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Abstract: Developing precise soft computing methods for groundwater management, which includes
quality and quantity, is crucial for improving water resources planning and management. In the past
20 years, significant progress has been made in groundwater management using hybrid machine
learning (ML) models as artificial intelligence (AI). Although various review articles have reported
advances in this field, existing literature must cover groundwater management using hybrid ML. This
review article aims to understand the current state-of-the-art hybrid ML models used for groundwater
management and the achievements made in this domain. It includes the most cited hybrid ML models
employed for groundwater management from 2009 to 2022. It summarises the reviewed papers,
highlighting their strengths and weaknesses, the performance criteria employed, and the most highly
cited models identified. It is worth noting that the accuracy was significantly enhanced, resulting in
a substantial improvement and demonstrating a robust outcome. Additionally, this article outlines
recommendations for future research directions to enhance the accuracy of groundwater management,
including prediction models and enhance related knowledge.
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1. Introduction

As one of the world’s most valuable and vital water sources, groundwater is integral to
many facets of human life, including food production, economic growth, and safe drinking
water [1]. However, uncontrolled urbanisation and the growing burden of human activi-
ties on hydrogeomorphology systems threaten the environment by altering the existing
recharge mechanism and groundwater quality [2–4]. The enormous growth and uneven
distribution of population, poor irrigation practices, industrialisation, rapid urbanisation,
widespread deforestation, inappropriate land use practices, and climatic changes have
affected groundwater resources’ quantity and quality [5–9].

To manage and conserve groundwater resources effectively, it is crucial to comprehend
the influence of hydrological and meteorological variables on groundwater [10]. However,
accurate descriptions are challenging due to the nonlinear changes in these variables,
which make it difficult to manage groundwater effectively [11,12]. Therefore, utilising new
methods such as artificial intelligence (AI) is inevitable.

Researchers have used AI to simulate and predict groundwater resource management
behaviour. AI models can find and describe structural patterns in data to help predict and
decide [13–15]. AI methods can assess groundwater potential, predict contaminants, and
inform groundwater management decisions by processing large amounts of multidimen-
sional data [16–18].

However, managing groundwater is a difficult and intricate task that demands an
extensive comprehension of multiple essential hydrological parameters, including geol-
ogy, hydrogeology, land use, and climate change. As the references [19–21] state, these
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parameters are challenging to model accurately. Additionally, limited data is often avail-
able [22,23], particularly in developing countries [24], making training and validating AI
models challenging.

One approach that has gained increasing attention in recent years is the use of hybrid
AI models, which combine different AI techniques with traditional models or expert knowl-
edge to improve performance and address some of the limitations of AI in groundwater
management [25–27]. For example, a hybrid AI model might combine a neural network for
predicting groundwater levels with a physically-based model for simulating flow and trans-
port processes [28,29]. This approach can help to address issues such as data scarcity, model
interpretability, and uncertainty by incorporating domain knowledge and ensuring that the
AI model is grounded in the physical processes that govern groundwater behaviour [30,31].

Hybrid AI consists of multidimensional systems combining various mathematical
and statistical components and arithmetic and heuristic algorithms. Hybrid AI has been
extensively employed in different fields of science, engineering design, energy, robotics,
and economics. It has also been intensively used for solving various civil and environ-
mental engineering problems, including groundwater management (GWM). Among the
other promising AI techniques for groundwater assessment are hybrid methods that com-
bine different approaches, such as Artificial Neural Networks (ANN), Machine Learning
(ML), Metaheuristic Optimization Algorithms (MOA), Fuzzy Inference Systems (FIS), and
combinations of ANNs and MOAs [32–35]. Hybrid AI techniques have improved the
accuracy and reliability of groundwater assessments, outperforming traditional methods
in predicting groundwater quality and quantity. These techniques are particularly effective
in dealing with nonlinear and intricate problems that traditional numerical models strug-
gle with. By applying hybrid AI models, hydrogeology scientists can better understand
the complexities of groundwater systems and develop effective strategies to conserve
and manage this vital resource [36–38]. In recent years, more attention has been paid
to the successful use of Hybrid AI in different hydrogeological fields, including Assess-
ing groundwater potential [39,40], Estimating groundwater recharge [41,42], Managing
and predicting groundwater levels [43,44], Simulating groundwater flow [45], Assessing
groundwater quality [27,46–48], Estimating aquifer parameters [49], Identifying sources
of pollution in groundwater [48,50], Managing and planning groundwater resources [51],
Designing groundwater remediation strategies [52], Managing water allocation [53,54],
Assessing vulnerability to groundwater depletion or contamination [55,56], Predicting
future groundwater conditions [57,58], including seawater intrusion in coastal areas [59,60].

As per Figure 1, there has been a significant increase in studies using Hybrid AI in
this field in the last few years; however, more studies should be done, based on different
geographical locations, to test the efficiency of the proposed models. Figure 2a,b present the
goal map, depicting the two significant pieces of information: the most studied geographical
locations and another yet to be studied. Furthermore, Figure 1 highlights the four major
countries with extensive GWM modelling-related studies using Hybrid AI. In contrast,
the grey colour zone reveals the areas where the application of Hybrid AI has yet to gain
popularity. Around 50% of sites have yet to use GWM, as many do not need GW-related
studies, due to sufficient surface water or fewer habitats, such as in polar areas, African
countries, etc. Moreover, some underdeveloped regions in Asia and South America may
still need to explore Hybrid AI techniques.

Groundwater management is critical for ensuring water security and sustainability,
yet there need to be more review articles on this topic and the use of hybrid models.
Reviews are crucial in identifying knowledge gaps and research needs, especially given the
complexity of groundwater systems. There is a pressing need to explore the use of hybrid
models that combine different techniques, such as artificial intelligence and statistical
methods, to improve accuracy and reliability. Therefore, a review article focusing on recent
advances in applying hybrid AI techniques in groundwater management must fill the
knowledge gap and provide insights for future research.
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This review article addresses recent advances in hybrid AI techniques for groundwater
management. To provide readers with a comprehensive understanding of these techniques,
we also discuss AI’s history and main tasks in Section 2. In Section 3, we delve into the
research methods improved by hybrid AI, followed by a review of the most cited applica-
tions. Finally, in Section 4, we explore the challenges and opportunities associated with
specialised databases, proposing several feasible approaches to enhance the collaboration
between groundwater researchers and data scientists. Overall, this review article provides a
valuable resource for researchers and practitioners interested in using hybrid AI techniques
for groundwater assessment and management.

2. Machine Learning History and Groundwater

Machine learning has a rich history dating back to 1959 when Arthur Samuel coined
the term to describe a checker program [61]. A machine learning model is data-driven,
learning from data and improving accuracy without explicit programming. Over time,
machine learning has evolved into various learning technologies, including connectionism,
symbolism, and statistical learning [62]. In the context of groundwater, machine learning
has several important tasks. One of its primary uses is to help predict the behaviour
of groundwater systems, which can be done by analysing various data inputs, such as
recharge, water levels, and groundwater quality, and using machine learning algorithms to
predict future trends. Another important task of machine learning in groundwater is to
help identify and analyse groundwater contaminants. Machine learning algorithms can
be trained to detect anomalies in water quality data, which can help identify potential
contaminants and their sources [63].

