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Abstract: In the era of Industry 4.0, there are many emerging industrial Internet of Things (IIoT)
applications that require ultrareliable and low-latency communications (URLLCs), such as time-
sensitive networking (TSN), status reporting, and remote control. With the deployment of massive
intelligent devices in IIoT networks, providing security for device physical-layer access is a challeng-
ing issue, especially for URLLC applications with strict latency and reliability constraints. We thus
developed an intelligent radio frequency identification (RFI) framework to provide a lightweight
and energy-efficient physical-layer access scheme for URLLCs via leveraging unique hardware-level
imperfections of transmitter. We propose a novel semisupervised-learning (SSL) algorithm to realize
intelligent RFI in URLLCs scenarios. One-dimensional network construction is also exploited to
improve the accuracy of the proposed SSL algorithm. On the basis of the proposed RFI framework,
we analyze the overall uplink transmission error probability and network availability of URLLCs
with massive MIMO, which can achieve comparable symmetry performance with that of downlink,
and experimental evaluation is also provided to gain comprehensive insight on RFI. Numerical and
experimental results demonstrate the effectiveness of our proposed RFI framework and the impact of
channel correlation, and provide design guidelines for supporting the radio frequency identification
of URLLC applications in IIoT systems.

Keywords: URLLCs; industrial IoT; symmetry; intelligent radio frequency identification; semisupervised
learning; short-packet communication

1. Introduction

In the era of Industry 4.0, the industrial Internet of Things (IIoT) has attracted exten-
sive attention from industrial companies and academics [1–4]. Compared to conventional
wired control systems, the IIoT utilizes wireless networks to decentralize and improve
efficiency during various industrial processes with massive sensors and other devices [5].
The standardization and commercialization of fifth-generation (5G) wireless networks
produced various mission-critical IoT applications requiring ultrareliable and low-latency
communications (URLLCs), such as autonomous driving, target tracking, and tactile In-
ternet [6–10]. The third-generation partnership project (3GPP) has standardized general
URLLC requirements, with 99.999% reliability and about 1–10 ms latency with short packet
transmission. In fact, there are several emerging URLLC applications in IIoT networks,
such as time-sensitive networking (TSN), status reporting, and remote control [11,12].

Nonetheless, it is extremely challenging for URLLCs to simultaneously ensure latency
and reliability due to their stringent and conflicting constraints such as the fading and
propagation loss of channel [13–15]. Multiuser channel access, coexistence, and mutual
interference with other systems reduce network availability. Finite block length is the
main transmission type, which is different from classical Shannon capacity theory [16,17].
In the existing technical route, multiple upper-layer transfers are often used to confirm
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the legitimacy of device access. Unfortunately, traditional security methods rely on pre-
defined protocols that require huge communication and computational payloads [5]. A
profound security challenge in physical-layer authentication is how to keep it scalable
and reliable with low overheads towards future URLLC use, such as industrial scenarios,
autonomous vehicles, and edge computing [18–21]. Intelligent radio frequency identifica-
tion via semisupervised learning (RFISSL) is an emerging physical-layer authentication
technique that employs unique device-specific hardware-level features, such as phase noise,
inphase/quadrature (I/Q) imbalance, frequency offset, and harmonic distortions [22–26].
It is a potential solution to reduce system overhead under critical applications. Further-
more, how to significantly improve the transmission efficiency of RFI-aided URLLCs is
a meaningful topic. Diversity technology is a remarkable technical scheme to improve
the efficiency of wireless communication systems. However, the time diversity of uplink
transmission is limited in low latency. Frequency diversity is unlikely achievable due to the
limitation of terminal standardization. Massive multiple-input multiple-output (MIMO) is
achieved by equipping base stations (BSs) with numerous antennas to support multitude
user equipment (UE) [16,17]. Massive MIMO can provide remarkable spectral efficiency
and reliability benefiting from spatial diversity [13,16]. Furthermore, the transmission
block length and the propagation model of URLLCs are assumed to be infinity and an
independent fading model, respectively [27,28].

Those assumptions above are not applicable to URLLC practical applications. There
is a lack of a strong theoretical foundation of RFI-aided URLLCs with massive MIMO to
achieve intelligent physical security and high reliability. On the basis of these assumptions
and potential usage scenarios, we present a typical system for Industry 4.0, as shown in
Figure 1, which integrates RFI and massive MIMO, where multiple distributed BSs are
deployed to cooperatively serve all devices. A central controller is deployed for control
and planning to which all BSs are connected by optical or wired cables.

Cloud Server

Base Station

Factory 

Automation/Control

Radio Fingerprinting

Cloud Server/Controller

Factory 

Automation/Control

Radio Frequency 

Identification

Base Station/Processing 

Units

Figure 1. Detailed illustration of a typical RFI-aided intelligent automated factory scenario.

1.1. Related Works

Recent studies related to URLLCs mainly include short-packet analysis [14], resource
allocation [12], massive MIMO, and joint power and placement optimization [9]. Critical
reliability and latency were recently investigated in [11] by utilizing Euclidean norm
theory. Unlike the vast majority of studies on URLLCs, which focus on the aforementioned
single central cell, the authors in [13] applied a cell-free framework into a URLLC system
to improve the system sum rate by using a new path-following algorithm. Specifically,
the authors in [16] considered a typical massive MIMO scenario that encompasses pilot
contamination and imperfect channel state information, which was an early rigorous
framework to evaluate uplink transmission error probability and network availability with
finite block length. In [5], the authors proposed a one-stage approach radio access to support
safety-related industrial applications without a complex high-layer protocol. To improve
transmission efficiency, the joint optimization of pilot overhead and power was considered
in [17], while the downlink performance of MIMO-NOMA was investigated in [28]. To
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sum up, all those methods need additional overload to achieve authentication by higher
protocols. There is a lack of systematic analysis for channel correlation impact in URLLC
massive MIMO. Therefore, establishing a highly reliable and lightweight access method
is a critical problem in URLLCs due to the huge communication payload of conventional
protocols. A key guarantee for URLLCs to improve transmission efficiency and access
reliability is radio frequency identification by machine learning.

