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Abstract: Thanks to the use of deep neural networks (DNNs), microphone array speech separation
methods have achieved impressive performance. However, most existing neural beamforming
methods explicitly follow traditional beamformer formulas, which possibly causes sub-optimal
performance. In this study, a pre-separation and all-neural beamformer framework is proposed for
multi-channel speech separation without following the solutions of the conventional beamformers,
such as the minimum variance distortionless response (MVDR) beamformer. More specifically, the
proposed framework includes two modules, namely the pre-separation module and the all-neural
beamforming module. The pre-separation module is used to obtain pre-separated speech and
interference, which are further utilized by the all-neural beamforming module to obtain frame-level
beamforming weights without computing the spatial covariance matrices. The evaluation results
of the multi-channel speech separation tasks, including speech enhancement subtasks and speaker
separation subtasks, demonstrate that the proposed method is more effective than several advanced
baselines. Furthermore, this method can be used for symmetrical stereo speech.

Keywords: multi-channel speech separation; beamforming; pre-separation module; all-neural; speech
enhancement

1. Introduction

Speech separation can extract target speaker information from speech signals cor-
rupted by interference and reverberation, and it can improve the quality of communication
between people. Thanks to the powerful nonlinear modeling capabilities of deep learning,
speech separation has received extensive attention and achieved significant performance
improvements. Speech can be separated in the time domain [1–3] or the time-frequency
domain [4–8]. Since time-frequency domain methods have clearer feature patterns and
overall better speech quality; this paper focuses on time-frequency domain methods. Ac-
cording to the number of recording microphones, speech separation can be classified as
monaural separation and microphone array separation.

Although single-channel speech separation has achieved impressive performance,
it can only use the characteristics of the signal itself. Therefore, single-channel speech
separation will inevitably produce speech distortion, especially in a noisy and reverber-
ant far-field environment, which seriously affects the performance of speech separation.
On the contrary, multi-channel speech separation tasks can utilize additional spatial in-
formation, which is very important to improve the quality of speech after separation in
extremely challenging conditions. Therefore, the study of multi-channel speech separation
has aroused widespread interest. In traditional multi-channel speech enhancement, the
mainstream method is acoustic beamforming [9,10], for example, through generalized
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eigenvalue (GEV) beamformers or minimum variance distortionless response (MVDR)
beamformers, which enhance signals in specific directions while attenuating signals in
other directions. Therefore, early researchers usually combined deep neural networks
(DNNs) with spatial filtering methods based on signal-processing theory [11–14], such as
GEV beamformers or MVDR beamformers, to design spatial filters, which can reduce the
nonlinear distortion introduced by DNN. This process can be briefly described as follows.
First, the speech and interference of each channel are independently estimated by the
designed single-channel speech separation network. Here the interference is obtained by
subtracting the target reverberant signal from the noisy mixture, which contains the other
interfering speaker and background noise. Then, the second-order statistics, i.e., speech
and interference spatial covariance matrices, are calculated to obtain beamformer weights.
However, as the single-channel network is typically trained independently, it may produce
unreliable outputs. Another approach is to train the separation network with additional
spatial features, such as inter-channel phase and level difference [15–18]. Recent studies
regard the trained DNN itself as a nonlinear spectral-spatial filter, which takes the real and
imaginary parts of the multi-channel signal as inputs and uses a complex spectral mapping
method to generate the real and imaginary spectrograms of the target signal [19–21]. In this
way, DNNs can implicitly exploit the direction information contained in the array signals
input to the multi-channel.

Much research on the usage of DNNs to directly generate frame-level beamforming
weights have been carried out. For example, in [22], the authors used two recurrent
neural networks (RNNs) to substitute the covariance matrix inversion and eigenvalue
decomposition processes of traditional MVDRs for neural frame-adaptive beamforming.
Subsequently, Xu et al. [23] improved it by using one unified RNN-DNN model to calculate
beamforming weights directly, which achieves higher speech quality and automatic speech
recognition (ASR) accuracy. Moreover, Luo et al. [24] proposed a filter-and-sum network
that calculates adaptive beamforming filters for each microphone and sums the filtered
outputs of all channels as the final output. However, most current methods obtain limited
performance improvement and lack of adequate robustness. For example, FasNet+TAC
obtains a slight performance improvement under extreme conditions, i.e., a high overlap
ratio or small speaker angle.