Machine learning can also be used to optimise groundwater management strategies.
By analysing water abstraction and supply data, machine learning algorithms can help
identify areas of inefficiency and recommend more effective management practices [64].
Overall, machine learning has become an essential tool in groundwater management,
helping to improve our understanding of groundwater systems and optimise our use of
this critical resource.

2.1. Symbolism

One of machine learning’s key learning technologies is symbolism. Logic involves
manipulating symbols, rules, and operations [62]. Symbolism has been used to create
groundwater expert systems, which are rule-based systems that mimic human decision-
making [63]. Expert systems were used extensively in groundwater hydrology in the 1980s
and 1990s to solve complex groundwater management problems like aquifer characterisa-
tion, well-field design, and contamination remediation [65]. These systems model a domain
expert’s expertise as rules to solve a problem using knowledge representation techniques.
The system uses data to make predictions, classifications, and recommendations. Expert
Symbolism systems have advanced groundwater management using machine learning [63].
It has automated complex decision-making tasks and transferred knowledge from experts
to non-experts [66]. However, Symbolism’s inability to handle uncertain or incomplete
data has led to developing other learning technologies, such as statistical learning, which
are better at handling such data [67]. In groundwater management, a hybrid model that
combines symbolic and other AI techniques can help address the challenges associated
with incomplete and uncertain data and nonlinear relationships between hydrological and
meteorological variables, offering a promising avenue for advancing the field of machine
learning and groundwater management.

2.2. Statistical Learning

Statistical learning, a form of machine learning that utilises statistical models for
classification and prediction, has long been utilised in groundwater studies [38,68]. Initially,
linear regression and analysis of variance (ANOVA) were the common statistical methods
used to model relationships between groundwater variables. More complex patterns
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and relationships in groundwater datasets were identified as researchers developed more
sophisticated statistical techniques, including principal component analysis (PCA), cluster
analysis, and discriminant analysis [69,70].

The most important uses of statistical learning in groundwater studies are groundwater
quality and quantity; by analysing historical groundwater data and environmental factors
like temperature, precipitation, and land use. Another significant application of statistical
learning is identifying sources of groundwater contamination, allowing researchers to
determine if pollutants arise from natural sources or anthropogenic activities such as
industrial or agricultural [71,72]. However, one of the most important limitations of
statistical learning is its reliance on assumptions about the data, such as normality or
linearity, which can result in inaccurate or unreliable models if these assumptions are not
met [73,74]. Additionally, statistical models may overfit or underfit data, leading to poor
performance on new data. They may need to be better suited to handle large, complex
datasets due to computational and resource requirements [75,76]. One solution to these
limitations is combining statistical learning with other machine learning techniques, such
as symbolism, called hybrid AI.

For example, Symbolic models can provide a way to represent and reason about
uncertain or incomplete data, which is a challenge for statistical models [77]. They can also
encode domain knowledge, such as physical laws or expert rules, to improve the accuracy
and interpretability of the resulting hybrid model [78]. Additionally, symbolic models
can generate hypotheses that can be tested using statistical models, further improving the
overall performance of the hybrid model [77].

2.3. Connectionism

Neural networks and deep learning are two significant machine learning technology
connectionism components.

2.3.1. Neural Network

Neural networks, inspired by the structure and functioning of the human brain, are
composed of interconnected nodes that receive inputs, process information, and produce
outputs [79]. Warren McCulloch and Walter Pitts [80] developed the first artificial neuron in
the 1940s, and since then, neural networks have been significantly developed and applied
in various fields, including groundwater management. In groundwater management, one
of the primary uses of neural networks is predicting water quality parameters by training
the network on historical data [81,82] to recognise the relationship between various water
quality variables and accurately predict future values, which is critical for maintaining
water quality in aquifers and wells.

However, neural networks’ black-box nature is a significant limitation, as it can
be challenging to understand how the network makes its decisions [83]. This lack of
interpretability can be a significant issue in applications where understanding the reasoning
behind the model’s outputs is essential. Additionally, neural networks may be prone to
overfitting, leading to a poor generalisation of new, unseen data [84,85].

To address these limitations, neural networks can be combined with other models,
such as symbolic models and statistical learning. Symbolic models provide a transparent
and interpretable representation of the domain knowledge and rules underlying the data,
enabling the development of hybrid models that can leverage both the power of neural net-
works for complex pattern recognition and the interpretability of symbolic models [86,87].
Similarly, statistical learning techniques like regularisation and cross-validation can pre-
vent overfitting by constraining the model’s complexity and ensuring it performs well
on new data [88]. Statistical learning can also preprocess the data, extracting meaning-
ful features to be used as inputs to the neural network, improving its performance and
interoperability [89].
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2.3.2. Deep Learning

Utilising interconnected nodes to perform complex tasks, deep learning is a neural net-
work subfield that has gained popularity due to its ability to learn and improve from large
datasets [90]. Groundwater management applications have successfully employed deep
learning models for tasks such as groundwater quality prediction [91], aquifer characterisa-
tion [92], and groundwater flow modelling [93]. The use of deep learning in groundwater
quality management has shown promising results in improving the accuracy of water qual-
ity monitoring and prediction. To comprehensively understand the water quality status,
these models can analyse large amounts of data from various sources, including remote
sensing data, well measurements, and water quality sensors [93,94]. The information can
then be used to make informed decisions regarding water quality management strategies,
such as source protection, pollution prevention, and remediation.

However, deep learning has limitations, such as overfitting and requiring large
amounts of labelled data. Popular AI techniques, such as reinforcement learning and
symbolic models, e.g., can be combined with deep learning to overcome these limitations.

Reinforcement learning is an AI technique enabling an agent to learn and make
decisions through trial and error. When feedback is given as rewards or punishments, the
agent can learn to maximise its reward over time. Combining reinforcement learning with
deep learning can create more efficient and effective models to learn and adapt to changing
environments and tasks. Furthermore, reinforcement learning can provide feedback and
insight into how a deep learning model makes decisions, leading to more explainable AI.

Symbolic models are another popular AI technique that can be combined with deep
learning to improve interpretability [95]. Symbolic models provide a transparent and
interpretable representation of the domain knowledge and rules underlying the data.
Combining deep learning with symbolic models makes it possible to develop hybrid
models that can use the power of deep learning for complex pattern recognition and the
interpretability of symbolic models [96].

Statistical learning techniques such as regularisation and cross-validation can also be
combined with deep learning to prevent overfitting [97]. These techniques constrain the
model’s complexity and ensure it performs well on new data [98]. Additionally, statistical
learning can be used to preprocess the data and extract meaningful features that can be
used as inputs to the deep learning model, improving its performance and generalisation
capability [99].

Finally, Bayesian networks, decision trees, and support vector machines are other AI
techniques that can be combined with deep learning to improve performance. Bayesian
networks can model complex relationships between variables, while decision trees can
handle nonlinear and non-parametric relationships [100,101]. Support vector machines can
handle high-dimensional data and improve classification performance [102].