Different from traditional random access schemes, novel physical-layer access based
on RFI refers to the accurate identification of different devices. The authors in [19] proposed
a nonparametric Bayesian method to classify Zigbee devices. Device fingerprinting and
the potential application of wireless security was systematically considered in [22]. The
influence of wireless channels to RFI on the Defence Advanced Research Project Agency
dataset was investigated in [23]. Gritsenko et al. [24] proposed a novel approach that detects
a new device without retraining the network. Jian et al. [25] researched the depth of the
model structure and partial equalization. Peng et al. [26] designed a hybrid and adaptive
scheme that weighted different features. In [21,29], the application of RFI in physical-
layer authentication was discussed to improve efficiency and robustness. Although deep
convolutional neural networks (DCNNs) have achieved many remarkable results, they
still require massive numbers of labeled samples to guarantee the convergence of the
DCNN model [30]. Semisupervised learning (SSL) based on meta pseudo labels is efficient
for achieving remarkable identification accuracy. This framework contains two different
networks from which to learn by generating soft labels among unlabeled samples. It
achieves remarkable identification accuracy in practical applications. This is the first work,
to the best of our knowledge, involving the RFI scheme into URLLCs to provide better
transmission efficiency and robustness.

1.2. Motivations and Contributions

With the rapid development of IIoT, a reliable and low-complexity authentication
scheme guarantees that URLLCs can be widely used and deployed. The transmission
efficiency of critical mission applications is considered to be an urgent problem. However,
traditional higher-protocol access schemes require additional overload, which reduces
transmission efficiency. Furthermore, there is a lack of systematic analysis for channel
correlation impact in URLLC massive MIMO. Therefore, establishing a highly reliable and
lightweight access method is a critical problem in URLLCs with MIMO, and radio frequency
identification can be a remarkable solution for physical-layer access via leveraging unique
hardware-level impairments. However, traditional supervised learning requires large-scale
labeled samples and cannot efficiently learn distributed features. Semisupervised learning
(SSL) can achieve remarkable identification accuracy by utilizing meta pseudo labels with
few labeled samples and many unlabeled samples. To address this challenge of RFI-aided
URLLCs, we utilized RFI and massive MIMO to improve transmission efficiency with low
error probability and high availability. The contributions of this paper are summarized
as follows.

• We propose a general framework of RFI-aided URLLCs with massive MIMO to further
improve uplink transmission efficiency with low error probability and high availability.
The key idea is using the physical-layer access scheme instead of the conventional
high-layer protocol scheme by RFI. In the proposed framework, we utilize RFISSL to
achieve reliable physical access and reduce overload. To the best of our knowledge,
this is the first attempt to involve RFI into URLLCs.

• For the proposed RFI, in a typical scenario, we constructed an SSL model on the basis
of meta pseudo labels to improve identification accuracy and robustness. We first
constructed a novel one-dimensional ResNet model to achieve identification by raw
radio frequency (RF) time signals. Due to feedback learning, only a small proportion
of the labeled data was needed to achieve excellent performance.

• For a typical short packet transmission scenario, we established a rigorous model
with massive MIMO. Saddle-point approximation was applied to characterize system
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reliability. Then, the error probability and network achievability of uplink transmis-
sion are investigated with finite block length. Furthermore, we evaluate the impact
of channel correlation on network availability. Experimental and numerical results
demonstrate that RFI-aided URLLCs can achieve high-efficiency transmission and
robustness. Lastly, thanks to the generality and robustness of radio frequency identifi-
cation, the proposed RFI framework can be applied to, for example, physical-layer
security, sensing, and localization.

1.3. Outline and Notations

The remainder of this paper is organized as follows. In Section 2, the general system
model is introduced in detail. Then, the novel architecture of RFI based on SSL is inves-
tigated in Section 3. Section 4 outlines mathematical framework performance analysis
of RFI-aided URLLCs with massive MIMO. Section 5 investigates the experimental and
simulation results to verify the performance of proposed RFI-aided URLLCs with massive
MIMO. Lastly, in Section 6, conclusions are drawn in detail.

In this paper, lowercase bold letters denote vector; uppercase bold letters denote ma-
trices; (·)−1, (·)∗, (·)T denote the inverse, conjugate and transpose, respectively; CN

(
0, σ2)

denotes a typical Gaussian distribution noise of channel; σ2 denotes variance in Gaussian
distribution; ‖ · ‖ denotes the spectral norms of a matrix; Q(·) represents the Gaussian Q
function; E[·] denotes the expectation operator; P[·] denotes the probability of a variable;
and log(·) represents the normal natural logarithm.

2. System Model Description

In this section, we introduce an RFI-aided URLLC architecture as shown in Figure 2,
where a radio frequency identification model and URLLC system with massive MIMO are
deployed to cooperatively serve large-scale smart devices [13]. Massive intelligent devices
such as lightweight sensors, robots, and low-power communication devices transmit key
information to distributed BSs through wireless channels. Then, received signals are
processed by those BSs for high = level information extraction. Furthermore, valuable
information is transferred to the cloud server for further computation, analysis, and decision
making. Under classical URLLC scenarios, most of the information block is short packages
that contain different transmission characteristics compared to typical Shannon capacity
theory. We discuss those characteristics in the following section. All those radio frequency
characteristics are created in the transmitter, and can be efficiently and completely detected
at the receiver side. Once we obtain the device’s raw radio frequency signals, authentication
processing can be carried out for the access legitimacy of the device.