In this paper, a pre-separation and all-neural beamformer framework for multi-channel
speech separation is proposed which is called PsBf and consists of the pre-separation
module and the all-neural beamforming module. Note that the proposed PsBf is evaluated
on two subtasks, including reverberant speech enhancement and speaker separation tasks.
The contributions of this paper can be summarised as follows. (i) The pre-separation
module is designed to output multiple filter weights, and it is constructed by combining a
multi-scale aggregation block (MSAB) with a dual-path recurrent neural network (DPRNN).
The introduction of MSAB makes it possible for the network to better obtain the contextual
information of different scales. The local and global features can be modeled by DPRNN at
the same time. (ii) A new all-neural beamforming module that directly learns frame-wise
beamforming weights from estimated speech and interference, without following the form
of conventional beamforming solutions, is proposed. In this way, the neural network can
learn better filter weights in a data-driven manner. (iii) Experimental results show that in
terms of microphone array speech enhancement and speaker separation tasks, the PsBf
proposed in this paper shows significantly better performance than several other baseline
methods. Furthermore, even under extremely challenging conditions, the proposed PsBf
still achieves acceptable separation performance. In addition, this approach can be used for
symmetrical stereo speech.

The remainder of the paper is organized as follows. Sections 2 and 3 introduce the
problem definition and model architecture, respectively. The experimental setup is given in
Section 4. The experimental results and analysis are presented in Section 5. Section 6 gives
the concluding remarks.



Symmetry 2023, 15, 261 3 of 11

2. Problem Formulation

The signals containing reverb noise and input into the P-channel microphone array
can be expressed in the short-time Fourier transform (STFT) domain:

Y(t, f ) = S(t, f ) + N(t, f ) = dre f ( f )Sre f (t, f ) + N(t, f ), (1)

where Y(t, f ), S(t, f ), and N(t, f ) represent the reverberant mixture, reverberant speech,
and reverberant interference at the time t and frequency f , respectively. Sre f denotes the
STFT of the target speech signal in the reference microphone, and dre f ( f ) is the relative
transfer function of the target speech to the reference channel. The spatial information
contained in the receiving signal between multiple channels will not change due to arbitrary
selection of the reference channel, and the first channel is selected as a reference channel
in this paper. The purpose of microphone array speech separation is to extract the target
signal Sre f from the noisy and reverberant signals. It should be pointed out that the
objective of this study is to separate the target speech rather than dereverberation, hence
the reverberated pure speech as the training label.

3. Model Description

Figure 1 shows the structure diagram of PsBf, which contains a pre-separation module
and an all-neural beamforming module. The pre-separation module is a variant of the TPRNN
proposed previously [25], which is used to obtain pre-separated speech and interference. The
all-neural beamforming module simulates conventional beamformers to calculate frame-level
beamforming weights. Next, these two modules are described in detail.

3.1. Pre-Separation Module

TPRNN, which has been proposed previously, is suitable for multi-channel speech
separation on distributed microphone arrays. Here, the input features of the model are
transformed from the time domain to the time-frequency domain, as it is empirically found
that the time-frequency domain speech separation method can obtain better performance
than the time-domain speech separation method. The encoder is composed of two layers
with an MSAB inserted into between them, and it is used to input the reverb mixture
Y(t, f ). MSAB can obtain richer contextual information. As shown in Figure 2, MSAB
mainly consists of three modules, namely the input layer, the UNet-shaped multi-scale
feature extraction layer and the output layer. By utilizing MSAB, the local and global
information of speech can be effectively captured. The first layer of the encoder consists of
1× 1 convolutions, layer normalization [26] (LN) and a parameter-rectified linear unit [27]
(PReLU) activation, which increases the number of channels to C = 64, remains unchanged
in subsequent modules. The second layer uses 1× 3 convolutions with a stride of 2 for
halving the frequency dimensions size, followed by LN and PReLU.