2.4. ML Basic Tasks and Groundwater

Machine learning has several basic tasks that can be applied to quantity and quality
groundwater management (Figure 3): 1. Classification: This task involves categorising
data into specific classes or groups [103]. In quantitative and qualitative groundwater
management, classification can identify areas with water contamination or categorise
water quality levels. 2. Regression: Regression involves predicting a constant value based
on input data [104]. In quantity and quality groundwater management, a regression
can predict water quality parameters such as pH, temperature, and dissolved oxygen
levels. 3. Clustering: Clustering groups similar data points [103]. Clustering can identify
areas with similar water quality characteristics or group water samples based on their
chemical compositions in quality groundwater management [105]. 4. Anomaly detection:
This task involves identifying data points that deviate significantly from the norm. In
quality groundwater management, anomaly detection can identify areas with unusual
water quality characteristics or detect changes in water quality over time [105]. 5. Feature
selection involves identifying the most important variables or features contributing to a
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particular outcome. In quality and quality groundwater management, feature selection can
be used to identify the most important water quality parameters that affect human health or
the environment [105]. 6. Optimisation refers to identifying optimal values for a parameter
group that minimises a specific cost or loss function. Optimising these parameters allows
decision-makers to focus their efforts and allocate resources towards the most significant
variables impacting water quality and quantity management [106].
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DBN: Deep Belief Networks, PSO: Particle Swarm Optimisation, RST: Rough Set Theory, SOM:
Self-Organizing Map, PCA: Principal Component Analysis, CNN: Convolutional Neural Network,
LSTM: Long Short-Term Memory, MCMC: Markov Chain Monte Carlo. Note that not all algorithms
exist, and some can be used for multiple tasks.

These machine-learning tasks can help improve the management and understanding
of water quality and groundwater resources, leading to better decision-making and more ef-
fective resource management [105]. Machine learning algorithms also allow for integrating
multiple data sources, including remote sensing data, sensor networks, and hydrological
models, improving understanding of groundwater systems [107], identifying the most
relevant variables contributing to changes in groundwater quality [46], and providing
insights into the drivers of groundwater quality changes, and allowing for more targeted
and efficient monitoring and management strategies [108].

While machine learning (ML) has proven to be a valuable tool in groundwater man-
agement, some limitations to its basic tasks can hinder its effectiveness. For example, ML
algorithms may need help identifying the underlying causal relationships between water
quality parameters and their impact on human health or the environment, limiting their
ability to make accurate predictions or optimise management strategies [106]. Additionally,
ML algorithms may be prone to overfitting, where the model fits the training data too
closely and needs to generalise to new data.

3. Hybrid AI in Groundwater

Hybrid artificial intelligence (AI) models combine different AI techniques to enhance
the accuracy and robustness of predictions for groundwater quality and quantity man-
agement [109]. Traditional modelling approaches have limitations in capturing complex
nonlinear relationships between input and output variables, and hybrid AI models have
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emerged as promising solutions to overcome these limitations [110]. Hybrid AI mod-
els can improve the accuracy and reliability of groundwater forecasting by integrating
multiple AI techniques, such as neural networks, fuzzy logic, and support vector ma-
chines, leading to more informed decision-making for groundwater quality and quantity
management and ultimately contributing to sustainable use and protection of this vital
resource. The use of hybrid artificial intelligence techniques in groundwater quality and
quantity management has shown promise in improving prediction accuracy and optimising
management strategies.

Several methods and applications are used in hybrid AI, including rule-based systems,
machine learning, neural networks, evolutionary algorithms, fuzzy logic, expert systems,
reinforcement learning, genetic algorithms, natural language processing, and computer
vision. Each method has unique benefits and limitations, and researchers can choose the
most appropriate method for their specific application. To help researchers analyse trends
and patterns in scientific literature, we have developed a Python code that extracts data
from the Scopus database and retrieves the 14 most frequently cited hybrid AI models in
groundwater management, sorted by citation count (Table 1). The code uses the Scopus API
to search for data based on a specific query and field and extracts the relevant information
from the response JSON. In the following discussion, we will focus on the top 10 cited
hybrid AI models (Section 3.1) and explore their potential benefits and limitations in the
context of groundwater sciences. In addition, we provide a brief overview of the lesser-
known hybrid AI models in Section 3.2. While these models have shown promise in
improving groundwater management and decision-making, it is important to note that
each model has advantages and disadvantages. Researchers should carefully consider
the specific requirements of their application and choose the most appropriate hybrid AI
model accordingly.

Table 1. The most cited Hybrid AI model in groundwater management driven from the Scopus
database. It is important to note that the development and use of hybrid AI models in groundwater
sciences are ongoing, and new models are constantly being developed and tested. These databases
are comprehensive, but not all articles and conference proceedings are indexed.

Hybrid AI Model Most Common Applications in Groundwater
Sciences (2009 to 2022) Citations Count

Artificial Neural Networks (ANN) and Support
Vector Machines (SVM) Groundwater monitoring network optimisation 1127

Genetic Algorithm (GA) and Artificial Neural
Networks (ANN)

Groundwater level prediction, groundwater
pumping optimisation 795

Wavelet Transform (WT), Artificial Neural
Networks (ANN), and Support Vector Regression

(SVR)

Groundwater level forecasting and trend/pattern
identification 658

Adaptive neuro-fuzzy inference system and
genetic programming

Groundwater level prediction in complex
hydrogeological conditions 462

Support Vector Machines (SVM) and Random
Forest (RF)

Impact of land use changes on groundwater
resources prediction 353

Artificial Neural Networks (ANN) and Kriging Groundwater quality parameter mapping and
identification of contamination risk areas 310

Genetic Algorithm (GA) and Decision Tree (DT) Groundwater quality data classification,
groundwater remediation 254

Deep Belief Networks (DBN) and Support Vector
Regression (SVR)

Groundwater level prediction, assessment of
climate change impacts on groundwater resources 241

Particle Swarm Optimisation (PSO) and Support
Vector Regression (SVR) Groundwater recharge rate prediction 201
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Table 1. Cont.

Hybrid AI Model Most Common Applications in Groundwater
Sciences (2009 to 2022) Citations Count

Rough Set Theory (RST) and Support Vector
Machines (SVM) Decision-making for groundwater quality 156

Self-Organizing Map (SOM) and Decision Tree
(DT)

Groundwater data classification and identification
of contamination risk areas 112

Neural Network (NN) and Principal Component
Analysis (PCA)

Groundwater quality assessment and
identification of contamination sources 109

Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) Groundwater level prediction in the urban area 78

Artificial Neural Networks (ANN) and Markov
Chain Monte Carlo (MCMC)

Groundwater data classification and identification
of contamination risk areas 68

3.1. More Common Hybrid AI Models
3.1.1. Artificial Neural Networks (ANN) and Support Vector Machines (SVM)

The high citation number approves that ANN, and SVM are popular hybrid machine
learning techniques widely used in groundwater sciences. One of the main advantages
of ANNs and SVMs is their ability to model complex relationships between variables,
which is often difficult to achieve using traditional analytical and numerical modelling
approaches [111,112]. They can also handle large amounts of data and are relatively fast
and efficient [113]. Another advantage of these techniques is their flexibility, as they can
be used for a wide range of applications, from predicting groundwater levels and flow
rates to identifying potential sources of contamination. However, ANNs and SVMs have
their limitations. One of the main challenges of using these techniques is the need for
large amounts of high-quality data to train the models, which can be costly and time-
consuming to collect [114]. In addition, these models are often considered black boxes,
meaning it is difficult to understand how they arrive at their predictions [115]. This lack of
transparency can make it challenging to interpret the results and may limit their usefulness
in decision-making processes. Another disadvantage of ANNs and SVMs is the potential
for overfitting, which occurs when the model is too closely fitted to the training data and
performs poorly on new data [68]. It can be addressed using appropriate techniques such
as regularisation and cross-validation [116]. In conclusion, while ANNs and SVMs offer
significant advantages for modelling groundwater systems, their limitations should be
addressed to ensure accurate and reliable predictions.

