at public
transport stations. Similar to HOV enforcement systems, ATC (Automatic toll collection)
systems have become popular for collecting tolls for their simplicity for the end user and
agencies. Information from such systems might be used for multiple tasks, e.g., vehicle
classification, passenger counting, etc. [61].

Pavlidis et. al investigated possibilities for passenger counting and detection of
vehicle occupants in papers [2,62,63]. The authors investigate the visible and NIR region
of the EM spectrum and the unique reflectance characteristics of human skin in the NIR
spectrum. With the Mitsubishi Thermal Imager IR-700, authors investigated possibilities to
detect people through the windshield and when shooting from the side. They achieved
clear images from the side, but could not see anything in the frontal view. The authors
then decided to go back from 3 µm back to the range 1–2 µm. The operating range of
1.4–1.7 µm appears as a good choice. It is far from a visible band and cannot distract
drivers. Additionally, the transmittance of typical vehicle windows in the NIR region is at
least 40% [62]. With car glass with window tint, the transmittance of such a glass drops
below 40% and varies depending on the type of tint, but usually stays above 20%. After
obtaining high-quality images with two NIR cameras (one in the lower and one in the
upper band) captured with the system with filters, and a computer-controlled light source,
a fuzzy neural classification was proposed. This classifier scored below 50% in experiments.
In 2020, Lee et al. proposed a system for the two-sided camera with only the right side
capable of detecting the occupancy in paper [64]. For the binary case in HOV lanes, the
system achieved an accuracy of 99% and for detection—87%. A new labelling method with
a small amount of data is applied to images captured with two infrared ray cameras with
illuminators. Comparison and analysis of the performance of deep learning models are
shown in [65].

In 2003, Wood et al. proposed a covert camera system for screening vehicle interiors
and HOV enforcement utilizing infrared strobe light to illuminate passenger and cargo
compartments through side windows or the windshield [66]. With a high-speed, digital,
infrared camera they were able to capture clear, stop-motion images of interiors suitable for
human screeners or pattern recognition algorithms to count the number of passengers or
identify particular individuals. The main system is divided into three subsystems—imager,
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illuminator, and trigger subsystem. An 830 nm long-pass filter was added to the camera
so it only receives IR. IR illuminator provides light enough energy to overpower the solar
background, removing ambient conditions. The energy output was kept at levels that are
easily eye-safe. A long-pass filter was located in front of the xenon flash lamp to remove
visible light and only IR is presented to the drivers. Tinted windows present a challenge to
this system, but it succeeds in getting through common ones. In the severely tinted glass,
the occupants could not be seen.

Image segmentation techniques are used to find windshield areas and face detection
is executed to count the number of occupants in the paper [59]. Colour CCD cameras
were utilized by Birch et al. Images are transformed from RGB (red, green, blue) to HSV
(hue, saturation, value) colour space. Following noise removal with a median filter, binary
labelling, and a biggest area search for dilatation, erosion, and windscreen, the colour mask
is then post-processed. For sim 80% of automobiles and trucks, this method has been proven
to be reliable. Only 38% of the faces were discovered because of the inconsistent lighting.

In [67], Lee and Bae experiment with different wavelengths with regard to the transmit-
tance of glass on vehicles and seek to obtain better-quality of image data. This work provides
a good theoretical basis for the selection of subsequent components for other papers.

The face detection algorithm proposed by Hao et al. with mathematical morphological
operations is employed in paper [68]. The algorithm is effective under normal daytime
conditions. Pre-processing of the image consists of coarse detection based on a lighting
compensation skin-tone colour model, fine detection based on the correlation of skin
colours, and further mathematical morphological operations. Fuzzy ART neural network is
used to detect occupants. Hao et. al investigated near-infrared imaging methods since 2006
in papers [69–71]. Firstly, the vehicle windshield regions are extracted based on Hough
transform methods and humans were detected with AdaBoost-based face detector or HOG
(Histogram of Oriented Gradients) descriptors.

In 2008, Tyrer and Lobo published a paper [72] regarding passenger occupation
limitations and issues and performed night tests with captured IR images and images in the
visible part of the spectrum. The authors display the reflectance spectra of Caucasian, Asian,
and African skin as well as the transmission and absorption spectra of typical windscreens.
Additionally, experiments were conducted with cars traveling at 110 km/h, on gloomy
days, exceptionally bright days, in the middle of the day, etc.

By mixing information from different types of classifiers, Pérez-Jiménez et al. achieved
faster and more robust detection through windshield [73]. Different features are searched
to characterize people—faces—and safety belts. A cascade of boosted classifiers for fast
feature detection is used with a more powerful k nearest neighbor (k-NN) to filter previous
results. A face detector based on Haar-like features is used. k-NN classifier is trained to
filter the results of the cascade classifier. Safety belts are used as an additional feature
to look for and two cascade classifiers are used for the left and right sides. This system
achieved an almost 90% success rate with 2% false detection.