The input of the stacked DPRNN block is the output of the encoder. DPRNN mainly
includes two-stage processing, in which local and global processing is performed iteratively
and alternately. The local processing consists of bi-directional gate recurrent units [28]
(BGRU), a fully connected layer (FC), and a global LN (gLN). As for global processing,
BGRU and gLN are correspondingly replaced by GRU and cumulative LN (cLN) to guar-
antee strict causality. There are X units in each direction of each BGRU layer. The outputs
of all DPRNN blocks are fed into the adaptive feature fusion block to aggregate diverse in-
termediate features. In addition to replacing the convolution in the encoder with sub-pixel
convolution, the decoder is a reverse version of the encoder. Sub-pixel convolution can
replace transposed convolution to reconstruct compressed features, and its upsampling
ratio is 2. The advantage of adding skip connections between the encoder and the decoder
is that the flow of information in the network is improved. The last layer of the decoder
is a 1× 1 convolution, and linear activation layer is used due to the need to generate an
unbounded mask M̃. The mask M̃ has 2P channels, where P indicates the number of micro-
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phones, and the number 2 represents the real and imaginary two parts, so pre-separated
speech S̃ and interference Ñ can be obtained.
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Figure 1. The entire architecture of the PsBf. (a) PsBf architecture. (b) DPRNN block. “gLN”
represents global layer normalization, “cLN” represents cumulative layer normalization, “SConv”
represents sub-pixel convolution, “AFFB” means adaptive feature fusion block. � indicates the
complex-domain multiplication, and filter-and-sum denotes the operations expressed in Equation (4).
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3.2. All-Neural Beamforming Module

After estimating speech and interference, the all-neural beamforming module is ap-
plied to calculate frame-level beamforming weights. As opposed to the previous all-neural
beamformer, which needs to follow the form of conventional beamformer solutions, i.e.,
by computing the spatial covariance matrix and its inverse, the estimated speech and
interference are directly used to calculate the beamforming weight, which can improve
the performance of the system. In this module, LN is first employed to normalize speech
and interference. The normalized speech and interference are then concatenated along
the channel dimension and fed into two GRU layers with 128 hidden nodes to simulate a
frame-by-frame update beamforming process. Two FC layers are used for estimating the
weights, one of which is followed by PReLU; the other is followed by linear output. The
following formula gives the overall process.

w̃b f (t, f ) = GRU([LN(S̃), LN(Ñ)]) (2)

wb f (t, f ) = FC(PReLU(FC(w̃b f (t, f )))) (3)

Ŝ = (wb f (t, f ))HY(t, f ) (4)

where wb f (t, f ) ∈ CP is the frame-wise weight. The time-domain enhanced signal ŝ can be
obtained by performing an inverse STFT (iSTFT) on Ŝ.

It should be pointed out here that PsBf is inspired by TPRNN and has been changed.
First, the network operates in the time-frequency domain, which has more explicit spectral
features than the time domain. Second, rather than introducing a third path RNN to explic-
itly model spatial information, the method proposed implicitly exploits spatial information
encoded in the multi-channel input signal. Third, the all-neural beamforming module is
additionally added, which simulates the traditional spatial filtering beamformer and can
effectively restore speech quality while reducing distortion.

3.3. Loss Function

The phase-constrained magnitude [29] (PCM) loss is adopted to train the speech
enhancement model. PCM is an improved version of STFT magnitude loss, which can
eliminate an unknown artifact due to the magnitude loss of STFT.

LPCM(s, ŝ) =
1
2
· LSM(s, ŝ) +

1
2
· LSM(n, n̂) (5)

where s and n represent a clean speech signal and a interference signal, respectively. ŝ and
n̂ indicate the separated speech and interference, respectively. LSM is the magnitude loss of
STFT, and its expression is

LSM(s, ŝ) = 1
T·F

T−1
∑

t=0

F−1
∑

f=0
|(|Sr(t, f )|+ |Si(t, f )|)

−(|Ŝr(t, f )|+ |Ŝi(t, f )|)|
(6)

where S(t, f ) and Ŝ(t, f ) are the STFTs of s and ŝ in the time t and frequency f , respec-
tively. Sr and Si represent the real and the imaginary part of the complex spectrogram S,
respectively. LSM(n, n̂) is also defined in this way.

For the speaker separation task, the scale-invariant signal-to-noise ratio (SI-SNR) is
adopted to train the network. SI-SNR is defined as

Si− SNR : =10log10(
||αs||2
||αs− ŝ||2 ) (7)
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where α = 〈ŝ,s〉
〈s,s〉 is just a scalar. 〈·, ·〉 and || · || represent the inner product and Euclidean

norm, respectively. Utternce-level permutation-invariant training [30] is utilized for solving
the source permutation problem during the training process. Note that instead of being
provided to two modules explicitly, the supervision is only available for the final estimate.
Therefore, the entire network can be trained in an end-to-end manner.