AI models’ overall accuracy and performance for various applications in hydrogeology
issues have shown promising results after integrating ANN and SVM as hybrid AI. For
instance, researchers used a hybrid AI model comprising ANN and SVM to aim to build a
unique ensemble model based on a high-resolution groundwater potentiality model [117].
Using ROC curves confirms that the hybrid model outperformed (around 10%) than
ANN and SVM models individually. Also, an ANN-SVM hybrid AI model was used for
groundwater level prediction in urban areas [118]. They reported that the hybrid model
improved the prediction accuracy by up to 62% compared to one based model. However,
the degree to which the hybrid AI model improves accuracy and speed may be context-
and problem-specific.

3.1.2. Genetic Algorithm (GA) and Artificial Neural Networks (ANN)

GA and ANN are two popular artificial intelligence methods used in groundwater
quality management [105,119]. ANN is a type of AI that mimics the structure and function
of the human brain to process information. It consists of interconnected processing units
that receive input data and output a prediction or decision [120]. ANN is particularly suit-
able for groundwater quality management because it can handle large amounts of complex
data, including uncertain and imprecise data [116,121]. It can also adapt to changing condi-
tions and learn from experience, making it a useful tool for predicting groundwater quality.
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As mentioned earlier, GA optimises the parameters of models used in groundwater quality
management. The advantages of genetic algorithms include their ability to search an ample
parameter space efficiently and handle nonlinear relationships between variables. Using
these methods as a hybrid AI, ANN, and GA can complement each other by providing a
powerful tool for modelling and predicting groundwater quality [121,122]. However, the
disadvantage of this approach is that it requires a considerable amount of data and comput-
ing power, which can be a challenge in some applications [121,123]. Additionally, the results
of this approach may be difficult to interpret, making it challenging for decision-makers
to understand the basis for their decisions. Nonetheless, the advantages of using ANN
and GA as hybrid AI in groundwater quality management outweigh their disadvantages,
making them an essential tool for improving the management of groundwater resources.

For an instance of the integration of GA and ANN as a hybrid, AI is seen in the study
by Pandey et al. [124], where they employed the GA-ANN hybrid approach for predicting
seasonal groundwater table depth. The study reported a significant improvement of around
43% in R2 compared to the individual models. Another study assessed the development
of hybrid ANN models and their critical assessment for simulating groundwater levels
at 17 sites in an alluvial aquifer system [125]. According to the findings of this study, the
hybrid model was identified as the most efficient method for predicting spatiotemporal
fluctuations of groundwater at almost all of the sites, with the Nash-Sutcliffe efficiency
ranging from 0.828 to 0.998.

3.1.3. Wavelet Transform (WT) and Artificial Neural Networks (ANN)

Generally, Wavelet Transform (WT) and Artificial Neural Networks (ANN) have
emerged as powerful groundwater forecasting and modelling tools. The WT-ANN model
has been applied in various groundwater studies, including predicting groundwater lev-
els [126,127], identifying trends and patterns in groundwater data [128], and modelling
groundwater recharge [129]. One advantage of this hybrid model is its ability to han-
dle nonlinear relationships between the input and output variables, which is common in
groundwater systems. Moreover, wavelet analysis can help identify important frequency
components in the data, improving the accuracy of the predictions [127]. Despite its advan-
tages, the development of a WT-ANN model can be a challenging task. The model requires
a large amount of data for training, and selecting appropriate wavelet basis functions can
significantly impact its performance.

Additionally, interpreting the results can be challenging due to the black-box nature
of the ANN component [115]. Therefore, it is essential to carefully design and optimise
the model to achieve the best results. Overall, the WT-ANN hybrid AI model has shown
promising results in groundwater applications and has the potential to improve our under-
standing of complex groundwater systems. However, it is crucial to investigate this model’s
strengths and limitations and identify ways to optimise its performance in different hydro-
geological settings. The use of hybrid AI models, such as the WT-ANN, can significantly
advance the field of groundwater sciences and contribute to sustainable management and
protection of this vital resource.

Many researchers used WT and ANN as HA integrated into groundwater for predic-
tion and modelling purposes. For example, to predict the groundwater levels of a dry inland
river on multiple scales, Wen et al. [127] tested the efficacy of a wavelet analysis-artificial
neural network (WA-ANN) conjunction model. They hypothesised that the WA-ANN
model would be especially useful for predicting the intricate dynamics of groundwater
level variations. A related study [130] assessed the performance of the hybrid WA-ANN
approach in predicting the quality of shallow groundwater using the improved Nemerow
pollution index. The evaluation was based on metrics such as MAE and R2. The findings
indicated that the WA-ANN hybrid method outperformed the individual methods, as
demonstrated by the higher accuracy achieved with the hybrid approach.
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3.1.4. Adaptive Neuro-Fuzzy Inference System and Genetic Programming

The adaptive neuro-fuzzy inference system (ANFIS) and genetic programming (GP)
are widely used hybrid AI techniques in groundwater quality management. The ANFIS
method combines the strengths of fuzzy logic and neural networks, making it a powerful
tool for modelling complex systems [38,131]. The GP method, on the other hand, is a search
algorithm that uses natural selection and genetic operations to evolve a population of
computer programs that can solve a particular problem [132].

One advantage of using the ANFIS-GP hybrid AI method in groundwater quality
management is that it integrates different data types, including spatial and temporal data,
which are essential for accurately predicting and managing groundwater quality [133].
Additionally, this method can handle missing data, which is common in groundwater
quality management and can take noisy data [119,133]. Another advantage is that the
ANFIS-GP hybrid AI method can accurately model complex systems, allowing for more
efficient and adequate decision-making in groundwater quality management.

However, there are also some disadvantages to using the ANFIS-GP hybrid AI method.
One such drawback is that the technique requires significant data to build an accurate
model, which can sometimes be challenging [133,134]. Additionally, the ANFIS-GP method
can be computationally intensive, leading to longer processing times and increased costs.
Finally, the ANFIS-GP method can be difficult to interpret and understand, which can be a
significant challenge for stakeholders and decision-makers who need to use the modelling
process results [134].

3.1.5. Support Vector Machines (SVM) and Random Forest (RF)

SVM and RF are famous and influential machine-learning algorithms in various
fields, including groundwater analysis. While they have their respective strengths and
weaknesses, combining these two algorithms as a hybrid model can result in improved
performance and more robust predictions [135]. The hybrid model that combines SVM
and RF takes advantage of the strengths of both algorithms, resulting in a more accurate
and stable model [136]. SVM can handle high-dimensional data and nonlinear relation-
ships, while RF can identify important variables and handle missing values and noisy
data [137,138]. Combining these algorithms allows the hybrid model to manage complex
groundwater systems with many variables better and provide more reliable predictions.
The hybrid model also addresses some disadvantages of SVM and RF, such as overfitting,
sensitivity to hyperparameters, and difficulty in interpretation [116,139]. The hybrid model
can provide better generalisation and performance on new data by using RF to select
important variables and SVM to build a more accurate model with reduced dimensions.

