


 
 
 
 

APPROVAL SHEET 
 
 
 

Title of Dissertation: Leveraging Artificial Intelligence to Advance Problem-Solving with 
Quantum Annealers 
 
 
Name of Candidate:  Ramin Ayanzadeh 
                       Doctor of Philosophy, 2020 
 
 
 
Dissertation and Abstract Approved:  ______________________________________ 
                                                            Dr. Milton Halem 
 Professor 
     Computer Science 
 
 
 

______________________________________ 
Dr. Tim Finin 
Professor 
Computer Science 

 
 
 
Date Approved:  April 28, 2020  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ABSTRACT

Title of dissertation: Leveraging Artificial Intelligence to Advance
Problem-Solving with Quantum Annealers

Ramin Ayanzadeh, Doctor of Philosophy, 2020

Dissertation directed by: Professor Milton Halem
Department of Computer Science
Professor Tim Finin
Department of Computer Science

We show how to advance quantum information processing, specifically problem-

solving with quantum annealers, in the realm of artificial intelligence. We introduce

SAT++, as a novel quantum programming paradigm, that can compile classical algo-

rithms (implemented in classical programming languages) and execute them on quantum

annealers. Moreover, we introduce a post-quantum error correction method that can

find samples with significantly lower energy values, compared to the state-of-the-art tech-

niques in quantum annealing. We also demonstrate that performing post-quantum error

correction methods can make results of quantum annealers reproducible—i.e., more robust

behavior of quantum annealers, compared to recent software and hardware advancements

in quantum annealing.

In addition, we offer to conjugate both optimization and sampling aspects of the

quantum annealers and introduce two AI hybrid approaches. In reinforcement quantum

annealing (RQA) scheme, an intelligent agent interacts with a quantum annealer that

plays the stochastic environment role of learning automata and searches in the space of

Hamiltonians, rather than exploring the Hilbert space of a given Ising model. In the same

manner, greedy quantum annealing (GQA) is a novel model that utilizes quantum an-



nealers to better select candidates in greedy algorithms. We experimentally demonstrate

that our proposed AI hybrid approaches outperform the best-known techniques in quan-

tum annealing, specifically when problems require longer chains for forming virtual qubits

with higher connectivity. Furthermore, we introduce the theory of ensemble quantum an-

nealing (EQA) that generates multiple (distinct) Ising Hamiltonians whose ground states

are all identical to a solution to the problem of interest. Our experimental results reveal

that applying EQA can significantly boost the performance of the quantum annealers.

After benchmarking the D-Wave 2000Q quantum processors, as a proof-of-concept,

we apply our proposed models on two real-world problems. As our first study case, we

use SAT++ for factoring pseudo-prime numbers on a D-Wave quantum processor that

can jeopardize the security of modern public-key cryptography systems. As our second

case of study, we address the NP-hard problem of compressive sensing (i.e., the `0-norm

problem of sparse recovery) through reducing the original problem of compressive sensing

to Weighted-MAX-SAT instances, casting the `0-norm problem of binary compressive

sensing to quadratic unconstrained binary optimization (QUBO), and proposing to solve

the original problems of binary compressive sensing and binary compressive sensing with

matrix uncertainty on quantum annealers.
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CHAPTER I

Introduction

1.1 Motivation

Transitioning from vector-based computation, in central processing units (CPUs),

to matrix-based computation resulted in emerging graphical processing units (GPUs) that

has reshaped the landscape for accelerated computing, namely in the realms of scientific

computing, high-performance computing (HPC), machine learning and big data analyt-

ics. In the same manner, custom design application-specific integrated circuits (ASICs)

for extending computations (from vectors and matrices) to tensors (i.e., complex and

higher-order objects), can repeat providing such a disruptive capability[76, 85]. As an

example, the tensor processing unit (TPU), by Google, is an accelerator for near-real-time

deep learning applications with low latency that has demonstrated throughput improve-

ments of over 15–30 and power efficiency improvement of 30–70 over current CPUs and

Kepler generation of GPUs, albeit lower precision computations [85]. After decades of

predomination, nevertheless, the era of Moore’s law draws to a close.
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In post-Moore era, therefore, the supercomputing community is exploring non-Von-

Neumann computing architectures for emerging next generation of processors. Neural pro-

cessing units (NPUs), a.k.a. neuromorphic chips—namely the Neurosynaptic System by

IBM, the SpiNNaker System by the University of Manchester, Intel’s Loihi chip and mem-

ristors based systems—are (human) brain-inspired accelerators that have demonstrated

a dramatic speedup in implementing artificial intelligence (AI) models, more specifically

artificial neural networks (ANN) and deep networks. Although NPUs have demonstrated

a notable speedup in terms of training deep networks and performing inference, compared

to their CPU/GPU based counterparts, fixed connectivity of (artificial) neurons and low

precision representation of synapses (e.g., 2-bit precision in IBM’s TrueNorth system)

restricts the applicability of a specific neuromorphic chip to a particular deep network

architecture and precludes the use of well-nourished training methods (like stochastic gra-

dient descent), respectively.

Quantum computing is a different information processing paradigm that takes the

advantage of quantum mechanics—namely superposition and entanglement of quantum

bits (qubits)—and promises new capabilities in performing computationally intensive tasks

that are intractable in the realm of classical computing, ranging from problem-solving

to sensing and communication. Owing to recent advances in the physical realization of

quantum processing units (QPUs)—namely superconducting gate models, trapped ions,

cold atoms and quantum annealers—quantum processors can play a crucial role in post-

Moore era. There are several models for the physical realization of quantum comput-

ers—including, but not limited to, gate (or circuit) models and adiabatic quantum com-

puters [101]. In gate model quantum computing, in addition to sparse connectivity of

quantum circuits (at the device level) that limits the problem size and the gates that
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can be implemented on a QPU, for noisy intermediate-scale quantum (NISQ) devices,

noise restricts the size of circuits that can be implemented and executed on a physical

QPU. Gate model quantum computing is well-nourished and there is a growing consensus

of opinion that we can demonstrate the supremacy of quantum computing through the

physical realization of the quantum circuits on (useful) applications. Adiabatic quantum

computers, nevertheless, are currently more readily available at user sites due to recent

advancements in commercializing programmable quantum annealers by D-Wave Systems

[94].

Ising processing units (IPUs) or annealing processing units (APUs) are single in-

struction computing machines that can only search the Hilbert space of a given Hamil-

tonian to find the ground state (i.e., a configuration with the lowest energy value) of an

Ising model. In the Ising model (a.k.a. spin glass model), pairwise correlations between

interacting variables (or spins) can model complex probability distributions or represent

computationally hard problems. Similar to NPUs and QPUs, IPUs—namely digital an-

nealers by Fujitsu (based on FPGA and recently CMOS technologies), optical Ising ma-

chines (OIMs) at the University of Rome La Sapienza (based on photons) and D-Wave

quantum annealers (based on superconducting qubits)—need to bypass low precision and

noise barriers. In addition, the D-Wave quantum annealers are locally dense but globally

sparse that limits their performance.

Thermal annealing (a.k.a. simulated annealing or classical annealing), that has to

be implemented on CPUs/GPUs, can be very ineffective, compared to quantum anneal-

ing, because: (1) the landscape of the given Hamiltonian can be too glassy and there exist

high energy barriers around local minimums that can trap the system for a very long time;

and (2) a classical (or nonquantum) system can only assume one configuration at a time
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while the number of configurations in discrete optimization problems (i.e., combinatorial

optimization problems) can grow exponentially with the number of variables [49]. Quan-

tum annealing is a meta-heuristic that (instead of thermal fluctuations) applies adjustable

quantum fluctuations into a problem [4, 72, 95] and can bypass very high energy barriers,

when they are narrow enough, which can address the ergodicity problem to some extent

[154, 49, 161, 116, 162]. Moreover, at some stage of annealing, quantum annealing can see

the whole landscape simultaneously (i.e., qubits are in a superposition of all eigen states)

that can provide much faster relaxation to the ground state of the given Hamiltonian [49].

Quantum annealers, as the physical realization of quantum annealing, appear in

the intersection of IPUs (i.e., they are a single-instruction machine that can only sample

from the ground state of a given Ising Hamiltonian) and QPUs (i.e., they are a type

of adiabatic quantum computer). From the quantum information processing viewpoint,

although current generations of the quantum annealers, namely the D-Wave 2000Q QPUs,

are not fully universal yet (i.e., quantum annealers are not fully resemblance of adiabatic

quantum computers)—which can make them polynomially equivalent to other quantum

computing models—several studies have demonstrated significant potentials in addressing

real-world applications in the realm of quantum annealing. It is worth noting that, recent

studies have offered to make quantum annealers universal [138].

Despite all aforementioned classical near-term accelerators, quantum annealers are

potentially capable of providing the next disruption in post-Moore era, based on favorable

aspects from both IPUs and QPUs. From an application perspective, while NPUs are

designed for a specific AI model, quantum annealers can serve as a general-purpose com-

puting paradigm through addressing combinatorial optimization problems and sampling

from complex high-dimensional probability distributions in near-constant time. In the

4



same manner, in contrast to the limited size of quantum circuits, quantum annealers are

easier to scale and we can employ them on real-world applications in the near-term. In

this study, therefore, we aim to improve problem-solving with quantum annealers.

Quantum artificial intelligence and quantum machine learning are emerging fields

that leverage quantum information processing to address certain types of AI problems

that are intractable in the realm of classical computing [102, 20, 64]. Recent studies have

revealed the potential of quantum annealing to address certain types of hard AI problems

that are intractable in the realm of classical computing—including, but not limited to,

planning [155], scheduling [179, 177], image registration [144, 143], discrete optimization

problems [21, 117], constraint satisfaction problems [22], Boolean satisfiability [174, 11, 16],

natural language processing [9] and training ANNs [29, 2, 171].

While most current research in Quantum artificial intelligence (and quantum ma-

chine learning) applies quantum computing models to hard AI problems, in this study, we

hypothesized that we might apply AI techniques to improve the performance of quantum

annealers. Current generations of the D-Wave quantum processors have some techno-

logical barriers—e.g., sparse connectivity between qubits, confined annealing schedule,

coefficients’ range and precision limitations, noise and decoherence—that lower the qual-

ity of results (i.e., energy value of the drawn samples is higher than the energy value

of the ground state). To this end, we adopt ideas of reinforcement learning, ensemble

techniques in machine learning, greedy algorithms and search heuristics/meta-heuristics

to propose different models for improving the performance of the quantum annealers (in

terms of finding samples with lower energy and making results of the quantum annealers

reproduceable) in addressing problems with glassy landscapes.
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Unlike conventional computing machines (namely classical and gate model quantum

computers) that have a rich set of machine instructions, quantum annealers are single-

instruction processors that can only sample from the ground state(s) of a given (Ising)

Hamiltonian. More precisely, a D-Wave quantum processor receives coefficients of an Ising

Hamiltonian (i.e., a quadratic objective function) as an executable quantum machine in-

struction (QMI) and samples from its ground state(s) at cryogenic temperatures. To solve

a problem on a quantum annealer, therefore, one needs to cast the original problem of

interest to a spin glass problem that is nontrivial for real-world applications. We offer to

leverage Boolean satisfiability (SAT), as an intermediate representation of problems, and

propose a systematic model that compiles classical algorithms (implemented in classical

programming languages) and execute them on a quantum annealer. From a programming

point of view, our model bridges the gap between classical algorithms and quantum pro-

gramming. We demonstrate our approaches through two case studies, namely the problem

of prime factoring and the `0-norm problem of compressive sensing, both of which have

been shown to be intractable in the realm of classical computing.

1.2 Thesis Statement

Artificial intelligence can compile classical programs for Ising processing units, find

samples with lower energy and improve the reproducibility of results, attained by the quan-

tum annealers.

1.3 Summary of Contributions

Major results and contributions made in this thesis are as follows:
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(i) extended post-quantum error correction methods for quantum annealers and intro-

duced a novel scheme that enhances the reproducibility of results and notably im-

proves the quality of samples (i.e., finds samples with lower energy values), attained

by quantum annealers;

(ii) proposed SAT++ as a novel quantum programming paradigm that bridges the gap

between classical and quantum programming through compiling classical algorithms

(implemented in classical programming languages) to quantum machine instructions

that are executable by quantum annealers;

(iii) presented two AI hybrid quantum annealing approaches—so-called reinforcement

quantum annealing and greedy quantum annealing—that conjugate both optimiza-

tion and sampling aspects of the quantum annealers, and demonstrated that they

can notably improve the probability of achieving the global optimum;

(iv) offered to address the `0-norm problem of sparse recovery via reducing the origi-

nal problem of compressive sensing to Weighted-MAX-SAT instances, mapping the

`0-norm problem of binary compressive sensing to quadratic unconstrained binary

optimization (QUBO), and proposing to solve the original problems of binary com-

pressive sensing and binary compressive sensing with matrix uncertainty with quan-

tum annealers;

(v) introduced the theory of ensemble quantum annealing that can boost the perfor-

mance of the quantum annealers in finding the ground state(s) of Ising Hamiltoni-

ans.
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1.4 Thesis Organization

This dissertation shows how to leverage different aspects of artificial intelligence

to not only improve the performance of the physical quantum annealers in addressing

computationally intensive problems but also run classical algorithms on IPUs, namely

the D-Wave quantum processors. The organization of this thesis is as follows. Chapter

II briefly overviews the concepts of quantum computing, quantum annealers by D-Wave

Systems and the problem of Boolean satisfiability (SAT). Chapter III presents novel error

correction schemes for quantum annealers, in both qubit and problem variable domains,

where we classically exploit samples (drawn by quantum annealers) to find a sample with

lower Ising energy value. In this chapter, we experimentally demonstrate that applying

the proposed post-quantum error correction techniques notably improves the probability

of finding the ground state of Ising Hamiltonians—although we cannot guarantee that we

can achieve the global optimum, specifically when the problems require dense connectivity

(i.e., clique like problems). In addition, we show that applying the proposed post-quantum

error correction techniques can significantly enhance the reproducibility of results.