US patent by Alves proposes an HOV enforcement system in [74]. The roadside unit
includes Ethernet cameras, night-time lighting, and image servers. A laser ranging device
is used to detect a car in the HOV lane. A camera is triggered and captures faces through
the windshield and a license plate. US patent [75] takes advantage of long contiguous
horizontal line segments and curve segments to differentiate between the occupied and
empty seats. A test using edge linking, the softness of the edge, the number of lines,
and other techniques are used to locate horizontal edges in the image to indicate an
unoccupied seat.

In noninvasive passenger estimation, windshield localization plays an important role.
Yuan et al. investigated a maximum energy method to extract the windshield regions and
HOG descriptors to detect occupants from extracted windshield regions [76]. There are several
challenges in windshield detection—it has a different shape, size, and relative position, there
might be low contrast between the vehicle and the vehicle body, various capture angles, and
distance and complexity of the interior. The proposed method is to combine shape, colour
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(greyscale), and complexity, and the method can work with colour and NIR images. To detect
occupants, HOG descriptors are adopted as the occupant’s features.

Artan Yusuf et al. investigated noninvasive detection with vision systems in pa-
pers [39,77–82]. A NIR camera pointed at the windscreen of the car was suggested for
use in HOV lane occupancy identification utilizing Fisher vectors and a bag of visual
words. A system for law enforcement cell phone usage was later proposed, using the same
classification techniques. A combined system for mobile phone use, seat belt infractions,
and occupancy detection in HOV lanes was suggested by authors in 2016. To determine
the type of infraction, classification using local aggregation-based image characteristics
is first done on the region of interest, which is the vehicle’s windscreen. Front and side
views of a data collection of approximately 4000 photographs, taken on a public road, were
employed. Additionally, a system is available for front-seat child occupancy identification,
picture classification, and object detection for seat belt infractions.

Distance-based metrics between descriptors to discriminate between images with only
the driver and driver with the passenger in the front image of the vehicle are investigated
by Xu et al. in the patent [83]. Face detection is explored in the paper [84] for detecting
passenger faces using a pixel threshold. A system with two cameras and a comparison of
images in early or late fusion to catch an HOV lane violator is proposed in [85]. Two DPM
(Deformable part models) are trained to detect the front row and second row. Lastly, for
HOV/HOT lane enforcement, the authors investigated three popular CNN architectures
in classifying passenger/no-passenger images [86]. Experiments showed that GoogLeNet
outperformed two other nets.

An algorithm for cell phone identification used during driving is proposed by Berri
et al. [87]. This system based on SVM with a Polynomial kernel achieved a success rate
of almost 92%. In pre-processing, three detectors are applied based on Haar-like features
for feature extraction. Experiments were performed on a small set of frontal images
(100 positives and 100 negatives). Invasive driver cell phone usage detection is also
proposed in [88] and noninvasive in [89].

Cornett et al. explored the construction of a multi-unit computational camera system
to get consistent face recognition results [90,91]. The system performs HDR (High Dynamic
Range) imagining to create a dataset of through-windshield images. Distance to target, bad
lightning, strong glare, the pose of occupants, and speed are the main challenges that this
system tries to mitigate.

Noninvasive methods present new obstacles and usually do not provide great accuracy
compared to noninvasive occupation detection. The main problem is different types of
vehicles—trucks, buses, passenger cars, and special cars, where occupancy estimation
systems have to be modified for every scenario. The height or position of sensors needs to
be adjusted for a robust and universal system.

4. Counting Passengers at Public Transport Stations

An automatic system for monitoring and counting people in various environments is
an important task in several fields, where the flow of people who enter, stay and exit an
area is an important piece of information. However, monitoring the number of passengers
is a difficult task [92].

This chapter contains a specific approach to determining the occupancy of a vehicle
by counting passengers before they enter a public transport vehicle at the station or the
entrance of vehicles like buses, trains, metro, etc. The number of people entering markets,
shows, and exhibitions is also important and provides tools to better optimize, improve
quality and create safer environments but in this chapter, we will focus only on counting
people in public transport systems.

In articles [93,94], Deparis et al. introduced a new method for counting passengers
in public transportation using two active linear cameras. For the purpose of counting
the number of passengers passing in front of the cameras, the writers examined image
sequences. Compared to the previous image processing paper by Mecocci et al. [60], optical
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sensors presented additional benefits in the picture acquisition section. With a worldwide
error for the morphological algorithm and averaging-thresholding technique of 0.56% and
0.48%, respectively, the suggested device was able to detect pedestrians moving through a
3-metre-wide tunnel.