4. Experimental Setup
4.1. Datasets

The speech enhancement task is evaluated on the Librispeech dataset [31], and the
image method is employed to generate multi-channel mixture speech signals. Two different
microphone arrays were placed in the room. One is a circular array of six microphones;
these were evenly distributed in a circle with a radius of 5 cm. The other is a line array of six
microphones, and the distance between these microphones was set to 4 cm. The room size is
randomly sampled from 3 m× 3 m× 2.5 m (length×width× height) to 10 m × 10 m × 4 m,
which can cover most of the actual scenes. The reverberation time (T60) is sampled from
0.1 to 0.5 s at random. When generating the training set and validation set, the clean speech
signal comes from train-clean-100 and dev-clean, respectively, and the noise signal comes
from DNS challenge dataset [32]. The relative SNR between speech and noise is randomly
sampled among {−5 dB, −4 dB, −3 dB, −2 dB, −1 dB, 0 dB}. For each microphone array,
40,000 training utterances and 5000 validation utterances are generated. For the test set, in
order to test the generalization of the model to unseen noise, two challenging noises from
NOISEX-92 [33], namely babble and factory1, are selected. Multi-channel mixture speech
signals under three SNR conditions are generated, namely −5 dB, 0 dB, and 5 dB. For each
SNR condition, 600 noisy utterances are generated. The experiments are conducted under
the circular array if not stated otherwise.

The same dataset is used for [34] as for the two-speaker separation task, which contains
training set, validation set and test set. During each mixing process, two different speakers
at various SNRs between 0 dB and 5 dB are randomly selected. The overlap ratio between
the two speakers is uniformly sampled between 0% and 100%.

4.2. Experimental Configurations

The sampling rate of generated utterances is set to 16 kHz. A 32 ms Hanning window
is used to segment the signal into frames, and the frame shift is 16 ms. A 512-point STFT is
performed on the framed signal, which generates 257-D spectral vectors. The Adam [35]
optimizer is adopted to train the entire network, and the initialized learning rate and batch
size are set to 0.001 and 16, respectively. In each mini-batch, the sentence length is fixed
to 4s. The loss on the validation set affects the value of the learning rate and the learning
behavior of the model. If the best model is not found for three consecutive times, the
learning rate is halved, and if the best model is not found for five consecutive times, the
model training is terminated early. To avoid exploding gradients, gradient clipping with a
maximum L2-norm of 5 is applied. The model for the speech enhancement task and the
speaker separation task are trained 50 and 100 epoch, respectively.

4.3. Baseline

The model proposed herein is compared with different advanced baselines for speech
enhancement, including GCRN [36], SADNUNet [37], DC-CRN [21], FasNet+TAC [38],
and TPRNN. GCRN and SADNUNet are two advanced single-channel models. DC-CRN
is a method based on complex spectral mapping which directly uses the real and the
imaginary spectrograms of the multi-channel mixture to estimate those of the clean speech.
FasNet+TAC and TPRNN are two advanced time-domain multi-channel models which
are designed to be applied to both fixed microphone array and ad hoc microphone array.
For the speaker separation task, seven baselines are chosen, namely TasNet, FasNet+TAC,
DCRN [39], MC-ConvTasNet [17], TD-GWF-TasNet [40], IC-ConvTasNet [41], and TPRNN.
Except for TasNet, other baselines are recently proposed advanced multi-channel speaker
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separation systems. All advanced baselines adopt the best configuration mentioned in
the original literature and utilize the same dataset mentioned in this study for training,
validation and testing.

5. Results

In speech enhancement task, perceptual evaluation of speech quality (PESQ) [42]
and short-term objective intelligibility (STOI) [43] are used to assess the enhancement
performance. For the speaker separation task, SI-SNR is utilized to evaluate the accuracy of
speaker separation.