In chapter IV, we introduce SAT++, a novel quantum programming paradigm, that

enables us to execute classical algorithms on IPUs. As a proof-of-concept, we show how

one can employ SAT++ to run classical prime factoring approach(s) on a D-Wave 2000Q

quantum processor. In chapter V, we offer to conjugate both optimization and sampling

aspects of the quantum annealers, and we introduce two novel hybrid quantum annealing

approaches. we adopt the idea of reinforcement learning to introduce a novel model,

called reinforcement quantum annealing (RQA). In the same manner, we introduce greedy

quantum annealing (GQA) that conjugates both sampling and optimization aspects of
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the quantum annealers. We then demonstrate that both RQA and GQA can find samples

with notably lower energy values, compared to the best-known techniques in the realm of

quantum annealing, specifically when the problem requires a dense connectivity.

In chapter VI, as the second study case, we address the NP-Hard problem of com-

pressive sensing (i.e., the `0-norm problem of sparse recovery). We first introduce novel

methods for reducing the original problem of compressive sensing to Weighted-MAX-SAT,

defining QUBO form of the `0-norm problem of binary compressive sensing, and solving

problems of binary compressive sensing and binary compressive sensing with matrix un-

certainty on a quantum annealer. Afterward, we demonstrate that applying our proposed

methods in this thesis results in a better sparse recovery. Finally, chapter VII presents

conclusions and future works of this study.
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CHAPTER II

Background and Related Work

2.1 Quantum Computing

In conventional computing, data are encoded as a sequence of (classical) bits (a.k.a.

Shannon bit or binary digit) that take their values from {0, 1} and a register with n bits

at time t can be in only one of the 2n possible states. Solving a problem on a classical

computer (i.e., any model of Turing machine) requires a sequence of instructions that

follows the control flow of a classical algorithm. When the number of required instructions

to finish a computation grows exponentially with the problem size, the corresponding

problem becomes intractable in the realm of classical computing.

Quantum computing is a novel approach for tackling computationally intensive prob-

lems that are intractable in the realm of classical computing [136, 107]. A quantum bit

(qubit) is the fundamental object of quantum information processing. Qubits are two-level

quantum systems and we define the state of a qubit in a two-dimensional Hilbert space as

follows:

|ψ〉 =

[
α

β

]
= α|0〉+ β|1〉 (2.1)
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where α, β ∈ C are coefficients of the computational basis (a.k.a. eigen states), denoted

by |0〉 and |1〉. State of a qubit can be |0〉, |1〉—analogous to “0” and “1” in classical

computing, respectively—or any superposition of the computational basis such that

|α|2 + |β|2 = 1. (2.2)

Quantum gates (a.k.a. quantum operations) are (square) unitary matrices that can

emulate any rotation of the quantum state. Quantum computers apply quantum gates on

qubits—i.e., multiplying the transform matrix of the corresponding quantum gate by the

state vector of qubits—for quantum information processing. Tensor product of n qubits

forms a quantum register, denoted as:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉, (2.3)

which includes 2n eigen states. Similarly, tensor product of single-qubit quantum gates

can result in multi-qubit quantum operations. After performing the measurement on

qubits of a quantum system, the state of the quantum register is collapsed to one of

the computational basis, with the corresponding probability. As an example, measuring

a single qubit results in |0〉 and |1〉 with the probability of |α|2 and |β|2, respectively.

Having qubits in their superposition and taking the advantage of their entanglement, we

can apply single-qubit quantum operations (e.g., Hadamard, Phase and rotation) and

two-qubit quantum operations (like conditional NOT or CNOT) to implement quantum

algorithms and achieve the quantum supremacy [108].
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2.1.1 Quantum Computing Models

After introducing the concept of quantum computing by Richard Feynman in 1959,

several models have been proposed for the realization of quantum information processing.

Although these models are theoretically equivalent, their underlying concepts, as well as

realization requirements, are significantly different from each other. Circuit models in

quantum computing are closely analogous to classical (i.e., transistor-based) computers

in which, a sequence of quantum operations (or gates) on quantum registers process the

quantum information and emulates the quantum algorithms [108]. Unlike the majority of

the classical gates that are irreversible, quantum gates (except the measurement operation)

are reversible. In gate model quantum computing, the circuit must have enough coherence

time for running the quantum algorithms [108].

In measurement-based quantum computing (also known as one-way quantum com-

puting), rounds of measurements on qubits—prepared in a highly entangled state (cluster

or graph state)—performs the quantum information processing. In this model, results

from previous measurements define the basis for current measurements to guarantee that

the computation always succeeds [184, 33].

Adiabatic quantum computers rely on Quantum Adiabatic Evolution for quantum

information processing. According to the Adiabatic Theorem, adiabatic quantum comput-

ers are polynomially equivalent to the circuit models. Unlike previous models in quantum

information processing, qubits of adiabatic quantum computers do not perform discrete

operations. Indeed, adiabatic quantum computers receive a Hamiltonian (also called en-

ergy function) as input whose ground state represents the solution for the problem that we

12



are trying to solve. Afterward, qubits are adiabatically evolved from some initial unknown

state to a final state that minimizes the energy function [70].

2.2 D-Wave Quantum Annealers

The quantum processing unit (QPU), by D-Wave Systems, is a programmable quan-

tum annealer that samples from the ground state(s) of a given Ising Hamiltonian at cryo-

genic temperatures [94]. From a problem-solving point of view, the D-Wave quantum

annealers receive coefficients of an Ising Hamiltonian as an executable quantum machine

instruction (QMI), here h and J , and return the ground state of the following quadratic

energy function:

EIsing(z) =

N∑
i=1

hizi +

N∑
i=1

N∑
j=i+1

Jijzizj , (2.4)

where N denotes the number of quantum bits (qubits). In this representation, zi ∈

{−1,+1}. One can apply a linear transform to map Eq. (2.4) to its equivalent quadratic

unconstraint binary optimization (QUBO) form, and vice versa, as follows:

EQUBO(x) =
N∑
i≤j

xiQijxj , (2.5)

where x ∈ {0, 1}N and i, j ∈ {1, 2, · · · , N}. In this representation, Q includes both linear

biases and quadratic couplers—analogous to h and J in Eq. (2.4), respectively.

The current generation of the D-Wave quantum annealers (a.k.a. the Chimera

architecture) includes more than 2,000 qubits and about 6,000 couplers, while the next

generation (the Pegasus topology of the Advantage) will include more than 5,000 qubits

and about 40,000 couplers [30]. Unlike conventional computing machines (namely classical

and gate model quantum computers) that have a rich set of machine instructions, quantum
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annealers are single-instruction computing machines that can only minimize Eq. (2.4) or

(2.5). To solve a problem on a quantum annealer, therefore, one needs to define coefficients

of an Ising Hamiltonian whose ground state represents a solution of the original problem

of interest.

2.2.1 Trends in Applying Quantum Annealers

One can reduce any problem of class NP to an NP-complete problem in polynomial-

time [79, 15]. Thus, we can employ quantum annealers to address (significant) real-world

problems that are intractable in the realm of classical computing. Recent studies have

revealed the potential of quantum annealing to address certain classes of real-world prob-

lems that are intractable in the realm of classical computing [29]. In particular, the

D-Wave quantum annealer has been applied to, planning [155], scheduling [179, 177],

image registration [144, 143], data assimilation and processing [133, 84], discrete opti-

mization problems [21, 117], constraint satisfaction problems [22], Boolean satisfiability

[174, 11, 16], matrix factorization [141], linear least squares problems [31], cryptography

[146, 91], fault detection and system diagnosis [148], compressive sensing [17, 13], natural

language processing [9], protein folding [147] and material design [100]. In addition, by

sampling from high-dimensional probability distributions, one can use the D-Wave quan-

tum annealer for many applications in artificial intelligence, machine learning and signal

processing [29, 2, 171].

2.2.2 Limitations

Beside all aforementioned applications, the D-Wave quantum annealer architecture

has limitations that not only restrict the process of mapping problems into an executable
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QMI—embedding Ising Hamiltonians to the working graph of a D-Wave QPU is non-

trivial—but also lower the quality of results—i.e., the energy value of resulting samples

(attained by the quantum annealer) is higher than the ground state of the given Ising

Hamiltonian. From another perspective, for a given QMI, the D-Wave QPU draws sam-

ples from a problem-dependent pseudo-Boltzmann distribution at cryogenic temperatures

[29]. The energy values of samples from the D-Wave QPU follow a Gaussian distribution.

Thus, when we increase the number of reads/samples, we expect that the average param-

eter in the corresponding Gaussian distribution approaches the ground state energy of the

corresponding Ising Hamiltonian—i.e., the probability of finding the global minimum ap-

proaches one. There are several drawbacks, nevertheless, that prevent quantum annealers

from attaining a global minimum.

From a quantum computing perspective, an adiabatic quantum computer needs to

minimize a non-stoquastic Hamiltonian in order to be universal (which would make them

equivalent to gate models); nevertheless, the D-Wave QPU minimizes an Ising Hamiltonian

which is stoquastic [138, 180, 118]. The required anneal time in a quantum annealer to

keep the process adiabatic has a reverse exponential relation to the energy gap between

the ground state (global minimum) and the first excited state (a state right above the

global minimum) [138]. In current generations of the D-Wave QPUs, any executable QMI

obeys:

−2 ≤ hi ≤ +2 (2.6)

and

−1 ≤ Jij ≤ +1, (2.7)
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where i, j ∈ {1, 2, . . . , N} and i < j. Thus, one needs to scale the resulting Ising Hamilto-

nian, shown in Eq. (2.4), by dividing all coefficients with a large-enough positive number

to satisfy the QPU hardware constraints. Scaling the Ising model, however, reduces the

energy gap between the ground and the first excited states. As a result, the required

annealing time can quickly exceed the maximum possible anneal time on a physical quan-

tum annealer (for example 2,000 micro-seconds on the D-Wave QPUs) and makes the

process diabatic, which exponentially reduces the probability of getting to the ground

state [138, 118].

Besides, the current generation of the D-Wave QPUs uses 8–9 bits for representing

coefficients in Eq. (2.4). Hence, the D-Wave QPU truncates coefficients of a QMI prior to

putting qubits in their superposition, which can result in the Ising model having a different

ground state—compared to the original QMI. Consequently, the D-Wave QPU may solve a

different problem whose result is either infeasible or less accurate than the original problem

of interest [150, 59]. Dorband (2018) has proposed a heuristic that addresses the precision

issue on the D-Wave QPUs, albeit executing many QMIs for one problem [59].

Since coupling every qubit to every other qubit in a quantum annealer is impracti-

cal, the D-Wave QPU has a sparse connectivity structure/topology. Figures 2.1 and 2.2

illustrate the Chimera (in D-Wave 2000Q system) and Pegasus (in D-Wave Advantage

system) topologies, respectively.

Hence, we entangle multiple qubits to represent virtual qubits with higher connec-

tivity. Chaining physical qubits substantially reduces the capacity of QPUs—e.g., 2,048

qubits in the Chimera architecture is equivalent to a clique of size 64. It is possible to

implicitly leverage the capacity of the current D-Wave QPUs [140], albeit executing mul-

tiple QMIs. In addition, virtual qubits are vulnerable to breaking—the longer the chains,
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Figure 2.1: Chimera topology of the D-Wave 2000Q.

the higher the probability they break during the annealing process. Although we can

remediate broken chains by applying postprocessing methods on classical computers (e.g.,

voting among the physical qubits on a chain), some chains break because they represent

a state with lower energy.
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Figure 2.2: Pegasus topology of the D-Wave Advantage where curved blue lines, long red
lines and short red lines are internal, external and odd couplers, respectively [30].

Applying preprocessing techniques [145] and classical postprocessing heuristics [60]

can remarkably enhance the performance of the D-Wave QPU; however, from a problem-

solving viewpoint, the D-Wave quantum annealer cannot guarantee to achieve a global

optimum.
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2.3 Boolean Satisfiability (SAT)

Let f(x) be a Boolean formula (a.k.a. Boolean expression or propositional logic

formula) over the binary variables (atoms) xi ∈ {>,⊥}—denoting “True” (or “1”) and

“False” (or “0”), respectively—with logical operators—including, but not limited to,

“AND” (∧), “OR” (∨) and “NOT” (¬). The problem of Boolean satisfiability (a.k.a.

propositional satisfiability, satisfiability or SAT) aims to find x, as a model for f , such

that:

x |= f.

From a problem-solving viewpoint, SAT is a decision problem that determines whether a

constant replacement of values for all Boolean variables can interpret f as > [27]. The

Boolean formula f is in conjunctive normal form (CNF) if:

f(x) = C1 ∧ C2 ∧ · · · ∧ CM ,

where the clause Ci (for i = 1, 2, . . . ,M) is a disjunction of literals as follows:

Ci = lj ∨ lk ∨ . . . ,

and the literal li represents the corresponding Boolean variable (xi) or its negation (¬xi)

[27].