Three years later, Gerland and Sutter proposed a system utilizing one infra-red sensor
with an integrated optic element to accurately count and distinguish passengers [95] .
To mitigate climate and weather effects, the sensors are mounted overhead in the door
frame. When a person moves under the sensor, signals are generated and transmitted
to the analyser unit. This system does not count irrelevant objects. With similar camera
placement over bus doors, Bernini et al. presented a stereo vision system in paper [96]
with a zenithal position of cameras in a setup similar to [97]. This setup is illustrated in
Figure 1. This approach removes the overlapping problem. The zenithal camera is also in-
vestigated in [98]. A novel feature-point-tracking and clustering-based passenger counting
framework promising better performance than background-modelling and foreground-
blob-tracking-based methods are proposed in the paper [99]. When used with a single
camera in challenging situations including crowded areas and occlusion among people, the
suggested approach achieves an accuracy of up to 96.5%. In a genuine dynamic scenario, it
might be challenging to determine the ideal value for a threshold, which is typically used
to acquire the moving foreground. By using a KLT (Kanade–Lucas–Tomasi) tracker, the
suggested system determines the motion trajectory. A KLT corner detector is also proposed
in [100] and shows good results in tracking. Dense stereovision in buses with 99% and 97%
accuracy was proposed in reference [101]. Yahiaoui et al. improved the stereo-matching
method that can compute precise and noise-free height maps. These maps are segmented
to detect the heads of people. Morphological operations and a binarization with multiple
thresholds are used. The use of colour images was avoided to reduce processing time.
Lengvenis et al. proposed four algorithms to calculate passengers on public transport [102].
Researchers looked into a number of barrier simulation methods, including one based
on intensity maximum detection, one for zones, one for object shape correlation, and one
for barrier simulation. It was demonstrated that different approaches produced better
outcomes under various circumstances. ABSZ performed admirably in extremely complex
scenarios, while ABIMD showed promise when only one passenger was in the frame.

Figure 1. Counting system using a stereo camera. The stereo camera is set overhead and the optical
axis is facing downwards.
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A cost-effective method of counting passengers that prevents occlusion issues is the
zenithal camera placement scheme. The camera wobbling and changing lighting are two
major challenges. To overcome these challenges, Chen et al. deployed a zenithal camera and
are counting passengers getting on and off a bus using block motion characteristics [103].
A passenger is constantly travelling in the direction of the door, and the motion vector can
be used. Feature pixel selection eliminates erroneous motion estimations. The centre of
gravity of moving objects is determined using bounding boxes. When a passenger crosses
two baselines, the counting is updated. On average, this counting technique has a 92%
accuracy rate.

More early works on the issue of passenger detection are based on simple video
cameras. These early works usually use existing surveillance cameras but are vulnerable to
ambient illumination changes and complex backgrounds [104]. To reduce mentioned limits,
depth data from stereoscopic cameras are presented [105]. Van Oosterhout et al. [106]
use a shape-based approach using range data instead of RD voxel. Another common
technique is to look for omega-shaped contours or use the partial ellipse fitting technique
to find heads. An RGB-D sensor positioned over each door of the bus is used. Automatic
head detection with the camera on the bus ceiling is proposed in [107]. The Hough
transform and Canny edge detection are combined to find heads. When utilizing the Hough
transform, the key benefits include invariance to scale changes, rotations, and robustness to
minor occlusions. Similarly, by adopting Haar features and Adaboost algorithm to detect
human heads through OpenCV, Yingjie et al. achieved on average 94% correct detection
in the paper [108] aimed at subway applications. A background subtraction method and
morphology processing for subway passenger flow are proposed in [109].

In 2017, Liciotti et al. proposed a system for counting and monitoring adults and
children at the entrance of the bus with the system based on an RGB-D sensor located
over the bus door. This approach provides greater reliability and accuracy with real-time
processing and low-cost hardware [105]. Invasive passenger detection in the bus also
proposed in [110–113]. In 2018, Bellow et al. proposed a dataset of a full-size laboratory
observation of people boarding a public transport vehicle [114]. The authors also provided
baseline results for the future. They proved that it is possible to detect most people but
there is still much to improve in a final application to be adequately robust.

Sensors working in the visible spectrum have fundamental limitations such as ambient
lighting, colour representation, and scene variation. By using low-resolution infrared
and visual cameras, Amin et al. assessed the potential accuracy and robustness of such
a system [115]. Low-cost Webcam and IRISYS thermal imager were mounted looking
vertically down. In the first stage, the image is pre-processed. Resizing and adaptive
local thresholding are used. The next step is background identification based on the RAM-
based neural network. The average body head is calculated from the infrared data and
distinguishable results are achieved in less crowded areas. The 16 by 16 pixel low resolution
is regarded as adequate. A practical and accurate method to count individuals in a specific
area can be to use a combination of visual and infrared devices. As demonstrated in [116],
where authors experimented with a thermal imager in a noninvasive manner, such a
system can only be utilized in conjunction with the detection of individuals inside vehicles.
The authors tried with closed windows but had unsatisfactory results so they opened
automobile windows at various levels to test the accuracy of their suggested technique.

Klauser et al. suggested a time-of-flight-based passenger tracking technique using
infrared sensors, image processing, and statistical and probability approaches. The Bayes
classification was used by the authors to define a statistical processing-based technique.
This method is effective if all objects can be distinguished from one another for at least one
frame. As they look for maxima in the height of potential objects, authors are working on a
different, entirely algorithmic technique while assuming the same sensors [117].