In order to describe the generation mechanism of RF radio frequency characteristics,
the typical structure of the transmitter is shown in Figure 2. All original bits are processed
through modulation, upconversion, filtering, and high-power amplification at the trans-
mitting end, and all those radio frequency signals are then transmitted to BSs through
antennas [23]. For modulation, some IQ mismatches bring a special nonlinearity. Filtering
and high-power amplification modules are key elements for RF signal noise reduction
and transmission. The nonlinear characteristics of those different units are embedded in
a wireless signal waveform [31–33]. After propagation through a wireless channel, the
receiver can obtain raw large-scale RF time signals by directly sampling. When a trans-
mission arrives at BS, device identification is applied to achieve efficient physical-layer
access without any additional bit overhead by the RFI system. As shown in the lower right
part of Figure 2, the RFI system mainly contains offline training and online evaluation.
An offline training process guarantees remarkable identification accuracy with novel con-
struction and a few labeled samples [34]. Supervised learning is the traditional method
for model training. However, a number of labeled samples are required. Semisupervised
learning is an emerging efficient framework for practical model training due to its self-
feedback learning. Furthermore, model construction is a bottleneck for RFI. So, we propose
novel one-dimensional model RFIResNet for practical applications. Training parameters
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such as batch size, learning ratio, and optimizer are important for training convergence.
When trained model is obtained, it is deployed at BSs or edge nodes to achieve radio
frequency identification.
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Figure 2. Typical architecture of industrial URLLC systems with intelligent RFI to allow for seamless
integration of short-packet communication and reliable physical-layer access.

Then, online legitimacy testing is provided to check the information transmission
block [35]. Once legitimacy is confirmed, it is transmitted to subsequent processing units
for further demodulation and decoding. A central unit is deployed in the cloud sever for
computing and controlling to which all BSs are connected by wired cables. Then, high-level
decision making and analysis are realized through the central controller in the cloud sever.
The considered URLLC system consists of N smart devices and B BSs. The number of
antennas at the b-th BSs is Mb. For simplicity but without loss of generality, we assumed
that all those devices were equipped with a single antenna, a central BS with MIMO, and
additive Gaussian channel noise.

3. RFI Based on Semisupervised Learning For URLLCs
3.1. Basic Principles of Radio Frequency Identification

Typical wireless communication processing architectures include a baseband digital
part, digital-to-analog conversion, filters, an IQ modulator, HPAs, and antennas, as shown
in the bottom left part of Figure 2. RF features are produced when a signal passes through
nonlinear modules. Actual stable, unchanging, subtle hardware impairments are features
that we want to acquire [26]. The offset error of an analog-to-digital converter (ADC) is the
difference between the center of the least significant bit (LSB) and the ideal ADC with the
same bits. We always treat converter quantization interval as LSB. We measure the first
and last threshold of the converter to determine the precise location of the ideal center. The
LSB is defined as

VLSB =
VFSR

2Nbits
(1)

where VFSR is the full-scale range of the ADC. Nbits are the ADC bits that represent the
precision of ADC, and 2Nbits denotes the number of voltage intervals. We can rewrite the
error function with V as

Eo f f set = 2Nbits
VError
VFSR

(2)

we can define a normalized unit’s linearity errors GADC as

GADC =
Eo f f set

VFSR
(3)
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The DC component of analog IQ signals is the main source of carrier leakage. As
shown in Figure 3, IQ mismatch contains offset, imbalance, and error. Io f f set and Qo f f set
represent the relative value of the respective signal amplitudes. All those impairments
form partial unique fingerprint features. We can assess carrier rejection through factor α

α = 20lg(
√

I2
o f f set + Q2

o f f set) (4)

we can evaluate practical I/Q imbalance (shown in Figure 4) through the following equation.

GIQ =

√
1 + α2 − 2αcos(ε)
1 + α2 + 2αcos(ε)

(5)

The radio frequency filter is the key module in communication systems, and is mainly
responsible for the suppression of noise and illegal signals outside the working frequency
band. However, limited by material characteristics and implementation, high-frequency
filters often cannot achieve ideal performance. GFilter is always utilized to denote filter
nonlinearity such as Q value, insertion loss, and phase jitter. The power amplifier (PA) is
the last module before transmission. Although digital predistortion (DPD) can be utilized
to compensate for nonlinear characteristics of PA, harmonic and intermodulation distortion
still occur in a high-saturation state. Inevitable distortion caused by PA can be denoted
by GAmp.

(b) IQ Imbalance(a) IQ Offset

I

Q

I

Q

I

Q

(c) IQ Error

Figure 3. Composition of IQ mismatch. (a) IQ offset causes carrier leakage, which is very obvious
from a spectral point of view. (b) IQ imbalance mainly refers to the difference in analog I and Q
signal amplitudes of digital-to-analog convert (DAC) output, and the gain imbalance of an analog IQ
modulator. (c) IQ error is the bad orthogonality between two LO signals in the analog IQ modulator.

In order to verify and evaluate whether the nonlinearity of the different modules
above forms a radio fingerprint, we collected different mobile device signals in a routine
environment on the basis of the system-processing flow in Figure 2. The collected signal is
represented by

xi = GIQGADCGFilterGAmpsi = Gs (6)

where si is the original binary information, and G is the nonlinear fingerprint. We carried
out preliminary demodulation on the basis of collected samples. Figure 4 shows that
two different devices indicated relatively obvious differences from the perspective of the
constellation. Therefore, the radio fingerprint based on hardware impairment was stable
while exiting, and could be further mined and processed. So, a deep-learning framework is
the most suitable solution due to its massive nonlinear layer-to-layer neurons.
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Figure 4. Constellation corresponding to two different real mobile devices’ SRS frame in the same
environment. (a) Nonlinear characteristics of device1 in constellation. (b) Nonlinear characteristics of
device2 in constellation.