2.3.1 Extensions of SAT

From a complexity perspective, SAT is in class NP-complete [46]—one of the Karp’s

21 NP-complete problems [97]; therefore, we can reduce any NP problem to SAT in

19



polynomial-time, and vice versa [79]. Real-world problems, nevertheless, have complex

features that make the use of modern SAT solvers challenging. Therefore, various exten-

sions of SAT have been introduced to provide different perspectives to the search-oriented

nature of the original SAT (e.g., optimization and model counting) [27, 115].

The maximum satisfiability problem (MAX-SAT) is an NP-hard extension of the

SAT problem that determines the maximum number of satisfiable clauses. From a problem

formulation attitude, the MAX-SAT adds an optimization perspective to the original SAT

that has a searching nature. Weighted-MAX-SAT is an extended version of the MAX-SAT

in which, each clause has an associated weight that specifies the penalty of not satisfying

the corresponding clause [27].

The #SAT problem (a.k.a. Sharp-SAT) is the problem of counting the number

of satisfying assignments of a given Boolean formula [93]. The Parity-SAT problem is

a special extension of the #SAT in which, we are trying to determine whether a given

Boolean expression has odd numbers of satisfying assignments. In Unique-SAT problem we

aim to determine whether a given Boolean formula has exactly one satisfying assignment.

On the other side, the Tautology problem determines whether a given logic formula is

satisfiable for all possible assignments [181].

Similar to the propositional logic (zeroth-order logic), we can extend the satisfiability

problem to satisfy expressions in higher-order logics—including, but not limited to, the

first-order logic (i.e., variables are quantified over the domain) and second-order logic (i.e.,

both variables and operators are quantified) [75]. Constraint satisfaction problems (CSP)

represent problems as a set of constraints, and CSP solvers search the state space to find

a feasible solution [157]. Although SAT can represent all NP problems, CSP provides a

straighter forward perspective for formulating real-world problems.
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Integer programming (IP) restricts variables’ domain in CSP to integer numbers.

In a same manner, 0-1 integer programming restricts variables to take their values from

{0, 1} [164]. From a problem formulation perspective, 01- integer programming generalizes

the SAT to include complicated constraints, and we can reduce problems in 0-1 integer

programming to SAT in polynomial time, and vice versa.

2.3.2 SAT Solvers

From a problem-solving perspective, the search space of SAT (which is in class

NP-complete) can grow exponentially. The majority of the modern SAT solvers, there-

fore, have adopted back-tracking techniques, like Davis—Putnam—Lagemann—Loveland

(DPLL) algorithm, for pruning the state space of given problems [83, 137]. Conflict-driven

clause learning (CDCL) [65] is a modern variation of the DPLL method that serves the

core functionality in developing recent modern SAT solvers—including (but not limited

to) MiniSAT [173, 172], PMSat (parallel version of the MiniSAT) [80], Glucose [7, 8],

Lingeling and Plingeling [26]. Modern SAT solvers have started to leverage AI and ma-

chine learning to enhance their performance. As an example, classifiers and deep neural

architectures have shown that they can recognize unsatisfiable clauses (and sub-formulas)

which can provide notable enhancements in the performance of the back-tracking based

SAT solvers [54, 34, 185].

We can look at the satisfying a Boolean expression as a search (or optimization)

problem and employ local and global search/optimization heuristics and meta-heuristics

for SAT-based applications [73]. As an illustration, “Walk SAT” is a stochastic local

search heuristic that toggles the value(s) of randomly selected variable(s) from unsatisfied

clauses in each iteration. Although “Walk SAT” seems to be a näıve solver, it has outper-
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formed many high-performance SAT solvers [166]. In the same way, we can use simulated

annealing for solving MAX-SAT instances [32]. Evolutionary algorithms (EA) and swarm

intelligence methods have also demonstrated that they can address SAT and MAX-SAT

problems efficiently [82, 57, 56].

Several studies have addressed SAT (and its extensions) in quantum regime. In

the realm of gate model quantum computing, Grover’s algorithm and its generalization

(Amplitude amplification) are oracular quantum algorithms that can provide quadratic

speed up for any problem in class NP [124]. Grover’s algorithm solves the SAT in O
(√

2n
)

which is trivial because the best classical algorithm for 3-SAT runs more than quadratically

faster than brute force search. Amplitude amplification, nevertheless, provides quadratic

speedup over the best classical 3-SAT algorithm [5]. A similar study has proposed a quan-

tum algorithm that solves the exact SAT problem in O(2n−M
′
) (where M ′ is the number

of linearly independent clauses) which is polynomially faster than the best known classical

SAT algorithm. [113]. A nested quantum search algorithm (analogous to the classical

tree-based structural search) has shown to outperform the original Grover’s algorithm in

CSP and speeds up the best corresponding classical algorithms polynomially [39]. A gen-

eralized method has also demonstrated to obtain quantum speed-up in addressing CSP

over backtracking based classical algorithms [123].

On the other side of the quantum world, adiabatic quantum computing model has

demonstrated a notable potential in solving SAT instances [88, 191]. Similarly, several

studies have employed quantum annealers for addressing SAT (and its extensions). For

k ≥ 3, k-SAT is NP-complete; however, weighted-Max-SAT with positive waits is NP-

hard for k = 2. We can directly map the weighted-MAX-2-SAT instances to a QUBO

representation [24]; however, for k > 2 these reductions define additional ancillary variables
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that quickly exceed the capacity of current physical quantum annealers. In addition

to adopting the idea of penalty methods for solving SAT and MAX-SAT instances on

quantum annealers [23, 40], we can employ Ising primitives to reduce SAT to an Ising

Hamiltonian whose ground state represents a satisfying solution for the original SAT

[174].

2.3.3 SAT Applications

Solving satisfiability instances, in the worst-case scenario, can require exponentially

large computational resources; nevertheless, worst cases are less likely to appear in the

majority of the real-world applications. In addition, owing to the recent advances in devel-

oping efficient SAT solving heuristics, modern SAT solvers can handle SAT instances with

thousands of variables and millions of clauses [80]. Hence, several real-world applications

leverage modern SAT solvers to address significant problems [114].

Modern SAT solvers and their extensions (like MAX-SAT, SMT and CSP solvers)

play crucial functionality in some commercial planning applications [98, 156]. Similarly,

SAT solvers have shown desirable performance in practical scheduling applications [90, 45].

Since we can transfer first-order logic expressions to propositional logic formulas [158], SAT

serves as the cornerstone for a vast range of AI applications—more precisely, reasoning

and inference systems [165]. As an example, Z3 is an efficient SMT solver that can sat-

isfy higher-order expressions [51]. Furthermore, many applications in electronic design

automation (EDA) have adopted SAT solvers to tackle significant problems in the indus-

try—including (but not limited to) combinational equivalence checking, logic optimization,

functional test vector generation, test pattern generation, circuit delay computation and

bounded model checking [115]. Satisfiability has also started to address various problems
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in cryptography. As an illustration, in 2005, high-performance SAT-solvers were able to

break Several standard cryptographic hash functions [120]. Similarly, parallel SAT solvers

have tried to tackle the problem of prime factorization that plays crucial functionality in

modern public-key cryptography systems—namely the RSA [110].
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CHAPTER III

Post-Quantum Error Correction for Quantum Annealers

3.1 Introduction

We can form an Ising Hamiltonian whose ground state represents the optimum

solution of any given problem of interest—which can be nontrivial in many real-world ap-

plications. In practice, however, executing the corresponding QMI on a physical quantum

annealer does not guarantee to achieve the global optimum [16]. Current generations of the

D-Wave quantum processors, as an example, have some technological barriers—including,

but not limited to, sparse connectivity between qubits [35], confined annealing sched-

ule [138], coefficients’ range and precision limitations [150, 59], noise and decoherence

[53, 78, 77]—that lower the quality of results (i.e., the energy value of the drawn samples

is higher than the energy value of the ground state).

Applying post-processing heuristics can improve the quality of samples—i.e., we can

obtain a sample(s) with lower energy value [60]. As an example, after drawing samples

by a quantum annealer, we can apply local search heuristics (on classical computers) to

exploit the neighborhood of samples. Adopting the hill-climbing method [68, 158] for
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addressing the spin glass problem results in a local search heuristic—so-called single qubit

correction (SQC), presented in algorithm 3.1.1—that has demonstrated to improve the

quality of results, attained by the D-Wave quantum annealers [60, 10].

Algorithm 3.1.1: Single qubit correction (SQC) heuristic for relaxing an input
sample to a sample with lower energy value.

Input: z,h and J
Output: z∗

1 N ← |z|
2 z∗ ← z
3 do
4 z← z∗

5 for i← 1 to N do
6 zi ← −zi
7 if EIsing(z

∗,h, J) > EIsing(z,h, J) then
8 z∗ ← z
9 end

10 end

11 while EIsing(z
∗,h, J) > EIsing(z,h, J)

12 return z∗

From an optimization viewpoint, SQC has a local search scheme so it is very likely

to converge to a local optimum—i.e., SQC is very sensitive to the initial point. To solve

a problem on a quantum annealer, we generally draw several samples (up to 10,000 sam-

ples/reads per QMI). Therefore, in practice, SQC explores a broader area (i.e., the neigh-

borhood of all samples that have been drawn from a ground state of the given Ising

Hamiltonian).

Multi-qubit correction (MQC) is another postprocessing method that tries to ad-

dress error correction of quantum annealers more from a results improvement perspective

than a qubit value correction point of view [60]. Similar to SQC, MQC is a (classical)

postprocessing approach that we apply on drawn samples by a quantum annealer. Thus,

MQC does not depend on the hardware architecture of the target quantum processors.
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In addition, unlike the majority of the gate model error correction techniques, MQC does

not utilize ancillary qubits for error correction purposes.

MQC assumes that quantum annealers can recognize the region(s) of the ground

state(s) of the given Ising Hamiltonians efficiently; however, they can fail to get to the

global minimum, regardless of how close they are to the ground state. While SQC pro-

cesses qubits of a sample individually to find a new sample with lower energy value, MQC

compares two samples at a time to recognize tunnels (groups of qubits) where we can flip

their states simultaneously to find a new sample whose energy value is less than or (in the

worst case) equal to the energy value of the input samples. For a given Ising Hamilto-

nian—denoted by its linear and quadratic coefficients, h and J , respectively—algorithm

3.1.2 shows how MQC reduces two input samples, denoted by z1 and z2, to a new sample

(denoted by z∗) whose energy value is guaranteed to be less than or equal to energy values

of z1 and z2 [60].

In fact, the Reduce function, shown in algorithm 3.1.2, is the extended version of

SQC method, shown in 3.1.1, that acts on a group of qubits simultaneously rather than

flipping the values of qubits individually. Algorithm 3.1.3 illustrates the MQC method

that receives a sample set as input, and tries to iteratively reduce it to a (new) sample

with lower energy value. MQC can find notably better solutions (i.e., samples with lower

energy value) [60]. For a sample set with n samples/reads, MQC takes log2(n) steps and

in each iteration, the size of the sample set is divided by two. It is worth noting that MQC

performs better functionality when we use raw samples of a D-Wave quantum annealer.

Recent studies have demonstrated that MQC can significantly improve the quality of

results, specifically when the problem has a Chimera-like structure [60, 61, 81]. However,
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Algorithm 3.1.2: Reducing two input samples to a new sample with lower
energy value based on virtual tunnels.

1 Function Reduce(z1, z2, h, J):
2 z∗ ← z1

3 N ← |z∗|
4 S ← {}
5 D ← {}
6 for i← 1 to N do
7 if z1

i = z2
i then

8 S ← S ∪ {i}
9 else

10 D ← D ∪ {i}
11 end

12 end
13 Adj ← [ ]
14 for i ∈ D do
15 Adji = {}
16 end
17 for i, j ∈ J do
18 if Jij 6= 0 & i ∈ D & j ∈ D then
19 Adji ← Adji ∪ {j}
20 Adjj ← Adjj ∪ {i}
21 end

22 end
23 T ← ConnectedComponents(Adj)
24 for k ← 1 to |T | do
25 Ikz1 =

∑
i∈Tk

hiz
1
i +

∑
i∈Tk

∑
j∈S

Jijz
1
i z

1
j

26 if Ikz1 > 0 then
27 for l ∈ T k do
28 z∗l ← −z∗l
29 end

30 end

31 end

32 return z∗
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the performance of MQC approaches to the pure quantum annealing when the structure

of the problem approaches to a clique (i.e., we need longer chains for embedding) [10, 16].

Algorithm 3.1.3: Multi-qubit correction (MQC) method for reducing a set of
samples to a new sample whose energy value is less than all input samples or (in
worst case) is equal to the lowest energy value of input samples.

Input: Z =
[
z1, z2, . . . , zn

]
,h and J

Output: z∗

1 while |Z| > 1 do

2 Ẑ ← Z
3 Z ← {}
4 while |Ẑ| > 1 do

5 zA ← Ẑ.Pop()

6 zB ← Ẑ.Pop()
7 zAB ← Reduce(zA, zB,h, J)
8 Z.Append(zAB)

9 end

10 if |Ẑ| > 0 then

11 Z.Append(Ẑ.Pop())
12 end

13 end
14 z∗ ← Z.Pop()

3.2 Benchmarking the D-Wave Quantum Annealers

Although quantum annealers can draw very high-quality samples in near-constant

time—i.e., the energy value of drawn samples approaches to the energy value of the ground

state of the given Ising Hamiltonian—they generally fail to attain the global optimum due

to various technological barriers. In this section, we evaluate recent software and hardware

advances that aim to address the drawbacks of quantum annealers in finding the ground

state of Ising Hamiltonians. As a benchmark, we generated three different types of Ising

Hamiltonians as follows:
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• random Ising Hamiltonians whose linear and quadratic coefficients were randomly

drawn from {−1,+1}, based on a Bernoulli distribution with equal probabilities for

-1 and +1, denoted by “binary”;

• random Ising Hamiltonians in which all coefficients are uniform random numbers in

[−1,+1], denoted by “uniform”;

• random Ising Hamiltonians whose coefficients follow the standard Gaussian distribu-

tion—average and standard deviation were 0 and 1, respectively, denoted by “nor-

mal”.