Additionally, the hybrid model can measure uncertainty and confidence in the model’s
predictions. Thus, combining SVM and RF as a hybrid model can result in improved
performance and more robust predictions for groundwater analysis. While the specific
implementation of the hybrid model depends on the dataset and research question, re-
searchers should consider the advantages of each algorithm and the potential benefits of
combining them to develop a more accurate and reliable model.

3.1.6. Artificial Neural Networks (ANN) and Kriging

ANN and Kriging are two common methods used in groundwater analysis. ANN is
a machine learning algorithm inspired by the structure and function of biological neural
networks, which can predict groundwater levels, flow rates, or other hydrogeological
parameters based on input data, such as precipitation, temperature, and soil properties.
Kriging is a geostatistical method used for the spatial interpolation of data. It involves
using statistical models to estimate the values of unsampled points based on the importance
of nearby sampled points. In groundwater analysis, Kriging can be used to interpolate
groundwater levels or flow rates from a limited number of monitoring wells to create a
spatially continuous prediction [140,141].
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A hybrid model that combines ANN and Kriging can take advantage of the strengths
of both algorithms, capturing the complex spatial relationships between groundwater
parameters and improving the accuracy of the predictions by incorporating spatial correla-
tion information, which results in a robust and stable solution to groundwater prediction
problems [142,143]. Researchers can use this hybrid model to predict groundwater levels,
flow rates, or other hydrogeological parameters based on input data and incorporate spatial
correlation information to create a more accurate and reliable prediction [141,144,145].

For instance, a study by Hosseini et al. [146] integrated ANN and Kriging to model
and increase the efficiency of the groundwater-level monitoring networks. The results
showed that the hybrid approach had a higher accuracy of up to 78% in predicting the
spatial distribution of hydraulic heads than either ANN or Kriging alone. Another study by
Moasheriet al. [147] used the ANN-Kriging hybrid model to predict groundwater quality
parameters in a Kashan area. The study reported that the hybrid model provides more
accurate results (up to 11%) than the geostatistical method in Kriging. However, it’s
important to note that these results are specific to the study areas and dataset used and
may need to be generalisable to other areas. However, the improvement in accuracy or
time, the results can vary depending on the specific study area, the size and complexity of
the dataset, and the specific algorithms used for ANN and Kriging.

However, Machine learning algorithms, such as deep neural networks, genetic algo-
rithms, and decision tree algorithms, can also be integrated with other physical models,
such as fracture flow models, multiphase flow models, analytical models, finite element
models, finite difference models, and geostatistical models like kriging interpolation, as
discussed above, to create hybrid models [148].

One example of a hybrid model is combining a finite element model with an ANN
and ANFIS to simulate spatiotemporal groundwater levels [149]. This hybrid model was
shown wavelet-based de-noised data enhanced the performance of the modelling by up to
14%. Another study proposed a hybrid model that combines a multiphase flow model with
a machine-learning algorithm to simulate groundwater contamination [150]. The hybrid
model was more accurate and efficient than the traditional multiphase flow model by 13%.

Additionally, a study proposed a hybrid model that combines a finite element model
with an SVM algorithm for groundwater anomaly detection [151]. The hybrid model was
shown to improve the accuracy of the simulation and reduce the computational cost.

3.1.7. Genetic Algorithm (GA) and Decision Tree (DT)

GA and DT are popular machine-learning algorithms in various fields, including
groundwater analysis. GA is a search heuristic that is inspired by the process of natural
selection and genetics. It is used to find the optimal solution to a problem by exploring
an ample search space [135]. GA can be used to optimise parameters for groundwater
models, such as determining the best values for hydraulic conductivity or recharge rates.
GA generates a population of potential solutions, selects the fittest solutions, and uses
genetic operators such as mutation and crossover to create new solutions. The process
continues until an optimal solution is found.

DT, conversely, is a decision-making algorithm that builds a tree-like model of deci-
sions and their possible consequences [152]. DT is a supervised learning algorithm used
for classification and regression tasks. In groundwater analysis, DT can predict ground-
water quality, identify contaminated sites, or classify different groundwater types based
on hydrogeochemical characteristics. DT works by recursively partitioning the data into
subsets based on the values of other features and then creating decision nodes to predict the
target variable based on the partitioned data. However, GA’s slow computation speed and
complex gene encoding/decoding processes pose challenges for groundwater researchers,
particularly in dealing with complex problems. A hybrid model that combines GA and DT
can take advantage of the strengths of both algorithms. GA can optimise the parameters of
the DT model to improve its performance and accuracy. For example, GA can be used to
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determine the best features to include in the DT model or to optimise the hyperparameters
of the DT algorithm.

Additionally, GA can be used to reduce the size of the dataset and eliminate irrelevant
features, which can improve the efficiency and accuracy of the DT model [153,154]. Com-
pared to single AI methods, the GA-DT hybrid approach can reduce the computational
time required to optimise the model parameters. However, the time improvement can
also depend on the size and complexity of the dataset. Therefore, GA and DT are two
powerful machine-learning algorithms that can be used for groundwater analysis. A hybrid
model that combines these algorithms can take advantage of their respective strengths
and improve the performance and accuracy of the model. Researchers can use this hybrid
model to predict groundwater quality, identify contaminated sites, or classify different
groundwater types depending on their research question and dataset.

3.1.8. Deep Belief Networks (DBN) and Support Vector Regression (SVR)

DBN is a type of artificial neural network that is used for unsupervised learning. It
comprises multiple layers of hidden units that learn to represent the input data hierar-
chically. DBN can extract complex features from large datasets, which can be used for
other machine-learning tasks such as classification or regression. In groundwater analysis,
DBN can be used to analyse large datasets of hydrogeological parameters and extract
meaningful information to understand the groundwater system better [155]. SVR, on the
other hand, is a regression algorithm that is used to predict continuous variables. It finds a
hyperplane in a high-dimensional space that maximally separates the input data points.
SVR can predict groundwater levels, flow rates, or other continuous variables important
for groundwater management [156,157]. SVR is beneficial when dealing with nonlinear
and complex relationships between variables.

A hybrid model combined with DBN and SVR can take advantage of the strengths
of both algorithms. DBN can extract complex features from large datasets and reduce the
dimensionality of the input data, which can then be used as input to the SVR algorithm,
resulting in better performance and accuracy of the predictions and helping overcome
some of the limitations of each algorithm [157].

Where DBN can suffer from overfitting if the number of hidden units is too large,
or SVR can be sensitive to the selection of hyperparameters, the hybrid model can pro-
vide a more robust and stable solution to groundwater prediction problems, including
groundwater levels, flow rates, or other important continuous variables for groundwater
management [142,155,158]. In a study [157], researchers proposed the innovative DBN-SVR
method, which accurately predicts water quality parameters and outperforms models such
as SVR and DBN. This method significantly improves (up to 85%) performance indicators
such as MAE, MAPE, RMSE, and R2 compared to DBN and achieves a high fitting effect and
surpasses BP. However, the combined model takes longer; it provides the best prediction
accuracy. Thus, the determination coefficient indicates that hybrid AI is superior to BP,
SVR, and DBN in predicting water quality, with better accuracy and robustness.