In [118], Mukherjee et al. suggested a methodology for detection, tracking, and
validation to count passengers at the railway station. On the other hand, a top view of a
person has few features to work with and little occlusion. A time series of photographs is
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used as the algorithm’s input, and its output is the number of valid trajectories. The Hough
circle is used to identify every individual. In experiments, the Hough circle outperformed
the HOG technique.

It is clear that detecting people at different public transport stations or hubs is not an
easy task during rush hours or at busy places. To overcome this, many approaches have
been investigated.

5. Passenger Discrimination for Airbag Suppression

Airbags can both save and kill. A child may suffer severe injuries or perhaps die in
a crash as a result of an airbag that is rapidly inflating. Adults who are not strapped in
or who are in an unusual position risk death as well. Additionally, airbag replacement is
pricey. To save money on maintenance, an airbag may be disabled if a seat is empty. It is
critical to tell whether the front seat is being used by a youngster, an infant in a rear-facing
seat, or is empty. A 1996 U.S. Patent by Meister et al. described an innovation for occupancy
detection that would stop airbag deployment [119]. System status is indicated to a driver
with the possibility to override the system and enable activation of the airbag. In 1997, G.
Paula published an article about electronic systems for airbags aimed to reduce injuries
and deaths caused by airbags [120] based on ultrasonic, infrared, or piezoelectric sensors.
Systems for airbags take into account the state of the seat belt and react accordingly to
reduce injuries. The sensor fusion system for sensing the presence, position, and type of
an occupant in a passenger seat in vehicles is proposed by Corrado et al. in the United
States Patent [121]. The first property to detect is the thermal signature and associated
motion, and the second is distance and associated motion detected with an acoustic sensor.
Supplementary data, sensor data, and historical references are considered in decision
making if the passenger airbag or other types of safety restraint systems will be deployed
during a collision.

Jinno et al. proposed occupant sensing while exploiting the perturbation of electric
fields. Inside the seat, four electrodes are installed and provide a very weak electric field.
The disruption brought on by passengers is detected as matrix data, and the system either
enables or disables airbags based on its assessment of the scenario. Ferrous materials may
cause the system’s decisions to become muddled [122].

Krumm and Kirk presented a visual occupant identification system for airbag deploy-
ment in their paper [123] from 1998. Based on a single monochrome video camera, the
first suggested method has a 99.5% correct classification rate using the closest neighbour
classifier. With computed stereo disparity, a correct classification rate of 95.1% was attained
in the second experiment using two monochrome video cameras. The second method
might be more advantageous because it is less sensitive to ambient light. An invasive
system with cameras installed inside a vehicle can be used to classify the seat as occupied,
containing a child seat, or empty. Range data could also be used to estimate the position of
the passenger and vary the inflation rate of the airbag to reduce injuries. Similarly, a stereo
system was also proposed in papers [3–6] in Section 2.

A US patent by Saito et al. aimed to distinguish whether a passenger seat is occupied
by an adult, infant, or child seat in the RFIS (Rear Facing Infant Seat) or FFCS (Forward
Facing Car Seat) pattern [124]. By generating a weak electric field with an oscillating
circuit between electrodes, a corresponding response is detected and the seating pattern is
distinguished. Based on output signals, an airbag device for inflating an airbag in case of a
collision is presented.

Support vector machines perform admirably when recognizing faces. In their pa-
per [125], Reyna et al. provide modified and standard SVM for head detection inside cars.
The authors suggested employing a monocular camera to show where the passenger’s head
is in relation to the vehicle. The 144 photos in the image database, which has a resolution
of 768 × 576 pixels, were taken from Siemens. The straightforward finding is that heads
are less recognizable than faces and that the proportion of false alarms has fallen to almost
a third and remains unchanged.
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Lu et al. described a new generation of the BMW child seat occupant system consist-
ing of two subsystems—occupant classification with a field detection system with four
capacitive plates [126]. Occupant classification is achieved with a force-sensitive sensor
array measuring a pressure profile. The system can automatically detect a universal child
seat and the system is hidden in the seat. A force-sensitive resistor sensor array and its elec-
tronics classify the profile based on pre-programmed characteristics. The SBE2 algorithm
combines both subsystems and determines the final classification.

Farmer and Jain introduced a vision-based occupant classification system with a
greyscale camera and a digital signal processor to distinguish four classes—rear-facing
infant seat, child, adult, and an empty seat. They achieved a classification accuracy of
∼95% [127]. A 400 × 320 px camera with IR illumination and standard IR filter is used to
supplement in dark conditions. Edge-based features are used in images with reasonable
lighting and silhouette features in low-light scenarios. Three years later, the authors
published another paper, where they achieved ∼98% accuracy with the ability to detect
dangerous proximity to the airbag within 7 ms [128]. The system uses a wrapper-based
approach and the classification result is a priori for segmentation.