All randomly generated benchmark problems were compatible with the current

working graph of the D-Wave QPU (so-called Chimera topology). Therefore, until the

next maintenance that can change the working graph of the quantum annealer, one can

directly execute them without embedding problems to a target graph. For each problem

type, we generated 50 instances (random problems).

As our primary ground truth method, we use raw samples, denoted by QA1, drawn

by a D-Wave 2000Q quantum processor. Recent studies have revealed that using spin-

reversal transforms (a.k.a. gauge transforms)—i.e., flipping the qubits randomly without

altering the ground state of the original Ising Hamiltonian—can reduce analog errors of

the quantum annealers [145]. Thus, the second method in this benchmarking (denoted by

QA2), enabled 5 (five) spin-reversal-transforms before submitting QMIs to be executed

on a D-Wave QPU. Since quantum annealers samples from the ground state(s) of the

given Ising Hamiltonians, when we submit a problem to a D-Wave quantum annealer, it

is a common practice to request for several samples/reads (up to 10,000 per QMI). For

every read, the D-Wave QPU initializes all qubits and repeats the annealing process. The
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third method in this benchmarking study, denoted by QA3, puts a longer delay between

successive reads/samplings to reduce the sample-to-sample correlation, albeit longer run-

time.

Since executing a QMI on a quantum annealer is not guaranteed to achieve the

ground state of the corresponding Ising Hamiltonian, even if we request for many sam-

ples/reads, applying classical postprocessing heuristics on raw samples (attained by the

quantum annealers) can result in samples with lower energy values. Therefore, our fourth

method in this benchmarking, denoted by QA4, performs optimization postprocessing on

all samples, which is available in D-Wave’s Ocean SDK. In the same manner, in QA6

we performed sampling postprocessing (which is also available in D-Wave’s Ocean SDK)

on raw samples. In QA6 we: (1) enabled 5 (five) spin-reversal-transforms; (2) put a

longer delay between successive reads; and (3) performed optimization postprocessing on

all samples.

3.2.1 Experiment A: Applying SQC

In this experiment, we aim to study the characteristics of the drawn samples by the

D-Wave 2000Q quantum annealers. To this end, in QA1 + SQC, we applied the SQC local

search heuristic, shown in algorithm 3.1.1, on all raw samples, attained by QA1. Figure

3.1 illustrates the performance comparison between QA1 and QA1 + SQC in minimizing

the benchmark problems (i.e., random binary, normal and uniform Ising Hamiltonians).

3.2.2 Experiment B: Applying MQC

Recent studies have demonstrated that applying MQC on drawn samples by a D-

Wave quantum annealer can notably improve the quality of results [60, 81, 61, 10, 16, 14].
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Figure 3.1: Performance comparison between QA1 and QA1 + SQC on minimizing 50
random (binary, normal and uniform) Ising Hamiltonians with different sample sizes.

In this experiment, we aim to evaluate the performance of MQC method, shown in al-

gorithm 3.1.3, and compare it with recent software and hardware advances in quantum

annealing. To this end, in QA1 + MQC, we applied the MQC method, shown in algo-

rithm 3.1.3, on all raw samples, attained by QA1. Figure 3.2 compares the performance

of QA1 + MQC with the abovementioned arrangements in our benchmarking—namely

QA1, . . . ,QA5 and QA6—in minimizing the benchmark problems (i.e., random binary,

normal and uniform Ising Hamiltonians).

Figure 3.2 demonstrates that MQC outperforms all aforementioned software and

hardware advancements. In other words, in majority of cases, MQC was able to find

a sample with lower energy value. In the same way, Fig. 3.3 displays the performance

comparison between applying SQC and MQC on raw samples of a D-Wave quantum

annealer, denoted by QA1 + SQC and QA1 + MQC, respectively.

3.2.3 Experiment C: Reproducibility of Results

From an application perspective, in addition to relaxing to the excited states of a

given Hamiltonian (instead of its ground state), results/samples attained by the physical

quantum annealers are not reproducible. According to Anderson localization [3], as an
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Figure 3.2: Comparing the performance of QA1+MQC with recent software and hardware
advances in the realm of quantum annealing.

example, the energy gap between the ground and first excited states is shrunk close to

the end of the annealing. The landscape of glassy Hamiltonians generally includes many
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Figure 3.3: Comparing the performance of QA1 + SQC with QA1 + MQC.

excited states and a physical quantum annealer is likely to relax to one of these excited

states. As a conclusion, problem-solving with quantum annealers results in a distribution

of (potential) ground states, and variance of the corresponding energy values are large

enough to lessen the reproducibility of results.

In this experiment, we aim to demonstrate that applying post-quantum correction

techniques can notably enhance the reproducibility of results, attained by the quantum

annealers. To this end, for a random binary, normal and uniform problem, we repeated

the problem-solving 50 times. For each method, table 3.1 shows the variance of the energy

values of the resulting 50 samples. Table 3.1 demonstrates that applying MQC makes

results of quantum annealers significantly reproducible, compared to recent software and

hardware advances in quantum annealing.

3.3 Randomized Multi-Qubit Correction

In section 3.2.2 we showed that applying MQC on raw samples (drawn by a D-

Wave quantum processor) can outperform recent software and hardware advancements in

quantum annealing. Similar to QA1 + MQC that applies MQC on (raw) samples from

QA1, QA6 + MQC performs MQC on resulting samples of QA6. Figure 3.4 compares the
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Table 3.1: Variance of the energy values for 50 repeats.

Coefficients Samples QA1 QA2 QA3 QA4 QA6 QA1 + MQC

Binary

100 1.3696 2.8304 1.4544 2.7264 5.2416 0.9984
200 0.9936 3.4576 0.9664 1.4656 8.1936 0.8704
500 0.7696 2.3936 0.9104 1.3584 3.9184 0.6400
1000 0.4816 1.9584 0.9984 0.8464 3.3936 0.2944

Uniform

100 1.6558 1.1323 0.6401 0.6606 1.1116 0.0704
200 0.8674 0.9988 0.7189 0.4792 1.2079 0.0171
500 0.5471 0.9898 0.5596 0.4471 0.7513 0.0092
1000 0.6006 0.5860 0.5792 0.2757 0.7606 0.0049

Normal

100 5.9365 4.0989 2.5668 0.4009 1.0033 0.0563
200 3.8940 3.5666 2.4667 0.3343 0.5284 0.0071
500 2.8559 2.0883 2.0424 0.4017 0.4056 0.0000
1000 2.7226 2.3799 1.5881 0.2467 0.2899 0.0000

performance of QA1 + MQC and QA6 + MQC in minimizing benchmark (binary, normal

and uniform) Ising Hamiltonians.
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Figure 3.4: Comparing the performance of applying MQC on samples from QA1 and QA6

in solving the benchmark (binary, normal and uniform) random problems.

Figure 3.4 reveals that the performance of MQC depends on the quality of the

input sample set. Hence, we hypothesize that we may extend MQC to achieve a better

post-quantum error correction approach for quantum annealers. To this end, we extend

MQC and introduce a novel method, called randomized multi-qubit correction (RMQC).

Algorithm 3.3.1 presents the RMQC algorithm. In RMQC, we repeat the MQC method
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r times. We start with the raw sample set (similar to MQC) and then shuffle the sample

set in each iteration. Finally, we apply MQC on r samples (results from applying MQC

on shuffled sample set) to obtain the final solution.

Algorithm 3.3.1: Randomized multi qubit correction (RMQC).

Input: Z =
[
z1, z2, . . . , zn

]
, r > 0,h and J

Output: z∗

1 S ← {}
2 do
3 r ← r − 1
4 S.Append(MQC(Z))
5 Z ← Shuffle(Z)

6 while r > 0
7 z∗ ← MQC(S)
8 return z∗

Figure 3.5 compares the performance of applying RMQC for r = 1 on raw samples

(attained by QA1, denoted by QA1 + RMQC(1, 1), and compare it with results from

applying MQC on same sample set, denoted by QA1 + MQC. When r = 1, RMQC

can have a stochastic behavior—i.e., it is possible that MQC can find a better sample.

However, for r > 1, RMQC is guaranteed to outperform MQC—albeit r times more

(classical) computation time.

Figure 3.6 illustrates the performance of RMQC for r = 5 and 10—denoted by

QA1 + RMQC(5, 1) and QA1 + RMQC(10, 1), respectively—and compare it with the per-

formance of QA1 + MQC.

3.4 Discussion

Quantum annealers are a type of adiabatic quantum computer that provides a hard-

ware implementation for minimizing Ising Hamiltonians for addressing computationally

intensive problems that are intractable in the realm of classical computing. From an
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optimization point of view, quantum annealers can draw many high-quality samples in

near-constant time (i.e., drawn samples are very likely to be an excited state). However,

they generally fail to find the global minimum, specifically when the energy gap(s) between

the ground and excited states are small.

In this chapter, we first studied the impact of applying a local search heuristic, called

SQC, on raw samples, drawn by a D-Wave 2000Q quantum annealer. Figure 3.1 reveals

that applying SQC on raw samples for a given Ising Hamiltonian with normal and uniform

coefficients always results in a sample with lower energy value. In other words, none of

the drawn samples for normal and uniform problems were a local optimum, because SQC

was able to perform a local search and find another sample with lower energy value. On

the other side, roughly all drawn samples for binary problems were a local optimum and

applying SQC was not able to improve the quality of the attained samples. There are two

possibilities for this observation:

• Ising Hamiltonians with binary (or discrete) coefficients are easier problems and

sampling with a D-Wave quantum annealer is very likely to result in the ground or

(at least an excited) state;
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Figure 3.6: Performance comparison between QA1 + MQC and QA1 + RMQC for r = 5
and r = 10, denoted by QA1 + RMQC(5, 1) and QA1 + RMQC(10, 1), respectively.

• owing to the precision limitations of the D-Wave QPUs, the Ising Hamiltonian that

is being minimized by a physical quantum annealer is different from the given Ising

Hamiltonian (for example with double precision).

Indeed, not only SQC exploits the neighborhood of an input sample for finding a sample

with lower energy, but it can also remediate the precision limitations

Afterward, we studied the impact of a recent postprocessing method, called MQC,

and showed that it outperforms software and hardware advances in quantum annealing.
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More specifically, we experimentally demonstrated that applying MQC on raw samples,

attained by the quantum annealers, can not only find samples with lower energy but

also make results of the quantum annealers more reproducible. We extended MQC and

introduced a novel method, called randomized MQC (RMQC) that is guaranteed to out-

perform MQC (state-of-the-art in the realm of quantum annealing), albeit more (classical)

computations.
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CHAPTER IV

SAT++: A Quantum Programming Paradigm

4.1 Introduction

Unlike conventional computing machines (i.e., classical and gate model quantum

computers) that have a rich set of machine instructions, quantum annealers can execute

only one quantum machine instruction (QMI)—minimizing a quadratic objective function.

Programming classical and gate model quantum computers define a sequence of operations

that emulates the control flow of the intended algorithm. To solve a problem on a quantum

annealer, on the other side, one needs to define coefficients of an Ising Hamiltonian, shown

in Eq. (2.4), which represents a solution to the original problem of interest in its ground

state.

4.2 Compiling Classical Algorithms for Quantum Annealers

In this section, we introduce SAT++ as a novel model that bridges the gap between

implementing classical algorithms and programming adiabatic quantum computers. From

a problem-solving viewpoint, our model receives a classical algorithm (implemented in
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classical programming languages) and transforms it into an SAT instance and subsequently

into a system of inequalities whose variables are coefficients of Ising Hamiltonians that

represent the solution for the original problem of interest in their ground states. We then

map these Ising Hamiltonians to adiabatic quantum machine instructions (QMI) that are

executable by quantum annealers. Figure 4.1 illustrates the architecture of of SAT++.

4.3 Proof-of-Concept

In this section, we aim to demonstrate the validity of the proposed SAT++ model

in executing classical algorithms (implemented in classical programming languages) on

quantum annealers.

4.3.1 Compiling Classical Algorithms to SAT

According to Cook—Levin theorem, we can reduce any problem of class NP to

SAT (as an NP-complete problem) in polynomial-time [79]. In SAT++, we use Boolean

satisfiability as an intermediate representation of problems. Thus, we need a systematic

approach for reducing any classical algorithm to SAT instances.

In this study, we applied Z3 (a high-performance theorem prover by Microsoft Re-

search) for reducing classical algorithms to SAT instances [51]. In this study, we used

Python for implementing classical algorithms. It is worth highlighting that Z3 also sup-

ports C/C++, Java, OCaml and Microsoft .Net programming languages (like C# and

F#). Therefore, SAT++ is not limited to Python and we can extend it to other (Z3

supported) languages. Since SAT is well-nourished in both academia and R&D, there are

other (high-performance) tools that one can utilize for SAT-based computations. Ow-
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classical programming languages) to quantum machine instructions, executable on quan-
tum annealers.
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ing to modular nature of SAT++, it is also possible to replace Z3 with other symbolic

computing frameworks.