5.1. Ablation Study

In order to verify the influence of different network components, an ablation of multi-
channel noise reverberation speech enhancement task was carried out. Table 1 gives
the experimental results, from which the following phenomena can be observed. First
of all, increasing the hidden layer size in the GRU can facilitate more accurate spectral
estimation. For instance, an average of 0.14, 2.56%, and 0.43 score improvements are
observed in terms of PESQ, STOI, and SI-SNR, respectively, from Variant-1 to Variant-2.
Secondly, from Variant-2 to Variant-3, significant performance improvements are observed,
where Variant-2 only outputs the filter weights of the reference channel, which shows that
multi-filter estimation is essential in multi-channel speech enhancement tasks. Thirdly, the
performance of the model is further improved by adding the neural beamformer module;
the network with neural beamforming achieves a slight improvement in PESQ and STOI,
and a significant improvement in SI-SNR, as shown in Variant-3 and Variant-4. One possible
reason is that the neural beamformer simulates the traditional MVDR beamformers, which
can reduce the distortion of the recovered speech while effectively suppressing the residual
noise. This phenomenon is more obvious in the non-causal setting (not reported here).
Finally, the non-causal system, i.e., Variant-5, achieved the best performance. This result is
very logical, because non-causal systems can take advantage of more information, especially
future information, which is crucial for speech-related tasks. In the following experiments,
the same parameter configuration as Variant-4 is used unless otherwise specified, as it
achieves optimal performance under the causal setting.

Table 1. Ablation study on the simulated 6-mic circular array. “Cau.” indicates whether the system is
a causal implementation. “MO” and “BF” represent whether the multi-channel masks were output,
and neural beamformer, respectively. ↑ represents the increment relative to the mixture. X denotes
the hidden dimension in the GRU. The bold values show the best results.

Variant Causal MO BF X Par.(M) PESQ ↑ STOI ↑ SI-SNR ↑
Variant-1 3 7 7 64 1.08 1.22 25.98 9.17
Variant-2 3 7 7 128 1.73 1.36 28.54 9.60
Variant-3 3 3 7 128 1.73 1.51 31.28 11.90
Variant-4 3 3 3 128 1.91 1.53 31.54 12.49
Variant-5 7 3 3 128 2.45 1.80 35.04 14.24

5.2. Speech Enhancement

According to the results of the ablation study, Variant-4 is chosen to compare with
other baseline methods on speech enhancement tasks. The experiments are performed
on the circular arrays first; Table 2 presents STOI and PESQ results at −5 dB, 0 dB, and
5 dB, respectively. First, all models improve PESQ and STOI over the unprocessed mix-
tures, which demonstrates that the speech enhancement model can obviously improve
the perception quality and intelligibility of speech. Second, GCRN and SADNUNet, two
advanced single-channel speech enhancement systems, obtain similar metric scores and
achieve minor performance improvement over the unprocessed mixture. A possible reason
is that single-channel speech enhancement has suffered from the performance bottleneck in
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the more challenging noisy reverberant environments. Thirdly, all multi-channel models
achieve consistently better enhancement performance than single-channel models, due to
the fact that the multi-channel speech enhancement method can improve speech recovery
ability by using spatial information provided by the microphone array. Fourthly, the pro-
posed model performes significantly better than all baselines in terms of objective speech
intelligibility and quality metrics. For example, compared with FasNet+TAC, a recently
proposed time-domain end-to-end multi-channel speech separation method, the proposed
PsBf achieves average score improvements of 0.65 and 6.21% according to PESQ and STOI,
respectively. Finally, it is very interesting to find that TPRNN, an architecture designed
for the ad hoc array, also achieves significant performance improvements in a microphone
fixed geometry array configuration. However, it still underperforms the proposed PsBf,
which fully demonstrates the superiority of the method proposed.

Table 2. Speech enhancement results on the simulated 6-mic circular array according to PESQ and
STOI. “Par.” represents the number of training parameters. Best results are shown using bold values.

Metrics Cau. Par.(M) STOI (%) PESQ

Test
SNR - - −5 dB 0 dB 5 dB Avg. −5 dB 0 dB 5 dB Avg.

Mixture - - 48.40 55.12 60.51 54.68 1.40 1.57 1.74 1.57
GCRN 3 9.77 59.48 65.77 69.93 65.06 1.80 2.10 2.30 2.07

SADNUNet 3 2.63 59.61 65.66 69.81 65.03 1.82 2.04 2.24 2.03
DC-

CRN 3 12.97 70.07 74.66 77.27 74.00 2.16 2.39 2.58 2.38

FasNet+TAC 3 2.76 69.45 73.86 76.67 73.33 2.09 2.25 2.39 2.24
TPRNN 7 2.28 81.18 83.82 85.52 83.51 2.76 2.93 3.07 2.92

PsBf 3 1.91 84.33 86.68 88.13 86.38 2.95 3.11 3.24 3.10

Furthermore, to investigate the effectiveness of the proposed PsBf in the linear array
configuration, the experiments are also conducted on the previously mentioned linear array.
From the evaluation results in Figure 3, it can be found that all models obtains similar
performance trends as in Table 2. Experimental results demonstrate that method proposed
herein is effective for different array configurations.