3.2. Novel Architecture Illustration of Semisupervised Learning Model

Supervised learning requires massive numbers of labeled training samples to guaran-
tee the promised performance [30]. Semisupervised learning shown in Figure 5b, i.e., joint
learning from labeled and unlabeled samples, is an active research topic due to its key role
on relaxing human supervision. Despite the strong performance of pseudolabel methods,
there is still a main drawback: if pseudolabels are inaccurate, the student network must
learn from an inaccurate parameter [36]. The student network may not achieve significantly
better performance than that of the pretrained teacher network, which is called confirma-
tion bias. To solve the above problems, the authors systematically designed a solution
framework to reduce false label learning bias [34]. In this framework, we designed such a
mechanism where the teacher network could obtain information from student predictions,
which is used to further correct soft label decisions for unlabeled data. To elaborate the
mutual learning process between the two networks, we rewrote the cross-entropy loss
function on the basis of the student network:

wssl
s = arg min

ws

Exu [C(T(xu; wt), S(xu; ws))] (7)

where ws and wt represent the weight parameters of the teacher and student networks.
(xu, xl , yl) refer to the batch of training data that consist of xu, xl and corresponding labels
yl , respectively. T(), S() denotes the soft prediction decisions of input data. We used
C() to describe the cross-entropy between different distributions. Furthermore, we used
Exl ,yl

[
C
(

yl , S
(

xl ; wssl
s

))]
to represent student loss on labeled samples Ll

(
wssl

s

)
.The mini-

mal value of student network loss function is the optimal solution in the network training
process; the optimizing problem can be described as

min
wt

Ll(wssl
s (wt)) (8)

where wssl
s (wt) = arg min

ws

Lu(wt, ws), and due to the mutual promotion learning of two

networks, accurate gradient descent leads to a huge amount of computation. The idea is to
approximate wssl

s (wt) by using only a single training step to completely replace the inner
optimization by training until convergence. Related techniques are used in metalearning,
gradient-based hyperparameter tuning, and unrolled generative adversarial networks.
Therefore, the approximate expansion is used to retain the maximal term and can be
described as

wssl
s (wt) ≈ ws − ηs · 5ws Lu(wt, ws) (9)
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Then, we can substitute (9) into (8) to obtain

min
wt

Ll(ws − ηs · 5ws Lu(wt, ws)) (10)

In order to solve the optimization problem above, we need to minimize the student network
loss function by adjusting the weight of the teacher network. We can obtain the derivatives
by chain rule

∂Ll(wssl
s (wt))

∂wt
=

∂

∂wt
C

yl , S
(

xl ;Eŷu∼T(xu ;wt)

[
ws − ηs∇ηsC(ŷu, S(xu; ws))

])
︸ ︷︷ ︸

student predication


=

∂

∂wT
C
(
yl , S

(
xl ; w̄′s

))
=

∂C(yl , S(xl ; w̄′s))
∂ws

|ws=w̄′s︸ ︷︷ ︸
PartI

· ∂w̄′s
∂wt︸︷︷︸
PartII

(11)

where,
w̄′s = Eŷu∼T(xu ;wT)

[
ws − ηs∇ηsC(ŷu, S(xu; ws))

]
(12)

As shown in (11), the Part I factor can be calculated by backpropagation. Then, we can
rewrite Part II as following

∂w̄′s
∂wt

=
∂

∂wt
Eŷu∼T(xu ;wt)

[
ws − ηs∇ηsC(ŷu, S(xu; ws))

]
=

∂

∂wt
Eŷu∼T(xu ;wt)

[
ws − ηs ·

(
∂C(ŷu, S(xu; ws))

∂ws

)T
] (13)

where ws is independent with wt, and we can leave the first part out of subsequent deriva-
tions. Furthermore, we can obtain the simplified expression as

∂w̄′s
∂wt

= −ηs ·
∂

∂wt
Eŷu∼T(xu ;wt)

[(
∂C(ŷu, S(xu; ws))

∂ws

)T
]

= −ηS ·
∂

∂wt
Eŷu∼T(xu ;θT)[gs(ŷu)]

(14)

where

gs(ŷu) =

(
∂C(ŷu, S(xu; ws))

∂ws

)T
(15)

(15) shows that gs(ŷu) has no dependency on wt, except for via ŷu. So, the REINFORCE
equation [34] was applied to obtain

∂w̄′s
∂wt

= −ηs ·
∂

∂wt
Eŷu∼T(xu ;wt)[gs(ŷu)]

= ηS ·Eŷu∼T(xu ;wt)

gs(ŷu) ·
∂C(ŷu, T(xu; wt))

∂wt︸ ︷︷ ︸
gradient of cross-entropy loss


(16)
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Then, we can substitute (16) into (11) to acquire the final result:

∂Ll(wssl
s (wt))

∂wt
=

∂C(yl , S(xl ; w̄′s))
∂ws

|ws=w̄′s︸ ︷︷ ︸
PartI

· ∂w̄′s
∂wt︸︷︷︸
PartII

= ηs ·
∂C(yl , S(xl ; w̄′s))

∂ws
·Eŷu∼T(xu ;wt)

[
gs(ŷu) ·

∂C(ŷu, T(xu; wt))

∂wt

] (17)

For simplicity but without loss of generality, we can calculate the terms in (17) by uti-
lizing Monte Carlo approximation with samples ŷu. Furthermore, we can approximate
w̄′s by updating the student parameter on unlabeled samples through (12). With those
approximations, final gradient ∇wt Ll can be calculated by

∇wt Ll = ηs ·
∂C(yl , S(xl ; w′s))

∂ws︸ ︷︷ ︸
labeled+student network

·
(

∂C(ŷu, S(xu; ws))

∂ws

∣∣∣∣
ws=ws

)T

︸ ︷︷ ︸
unlabeled+student network

· ∂C(ŷu, T(xu; wt))

∂wt︸ ︷︷ ︸
unlabeled+teacher network

= ηs · ∇w′sC
(

yl , S
(

xl ; w′S
)T
)
· ∇wsC(ŷu, S(xu; ws)) · ∇wtC(ŷu, T(xu; wt))

(18)

Labeled Data
Learning

Network

Supervised Learning

Labeled Data
Learning

Network

Unsupervised Learning

Unlabeled Data

Model Model

(a) (b)
Teacher StudentTeacher Student

Figure 5. Main workflow of machine learning. (a) supervised learning. (b) semi-supervised learning.