Fritzsche et al. proposed a new sensor approach based on the TOF (time-of-flight)
principle [129]. A prototype camera was mounted in the overhead console to survey the
passenger compartment. Additional active modulated IR illumination is used. The output
data were recorded with this 25× 64 pixel camera. Occupant classification in the horizontal
direction is tolerable but in the vertical insufficient with this resolution. Results might
improve with the new camera design with 52 × 50 pixels.

Using raw reflectance and stereo disparities, Krotsky and Trivedi proposed a vision-
based method of estimating the size, posture, and pose of the occupant [130]. The Digiclops
camera is attached to the driver’s side roof rack and images are captured at 320× 240 pixels
at 15 fps. In the next paper [131], the authors propose a thermal long-wavelength infrared
video-based real-time vision system. The feasibility of invasive thermal long-wavelength
infrared, stereo, and multicamera video-based vision systems to deploy normally, deploy
with limiter power, or suppress an airbag is good. Trivedi et al. investigated computer-
vision technology for safer automobiles in paper [132]. The aforementioned application
estimates the driver’s head pose using elliptical fitting to generate the driver’s vision, which
takes up the majority of the computation time. They also take into account technologies for
monitoring roads and avoiding collisions with objects or persons.

They came to the conclusion that there are no reliable and affordable driver posture
systems that work in actual driving situations. The study is separated into non-vision
sensor-based systems and vision-based systems for posture monitoring. The majority
of false positives and missed detections are typically produced by monitoring systems
that rely on the analysis of partial body parts. A worldwide system must also deal with
passengers that have diverse anthropometrics, skin tones, clothing, weights, etc.

Stereo-based systems typically have a poor level of resolution or need a large training
batch of data to function well. These flaws are minimized by using data fitting established
body models. This approach provides more thorough occupant information without
requiring training. The maximal varieties variance threshold splitting method is used to
binarize grayscale images. Overall, 96.5% of classes are correctly classified [133].

A night vision camera connected to the Raspberry Pi board is discussed in the pa-
per [134]. The authors used Haar Cascades as a face detection algorithm based on the
easiest feature extraction with high accuracy and less computation time compared to other
machine learning algorithms. The proposed system achieves great accuracy in hatchback
cars. When faces are exposed to direct bright light the system works poorly. The system is
used for classifying a person as a child or adult to avoid the deployment of airbags. The
calculation is performed when the car speeds from 0 km/h to 20 km/h.

The suppression of the airbag can save lives and a huge amount of money if real-time
systems are installed. These systems might be modified in order to count passengers and
help with the growth of road transportation.
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6. Mathematical Models
6.1. You Only Look Once

In this section, we explain the theoretical framework of the favourite occupancy detec-
tion method—the YOLO convolutional network. YOLO is an object detection algorithm.
It is based on features learned by a deep convolutional network. YOLO is considered a
fully convolutional network (FCN) with 75 convolutional layers with skip connections and
upsampling layers. This architecture is considered extremely fast. Prediction is performed
using a convolutional layer based on 1 × 1 convolutions, for detecting small objects, the
final convolution is 255 × 1 × 1 with batch size 52, 52, 255, for medium objects batch size
is 26, 26, 255, for big objects batch size is 13, 13, 255. Output is a feature map, the size of
the prediction map is exactly the size of the feature map before. This prediction map is
interpreted in the way that each cell can predict a fixed number of bounding boxes. YOLO
can achieve fast frame rates [116,135].

The network has (B ∗ (5 + C)) entries in the feature map, where B is the number of
bounding boxes each cell can predict, and C represents class confidence for each bounding
box. Each bounding box can have 5 + C attributes that describe dimensions (w, h), centre
coordinates (x, y), objectness score p0, and confidence C.

Network output can be presented with the following formulas [116,135]:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pw exp (tw)

bh = ph exp (th),

(1)

where bx, by, bw, bh are the x, y centre coordinates, width and height of prediction, tx, tw, th
is network output, cx, cy are top left coordinates of the grid, pw, ph are anchors dimensions
for the box, σ represents a sigmoid function.

The loss function indicates the performance of the model. YOLO loss function is
defined as equation [116,135]:
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where Ci is the Objectness-confidence score of whether there is an object in the picture or
not, wi, hi is the width and height of the anchor box, pi(c) is classification loss, xi, yi is the
location of the centre of the anchor box, 1noobj

ij and 1obj
ij are masks for each cell that predicts

an object in a cell it there is or is not, λs are constants, λcoord represents the weight of the
coordinate error, λnoobj represents scalar to weight loss in confidence in each bounding box.

∑S2

i=0 represents a part where we compute losses for each of 13 × 13 cells, ∑B
j=0 represents a

part where we compute losses for each anchor box. Ĉi represents the confidence score of
the j th bounding box in the grid. There are three boxes across three different scales.