3.1.9. Particle Swarm Optimisation (PSO) and Support Vector Regression (SVR)

PSO and SVR are popular methods for groundwater quality management. PSO is a
global optimisation algorithm that can hold discrete and continuous variables [159,160],
while SVR is a regression capability. When used together as a hybrid AI system, PSO and
SVR can overcome the limitations of each method and improve the accuracy of groundwater
quality predictions [161]. The advantages of using POS-SVR in groundwater quantity
management include its ability to handle nonlinear relationships and model complex
systems and its ability to provide accurate predictions even when the available data is
limited or incomplete. Additionally, POS-SVR can optimise the pumping schedule for
groundwater extraction, resulting in significant cost savings and helping preserve the
groundwater resource. However, POS-SVR also has some disadvantages, such as the need
for high computational resources to optimise the model and the potential for overfitting
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the data. Despite these limitations, POS-SVR is a promising tool for groundwater quantity
management. It could improve our understanding of groundwater systems and inform
decision-making for sustainable management of groundwater resources.

3.1.10. Rough Set Theory (RST) and Support Vector Machines (SVM)

Groundwater quality management is a complex and challenging task that requires the
integration of various data sources and decision-making tools. One promising approach
is hybrid artificial intelligence methods, such as RST and SVMs. RST is a mathematical
approach that can handle uncertain and incomplete data by defining lower and upper
approximations of sets [162]. SVMs, on the other hand, are a type of supervised learning
algorithm that can classify data by finding the optimal hyperplane that separates different
classes [162,163]. Combining these two approaches can lead to a powerful and robust
decision-making tool for groundwater quality management. The advantages of combining
rough set theory and SVMs as a hybrid AI method in groundwater quality management
include their ability to handle complex and high-dimensional datasets, their flexibility in
dealing with uncertain and incomplete data, and their capability to provide accurate and
reliable predictions [145,164,165]. However, there are also some disadvantages, such as the
potential for overfitting, the requirement for a large amount of training data, and difficulty
interpreting the results.

3.2. Less Commonly Hybrid AI Models

In groundwater sciences, hybrid AI models that combine different machine learning
techniques have become increasingly popular for various purposes, such as predicting
groundwater levels, mapping groundwater, and assessing quality. A table has been com-
piled, which lists 15 such models, including Hybrid Decision Tree (HDT) and Genetic
Algorithm (GA), Self-Organizing Map (SOM) and Decision Tree (DT), Neural Network
(NN) and Principal Component Analysis (PCA), Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM), and Artificial Neural Networks (ANN) and Markov
Chain Monte Carlo (MCMC). These models offer several advantages over single methods.
For example, HDT-GA can improve the accuracy and interpretability of decision trees by
selecting the best attributes for splitting [166]. SOM-DT can be used to cluster data into
classes, and then the decision tree can be applied to each cluster separately [167]. NN-
PCA can reduce the dimensionality of data and increase the efficiency of neural network
training [168]. CNN-LSTM can capture spatial and temporal data features, making them
suitable for image and speech recognition tasks [169]. ANN-MCMC can be used to estimate
the posterior distribution of parameters in neural networks, allowing uncertainty to be
incorporated into predictions [170].

Despite their potential benefits, these hybrid models have yet to be fully explored,
and their limitations and applicability must be thoroughly investigated. The less popular
hybrid methods, such as HDT-GA, SOM-DT, NN-PCA, CNN-LSTM, and ANN-MCMC,
have received less attention in the literature. Developing and implementing these hybrid
models can be challenging, requiring significant expertise in different areas of machine
learning. Additionally, the effectiveness of these methods can depend highly on the specific
problem being addressed and the quality of the data available. Furthermore, there is often
a need for more understanding of how these methods work and how to interpret their
results, making it challenging to apply them in practice. Nonetheless, using hybrid AI
models in groundwater sciences is a rapidly evolving field, with researchers continuously
developing new models and algorithms to manage groundwater resources more effectively.
There is, therefore, immense potential for developing new hybrid AI models to advance
our understanding and management of groundwater resources.

4. Discussion and Prospective

Hybrid models have shown great promise in groundwater quality and quantity man-
agement over the past few years. These models combine different artificial intelligence
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techniques to achieve better accuracy and efficiency than traditional models. However,
despite the promising results achieved with hybrid artificial intelligence (AI) models, some
limitations and research gaps still need to be addressed to exploit their potential fully.

Interpretability is a key challenge in developing hybrid AI models for groundwater
sciences. Although these models can deliver accurate predictions, understanding the
reasoning behind their outputs can be challenging [171,172]. This lack of interpretability
can hinder their adoption in certain domains where transparency and explainability are
critical. Therefore, further research is necessary to enhance the interpretability of hybrid AI
models for groundwater sciences and develop models that provide accurate predictions
and insights into the decision-making process.

Another limitation of hybrid AI models is their high computational cost. These
models often require large amounts of data and complex computations, which can be time-
consuming and expensive, especially when dealing with real-time applications [66,173].
Additionally, the training process of these models can be difficult and requires expertise in
various AI techniques, which may only be readily available to some users [174]. Therefore,
there is a need for research that focuses on developing more efficient and cost-effective
methods for training and deploying hybrid AI models.

Adversarial attacks can also have serious consequences, as incorrect predictions can
lead to suboptimal decision-making and potentially harmful outcomes [175]. For example,
suppose a hybrid AI model used for groundwater management is vulnerable to adversarial
attacks. In that case, it may produce inaccurate predictions for essential parameters such
as groundwater flow rates, contaminant concentrations, or water availability, resulting
in efficient or effective management strategies, negatively impacting water resources and
the environment.

While hybrid AI models have shown promising results in various domains, their
performance can vary depending on the application and the problem being addressed.
Therefore, there is a need for research that focuses on developing domain-specific hybrid
AI models tailored to each domain’s specific characteristics and requirements. This research
can help develop effective groundwater management strategies that balance economic,
environmental, and social considerations.

In the field of groundwater sciences, it is also essential to conduct research that delves
into the ethical and social implications of hybrid AI models. As these models become in-
creasingly prevalent and powerful, it is crucial to consider their potential impact on society,
including their effects on privacy, fairness, and accountability. It is necessary to investigate
hybrid AI models’ ethical and social implications and develop frameworks and guidelines
that ensure their responsible development and deployment in groundwater management.

Standardisation and benchmarking frameworks are also required to facilitate the
comparison and evaluation of different hybrid AI models across various domains and
applications. The complexity and diversity of these models make it difficult to compare
and evaluate their performance objectively. Therefore, there is a need for standardisation
and benchmarking frameworks that can help in the comparison and evaluation of different
hybrid AI models across various groundwater issues.

Addressing these challenges will require further research and innovation in hybrid
AI, a collaboration between researchers, practitioners, policymakers, stakeholders, and
applicability in various groundwater management scenarios. Guidelines for selecting
appropriate hybrid models based on the specific groundwater issues and the available
data are also necessary to make decisions and develop effective groundwater management
strategies that balance economic, environmental, and social considerations.