On the other hand, the student’s training still relies on the objective in (7), except that
the teacher parameter is not fixed anymore. The teacher’s optimization process involves
changing. More interestingly, we also used SGD to update the weight, and the updated
student’s parameter can be reused in the one-step approximation of the teacher’s objective.
This design naturally gives rise to an alternating optimization procedure between student
and teacher network updates, which can be denoted as

w
′
s = ws − ηs · 5ws Lu(wt, ws) (19)

w
′
t = wt − ηt · 5wt Ll(w

′
s) (20)

As shown in Figure 6, we constructed the one-dimensional RFIResNet by ID and conv
blocks. We used two convolutional layers and an additional add module to form ID blocks.
For conv blocks, there exists a dimensional transformation to realize vector length matching.
First, the convolutional operation of the input signal is realized by 64 linear filters with
a size of 7× 1. All those kernels were designed to obtain characteristic information at
different time scales. ReLu activation functions reduce the general gradient vanishing [30].
Furthermore, the proposed RFIResNet contains 42 layers to learn RF characteristics, and
the total number of parameters was 11,304,907, which approximately equals to that in the
original ResNet18. Lastly, we utilized a full connection layer and softmax function to realize
dimension reducing and probability mapping. Cross entropy is used to guide the learning
and convergence of the network model [37]. Furthermore, our proposed semisupervised
learning framework with meta pseudo labels is shown as Algorithm 1.
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Figure 6. Illustration of one-dimensional RFIResNet architecture used in this paper.

Algorithm 1 RFISSL Algorithm

Input: Labeled data and label(xl , yl), Unlabeled data(xu,)
Output: Student network weights w(N)

s

1: Initializing network weight w(0)
t , w(0)

s .
2: for n = 0 to N − 1 do
3: Get pseudolabel ŷu through calculating probability P(· | xu; wt)
4: Update ws by pseudolabel ŷu, where ηs denotes the adjustment factor, and C denotes

cross-entropy: w(n+1)
s = w(n)

s − ηsOwsC(ŷu, S(xu; w(n)
s ))

5: Compute the teacher’s weight coefficient h: h = ηs((ηsOw′sC(yl , S(xu; w(n+1)
s ))T ·

ηsOwsC(ŷu, S(xu; w(n)
s ))

6: Compute the teacher’s gradient g(n)t : g(n)t = h ·OwtC(ŷu, T(xu; w(n)
t ))

7: Calculating the teacher’s gradient g(n)t,supervised on the basis of labeled data:

g(n)t,supervised = OwtC(ŷl , T(xl ; w(n)
t ))

8: Update teacher network’s weight: wn+1
t = wn

t − ηt · (g(n)t + g(n)t,suervised)

9: end for
10: return: w(N)

s

4. Transmission Performance Analysis of RFI-Aided URLLCs with Massive MIMO
4.1. Error Probability Bound for Random Channels

In this section, we consider a simple case where the channel is assumed to have
Gaussian distribution. Then, we establish an evaluation framework of URLLCs error
probability with finite block-length uplink transmission. Due to the symmetry of uplink
and downlink transmissions, our paper discusses uplink transmission performance. For
simplicity but without loss of generality, the performance downlink is similar to uplink
transmission. Furthermore, we involve massive MIMO into the system to assess the
suitability for short-packet URLLCs. A typical channel model can be expressed as

y(m) = hGs(m) + z(m) = hx(m) + z(m), m = 1, . . . , n (21)

where x(m) ∈ C and y(m) ∈ C represent the input and output of channel, respectively.
h denotes the channel gain, which is assumed to be a quasistatic variable during packet
transmission. z(m) is a sample of additive Gaussian noise CN

(
0, σ2) that satisfies the
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independent and identically distributed (i.i.d) property. Then, we can obtain the estimated
x̂ by

x̂ = arg min
x̃∈C

‖y− ĥx̃‖2
(22)

where x̃ denotes the predefined codeword, and ĥ is the estimation of h at the receiver.
Equation (22) shows that it is a classical decoder to estimate an original signal by minimizing
Euclidean distance [38]. Then, we can obtain the error probability bound by

PError = P[x̂ 6= x]

≤ P
[

n

∑
m=1

γs(x(m), y(m)) + log(u) ≤ log(k− 1)

]
(23)

where u is a uniformly distributed random variable, and γs represents information density,
which is defined as follows [16]:

γs(x(m), y(m)) = −s | y(m)− ĥx(m)
∣∣∣2 + s|y(m)|2

1 + sρ|ĥ|2
+ log

(
1 + sρ|ĥ|2

)
(24)

where ρ is considered to be the transmission power of an average packet. Due to random
channel gain h ∈ C satisfying an arbitrary distribution, we can rewrite (23) as

PError = P[x̂ 6= x]

≤ Eh,ĥ

[
P
[

n

∑
m=1

γs(x(m), y(m)) ≤ log
k− 1

u
| h, ĥ

]]
(25)

where the average is taken over the random distribution of h. For general applications of
infinite block-length transmission, Shannon capacity is the upper bound of the whole total
system [13]. Furthermore, the error probability of URLLCs can be defined as the probability
that the empirical average of generalized information density γs described in (23) is smaller
than chosen rate R. As introduced in (25), an accurate closed-form mathematical solution
can only be calculated by numerical simulations. Normal approximation (NA) is an efficient
method to solve the huge calculation-consuming problem by utilizing the Berry–Esseen
central limit theorem. On this basis, we can rewrite (25) as

P
[

n

∑
m=1

γs(x(m), y(m)) ≤ log
k− 1

u

]
= Q

(
nIs − log(k− 1)√

nJs

)
+ o
(

1√
n

)
(26)

where Is denotes mutual information, and Q represents Gaussian Q function. Js defines the
variance in information density. However, the approximation accuracy of NA is not robust
for URLLC applications. Saddle-point approximation is a novel method to solve the huge
calculation-consuming problem [39]. By using saddle-point approximation, we can obtain
new representation of error probability.