4.3.2 Representing SAT as minimizing Ising Hamiltonians

In this section, we adopt the idea of penalty methods for representing SAT as min-

imizing Ising Hamiltonians. In this mapping, we aim to find coefficients of Eq. (2.4) such

that the ground state of the resulting Ising Hamiltonian represents the satisfying solution

of the original SAT instance. In this formulation, zi represents the Boolean variable xi,

and we interpret -1 and +1 as “False” and “True”, respectively. For a clause with k lit-

erals, there are 2k different possibilities among which, we can distinguish the only state

that makes the clause to be false—called infeasible state. Hence, we represent each clause

of the given SAT instance with two inequalities as:

Di ≤ Einfeasible (4.1)

and

Di ≥
∑

Efeasible, (4.2)

where Di ∈ R is the boundary variable corresponding to the clause Ci, AND Efeasible and

Einfeasible represent the contribution of the feasible and infeasible states in the ultimate

energy function, respectively. For Ci = x1 ∨¬x4 ∨x9, as an example, Eq. (4.1) reduces to

Di ≤− h1 + h4 − h9 − J1,4 + J1,9 − J4,9
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and we can represent Eq. (4.2) as follows:

Di ≥− h1 − h4 − h9 + J1,4 + J1,9 + J4,9

− h1 − h4 + h9 + J1,4 − J1,9 − J4,9

− h1 + h4 + h9 − J1,4 − J1,9 + J4,9

+ h1 − h4 − h9 − J1,4 − J1,9 + J4,9

+ h1 − h4 + h9 − J1,4 + J1,9 − J4,9

+ h1 + h4 − h9 + J1,4 − J1,9 − J4,9

+ h1 + h4 + h9 + J1,4 + J1,9 + J4,9.

A clause with k literals includes 2k − 1 different feasible states so the size of Eq. (4.2)

grows exponentially with k.

Theorem 4.3.1. Sum of the energy values for all possible states in every Ising model is

zero.

Proof. Let Z denotes the set of all possible states in Eq. (2.4). Because spins in the Ising

model (here zI) take their values from {−1,+1}, Z is a closed set under the complement

operation (i.e., z,−z ∈ Z), and |Z| = 2N . Accordingly, sum of the energy values for all

possible states in the Ising model is:

∑
z∈Z

EIsing(z) =
∑
z∈Z

 N∑
i=1

hizi +
N∑
i=1

N∑
j=i+1

Jijzizj


=

N∑
i=1

(
2N

2
hi +

2N

2
(−hi)

)
+

N∑
i=1

N∑
j=i+1

(
2N

2
Jij +

2N

2
(−Jij)

)

= 0.
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According to Theorem 4.3.1, we can rewrite Eq. (4.2) as follows:

Di ≥ −Einfeasible

that obeys

0 ≤ Di. (4.3)

Note that clauses in CNF representation are connected with “AND” operator. Hence,

after representing each clause of the SAT with two inequalities, Eq. (4.1) and (4.3), we

aggregate the resulting sub-systems of inequalities to form a larger system of inequalities.

After representing the given SAT instance withM clauses with a system of 2M inequalities,

we augment the resulting system of inequalities via adding inequalities (2.6) and (2.7) to

address coefficient range limitations of the D-Wave quantum annealers—i.e., hi ∈ [−2,+2]

and Ji,j ∈ [−1,+1], respectively.

To obtain coefficients of the Ising Hamiltonian, shown in Eq. (2.4), whose ground

state can represent a satisfying solution of the given SAT instance, we solve the following

objective function:

max
h,J,D

M∑
i=1

Di. (4.4)

Note that inequalities(4.1), (4.3), (2.6) and (2.7) are linear. Thus, the objective function

in Eq. (4.4) is tractable by linear programming and convex optimization techniques.

Considering that biases and couplers on a D-Wave QPU are bounded, Eq. (2.6) and (2.7),

convergence of problem (4.4) is guaranteed.
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4.3.3 Compiling Ising Hamiltonians to Executable QMI

Although we showed how to address the coefficient range limitations of the D-Wave

quantum annealers, solving problem (4.4) results in an Ising Hamiltonian which is not

necessarily compatible with the D-Wave hardware graph (Chimera topology for the current

generation). Therefore, we need to embed the resulting (abstract) Ising Hamiltonian to

the working graph of the target quantum annealer. In this study, we apply the minor-

embedding heuristic [35] for embedding the problem to the physical lattice of qubits on a

D-Wave QPU.

4.4 Prime Factoring with SAT++: A Study Case

In number theory, the problem of prime factoring aims to find the canonical repre-

sentation of a given integer number n ∈ N, n > 1, as follows:

n =

k∏
i

nrii = n1
1 × n2

2 × · · · × nkk,

where p1 < p2 < · · · < pk are prime numbers and ri are positive (nonzero) integer num-

bers. According to the fundamental theorem of arithmetic, canonical representation of any

positive integer number is unique. Although there are debates on the class (or complexity)

of this problem, there is no known efficient (nonquantum) algorithm for factoring numbers

in polynomial-time [109, 188, 18].

Besides the length of the given composite numbers, on a binary basis, the difficulty of

integer factoring also depends on the properties of integer numbers. The hardest instances

of this problem are factoring pseudo-prime numbers (i.e., the product of two same size

prime numbers). Security of the modern public-key cryptography systems (namely RSA)
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mainly relies on the difficulty of factoring very large pseudo-prime numbers [62, 146].

Moreover, the best-known algorithm for Fast Fourier transform (FFT) depends on the

integer factoring problem [163].

Despite the problem of prime factoring has not been proven to be in class NP,

attempts to address it efficiently in the realm of classical computing (even with em-

ploying large-scale supercomputers) have failed. Heuristic search approaches (namely

the simulated annealing and Tabu search) and meta-heuristics (e.g., evolutionary algo-

rithms, swarm intelligence techniques and hybrid approaches like memetic algorithms)

have demonstrated outstanding functionalities in addressing complex real-world applica-

tions [68]. Studies on adopting intelligent optimization techniques for prime factoring,

nevertheless, have revealed that such algorithms generally converge to local optimums

when we want to factor pseudo-prime numbers [186, 50, 44]. In other words, intelli-

gent optimization techniques approximate the global optimum solutions quickly; however,

prime factorization requires exact global optimum [121].

Since modern SAT solvers can handle instances with thousands of clauses and mil-

lions of variables (in CNF representation), several studies attempted to reduce the prob-

lem of prime factoring to SAT and employ HPC based SAT solvers to factor pseudo-prime

numbers. Experimental results, however, showed that SAT-based prime factoring can-

not address the problem of prime factoring efficiently [163, 110]. In 1994, Peter Shor

introduced a polynomial-time quantum algorithm for integer factoring [169, 170]. Shor’s

algorithm, nevertheless, requires a quantum computer with a reasonably large number of

qubits that is beyond the capacity of current (gate model) quantum processors.
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4.4.1 Results

In this experiment, we used Z3 [51] for implementing the proposed model in Python

and we applied the Tseitin transformation [104] to represent the resulting problems in

CNF. Note that solving problem (4.4) will result in an Ising Hamiltonian which is not

necessarily compatible with the D-Wave hardware graph (Chimera topology for the current

generation). Therefore, we applied the minor-embedding heuristic [35] for embedding the

problem onto the physical lattice of qubits on a D-Wave QPU. As the case of study, we

employed SAT++ model to solve the problem of prime factorization [146] on a D-Wave

2000Q quantum processor. To factor a pseudo-prime number in the realm of classical

computing we can:

• look for two integer numbers p and q whose multiplication is equal to the input

number;

• find an integer p where the remainder of the input number to p is zero.

Figure 4.2 displays the code sketch of multiplication based factoring of pseudo-prime

numbers with SAT++ in Python.

While the majority of quantum annealing based integer factoring studies have adopted

the multiplication based factoring approach, Fig. 4.3 illustrates the code sketch of the

remainder based factoring of pseudo-prime numbers with SAT++ in Python. Our experi-

mental results on a D-Wave 2000Q quantum processor revealed that, although remainder

-based factoring forms a smaller classical program, multiplication-based factoring results

in a smaller SAT instances. Multiplication-based factoring, therefore, can be a better

choice, specifically due to the capacity of the current QPUs.

48



1 import numpy as np
2 from z3 import ∗
3 from SATpp import ∗
4
5 a=11∗13 #number to f a c t o r
6 n=np . int (np . c e i l (np . log2 ( a ) ) )
7 n1=np . int (np . f l o o r ( k /2) )
8 n2=n−n1
9

10 y=BitVecVal ( a , n)
11 p=BitVec ( ’p ’ , n1 )
12 q=BitVec ( ’ q ’ , n2 )
13
14 g=Goal ( )
15 g=bitmapping ( g , p)
16 g=bitmapping ( g , q )
17 r=bv mult ip ly (p , q )
18 g . add ( ZeroExt ( r . s i z e ( ) , y)==ZeroExt ( y . s i z e ( ) , r ) )
19 g . add (UGT(p , 1 ) )
20 g . add (UGT(q , 1 ) )
21
22 cn f=ToCNF( g , ToPropos i t iona l=True )
23 r e s u l t=Is ing SAT Solver ( cn f )

Figure 4.2: Code sketch for multiplication based factoring with SAT++.

Table 4.1: Results for multiplication-based factoring with SAT++on a D-Wave 2000Q.

Method Result

SAT++ with QA 35 = 5× 7
SAT++ with SQC 143 = 11× 13
SAT++ with MQC (on virtual qubits) 143 = 11× 13
SAT++ with MQC (on Boolean variables) 12, 317 = 109× 113

We first employed the standard quantum annealing (i.e., with out using any post-

quantum error correction technique) to satisfy the resulting SAT instances by SAT++.

Using a D-Wave 2000Q, we were able to only factor 35 to its prime factors, 5 and 7, which

is trivial. Applying SQC, shown in algorithm 3.1.1, enabled SAT++ to factor 143 to its

prime factors, 11 and 13. In the same manner, we applied MQC, shown in algorithm

3.1.3 to extend the results from employing SQC; however, SAT++ with MQC could not

demonstrate a better performance, compared to SAT++ with SQC. Applying MQC on
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1 import numpy as np
2 from z3 import ∗
3 from SATpp import ∗
4
5 a=11∗13 #number to f a c t o r
6 n=np . int (np . f l o o r (np . log2 ( a )))+1
7 n1=np . int (np . c e i l (n /2) )
8
9 y=BitVecVal ( a , n)

10 p=BitVec ( ’p ’ , n )
11
12 g=Goal ( )
13 g=bitmapping ( g , p)
14 g . add (URem(y , p)==0)
15 g . add (UGT(p , 1 ) )
16 g . add (ULT(p ,2∗∗ n1 ) )
17
18 cn f=ToCNF( g , ToPropos i t iona l=True )
19 r e s u l t=Is ing SAT Solver ( cn f )

Figure 4.3: Code sketch for remainder based factoring with SAT++.

Boolean variables (i.e., problem variable domain) enabled SAT++ to factor 12,317 to its

prime factors, 109 and 113. Table 4.1 summarizes the experiment results.

4.5 Discussion

Classical computers perform a sequence of operations on memory registers for solv-

ing encoded problems; however, quantum annealers are single-instruction computing ma-

chines that can only sample from the ground state(s) of the given Ising Hamiltonians.

In this chapter, we introduced SAT++ as a novel quantum programming paradigm that

enables us to execute classical algorithms (implemented in classical programming lan-

guages) on quantum annealers. Our model first reduces the given classical algorithm

to SAT—intermediate representation of problems in SAT++—and then maps the CNF

representation of the SAT to an Ising Hamiltonian whose ground state can represent a

solution of the original problem of interest.
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As a proof-of-concept, we showed how one can reduce decision problems, imple-

mented in Python, to SAT. We also introduced a novel heuristic for mapping SAT in-

stances to Ising Hamiltonians. It is important to highlight that our objective in this study

was not to employ quantum annealers for addressing the NP-complete problem of SAT.

Moreover, the proposed heuristic is not guaranteed to solve all SAT instances, even if we

have access to an ideal quantum annealer.

As a case of study, we employed our model to address the problem of prime fac-

torization on a D-Wave 2000Q quantum processor and we successfully factored 12,317 to

its prime factors (109 and 113). Representing SAT instances in CNF, in the worst-case

scenario, can be exponentially time-consuming. Thus, we used the Tseitin transformation

[104] to represent the resulting problems in CNF which runs in polynomial-time—albeit

defining ancillary variables. Although applying the Tseitin transformation increases the

size of the SAT linearly, resulting in problems that can quickly exceed the capacity of

current quantum annealers. In the same manner to compilers that apply various code

optimization techniques for enhancing the performance of the machine code on a specific

CPU, employing preprocessing and postprocessing techniques can reduce the size of SAT

instances (intermediate representation of problems in SAT++) which will increase the

size of problems that SAT++ can address. It is worth noting that our research objective

in this study was not to set a new record for quantum factorized integers, which for the

current generation of the D-Wave quantum annealers is 1,005,973 [146].

From a classical programming viewpoint, remainder based factoring looks simpler

than a multiplication based approach. However, our experimental results demonstrated

that remainder based SAT instances require more ancillary variables in CNF representa-

tion, compared to the multiplication based factoring approach. Hence, a multiplication
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based factoring approach in SAT++ was able to factor larger pseudo-prime numbers.

From a complexity perspective, instead of analyzing the difficulty of problems, we may

define a metric for analyzing the difficulty of instances of a problem.