5. Conclusions

In summary, this paper aims to review the use of hybrid artificial intelligence models
in groundwater quality and management. The selection of appropriate models is crucial
since different models have different potentials to address issues with similar characteristics.
Identifying the most significant input parameters along with the models is essential for op-
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timal performance. Furthermore, this review paper combines optimisation algorithms with
AI models to form a hybrid model, successfully addressing many combinatory optimisation
problems. However, there are no standard procedures for developing a hybrid model with
a specific algorithm, and information on additive parameters is limited. Future research
should focus on improving machine learning and developing new hybrid AI modelling
approaches to make groundwater research more exciting, challenging, and rewarding for
researchers. It is worth noting that while this review paper aims to cover the most cited
techniques in groundwater issues, rapid technological advancements in hydrogeology and
other areas that incorporate AI models frequently occur, making it challenging to keep up
with the latest updates.
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92. Taşan, M.; Taşan, S.; Demir, Y. Estimation and Uncertainty Analysis of Groundwater Quality Parameters in a Coastal Aquifer
under Seawater Intrusion: A Comparative Study of Deep Learning and Classic Machine Learning Methods. Environ. Sci. Pollut.
Res. 2022, 30, 2866–2890. [CrossRef] [PubMed]

93. Su, Y.S.; Ni, C.F.; Li, W.C.; Lee, I.H.; Lin, C.P. Applying Deep Learning Algorithms to Enhance Simulations of Large-Scale
Groundwater Flow in IoTs. Appl. Soft Comput. J. 2020, 92, 106298. [CrossRef]

94. Mosavi, A.; Hosseini, F.S.; Choubin, B.; Abdolshahnejad, M.; Gharechaee, H.; Lahijanzadeh, A.; Dineva, A.A. Susceptibility
Prediction of Groundwater Hardness Using Ensemble Machine Learning Models. Water 2020, 12, 2770. [CrossRef]

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1029/2004WR003608
https://doi.org/10.1007/s10661-020-08624-4
https://doi.org/10.1002/ett.3998
https://doi.org/10.1101/2021.12.26.21268415
https://doi.org/10.1007/s10653-017-0058-8
https://doi.org/10.1109/ACCESS.2017.2696365
https://doi.org/10.1198/jasa.2004.s339
https://doi.org/10.1080/24754269.2021.1980261
https://doi.org/10.1007/BF02478259
https://doi.org/10.1002/clen.201400267
https://doi.org/10.1023/A:1005165315197
https://doi.org/10.1016/S0895-4356(96)00002-9
https://doi.org/10.1109/TMI.2020.3046692
https://doi.org/10.1109/TNNLS.2020.3017010
https://doi.org/10.3390/math9161912
https://doi.org/10.1016/j.jhydrol.2020.125351
https://doi.org/10.1007/s11356-021-17084-3
https://www.ncbi.nlm.nih.gov/pubmed/34748181
https://doi.org/10.1007/s11356-022-22375-4
https://www.ncbi.nlm.nih.gov/pubmed/35941499
https://doi.org/10.1016/j.asoc.2020.106298
https://doi.org/10.3390/w12102770


Water 2023, 15, 1750 20 of 23

95. Garcez, A.D.; Gori, M.; Lamb, L.C.; Serafini, L.; Spranger, M.; Tran, S.N. Neural-Symbolic Computing: An Effective Methodology
for Principled Integration of Machine Learning and Reasoning. IfCoLoG J. Log. Appl. 2019, 6, 1–21. [CrossRef]

96. Díaz-Rodríguez, N.; Lamas, A.; Sanchez, J.; Franchi, G.; Donadello, I.; Tabik, S.; Filliat, D.; Cruz, P.; Montes, R.; Herrera, F.
EXplainable Neural-Symbolic Learning (X-NeSyL) Methodology to Fuse Deep Learning Representations with Expert Knowledge
Graphs: The MonuMAI Cultural Heritage Use Case. Inf. Fusion 2022, 79, 58–83. [CrossRef]

97. Kang, J.; Schwartz, R.; Flickinger, J.; Beriwal, S. Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A
Clinician’s Perspective. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 1127–1135. [CrossRef]

98. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable Ai: A Review of Machine Learning Interpretability Methods.
Entropy 2021, 23, 18. [CrossRef]

99. Liao, L.; Huang, Z.; Wang, W. A Statistical Learning Model with Deep Learning Characteristics. In Proceedings of the Proceedings-
51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops, DSN-W, Baltimore, MD,
USA, 27–30 June 2021.

100. Chen, Y.; Zhang, Y.; Maharjan, S.; Alam, M.; Wu, T. Deep Learning for Secure Mobile Edge Computing in Cyber-Physical
Transportation Systems. IEEE Netw. 2019, 33, 36–41. [CrossRef]

101. Kamath, C.N.; Bukhari, S.S.; Dengel, A. Comparative Study between Traditional Machine Learning and Deep Learning Ap-
proaches for Text Classification. In Proceedings of the ACM Symposium on Document Engineering 2018, DocEng 2018, Halifax,
NS, Canada, 28–31 August 2018.

102. Naji, M.; Alyassine, W.; Nizamani, Q.U.A.; Zhang, L.; Wei, X.; Xu, Z.; Braytee, A.; Anaissi, A. Deep Learning Algorithm
Based Support Vector Machines. In Proceedings of the ICR’22 International Conference on Innovations in Computing Research,
Athens, Greece, 29–31 August 2022; Daimi, K., Al Sadoon, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022;
pp. 281–289.

103. Huang, R.; Ma, C.; Ma, J.; Huangfu, X.; He, Q. Machine Learning in Natural and Engineered Water Systems. Water Res. 2021,
205, 117666. [CrossRef]

104. Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-Based Groundwater Potential Mapping Using Boosted Regression Tree,
Classification and Regression Tree, and Random Forest Machine Learning Models in Iran. Environ. Monit Assess 2016, 188, 1–27.
[CrossRef]

105. Haggerty, R.; Sun, J.; Yu, H.; Li, Y. Application of Machine Learning in Groundwater Quality Modeling-A Comprehensive Review.
Water Res. 2023, 233, 119745. [CrossRef]

106. Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. A Review of the Hybrid Artificial Intelligence and
Optimization Modelling of Hydrological Streamflow Forecasting. Alex. Eng. J. 2022, 61, 279–303. [CrossRef]

107. Raheja, H.; Goel, A.; Pal, M. Prediction of Groundwater Quality Indices Using Machine Learning Algorithms. Water Pract. Technol.
2022, 17, 336–351. [CrossRef]

108. El Bilali, A.; Taleb, A.; Brouziyne, Y. Groundwater Quality Forecasting Using Machine Learning Algorithms for Irrigation
Purposes. Agric. Water Manag. 2021, 245, 106625. [CrossRef]

109. Kouadri, S.; Elbeltagi, A.; Islam, A.R.M.T.; Kateb, S. Performance of Machine Learning Methods in Predicting Water Quality Index
Based on Irregular Data Set: Application on Illizi Region (Algerian Southeast). Appl. Water Sci. 2021, 11, 1–20. [CrossRef]

110. Shiri, N.; Shiri, J.; Yaseen, Z.M.; Kim, S.; Chung, I.M.; Nourani, V.; Zounemat-Kermani, M. Development of Artificial Intelligence
Models for Well Groundwater Quality Simulation: Different Modeling Scenarios. PLoS ONE 2021, 16, e0251510. [CrossRef]

111. Guzman, S.M.; Paz, J.O.; Tagert, M.L.M.; Mercer, A. Artificial Neural Networks and Support Vector Machines: Contrast Study
for Groundwater Level Prediction. In Proceedings of the American Society of Agricultural and Biological Engineers Annual
International Meeting 2015, New Orleans, LA, USA, 26–29 July 2015; Volume 2.