Sustainability 2023, 15, 1332 15 of 27

6.2. Cascade Classifiers

A successful object recognition approach based on Haar feature-based cascades was
proposed by Viola and Jones in their 2001 publication “Rapid Object Detection using a
Boosted Cascade of Simple Features” [136]. It is described as a machine learning method.
In order to train a cascade function, numerous positive and negative images are required.
Haar features are used to extract features from photographs. They are shown below in
Figure 2. At the time of publishing their paper, the proposed system was approximately 15
times faster than any previous approach. Many previous papers utilize insights from Haar
features. A short list of examples consists of [13,108,134].

Figure 2. Example rectangle features. Two-rectangle features are shown in (1), (2). Figure (3) shows a
three-rectangle feature and (4)—a four-rectangle feature.

Haar features are good at predicting edges and lines. These aspects prove it is really
effective in face detection. This algorithm is able to detect objects with clear edges and lines.
If we cover parts of the object, a Haar-based classifier might fail. This detector is great for
detecting faces in pictures from the front. A large number of false positives is reported
in not perfectly direct images. The feature-based system also operates much faster than a
pixel-based system.

Rectangle features are computed with the integral image. The integral image at
location x, y contains the sum of the pixels above and to the left of x, y.

ii(x, y) = ∑
x́≤x,ý≤y

i(x́, ý), (3)

where ii(x, y) is the integral image and i(x, y) is the original. This integral image can be
computed from an image using a few operations per pixel. Any Haar-like features can be
computed at any scale or location in constant time. To select a small number of important
features, AdaBoost is used. AdaBoost provides an effective learning algorithm and strong
bounds on generalization performance [136]. The final classifier is a weighted sum of weak
classifiers. The weak classifier is not able to classify the image but together creates a strong
classifier. The remaining features are grouped into a different stage of classifiers—Cascade
of classifiers. After passing all stages, the object is detected.

7. Discussion

Since Billheimer et al. [1] proposed their first attempt to count the number of passen-
gers in a moving vehicle, progress in road transport and computers has been rapid. As
the reliability, robustness, and computing power increase, we can expect that passenger
estimation systems will be increasingly used in a wide variety of applications including
transport systems, surveillance systems, and military or autonomous vehicles. A total of
146 papers were analysed and their weak and strong qualities are discussed below.

7.1. Paper Selection Analysis

In order to systematically identify relevant published papers in this domain, literature
research was performed from 1990 up to and including 2021. To acquire as many papers
as possible, Google Scholar, Web of Science, and SAE International were searched. The
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following keywords were chosen: occupancy detection, passenger detection, people detec-
tion, and driver detection. Existing patents were also included. This review covers the field
of transport, cars, safety, and sensors. A total of 146 papers were analysed in this review
alongside advantages and possible obstacles in future development. A graph showing the
number of analysed articles per year is shown in Figure 3.

Figure 3. Graph showing the number of analysed articles published over time.

As we can see, interest in this area has increased every year since 1990. This review
provides essential information on similar research in passenger estimation systems. It is
divided into invasive counting of people, noninvasive estimation of people, and passenger
detection in transport hubs due to the nature of each mentioned area of application. We
believe that this division is necessary due to different environmental and measurement
conditions. A graph showing the occurrence of keywords is shown in Figure 4.

Figure 4. Graph showing the occurrence of keywords from 86 references. The remaining 59 references
did not list keywords.

Out of 146 analysed papers, 60 references did not properly list keywords or any index
terms for our analysis of the occurrence of keywords. We undertook this study to examine
and analyse older, new, and state-of-the-art methods for passenger occupancy detection.

I indicates the invasive measuring method, N indicates noninvasive measuring meth-
ods. Based on Table 1, it is clear that invasive systems require new and reliable channels to
transfer diagnostic data to road infrastructure. Without this, more precise invasive systems
do not provide fast and very precise data for occupancy monitoring and the only feasible
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and less precise way to detect occupancy of vehicles remains the noninvasive manner.
Moreover, we should not forget about older vehicles, in which the installation of such
systems will be very difficult. Finally, we must not forget the infrastructure itself, which
could be very financially demanding. Unlike invasive occupancy systems, noninvasive
systems provide fast and easy adaptability to various scenarios. Maintenance workers can
access sensors and cameras and easily change optics or add or remove pieces of equipment
on-site.

Table 1. An overview of different approaches in existing papers.

Method Advantages Drawbacks Reference Invasivity

NIR systems

No driver distraction. Sees
through window tinting.
Suitable for both I and N

applications.

Harder detection and less robust. A
system might get expensive. Creates

false positives with pets, luggage, etc.
[2,13,15,63,66,69–72,80], I + N

Vision systems
Good execution speed,

reliability, and good
results during daytime.

Low tolerance to light conditions. A
system might become expensive and is
influenced by the weather when used

noninvasively. Sensitive to colours.

[1,16,60,68,103,115,125,128,
133,137], I + N

Stereo cameras
Insensitive to illumination,

and suited for irregular
environments.

Trade-off between the reliability and the
computation time, incorrect detection

during various passenger poses.
[3–7,96,97,101,123,130,131], I

Thermal images
Can detect also back

seating passengers when
used invasively.