P
[
∑n

m=1 Is(x(m), y(m)) ≤ log enR−1
u

]
= en[κ(ζ)+ζR]

[
Θn,ζ(ζ) + Θn,ζ(1− ζ) + o

(
1√
n

)] (27)

where

Θn,ζ(u) , en u2
2 κ′′(ζ)Q

(
u
√

nκ′′(ζ)

)
(28)

where O
(

1√
n

)
denotes residual error. The cumulant-generating function of saddle-point

approximation can be described as−κ(ζ). We assumed that k = enR for R > 0. Furthermore,
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the right-hand side part of (27) corresponds to Gallager’s error exponent for the wrong
decoding application.

Perror =

 en[logE[e−γs(x(m),y(m))]+R]
[
Θ̃n(1, 1) + Θ̃n(0,−1) +O

(
1√
n

)]
ζ > 1, R < Rcritical

1− en[κ(ζ)+ζR][Θn,ζ(−ζ)−Θn,ζ(1− ζ) +o
(

1√
n

)]
, ζ < 0, R > Is

(29)

where

Θ̃n(a1, a2) = e
na1

[
Rcritical−R+ κ′′(1)

2

]
×Q

(
a1

√
nκ′′(1) + a2

n(Rcritical − R)√
nκ′′(1)

)
(30)

and Rcritical = −κ′(1) represents the critical system rate. The subexponential factor is esti-
mated by saddle-point approximation to acquire accurate error probability [16]. From (29),
we can find that separating Gallager’s error exponent is the main process of saddle-point
approximation. Then, the Berry–Esseen central-limit theorem is applied to calculate fac-
tors before the exponential term. Perror represents the error probability for finite block-
length transmission.

4.2. Reliability Analysis for RFI-Aided URLLCs

In this section, a single cell where the BS is equipped with M antennas serving two
single-antenna smart devices is considered. A Rayleigh fading channel is involved to
characterize the actual channel. We used h to denote the channel vector between BS and
smart device. Wireless transmission relied on pilot `pilot ∈ C, and channel correlation
directly affects BS performance. We used orthogonal pilot sequences to reduce mutual
interference between different devices as much as possible. That means that `pilot satisfies

`i
pilot × `

j
pilot = 0, and the element pilot sequence is scaled by transmission power

√
ρul . At

the receiver side, received pilot signal ypilot ∈ C can be expressed as

ypilot =
√

ρulhi`
H
i +
√

ρulhj`
H
j + zpilot (31)

where zpilot ∈ C denotes the additive Gaussian noise with distribution CN
(
0, σ2). hi is

the fading channel vector. Furthermore, for accurately recovering the original signal on
the receiving side, it is necessary to accurately estimate channel vector h. Minimal mean
squared error (MMSE) is a remarkable method to estimate h by

ĥi =
√

ρulnpRiW−1
i

(
ypilot`i

)
(32)

where

Wi =
K

∑
l=1

ρulRi`
H
l `i + σ2IM (33)

and K = 2 denotes two different smart devices. R is the correlation matrix of spatial
channel, which indicates the quality of different channels. It is clear from (33) that, if pilot
sequences are orthogonal, i.e., `H

j `i = 0, there is no interference in channel estimation.
Furthermore, if underlying channels h1 and h2 are independent from each other, this means
that h1hH

2 = 0. Then, channel gain is independent scaling factor ri, which is the diagonal
element of R = βiIM. Uplink transmission can be described as

yul(m) =
K

∑
i=1

hixul,i(m) + zul (34)

where x(m) denotes the original signal that is transmitted by the i-th smart device with
average power ρul . zul is the Gaussian additive noise satisfying i.i.d properties. We can
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estimate x̂ul through estimation-combined channel vector channel Vi, which can be obtained
by computational algorithm MMSE in (35).

Vi =

(
K

∑
i=1

ĥi ĥH
i + Z

)−1

ĥi (35)

where Z = ∑k
i=1 Φi +

σ2
ul

ρul
IM denote mutual interference between different devices. Further-

more, we can obtain signal xul,i(m) by utilizing combined vector Vi as follows:

rul
ul,i[k] = VH

i

K

∑
i=1

hixul,i(m) + VH
i zul (36)

Similar to (21), (36) has the same form. Assuming that BSs achieve a perfect estimation of
channel can obtain the final codeword by

x̂ul,i = arg min
x̃ul,i∈Cul

∥∥∥rul,i −
(

VH
i ĥi

)
x̃ul,i

∥∥∥2
(37)

To obtain the average error probability of uplink transmission, we refer to the calcula-
tion process of (23). A simplified expression can be written as

Pul,i ≤ E
[
P
[

nul

∑
i=1

γs(rul,i(m), xul,i(m)) ≤ log
k− 1

u
| VH

i hi, VH
i ĥi, σ2

]]
(38)

where nul represents the number of uplink transmissions. The saddle-point approximation
described in Section 4.1 can be used to efficiently and accurately calculate probability
in (38). In summary, since short-packet transmission is different from traditional Shannon
capacity theory, we utilized saddle-point approximation to reduce complexity and obtain a
closed-form solution that is introduced in detail in the next section.