In the first generation of SAT++, we only considered SAT-based representation of

classical problems. Therefore, our study cases were limited to decision problems. However,

SAT++ is not limited to decision problems and one can use extensions of SAT to address

further problem types. For example, we can reduce optimization problems to MAX-

SAT and Weighted-MAX-SAT instances. Similarly, we can use #SAT as an intermediate

representation of model counting problems.
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CHAPTER V

AI Hybrid Quantum Annealing

5.1 Introduction

Quantum artificial intelligence (QAI) and quantum machine learning (QML) are

emerging fields that leverage quantum computing to address certain types of (hard AI)

problems that are intractable in the realm of classical computing [102, 20, 64]. Unlike

most current research studies in QAI and QML that apply quantum computing models

to hard AI problems, in this section, we explore how we might apply AI techniques to

improve quantum information processing.

5.2 Reinforcement Quantum Annealing

Assume that the given problem Π that we aim to solve on a quantum annealer

contains a finite set of constraints (components), denoted by πi for i ∈ {1, 2, . . . ,M}, over

the same variables as follows:

Π := {πi, π2, . . . , πM}, (5.1)
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where M indicates the number of constraints and our ultimate objective is to find a

solution that addresses (satisfies) all constraints. Let Hi be an Ising Hamiltonian whose

ground state represents a solution for πi and HΠ be the corresponding Ising Hamiltonian

of Π that all are acting on the same spins (variables). In addition, let EHΠ
0 be the ground

state energy of HΠ and EHi
0 be ground state energy of corresponding Hi. If there exists z

that puts Hi (∀i, i ∈ {1, 2, . . . ,M}) in their ground states (i.e., satisfies all constraints in

Π), then z also puts HΠ in its ground state [125]. In other words,

EHΠ
0 = EH1

0 + EH2
0 + · · ·+ EHM

0 . (5.2)

Hence, we can represent HΠ as follows:

HΠ = H1 +H2 + · · ·+HM . (5.3)

This setting appears in a vast range of problem formulations—including, but not

limited to SAT [23], constraint satisfaction problems [182, 183], planning and schedul-

ing [155, 179, 177], fault detection and diagnosis [148, 22], and compressive sensing

[17, 127]—specifically when we adopt the idea of penalty methods to reduce problems

of interest to minimizing Ising Hamiltonians.

Theorem 5.2.1. For any problem in class NP, there are infinite different Ising Hamilto-

nians whose ground states are all identical to the solution of the original problem.

Proof. According to Cook—Levin theorem, we can reduce any NP problem to minimizing

an Ising Hamiltonian (which is also in the class NP) in polynomial-time [79]. Multiplying

all coefficients of the Ising model by a positive non-zero real number results in a new Ising
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model whose ground state will be identical to the original Ising model. Since the number

of positive real numbers are infinite, we can generate infinite different Ising models whose

ground states represent the solution for the original problem of interest.

According to Theorem 5.2.1, there are infinite different Ising Hamiltonians whose

ground states all represent the solution of the original problem of interest—nevertheless

owing to the range and precision limitations on the D-Wave QPUs, we have finite different

Ising models for a problem. In theory, these different Ising models are equivalent to each

other—i.e., an adiabatic annealing process always attains the ground state which is iden-

tical for all corresponding Ising models of a problem. In practice, however, each of these

(theoretically) equivalent Ising models are analogous to a pseudo-Boltzman distribution

whose parameters are different. Consequently, when we minimize the corresponding QMIs

with a physical quantum annealer (like the D-Wave QPU), the probability of finding the

global minimum for different Ising Hamiltonians of a given problem varies from zero to one.

As an example, an annealing process on a D-Wave QPU may become diabatic because the

required anneal time exceeds the maximum possible anneal time (2,000 micro-seconds),

which can substantially reduce the probability of finding the global minimum. Note that

for a given Ising Hamiltonian, we cannot estimate the probability of finding the ground

state prior to executing the corresponding QMI. We present the Reinforcement Quan-

tum Annealing (RQA) scheme that leverages the idea of learning automata to iteratively

find better Ising Hamiltonians—i.e., probability of finding the global minimum through

executing the corresponding QMIs on a quantum annealer is increased over the time.
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5.2.1 RQA: A Learning Automata Approach

Learning automata (LA) [130] are adaptive decision-making models (i.e., type of

reinforcement learning [96]) that try to maximize the accumulative reward when they are

interacting with stochastic environments. In a similar manner to reinforcement learning,

LA use Markov-decision-processes for representing the automaton-environment structure

[96, 130, 175]. In a learning automaton, the agent has a set of r actions, denoted by

α = {α1, α2, . . . , αr},

and each action has a corresponding probability to be taken by the agent, denoted by pi

such that
r∑
i

pi = 1.

In each episode, the agent takes (applies) the action αi (according to p), and (cor-

respondingly) the stochastic environment returns its feedback β that specifies the per-

formance evaluation of the action αi. The agent uses this feedback to learn from the

environment and aims to take optimal actions over time. For β ∈ [0, 1] —so-called S-Type

learning automata—in episode t, if the agent takes the action αi and receives the feedback

βt, we can update p as follows:

pt+1
j =


ptj − θ2

(
1− βt

)
ptj + θ1β

t (1− pj) , i = j;

ptj + θ2

(
1− βt

) (
1
r−1 − pti

)
− θ1β

tpj , i 6= j,

(5.4)
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where β = 0 represents the lowest action performance and β = 1 represents the highest

action performance, respectively, θ1, θ2 ∈ [0, 1] are learning factors, and i, j ∈ {1, 2, . . . , r}

[130].

We introduce a novel scheme, called reinforcement quantum annealing (RQA), in

which an intelligent agent interacts with a quantum annealer as a stochastic environment

and tries to iteratively find better Ising Hamiltonians that sampling from their ground

state(s), by quantum annealers, results in a better distribution—i.e., the probability of

finding the global optimum for the original problem of interest is increased over time. To

this end, we extend Eq. (5.3) as follows:

H̃Π = H̃1 + H̃2 + · · ·+ H̃M , (5.5)

such that:

H̃i = χ (Hi,ρi) , (5.6)

where ρi ∈ R denotes the impact (or influence) factor of πi (or Hi) and χ is a function

that maps the input Hamiltonian to a different Hamiltonian which satisfies:

• any z that puts Hi in its ground state also puts H̃i in its ground state, and vice

versa;

• if ρ1
i < ρ2

i then χ
(
Hi,ρ

1
i

)
≥ χ

(
Hi,ρ

2
i

)
.

Now we extend learning automata to allow the agent to take multiple actions in

each episode. Let α̂t ⊂ α be the set (list) of actions that the agents takes in episode t.
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We can extend the Eq. (5.4) as follows:

pt+1
j =


ptj − θ2

(
1− βt

)
ptj + θ1β

t (1− pj) , αj ∈ α̂t;

ptj − θ2

(
1− βt

) (
1
r−r̂ − p̂

t
α̂

)
− θ1βt

r−r̂
(
r̂ − p̂tα̂

)
, αj /∈ α̂t,

(5.7)

where r̂ =
∣∣α̂t∣∣ and,

p̂tα̂ =
∑

pi; for αi ∈ α̂t.

Finally, we leverage multi-task learning automata—let ρi = pi and M = r—to

propose the RQA scheme. RQA is an iterative process that we can start it with a uniform

distribution of influence factors as follows:

ρ = { 1

M
}M .

In each iteration, the agent applies Eq. (5.5) and submits the corresponding QMI to a

quantum annealer. After performing the necessary post-processing methods (like reme-

diating broken-chains and applying post-quantum error correction heuristics), the agent

estimates β according to the number of satisfied constraints (πi) and employs Eq. (5.7)

to update the influence factor ρ.

5.2.2 Proof of Concept: RQA for Solving SAT Instances

In this section, as a proof-of-concept, we show that adopting the proposed RQA

scheme can notably improve the performance of quantum annealers when we apply them

for solving SAT and MAX-SAT instances. To adopt the proposed RQA scheme, we rewrite

the inequality (4.3) as follows:

ρi ≤ Di, (5.8)
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where ρi denotes the influence factor of the clause Ci. Here, we define ρ as:

ρi =
1

M
− pi, (5.9)

where pi is the corresponding probability of constraint πi (here the clause Ci) in Eq. (5.7).

Note that when pi = 1
M , the inequalities (4.3) and (5.8) are identical. The architecture of

the proposed agent contains the following components:

• Φt—set of unsatisfied clauses in episode t;

• ρt—tuple of M influence factors in episode t;

• QMIt—action of the agent in episode t, the Ising Hamiltonian for solving the given

SAT instance (according to Φt and ρt);

• z—perception of the agent from the stochastic environment, resulting sample(s) from

executing the QMIt on a quantum annealer.

For a given Boolean formula in CNF, the agent initializes its internal state as:

Φ0 = ∅

and

p0 = { 1

M
}M .

In each episode, the agent forms a system of inequalities with Eq. (4.1) and (5.8), and

embeds Eq. (2.6) and (2.7). Afterward, the agent solves problem (4.4), and submits

the resulting Ising Hamiltonian (QMIt) to a D-Wave QPU. The environment (here the

D-Wave QPU) draws sample(s) from the corresponding pseudo-Boltzmann distribution,
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and returns the resulting sample(s). The episode ends with updating the internal state of

the agent as follows:

Φt = set of unsatisfied clauses with zt,

βt = 1−
∣∣Φt
∣∣

M
,

and (finally) updating probabilities with (5.7). In RQA, the action of the agent in episode

t depends on ρt−1; therefore, Markov property holds here [47].

5.2.3 Results

In this section, we aim to evaluate the performance of RQA scheme on solving bench-

mark SAT instances, and compare it with recent software and hardware enhancements to

the quantum annealers. For every SAT instance, we used the number of unsatisfied clauses

as the metric for performance comparisons. In this study, we used Z3 (from Microsoft Re-

search) as a framework for symbolic computing implementations [51] and we executed each

QMI on the D-Wave 2000Q quantum annealer, located at Burnaby, British Columbia. We

implemented all experiments in Python 3.7.4, and executed them on a 64-bit Windows 10

based system with 32 GB RAM and Intel Xeon processor at 3.00 GHz.

For every SAT instance, we used inequalities (4.1), (5.8), (2.6) and (2.7) to represent

the given SAT instance as a system of inequalities. Afterward, we solved problem (4.4)

for reducing the SAT to an executable QMI on a D-Wave quantum processor. Note that

solving problem (4.4) will result in an Ising Hamiltonian which is not necessarily com-

patible with the D-Wave hardware graph (Chimera topology for the current generation).

Therefore, we applied the minor-embedding heuristic [35] for embedding the problem to

the physical lattice of qubits on a D-Wave QPU. To avoid the impact of chaining physical
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qubits in our evaluations, we employed fixed embeddings of cliques in all instances—i.e.,

we used the pre-defined embeddings of cliques for the chimera architecture.

Recent studies have revealed that using spin-reversal transforms (a.k.a. gauge trans-

forms)—i.e., flipping the qubits randomly without altering the ground state of the original

Ising Hamiltonian—can reduce analog errors of the quantum annealers [145]. Thus, as a

preprocessing technique, we applied spin-reversal transforms prior to submitting the QMIs

to the physical QPU. We also put a delay between measurements to reduce the sample-

to-sample correlation, albeit longer run-time.

To remediate possible broken chains in the resulting raw samples from the D-Wave

QPU, we performed voting among the physical qubits of chains. After unembedding

samples (i.e., representing variables in the original problem domain), we applied the multi-

qubit correction (MQC) heuristic [60] which has demonstrated a significant ability to

improve the probability of finding the global minimum, attained by the D-Wave QPU.

Finally, we performed a local search heuristic, so-called single-qubit correction (SQC), to

construct the final solution of the given SAT [60].

5.2.3.1 Experiment A: Factoring Pseudo-Prime Numbers

In this study, we use the problem of prime factorization as a benchmark to evaluate

the performance of RQA. It is worth noting that our research objective in this study was

not to set a new record for quantum factorized integers, which for the current generation

of the D-Wave quantum annealers is 1,005,973 [146]. Indeed, since the security of the

modern public-key cryptography systems (like RSA) mainly relies on the difficulty of

factoring very large pseudo-prime numbers [62, 146], we relied on the difficulty of prime

factorization problem for generating benchmark SAT instances. Let f(x1,x2)be a Boolean
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function as follows:

q = f(x1,x2) = x1 × x2, (5.10)

where x1 ∈ {0, 1}n1 and x2 ∈ {0, 1}n2 are integer-valued numbers in binary representation

(here, x1,x2 ≥ 2), and the multiply operator is in binary base—each element of the vector

q is a Boolean function of x1 and x2.

Assume that q̂ is a pseudo-prime integer number in binary base (i.e., q̂ has two

prime factors. We can map the problem of factoring q̂ to SAT as follows

g = fSAT (q, q̂) =

n∧
i=1

¬(qi ⊕ q̂i), (5.11)

where n = n1 + n2 denotes the length of q. We can look at the process of generating

SAT instances from a reverse-engineering viewpoint. To this end, we generated pseudo-

prime numbers via multiplying two prime numbers, and represented them in binary base

(denoted by q̂). For each instance, we then used the Eq. (5.11) to map the factorization

of q̂ to a satisfiable Boolean formula. Since g is a Boolean expression of x, we applied

the Tseitin transformation [104] to represent g in conjunctive normal form (CNF) [27].

We also performed pre-processing techniques, namely ”ctx-solver-simplify”, ”recover-01”,

”propagate-values” and “reduce-args” tactics from Z3 [52]. Note that applying the Tseitin

transformation can increase the size of g linearly, due to defining auxiliary variables. Since

the capacity of the current D-Wave 2000Q quantum processors is limited to a complete

graph of size 63, we eliminated SAT instances (in CNF) with more than 63 Boolean

variables which resulted in 136 satisfiable SAT instances.