SNR (dB)

P
E

S
Q

(a)
SNR (dB)

S
T

O
I 

(%
)

(b)

Figure 3. Speech enhancement results on the simulated 6-mic linear array in terms of PESQ and STOI.
(a) PESQ; (b) STOI.
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5.3. Speaker Separation

In this subsection, the effectiveness of the proposed PsBf on the noisy reverberant
speaker separation task is verified; the PsBf is also trained on the previously mentioned
multi-channel two speaker separation dataset. Table 3 shows the results of different
speaker separation methods on this dataset. From Table 3, it is observed that as the
overlap ratio between two speakers increases, the separation performances of all systems
consistently decrease, which shows that the overlap ratio has a significant influence on
speaker separation performance. However, the PsBf still obtains acceptable separation
performance. In particular, under the extreme condition wherein the overlap ratio between
two speakers exceeds 75%, the proposed system improves Si-SNR from 8.50 dB to 10.74 dB
compared to TD-GWF-TasNet. At the same time, the greater the average angle of the
speaker with respect to the microphone center, the better the separation performance.
For instance, from <15◦ to >90◦, all models have significant performance improvements,
regardless of single-channel or multi-channel models (e.g., TasNet-filter: 8.03 vs. 8.94, TD-
GWF-TasNet: 10.70 vs. 13.60 and PsBf: 13.83 vs. 15.30). This is very reasonable, as a large
angle can facilitate spatial differentiation ability between different sources. Furthermore,
the proposed method outperforms all baselines by a large margin under all conditions,
i.e., the speaker angle and overlap ratio, which demonstrates that the proposed PsBf can
effectually recover speech with minimal distortion. For instance, compared with FasNet-
TAC, PsBf obtains 3.46 dB average improvement in terms of SI-SDR. Finally, although
PsBf obtains the best separation performance, it has fewer parameters than other baseline
models except for IC-ConvTasNet, which verifies the higher parameter effectiveness of
the model.

Table 3. Experiment results on the simulated 6-mic circular array. The angle indicates the average
angle of the speaker with respect to the microphone center. The percentages denote the overlap
ratios between two speakers. SI-SNR is reported on a decibel scale. The best results are shown using
bold values.

Metrics Par. (M)
Speaker Angle Overlap Ratio

Avg.
<15◦ 15–45◦ 45–90◦ >90◦ <25% 25–50% 50–75% >75%

TasNet-
filter 2.9 8.03 8.35 8.71 8.94 13.2 9.6 6.85 4.39 8.51

FasNet+TAC 2.9 8.63 10.65 12.21 13.04 15.2 12.0 9.65 7.59 11.11
DCRN 18.67 9.23 9.61 9.84 10.13 14.34 10.74 7.80 5.76 9.66

MC-
ConvTasNet 5.09 8.47 8.89 9.31 10.06 13.03 9.90 7.76 6.02 9.18

TD-
GWF-

TasNet
2.6 10.70 11.90 12.90 13.60 16.30 13.30 11.00 8.50 12.30

IC-
ConvTasNet 1.74 10.27 11.68 12.45 12.54 16.44 13.19 10.67 6.65 11.74

TPRNN 2.28 11.16 13.24 14.40 15.16 17.32 14.27 12.08 10.24 13.48
PsBf 2.27 13.83 14.51 14.63 15.30 18.52 15.55 13.46 10.74 14.57

6. Conclusions

A pre-separation and all-neural beamformer framework for microphone array speech
separation is proposed in this paper. It is composed of two modules, namely the pre-
separation module and the all-neural beamforming module. The pre-separation module
is used to obtain pre-separated speech and interference, and the all-neural beamforming
module utilizes GRU and FC to calculate frame-level beamforming weights. Experiments
on multi-channel speech enhancement and speaker separation tasks are performed, and the
evaluation results show that the proposed method significantly outperforms other baseline
models. Furthermore, this approach can be used for symmetrical stereo speech. Future
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work will focus on making sure that PsBf can perform denoising and dereverberation at
the same time, and trying to optimize PsBf with ASR to improve robustness jointly.
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