5. Results and Discussion

In this section, we provide extensive experiments on large-scale LTE datasets for radio
frequency identification with an SSL model. Simulation results of RFI-aided URLLCs
uplink transmission are provided to validate the error probability and availability of the
network system.

5.1. RFISSL Experiments Setup and Performance

To comprehensively evaluate the identification performance of our proposed RFISSL
model, we established a practical LTE scenario dataset by collecting raw time-signal data
from the 30 smart devices listed in Table 1. For simplicity but without loss of generality,
those devices represent a typical application in an industrial scenario. In our system config-
uration, two different sounding reference signal (SRS) symbols were located in symbols
4 and 11 of a regular frame. Through the long-term static acquisition of all devices, we
obtained nearly 40,000 frames of data for each mobile phone, with a total dataset size of
about 50 GB, which could be used to evaluate the ability of various complex networks to
extract device fingerprint features. After obtaining a signal, we conducted some preprocess-
ing operations, mainly including the normalization and dimension transformation of the
signal [30]. On this basis, the training and testing samples were established in a raw series.

During the experimental process, we only selected few labeled samples, and the
rest of the samples were selected to be unlabeled data to assist in the mutual learning of
the two RFIResNets. We configured a 42 layer one-dimensional network with a ReLU
activation function to construct the RFISSL framework. We used (xl , yl) to represent the
labeled data, where xl denotes collected time signals, and yl denotes the device label
listed in Table 1. Unlabeled data (xu, ) only contain time signals without a device label.
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The key mechanism of RFISSL is that the teacher network learns the weight feedback
of students under pseudolabels to further improve its performance and generate more
accurate soft labels.

Table 1. List of smart devices in experiments.

Group Phone Number of UE Label

1 Iphone6s 5 1–5
2 Xaiomi6 5 6–10
3 Meizux8 5 11–15
4 Honor10 5 16–20
5 Huaweip9 5 21–25
6 Oppor11 5 26–30

As shown in Figure 7a, various percentages of labeled data were examined by RFISSL
and compared with SL models such as ResNet18-1D, VGG16-1D, and AlexNet under differ-
ent training samples [40]. This chart shows that RFISSL achieved almost 0.1 identification
error with only 1% of labeled training samples, matching fully supervised learning with
100% of labeled instances. Lower error can also be exploited by RFISSL with an increase
in the percentage of labeled instances. When trained with 4500 labeled samples, RFISSL
achieved almost 10−5 error. We also evaluated several SL models and found that VGG16-1D
and ResNet18-1D, which were trained with 4500 labeled samples, only achieved perfor-
mance that RFISSL could achieve only with 10% labeled samples (total slicenum equal to
2700). Furthermore, we transformed our one-dimensional signals into time–frequency data
by short-time Fourier transform (STFT). Then, we analyzed identification performance
under AlexNet. The result in Figure 7a shows that AlexNet achieved better performance
than that of VGG16-1D due to its lager network parameters. These excellent properties
confirmed the benefit of efficient student and teacher feedback learning. In the process
of network training, two networks need to continuously learn from each other. Due to
the existence of unlabeled samples, the training process has a huge cost, but the testing
of network model needed about 0.52 ms on the server. This satisfies the requirement of
practical URLLCs. Figure 7a shows that consistent gains confirmed the benefit of internal
distribution characteristic deviation of device features.
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Figure 7. RFISSL performance. (a) Identification accuracy of RFISSL under different percentages of
labeled data. Both models tested with LTE dataset. (b) Confusion matrices for RFISSL model trained
without augmentation when labeled training samples equals to 4500.

Figure 7b again confirms that our proposed RFISSL could truly realize almost 10−5 RF
identification error of a large-scale smart device with 4500 training samples. Our RFI error
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probability PRFI could thus be reduced by utilizing a meta pseudo label. The deep learning
model could be deployed at resource-constrained computing units by using structured
pruning to render the model sparse [41]. Furthermore, the total error probability of RFI-
aided URLLCs is discussed in Section 5.2.

5.2. Average Error Probability Bound of Short Packet URLLCs

For the simulation of proposed RFI-aided URLLCs with short packet, we drew on
potential deployment schemes for URLLCs from existing works [28] to establish typical
application scenarios. For simplicity but without loss of generality, a 2D scenario is consid-
ered in Figure 8. The BS located at (0, 100) and two smart devices were involved. In our
simulation setup, Device 2 was located at fixed position (57.7, 0) and Device 1 could move
along the x axis. To acquire a general analytical framework of the error probability bound,
an additive Gaussian channel and Device 2 were assumed in first stage. Our system was
configured with 20 MHz bandwidth. The error probability definition in (23) shows that,
if the BS acquires perfect channel state information, then PError converges to the outage
probability, which can be defined as

PError = P
[

log
(

1 +
ρh2

σ2

)
< R

]
(39)

where h denotes the channel gain, and R represents the upper bound of information rates.
Lastly, for the joint RFI-aided URLLCs framework, we could obtain total error probability by

P = 1− PRFI(1− P
[

log
(

1 +
ρh2

σ2

)
< R

]
) (40)

where PRFI represents error detection probability, and P denotes total system error proba-
bility. RFI accuracy performance impacts general system reliability. We achieved physical
access without any additional overload, and all those time–frequency resources could be
utilized to transmit useful information.

x

y

Base Station (BS)

(0,0)

Device1 Device2

30= 

(0,100)

(57.7,0)

Figure 8. Simulation scenario with BS located at (0, 100) and assisted by massive MIMO serving two
different intelligent devices.