Figure 5.1 illustrates results—minimum (circles), maximum (triangles), average and

variance of the number of unsatisfied clauses—for solving these 136 satisfiable SAT in-
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stances, and compares the performance of the proposed RQA scheme with quantum an-

nealing (QA) and quantum annealing with multiple post-quantum processes (SMQC). To

enhance the standard quantum annealing technique, we used two spin-reversal-transforms

[145], as well as the delay between measurements to reduce the inter-sample correlation.

In the second method (SMQC), we first used the multi-qubit correction (MQC) method

[60], in problem variable level—which is the state-of-the-art technique in the realm of post-

quantum correction for quantum annealers—and then applied a local search to maximize

the quality of results, attained by the SMQC arrangement.

To update the influence factors of clauses in RQA, Eq. (5.7), we used θ1 = 0.1 and

θ2 = 0. Learning automata generally require a notable number of episodes to converge to

an optimal (or sub-optimal) policies. In this experiment, nevertheless, the agent termi-

nates the process after at most T = 10 episodes (due to QPU time limitations) or finding a

solution that satisfies all clauses. Hence, we formed a hall-of-fame—a set of final solutions

from all episodes—and applied MQC (followed by SQC) on them to obtain the ultimate

solution of RQA. Our empirical observations showed that this technique can implicitly

address the limited number of allowed episodes in RQA. Note that RQA utilizes at most

the same number of samples as QA and SMQC.

5.2.3.2 Experiment B: Uniform Random 3-SAT with Phase Transitions

Sampling from the phase transition region of uniform Random 3-SAT is a common

practice for generating benchmark SAT (and MAX-SAT) problems [42, 167, 1, 139]. In

this experiment, as our second study case, we used the satisfiable benchmark test-set

of uniform random 3-SAT with phase transitions [89]. Considering the capacity of the

63



0

2

4

6

8

10

12

14

100 500 1000 5000 10000

A
ve

ra
ge

 N
um

be
r o

f U
ns

at
is

fie
d 

C
la

us
es

Number of Samples

QA SMQC RQA min max

Figure 5.1: Experiment results for solving 136 satisfiable SAT instances (with at most
63 Boolean variables) for factoring pseudo-prime numbers with quantum annealing (QA),
quantum annealing with classical post-processing (SMQC) and reinforcement quantum
annealing (RQA).

current generation of the D-Wave quantum annealers—we can embed a clique of size at

most 63 on chimera architecture—we employed the test-set with 50 Boolean variables.

Figure 5.2 demonstrates results—minimum (circles), maximum (triangles), average

and variance of the number of unsatisfied clauses—for solving the first 100 instances from

the benchmark test-set, and (similar to the previous experiment) compares the perfor-

mance of the proposed RQA scheme with quantum annealing (QA) and quantum anneal-

ing with multiple post-quantum processes (SMQC). The setting for this experiment was

identical to the previous experiment, except the number of instances (136 vs. 100) and

the number of variables (variant vs. 50).

5.3 Greedy Quantum Annealing

Greedy algorithms are a problem-solving paradigm where we make locally optimal

choices at each stage and expect that they yield a globally optimum solution. Although

most greedy algorithms fail to achieve the global optimum, in many applications they are
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Figure 5.2: Experiment results for solving 100 satisfiable uniform random 3-SAT instances
with phase transitions—each SAT instance contains 50 Boolean variable—using quantum
annealing (QA), quantum annealing with classical post-processing (SMQC) and reinforce-
ment quantum annealing (RQA).

the best choice due to their efficiency [55]. As an example, greedy algorithms are widely

used in sparse recovery applications, at the cost of lower recovery accuracy (compared to

convex optimization methods in compressive sensing) [127]. Note that greedy algorithms

can find globally optimum solutions if the problem exhibits optimal substructure. In this

section, we propose a novel hybrid approach, called greedy quantum annealing(GQA),

that leverages quantum annealers to better select candidates in each stage of the greedy

algorithms.

5.3.1 Method

Let H be an Ising Hamiltonian, representing a solution to the problem of interest

in its ground state, as follows:

H :=
N∑
i=1

hizi +
N∑
i=1

N∑
j=i+1

Jijzizj , (5.12)
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, where h and J represent linear and quadratic coefficients, respectively. Also, let z∗

denotes the ground state of H as

z∗ = arg min
z

H. (5.13)

In this study, we aim to find z̃ such that:

|H(z∗)–H(z̃)| → 0. (5.14)

In other words, our objective is to find a sample whose corresponding Ising energy value,

shown in Eq. (2.4), approaches the energy value of the ground state of the given Ising

Hamiltonian. The proposed greedy quantum annealing (GQA) starts with

z̃ = {}

and

Ht=0 = H,

where t denotes the episode (or iteration) of the GQA algorithm. At each iteration, GQA

uses a quantum annealer to draw n samples from the ground state of Ht. To solve problem

(5.13) on a D-Wave quantum processor, as an example, one needs to embed Ht to the

working graph of the D-Wave quantum processors (i.e., the Chimera topology for the

current generation). We also need to normalize h and J to be in [−2,+2] and [−1,+1],

respectively [16].
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Let Z denotes the set of all samples, drawn by a quantum annealer from the ground

state of Ht, as follows:

Z = {z1, z2, · · · , zn},

where zj ∈ {−1,+1}N . All samples (i.e., zj ; for j = 1, 2, . . . , n) contain a measurement

for every qubit. Hence, we can look at each problem variable (zi, for i = 1, 2, · · · , N) as

a random variable with Bernoulli distribution that takes its value from {−1,+1}. Note

that in this representation, the value -1 in (2.4) is analogous to 0 in (2.5); therefore, we

can extend all analysis to QUBO form and employ GQA in binary settings.

After retrieving the sample set Z, we estimate the uncertainty of every problem

variable (zi) as follows:

u(zi) = 1−
|
∑n

j=1 zji |
n

. (5.15)

For any variable zi of Ht that

u(zi) ≤ θ, (5.16)

where θ ∈ [0, 0.5) specifies the threshold parameter, we fix the value of optimum solution

as follows:

z̃i = sgn

 n∑
j=1

zji

. (5.17)

Since θ < 0.5, z̃i is guaranteed to take its value from {−1,+1}. We initialize the Ising

Hamiltonian of next episode as Ht+1 = Ht. After fixing the value of zi:

• we remove hi from Ht+1;

• we add the value of z̃iJij (or z̃iJji) to hj , for j = 1, 2, . . . , N and i 6= j;

• we remove the coupler Jij (or Jji) from Ht+1.
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GQA terminates when Ht ≡ Ht+1. If GQA ended without fixing all problem variables,

we apply the MQC method [60] on the samples from the last stage of the GQA and assign

values for the remaining problem variables.

Contracting variables with negligible uncertainties results in a new Ising Hamilto-

nian (Ht+1) which is smaller and sparser, compared to Ht. Hence, at each iteration of

GQA, the remaining Ising Hamiltonian becomes easier to be solved with physical quantum

annealers. Note that contracting variables reduces the number of qubits (N) correspond-

ingly. Algorithm 5.3.1 illustrates the GQA process. Finally, we can apply a classical local

search on z̃ to increase the probability of finding the ground state.

5.3.2 Results

In this section, we proposed a hybrid approach, called greedy quantum annealing

(GQA), for improving the performance of physical quantum annealers in finding the global

minimum (i.e., the ground state) of Ising Hamiltonians, shown in (2.4). It is important

to emphasize that, therefore, our objective was not to introduce a new greedy algorithm

that can address combinatorial optimization problems nor to guarantee that the quantum

annealers will find the global minimum of given Ising Hamiltonians.

Benchmarking optimization techniques with computationally hard problems that we

know the optimum solution is a common practice. However, recent studies have demon-

strated that applying MQC [60] on the drawn samples by the D-Wave quantum processors

always finds the optimum solution of such problems [61]. Note that the current genera-

tion of the D-Wave quantum annealers is limited to represent a clique of size at most 63

and MQC may fail to find the global optimum of benchmark problems when we notably

increase the number of variables, which is beyond the capacity of the current quantum an-
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Algorithm 5.3.1: Greedy quantum annealing (GQA) algorithm for finding the
ground state of Hamiltonians.

Input: H, θ
Output: z̃

1 z̃← {}
2 Ht ← H
3 do
4 Ht+1 ← Ht

5 Z ← {z1, z2, · · · , zn} = arg min
z

Ht

6 for i← 1 to N do
7 if u(zi) ≤ θ then

8 z̃i ← sgn
(∑n

j=1 zji

)
9 Ht+1

hi
← 0

10 for j ← 1 to N do
11 if Jij ∈ Ht+1 then

12 Ht+1
hj
← Ht+1

hj
+ Jij z̃i

13 Ht+1
Jij
← 0

14 end
15 if Jji ∈ Ht+1 then

16 Ht+1
hj
← Ht+1

hj
+ Jjiz̃i

17 Ht+1
Jji
← 0

18 end

19 end

20 end

21 end

22 while Ht+1 6= Ht

23 if |z̃| < N then
24 z̃← z̃ ∪MQC(Z)
25 end

nealers. It is worth highlighting that MQC performs well only on sparse problems—when

we reduce the sparsity of the problem, i.e., increasing the number of non-zero quadratic

coefficients in Eq. (2.4)—performance of the MQC approaches to a local search heuristic

like single-qubit correction (SQC).

Generating random problems (i.e., drawing linear and quadratic coefficients of an

Ising Hamiltonian randomly, according to a specific distribution) results in hard problems
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for benchmarking quantum annealers [99, 59, 60]. Hence, as a proof-of-concept, we use

randomly generated Ising Hamiltonians for evaluating the performance of GQA.

5.3.2.1 Experiment A

For every problem in this experiment, we generated a random graph of size 50 with

a specified sparsity rate (s ∈ {0.05, 0.25, 0.5, 0.75, 1.0}). More specifically, we randomly

selected edges from a complete graph with N = 50 nodes where the sparsity rate s denoted

the probability of selecting edges. Afterward, we set values of the corresponding biases

and couplers randomly. We generated three different types of benchmark problems: (a)

we picked values of biases and couplers randomly from {−1,+1} (binary coefficients); (b)

we used random numbers in [−1,+1] with uniform distribution to assign values of h and

J (uniform coefficients); and (c) coefficients’ values were drawn randomly from a standard

normal distribution (normal coefficients).

Our objective in this study was to improve the quality of results (i.e., finding sam-

ples with lower energy value), attained by the D-Wave quantum annealers. Hence, as our

ground-truth, we compared the performance of GQA with two different settings. Since ap-

plying spin-reversal-transforms (a.k.a. gauge transforms) has demonstrated to address the

impact of analog errors of the physical quantum annealers [145], as our first ground-truth

method, we compared GQA with quantum annealing with 10 spin-reversal transforms

(here, denoted by QA). We also enabled the inter-sample delay to reduce the sample-

to-sample correlations in successive reads/measurements, albeit longer execution time.

As our second ground-truth method, we applied MQC on samples from QA—quantum

annealing with 10 spin-reversal-transforms and enabled inter-sample delay—denoted by

MQC.
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For each QMI, we requested 1,000 samples for all methods. The uncertainty thresh-

old in GQA was θ = 0.0—i.e., all spins must have the same value so GQA can fix them

for the next stage. We obtained this threshold empirically via evaluating the performance

of GQA on a small problem set. In the next experiment, we have studied the impact of θ

on the performance of GQA.

Since randomly generated problems are not compatible with the working graph of

the current D-Wave quantum processors, we used the minor-embedding heuristic [35] for

embedding the arbitrary random graphs to the Chimera topology of the D-Wave 2000Q

quantum processors. In addition, GQA iteratively contracts variables whose uncertainties

are negligible; thus, the Ising Hamiltonian in GQA has a dynamic structure, in terms of

the number of qubits and their connectivity. In this sense, at each stage, GQA needs

to embed the remaining Ising Hamiltonian to an executable QMI on the target quantum

annealer.

Figure 5.3 illustrates the performance comparisons between GQA and QA in mini-

mizing Ising Hamiltonians with binary, uniform and normal coefficients. For each case, we

generated 100 random problems with the corresponding (Bernoulli, uniform or normal)

distributions. In this experiment, all randomly generated Ising Hamiltonians had 50 spin

variables (N = 50). For each sparsity rate, the corresponding column illustrates the num-

ber of times that QA has found a better sample (compared to GQA), number of times

that QA and GQA demonstrated same performance (i.e., best samples from both methods

had identical Ising energy values), and number of times that GQA has outperformed QA.

In the same manner, Fig. 5.4 illustrates the performance comparisons between GQA

and MQC in minimizing the same 100 randomly generated Ising Hamiltonians with binary,

uniform and normal coefficients. Note that all arrangements in this experiment (e.g.,
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Figure 5.3: Performance comparison between GQA and QA (with spin-reversal-transforms
and inter-sample delays) in solving 100 random benchmark problems with N = 50 spin
variables and different sparsity rates s.

number of variables, sparsity rate, number of spin-reversal-transforms, etc.) were identical

to the previous experiment. Similar to Fig. 5.3, each column in Fig. 5.4 represents the

number of times that MQC has found a sample with lower energy, MQC and GQA had

similar performance, and GQA resulted in a sample with lower Ising energy value.
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Figure 5.4: Performance comparison between GQA and MQC in solving 100 random
benchmark problems with N = 50 spin variables and different sparsity rates s.