Not suitable for outdoor applications,
problems with similar surrounding

temperatures.
[18,116,131], I *

Radar

Requires less power than
camera sensors. Emits
fewer EM waves than

WiFi. Suitable for
low-light conditions.
Contactless solution.

Requires additional communication
channels for sending results. [38,40,41,43–45,47], I

WiFi
Does not require
interactions with

passengers

Requires mobile phones with enabled
WiFi. Usually overestimates with many

surrounding vehicles.
[48,54,55] I + N

Seat belts System is already installed
in vehicles.

Requires additional communication
channel and access to car electronics. [56] I

Capacitive systems Reliable and fast, robust to
external interference.

Requires additional communication
channel and has problems when

passengers are grounded.
[24–31] I

PIR Does not count irrelevant
objects, small dimensions.

Requires additional communication
channel, is not consistent and has

varying accuracy.
[52,95] I

TOF
Requires less sensors, does
not trigger false positives
with rucksacks or clothes.

Insufficient results with low resolution,
tendency to yield less counting results. [56,117,129] I

Electric fields

Low-cost system with
hidden electrodes. Is not

affected by heat, light,
dust, humidity.

Covering electrodes disables the whole
system. [49,122] I

Floor pressure sensing
Can easily distinguish
direction of movement
and is relatively cheap.

Suitable only for public transport with
difficult sensor placement. [21,22] I

* indicates the feasibility of invasive methods but noninvasive were proven unsuccessful. Tests on thermal imaging
systems have shown that glass is ineffective in transmitting certain electromagnetic waves [116].

7.2. Limitations and Research Challenges

Road transport is an ever-growing field. To improve the quality and safety of trans-
portation, researchers, governments, and companies seek newer and more advanced sys-
tems to improve the sustainability of traffic systems, reduce travel times, and greenhouse
gas emissions, improve quality of life, response times of rescue services, etc. [138–140].
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Systems for the detection of transport of dangerous goods, license plate recognition, type
of vehicles, stationary vehicle inside a tunnel, etc., are becoming mandatory for new road
structures. Distinguishing between hybrid, combustion engine, end EV is also a necessary
piece of information when a fire occurs [141].Yet with the rise of such systems, the field of
security should also grow [142]. It is important not only to keep the system running but
ensure its reliability, integrity, resiliency, security, and data privacy. The current trend in
big cities is not to expand the transport infrastructure, but to make existing infrastructure
efficient by means of telematics systems leading to changes in traffic scenarios in cities [143].

For noninvasive passenger detection, the main issue is ever-changing automotive
glass. New changes in the automotive glass to reduce the solar heat load on the vehicles are
new challenges for noninvasive vision, NIR, and thermal systems. To reduce the generation
of greenhouse gasses and energy usage on cooling, the total solar transmittance allowance
for new vehicles must be lower than 40% by 2014 [144,145]. New types of automotive
glass are being constantly developed and manufactured. The transmittance of such glass is
changing and also, the possibility of tinting the cars does not make the task of detecting
passengers through glass easier. Variations in pose and type of passenger present a new
disadvantage of vision-based systems. Sleeping passengers are extremely difficult to detect
from the outside world and it is difficult to distinguish whether the child seat is occupied
or not. Different colours of clothes and skin present another difficulty. Some papers
have investigated the influence of such parameters [2,8,62,63,72,146]. Many environmental
aspects affect the final accuracy of these systems. Dust, shades, sun gloss, rain, snowfall,
fog, quality and cleanliness of windows and windshields, distance to the target, speed of a
vehicle, occupant position, and others greatly affect the final accuracy.

The seat belt approach might be promising, but it is not a usable option without
modification. All invasive methods—pressure sensing, capacitive, ultrasonic, radar, PIR,
TOF, and vision-based systems have to send acquired pieces of information to the outside
infrastructure in order to be effective and useful and help in developing more advanced
systems. Additionally, the way to communicate a number of passengers to the outside
world must be safe and reliable.

All invasive systems might be very useful in public transport applications. To achieve
reliable and low-cost systems, many papers investigated various sensor placements—front
windshield, front bonnet, overhead consoles, sensors hidden in seats, etc. Capacitive
systems and systems based on electric fields provide a cheap solution. They are not affected
by varying weather, temperature, or light. The main downside is that they suffer a lot when
the conditions are not right. If the passengers ground themselves, these methods do not
work properly. PIR sensors seem great for train or bus applications but suffer like all other
invasive methods.

An interesting approach worth mentioning is using gas sensors. In the enclosed
compartment, the concentration of gases is changing with time and the most suitable gas is
CO2 [56]. Many systems may present faults when children hold luggage or big luggage is
obscuring vision for vision systems.

Furthermore, passenger privacy is also a very important aspect of every invasive
system. Every car produced after April 2018 is equipped with an eCall (emergency call)
system to bring rapid assistance to motorists involved in road hazards in the EU. This
system brought new ways of possible eavesdropping and violation of passenger privacy.