112. Nitze, I.; Schulthess, U.; Asche, H. Comparison of Machine Learning Algorithms Random Forest, Artificial Neuronal Network
and Support Vector Machine to the Maximum Likelihood for Supervised Crop Type Classification. In Proceedings of the 4th
GEOBIA, Rio de Janeiro, Brazil, 7 May 2012; p. 35.

113. Ejaz, N.; Abbasi, S. Wheat Yield Prediction Using Neural Network and Integrated Svm-Nn with Regression. Pak. J. Eng. Technol.
Sci. 2020, 8, 1–21. [CrossRef]

114. Kurani, A.; Doshi, P.; Vakharia, A.; Shah, M. A Comprehensive Comparative Study of Artificial Neural Network (ANN) and
Support Vector Machines (SVM) on Stock Forecasting. Ann. Data Sci. 2023, 10, 183–208. [CrossRef]

115. Uncuoglu, E.; Citakoglu, H.; Latifoglu, L.; Bayram, S.; Laman, M.; Ilkentapar, M.; Oner, A.A. Comparison of Neural Network,
Gaussian Regression, Support Vector Machine, Long Short-Term Memory, Multi-Gene Genetic Programming, and M5 Trees
Methods for Solving Civil Engineering Problems. Appl. Soft Comput. 2022, 129, 109623. [CrossRef]

116. Govindaraju, R.S.; Rao, A.R. Artificial Neural Networks in Hydrology; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2013; Volume 36, ISBN 9401593418.

117. Mallick, J.; Talukdar, S.; Ahmed, M. Combining High Resolution Input and Stacking Ensemble Machine Learning Algorithms
for Developing Robust Groundwater Potentiality Models in Bisha Watershed, Saudi Arabia. Appl. Water Sci. 2022, 12, 1–19.
[CrossRef]

118. Yadav, B.; Gupta, P.K.; Patidar, N.; Himanshu, S.K. Ensemble Modelling Framework for Groundwater Level Prediction in Urban
Areas of India. Sci. Total Environ. 2020, 712, 135539. [CrossRef] [PubMed]

https://doi.org/10.48550/arXiv.1905.06088
https://doi.org/10.1016/j.inffus.2021.09.022
https://doi.org/10.1016/j.ijrobp.2015.07.2286
https://doi.org/10.3390/e23010018
https://doi.org/10.1109/MNET.2019.1800458
https://doi.org/10.1016/j.watres.2021.117666
https://doi.org/10.1007/s10661-015-5049-6
https://doi.org/10.1016/j.watres.2023.119745
https://doi.org/10.1016/j.aej.2021.04.100
https://doi.org/10.2166/wpt.2021.120
https://doi.org/10.1016/j.agwat.2020.106625
https://doi.org/10.1007/s13201-021-01528-9
https://doi.org/10.1371/journal.pone.0251510
https://doi.org/10.22555/pjets.v8i2.2231
https://doi.org/10.1007/s40745-021-00344-x
https://doi.org/10.1016/j.asoc.2022.109623
https://doi.org/10.1007/s13201-022-01599-2
https://doi.org/10.1016/j.scitotenv.2019.135539
https://www.ncbi.nlm.nih.gov/pubmed/31806335


Water 2023, 15, 1750 21 of 23

119. Mohammadrezapour, O.; Kisi, O.; Pourahmad, F. Fuzzy C-Means and K-Means Clustering with Genetic Algorithm for Identifica-
tion of Homogeneous Regions of Groundwater Quality. Neural Comput. Appl. 2020, 32, 3763–3775. [CrossRef]

120. Hanifian, S.; Khaleghi, M.R.; Najarchi, M.; Jafarnia, R.; Varvani, J. A Comparative Study of Artificial Neural Networks and
Multivariate Regression for Predicting Groundwater Depths in the Arak Aquifer. Acta Geophys. 2023, 1, 1–14. [CrossRef]

121. Tayfur, G. Soft Computing in Water Resources Engineering: Artificial Neural Networks, Fuzzy Logic and Genetic Algorithms; WIT Press:
Urla, Turkey, 2014; ISBN 1845646363.

122. Song, Y.H.; Wang, G.S.; Wang, P.Y.; Johns, A.T. Environmental/Economic Dispatch Using Fuzzy Logic Controlled Genetic
Algorithms. IEE Proc. Gener. Transm. Distrib. 1997, 144, 377–382. [CrossRef]

123. Ishibuchi, H. Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. Fuzzy Sets. Syst. 2004, 141,
161–162. [CrossRef]

124. Pandey, K.; Kumar, S.; Malik, A.; Kuriqi, A. Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal
Groundwater Table Depth Prediction in Uttar Pradesh, India. Sustainability 2020, 12, 8932. [CrossRef]

125. Jha, M.K.; Sahoo, S. Efficacy of Neural Network and Genetic Algorithm Techniques in Simulating Spatio-Temporal Fluctuations
of Groundwater. Hydrol. Process 2015, 29, 671–691. [CrossRef]

126. Barzegar, R.; Fijani, E.; Asghari Moghaddam, A.; Tziritis, E. Forecasting of Groundwater Level Fluctuations Using Ensemble
Hybrid Multi-Wavelet Neural Network-Based Models. Sci. Total Environ. 2017, 599–600, 20–31. [CrossRef]

127. Wen, X.; Feng, Q.; Deo, R.C.; Wu, M.; Si, J. Wavelet Analysis-Artificial Neural Network Conjunction Models for Multi-Scale
Monthly Groundwater Level Predicting in an Arid Inland River Basin, Northwestern China. Hydrol. Res. 2017, 48, 1710–1729.
[CrossRef]

128. Zhou, F.; Liu, B.; Duan, K. Coupling Wavelet Transform and Artificial Neural Network for Forecasting Estuarine Salinity. J. Hydrol.
2020, 588, 125127. [CrossRef]

129. Samani, S.; Vadiati, M.; Delkash, M.; Bonakdari, H. A Hybrid Wavelet–Machine Learning Model for Qanat Water Flow Prediction.
Acta Geophys. 2022, 1, 1–19. [CrossRef]

130. Yang, Q.; Zhang, J.; Hou, Z.; Lei, X.; Tai, W.; Chen, W.; Chen, T. Shallow Groundwater Quality Assessment: Use of the Improved
Nemerow Pollution Index, Wavelet Transform and Neural Networks. J. Hydroinformatics 2017, 19, 784–794. [CrossRef]

131. Roy, D.K.; Datta, B. Genetic Algorithm Tuned Fuzzy Inference System to Evolve Optimal Groundwater Extraction Strategies to
Control Saltwater Intrusion in Multi-Layered Coastal Aquifers under Parameter Uncertainty. Model Earth Syst. Environ. 2017, 3,
1707–1725. [CrossRef]

132. Termeh, S.V.R.; Khosravi, K.; Sartaj, M.; Keesstra, S.D.; Tsai, F.T.C.; Dijksma, R.; Pham, B.T. Optimization of an Adaptive
Neuro-Fuzzy Inference System for Groundwater Potential Mapping. Hydrogeol. J. 2019, 27, 2511–2534. [CrossRef]

133. Fallah-Mehdipour, E.; Haddad, O.B.; Mariño, M.A. Genetic Programming in Groundwater Modeling. J. Hydrol. Eng. 2014, 19,
04014031. [CrossRef]
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