As shown in Figure 9a, theoretical outage probability and approximation methods
were compared. We assumed that they all had the same received SNR. Results demonstrate
that the saddle-point approximation matched well with Monte Carlo testing. With the
increase in number of antennas M, there was a gradual differencein those methods due to
the estimation error except saddle-point approximation. Figure 9b shows the relationship
between R and error probability. Specifically, a fixed number of antennas M = 128 is
considered. Only the saddle-point method was an exact actual random coding union (RCU)
bound. In summary, outage probability and normal approximation do not always provide
good estimations of the error probability achievable in URLLCs with massive MIMO over
quasistatic channels.
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Figure 9. Average error probability of uplink transmission with massive MIMO. Single UE is assumed
to connect with BS and h ∼ CN (0M, βIM). (a) Error probability under different numbers of antennas
and approximation methods with R = 0.6. (b) Performance of URLLCs with different R, where
M = 256.

5.3. Uplink Transmission Performance of Multiple Devices with Massive MIMO

Impact spatial correlation Corr and number of antennas M are investigated here. As
shown in Figure 8, we assumed that there existed two smart devices connected to a single
BS at (0, 100). A horizontal uniform linear array (ULA) was established to achieve massive
MIMO. Furthermore, we assumed that channel scatters were randomly distributed in the
path of BS and devices [42]. Then, we could describe the angular distribution by (θi ± δ),
where θi denotes the angle of arrival (AoA) of the i-th device, and δ is the scatter spread.
The large-scale fading coefficient was modeled in [43]. The transmission power of uplink
was assumed to be 10 mW, and the noise level of receiver to be about −100 dBm. A typical
uplink transmission contains about 100 bits of information. In Figure 10, the impact of
antenna number M with different positions is investigated. Results demonstrates that error
probability sharply deteriorated with the shortening of the distance between two devices,
and a larger number of antennas provide better system performance.
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Figure 10. Uplink transmission error probability against different positions of Device 1 with n = 100
and fixed transmission power. Device 2 located at (57.7, 0).

In order to validate the asymptotic analysis of channel correlation, we numerically
evaluated the uplink transmission error probability when two devices transmit at the same
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power and pilot sequence. Furthermore, we assumed that the devices were located at
(0, 0), and their channel correlation could be designed for evaluating the significant impact
on error probability. As shown in Figure 11a, average error probability as a function of
M with different levels of channel correlation is investigated. These results demonstrate
that channel correlation can directly influence system error probability. However, with
the increase in M, system performance can be greatly improved due to the promotion of
spatial freedom.
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Figure 11. Performance of URLLC uplink transmission. (a) Error probability against number of
antennas M with different channel correlation levels. (b) Network availability against average error
probability with different channel correlation levels.

To gain more insight into the proposed RFI-aided URLLCs network from different
perspectives, we defined network availability PAva = P(P ≤ PAve) to measure the proba-
bility that satisfied the condition where P is calculated by uniformly distributing in the
serving area of BS. As shown in Figure 11b, PAva increased with the increase in average
error probability PAve. Interference caused by channel correlation significantly reduced
network availability, irrespective of the processing scheme. There existed a very rapid
upward trend when PAve was equal to 0 or 1 because, when uniformly distributing the
devices, it is almost impossible that they always be located at excellent or low-SNR serving
areas of BS. Therefore, carefully deploying smart devices guarantees balancing transmission
efficiency and robustness in practical URLLCs systems.

6. Conclusions

In this paper, we first proposed an RFI-aided URLLCs system with massive MIMO
that aims to improve transmission efficiency and access robustness with low cost and
computational complexity. To obtain a remarkable machine-learning-based model, we
involved SSL with meta pseudo labels. We established a novel one-dimensional RFIResNet
for smarts devices’ physical-layer access. We experimentally validated the performance
of RFISSL on the basis of practical LTE datasets, and results showed that identification
error converged to 10−5, with samples equal to 4500. In the proposed short-packet URLLC
network, in a typical industrial application, we formulated the general analytical framework
of finite block-length uplink transmission, which is the downlink symmetry. Our proposed
RFISSL model only needed about 0.52 ms to finish online physical-layer access with limited
computing resources. This satisfies the requirement of practical URLLCs. Furthermore,
we provided an evaluation of the error probability bound and network availability by
utilizing saddle-point approximation. Lastly, numerical experiment results demonstrated
that introducing RFI and massive MIMO into URLLCs is a promising technique to improve
transmission efficiency and robustness.



Symmetry 2022, 14, 801 18 of 20

Author Contributions: Conceptualization, T.Z., P.R. and D.X.; methodology, T.Z.; software, T.Z. and
Z.R.; validation, T.Z.; formal analysis, T.Z. and Z.R.; investigation, T.Z. and Z.R.; resources, P.R. and
D.X.; data curation, T.Z.; writing—original draft preparation, T.Z.; writing—review and editing, T.Z.,
P.R., Z.R. and D.X.; visualization, T.Z. and Z.R.; supervision, P.R. and D.X.; project administration,
T.Z. and P.R.; funding acquisition, P.R. All authors have read and agreed to the published version of
the manuscript.

Funding: The work was completed with the financial support of National Natural Science Foundation
of China under grant no. 62071373 and the Innovation Talents Promotion Program of Shaanxi Province
under Grant No. 2021TD-08.

Institutional Review Board Statement: not applicable.

Informed Consent Statement: not applicable.

Data Availability Statement: The datasets in this paper can be downloaded from https://github.
com/ZhanyiRen/LTE-Datasets.git (accessed on 15 March 2022).

Conflicts of Interest: the authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

URLLCs Ultrareliable and low-latency communications
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RFI Radio frequency identification
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UEs User equipment
SSL Semisupervised learning
IIoT Intelligent Internet of Things
3GPP 3rd generation partnership project
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LSB Least significant bit
NA Normal approximation
MMSE Minimal mean squared error
SRS Sounding reference signal
RCU Random coding union
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