WiFi-based solutions are also presented. The proposed method detects and counts
passengers without violating privacy. The system shows good results for use in various
applications due to its low cost and simplicity. There are still problems with carrying a
mobile phone with WiFi turned on. Not everyone has a phone, and there are people with
multiple phones—private and work.

Since 1990, methods have shifted towards a new trend—machine learning and neu-
ral networks. Many recent papers propose advanced and improved neural networks for
passenger detection tasks [18,113]. They provide great results and robustness for pas-
senger counting. In public transport, crowded places or rush hours present a difficult
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situation [94,97,99,118]. All final requirements depend on the application and desired field
of deployment. Favourite infrared sensors present a number of advantages and are widely
used in several systems. The advantages are reduced size, cost, and reliability. However, in
crowded situations, their high sensitivity to noise, variations in temperature, and dust and
smoke make them unreliable. They also cannot distinguish between one passenger and a
group of passengers. Many researchers advise a vision-based system for this task in a bus
or public station.

The most promising band for detecting passengers noninvasively appears to be the
NIR region of the electromagnetic spectrum from 750 nm to 2500 nm due to the reasonable
price of technical equipment. This region of the electromagnetic spectrum is often chosen by
researchers involved in noninvasive passenger detection. See Table 2. The best way seems
to design a neural network trained with a special dataset of NIR images, which would be
able to detect passengers, children, and objects. Together with the created algorithms, such
a system could be applied in various areas of the real world.

Table 2. An overview of different noninvasive approaches in analysed papers.

Reference Image Type Camera Placement and
Orientation Windows Tinting Use Notes

[78] NIR >750 nm Only windshield Not mentioned. HOV/HOT Speeds up to
130 km/h.

[1] Monochrome Windshield + side images.
They theoretically describe
the limitations of tinting in

the 1990s.

HOV/HOT and
violations

Tinting causes
uncertainty in

estimation.

[2,62,63] NIR 1.4-1.7 µm Windshield + side images.

Graphs of the transmission
of wavelengths depending
on the used glass, tinting or

purity is proposed.

HOV/HOT An overview of
detection methods.

[86] NIR >750 nm Various Not mentioned. HOV/HOT
Comparison of
different CNN
architectures.

[65] Visible spectrum Only windshield Not mentioned. Violations
Comparison of
different CNN
architectures.

[77] NIR >750 nm Only windshield Not mentioned. HOV/HOT Binary classification

[64] NIR >750 nm Two side views. Using NIR to overcome
tinting. HOV/HOT Detection of 1+, 2+

and 3+.

[73] Visible spectrum Only windshield Not mentioned. HOV/HOT Synthesis of face and
seat belt detection.

[19] Visible spectrum Windshield and rear glass. Not mentioned. Emergency
situations

Camera placed on
the vehicle.

[20] NIR >750 nm Windshield + side images.
They mention the tinting

effect, but do not discuss it
further.

HOV/HOT and
violations

Violations in HOV 3+
scenario.

[75] Visible spectrum Only windshield. Not mentioned. HOV/HOT Seat edge detection.

[84] Multi-band IR Only windshield. Not mentioned. HOV/HOT Detection in HOV 2+
scenario.

[9] NIR >750 nm Windshield + side images. SCW (Solar controlled
window) HOV/HOT

[70] NIR 850 nm Only windshield. Experiments with tinting.
Required adaptive lighting. HOV/HOT Unstable image

quality.

[90,91] Three-camera
setup Only windshield. Efforts to improve systems

with NIR.
Biometric

recognition
HDR fusion of

images.

[81] NIR >750 nm Windshield + side images. Not mentioned. HOV/HOT Passenger and
violation detection.
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7.3. Effects of Window Tinting on Passenger Detection

The unexplored region in noninvasive passenger detection systems is the effects of dif-
ferent window tinting. Various manufacturers and car producers produce different levels of
tinting. If very dark window tint is used, it might lead to a reduction in detection accuracy.

This review was created as a part of ongoing research. Figure 5 shows different
transmittances of LLumar car window tints. For future research, different camera filters,
mounting positions, and various window tinting will be evaluated.

Figure 5. Graph showing the transmittance of different LLumar window tints.

8. Conclusions

In this paper, passenger detection and occupancy estimation systems, solutions, appli-
cations, and shortcomings are explained and the studies on them are discussed. Moreover,
to address the fundamental issue of invasive systems, considerable attention is paid to
noninvasive systems. Accordingly, comparing the present invasive and noninvasive solu-
tions provide more understanding in this field. Both systems have strong and weak points.
Many issues which cannot be addressed by one system can be addressed by the other and
vice versa. Passenger estimation systems have assisted the sector in many ways, but they
can be greatly improved. Therefore, for future research, improving NIR systems and the
development of advanced designs are recommended to overcome various window tinting
and solar glass. The literature review presented in this paper provides a wide analysis of
various methods. Finally, passenger estimation systems are unavoidable in the future and
this technology is not limited only to the public sector, but also to military or surveillance
systems where they can also contribute significantly.
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