5.3.2.2 Experiment B

In this experiment, we aim to study the impact of the threshold parameter on the

performance of GQAA. To this end, we measured the average number of stages (iterations)

that GQA takes to be converged. Table 5.1 illustrates the average number of iterations

that GQA takes to solve 100 random benchmark problems with N = 50 variables and

72



normal coefficients. Since the randomly generated Ising Hamiltonians had arbitrary graph

structures, we used the minor-embedding heuristic [35] for mapping them to executable

QMIs on the D-Wave quantum annealers.

Table 5.1: Average number of iterations for GQA in solving 100 random benchmark
problems with different thresholds (θ) and sparsity rate (s).

H
HHH

HHθ
s

0.05 0.25 0.50 0.75 1.00

0.25 3.25 2.80 3.15 3.40 3.30
0.15 3.60 3.40 3.35 3.45 3.65
0.05 4.10 4.45 4.30 3.20 4.05
0.00 5.50 6.20 2.10 2.05 2.30

Table 5.1 reveals that for Chimera like problems (i.e., sparse problems where s =

0, 05 or 0.25), when θ → 0, GQA takes more iterations (i.e., GQA has slower convergence).

On the other side, for dense Ising Hamiltonians, where s→ 1 (i.e., clique like problems),

when θ → 0, GQA converges quickly—the maximum number of iterations appears on

θ ∼ 0.1.

5.4 Discussion

While most studies in quantum artificial intelligence aim to apply quantum com-

puters for addressing hard AI problems, in this chapter we showed that AI can advance

quantum information processing. In this chapter, we introduced a novel scheme—called

reinforcement quantum annealing (RQA)—that leverages reinforcement learning (more

specifically learning automata) to enhance the quality of results, attained by the quantum

annealers. Ramezanpour (2018) has proposed to improve the simulated quantum anneal-

ing algorithm by adding reinforcement to the standard quantum annealing algorithm [151].

Simulated quantum annealing is an iterative algorithm (similar to simulated annealing)
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that is implemented and run on classical computers. On the other hand, quantum anneal-

ers are physical, single-instruction, quantum processing units where the entire annealing

process is atomic. Thus, we cannot modify or adjust the annealing process after starting

the annealing (i.e., putting quantum bits on their superposition). in RQA, similar to the

standard reinforcement learning scheme, iterations emulate the interactions between an

agent and its environment. Ramezanpour’s method, however, has an adaptive optimiza-

tion scheme in which iterations simulate one quantum annealing process on a classical

computer and is not applicable to physical quantum annealers.

As a proof-of-concept, we demonstrated that applying the proposed RQA scheme (on

a D-Wave quantum annealer) results in notably better solutions. It is worth highlighting

that, however, the proposed approach (i.e., hybridization of reinforcement learning and

quantum annealing) is applicable to a vast range of classic AI problems like constraint

satisfaction, planning, and scheduling.

We applied the proposed RQA scheme on two different SAT problem sets and com-

pared its performance with quantum annealing (QA) and quantum annealing with post-

quantum error corrections (so-called SMQC) which is the state-of-the-art in the realm

of quantum annealing [81, 10, 60]. The first problem set includes 136 satisfiable SAT

instances which represent factoring pseudo-prime numbers that have at most 63 Boolean

variables, in CNF representation. Besides the length of the given composite numbers,

the difficulty of integer factoring also depends on the properties of integer numbers. The

hardest instances of this problem are factoring pseudo-prime numbers (product of two

prime numbers) whose factors have the same size (in binary base). SAT instances in ex-

periment A are not the hardest cases of prime-factoring— restricting the SAT instances

in experiment A to a composite of the same size prime factors resulted in only 8 problems.
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It is worth noting that our main objective in this experiment was not to address the prime

factorization nor to use quantum annealers for solving SAT or MAX-SAT problems.

Figure 5.1 illustrates results—minimum, maximum, average and variance of a num-

ber of unsatisfied clauses—of solving these 136 satisfiable SAT instances for 100, 500,

1,000, 5,000 and 10,000 samples. In RQA, increasing the number of samples from 100 to

10,000 reduces the average number of unsatisfied clauses from 1.57 to 1.40. Similarly, in

QA and SMQC, the average number of unsatisfied clauses is reduced from 9.41 and 3.55

to 6.85 and 3.17, respectively. Although increasing the number of samples in all three

methods reduces the average number of unsatisfied clauses, RQA with 100 samples out-

performs both QA and SMQC approaches in all arrangements (even with 10,000 samples).

It is worth highlighting that QA was not able to satisfy all clauses of any of these 136

SAT instances, even when we requested for 10,000 samples, while both SMQC and RQA

methods were able to find a satisfying solution for at least one of the instances in all cases.

From a robustness viewpoint, increasing the number of samples from 100 to 10,000 lowers

the variance and range (the difference between maximum and minimum) of QA, SMQC

and RQA from 4.28, 2.60 and 0.86 to 3.21, 1.73 and 0.70, respectively. Therefore, RQA

demonstrated better robustness (i.e., higher reproducibility rate), compared to both QA

and SMQC approaches.

In the second study case, shown in Fig. 5.2, we used the first 100 SAT instances of

the satisfiable benchmark test-set of uniform random 3-SAT with phase transitions [89].

Similar to Fig. 5.1, Fig. 5.2 demonstrates that RQA with 100 samples outperforms both

QA and SMQC approaches in all settings. More specifically, increasing the number of

samples from 100 to 10,000 in QA, SMQC and RQA decreases the average number of

unsatisfied clauses from 8.02, 1.65 and 0.79 to 6.39, 1.28 and 0.68, respectively. Also, the
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variances are reduced from 6.52, 0.53 and 0.31 to 4.43, 0.42 and 0.20, respectively. Note

that the minimum number of unsatisfied clauses in RQA for all settings is zero while SMQC

needed at least 5,000 samples to satisfy all clauses of at least one SAT instance. Note that

RQA has an iterative scheme—RQA executes multiple QMIs for a given problem; hence,

in all experiments, we restricted the total number of samples in RQA not to exceed the

sample size of QA and SMQC. As an example, when QA and SMQC requested for 1,000

samples, RQA (with T = 5 iterations) asked for 200 samples in each iteration.

Our second proposal was leveraging quantum annealers to better select candidates

in greedy algorithms. Quantum annealing is a meta-heuristic for addressing discrete opti-

mization problems in near-constant time; however, owing to some technological barriers,

physical quantum annealers (like the D-Wave quantum processors) generally result in ex-

cited states (i.e., close to global minimum), rather than converging to the ground state

(i.e., global minimum). In other words, quantum annealers can find very high-quality

solutions for combinatorial optimization problems in a fraction of a second; nevertheless,

they generally fail to get to the ground state of the given Ising Hamiltonians.

We introduced a novel hybrid approach, called greedy quantum annealing (GQA),

that employs the quantum annealers for making globally optimum choices at each stage of

a greedy algorithm. To this end, we looked at the quantum annealers as a physical process

that naturally draws samples from the ground state of Ising Hamiltonians (i.e., a problem-

dependent Boltzmann distribution) at cryogenic temperatures. From a problem-solving

point-of-view, conjugating quantum annealers and greedy algorithms address drawbacks

of both methods and results in remarkably better solutions (i.e., samples with lower energy

value), at the cost of executing multiple QMIs for one problem.
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Our empirical results, using a D-Wave 2000Q quantum processor, on several ran-

domly generated benchmark problems demonstrated that GQA finds samples with notably

lower energy values, compared to the best-known techniques in the realm of quantum an-

nealing—namely spin-reversal-transforms (or gauge transform) and multi-qubit correction

(MQC). For sparse problems (i.e., the structure of the problem is close to the Chimera

architecture), the performance of the GQA approaches to the performance of MQC. When

the sparsity decreases, however, GQA shows supremacy in terms of finding samples with

lower energy. In other words, GQA implicitly addresses the embedding-related issues,

specifically the broken-chains.
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CHAPTER VI

Compressive Sensing: A Study Case

6.1 Introduction

Digital systems employ analog-to-digital converters (ADC) and digital-to-analog

converters (DAC) for acquiring data from the environment and representing the computa-

tional results, respectively. From a signal processing point of view, the Nyquist—Shannon

theorem (also known as sampling theorem) plays a cornerstone role for bridging the gap

between the continues-time (analog) and discrete-time (digital) signals. The sampling

theorem introduces the rate which is sufficient for perfect reconstruction of the desired

signal [105, 178, 149].

In real-world applications, remarkable portions of original signal sources are either

sparse or compressible (possibly after a change of basis); therefore, traditional signal acqui-

sition methods result in too many samples compared to the actual information contained

in the original signal [74, 153, 127]. Also, when we perform necessary transforms on digital

signals, the majority of transformed coefficients are discarded, and we only retain larger

ones for storage and transmission purposes [153]. Moreover, in several applications like

78



multi-band signals having a wide spectral range, the suggested sampling rate by sampling

theorem can exceed the specifications of best available analog-to-digital converters [153].

A novel tool to resolve these drawbacks is compressive sensing where we utilize linear

measurements instead of point measurements [74, 153, 127].

Compressive sensing (a.k.a. compressed sensing, compressive sampling or sparse

sampling) is a randomized data acquisition method that linearly samples sparse or com-

pressible signals at a rate much below of the Nyquist-Shannon sampling theorem [36, 58,

37]. From a data acquisition point of view, instead of sensing N samples uniformly and

then compressing them into a vector of size s, compressive sensing performs m linear

measurements such that m is reasonably close to s, more precisely

m = O

(
s log

N

s

)
. (6.1)

From a signal processing viewpoint, compressive sensing exploits the sparsity of signals

through optimization methods to reconstruct the original signal from far fewer samples

than the imposed rate by the sampling theorem. In other words—since the majority of

signals are either self-sparse in their original domain or have a sparse representation in

some transform domain—compressive sensing performs both sensing and size reduction

tasks simultaneously and samples the signal at a rate much below the Nyquist sampling

rate [74, 127].

6.1.1 Problem Definition and Related Works

In traditional signal processing approaches, sensing is much more complicated than

the recovery of the original signals. In compressive sensing, however, the encoding process

is simple and the signal reconstruction is NP-hard [128, 127]. For a given measurement
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vector y ∈ Rm and a design matrix A ∈ Rm×N with m � N , the original problem of

compressive sensing aims to recover a sparse signal x ∈ RN such that

y = Ax. (6.2)

Equation (6.2) represents an underdetermined system which can have infinite solutions

and compressive sensing guarantees the uniqueness of sparse solutions under different

conditions [74].

Let ‖x‖0 stands for the sparsity level of x, i.e., the number of nonzero entries of x,

the ultimate goal of compressive sensing is to solve the following problem:

min
x
‖x‖0 subject to y = Ax, (6.3)

where we exploit the sparsity of x through `0-minimization to reconstruct the original

signal from far fewer samples than required by the sampling theorem [74, 127]. Problem

(6.3)—i.e., the original problem of compressive sensing—is NP-hard [128, 15] due to its

combinatorial nature in selecting the best support set and consequently, it is not tractable

and must be handled indirectly in the realm of classical computing. Greedy algorithms

like orthogonal matching pursuit (OMP) can address the `0-minimization under some

restrictive constraints [74, 127]. In many real-world applications, however, greedy algo-

rithms suffer in recovering signals with high-enough accuracy [67]. From an application

viewpoint, compressive sensing started to revolutionize real-world applications through

convexifying the problem (6.3). Because `p-norm approximates `0-norm as nonnegative p

goes down to zero, the standard approach to tackle this (intractable) problem is exploiting
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the following `p-norm problem:

min
x
‖x‖p subject to y = Ax. (6.4)

and then investigating that under what conditions and for which p’s problems (6.3) and

(6.4) appoint an identical solution. We generally apply additional stringent constraints

on the design matrix to certify this possibility using tools such as restricted isometry

constants or null and range space properties [19].

For p > 1, the unique solution of this strictly convex problem is generically full-

support, i.e., each of its components is non-zero [168]. When p = 1, we can reduce

problem (6.4) to a linear program, and sufficient conditions are available to guarantee

the uniqueness of the optimal solution [126]. But this convex program and the original

nonconvex `0-norm problem appoint an identical and unique sparse solution under appro-

priate circumstances [74]. For instance, the mutual coherence of the measurement matrix

A is defined below:

µ(A) = max
i 6=j

|〈Ai, Aj〉|
‖Ai‖2‖Aj‖2

.

This simply seeks the largest correlation between two different columns and provides a

sufficient condition for the equivalence of the `0 and `1 problems. More specifically, when

‖x‖0 < 0.5

(
1 +

1

µ(A)

)
,

x ∈ RN is an identical and unique solution for both problems (6.3) and (6.4) [66]. This

property provides an improper upper bound because it is only practical when the original

signal is highly sparse.
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The measurement matrix A has the restricted isometry property (RIP) of order s if

there exists δs ∈ (0, 1) that satisfies the following:

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 ∀x; ‖x‖0 ≤ s.

The `0-norm and `1-norm problems appoint the same s-sparse (i.e., x includes at most s

nonzero entries) solution if [122]

δ2s < 0.4931.

The RIP demands each column submatrix AS with card(S) ≤ s to behave like an identity

matrix, precisely, to have singular values in [1 − δs, 1 + δs]. Since this property involves

all the s-tuples of columns of A, it is more rigorous than the mutual coherence (in fact,

δ2 = µ) so that it leads to better upper bounds on the sparsity level of a vector to be

recovered. From the sparsity point of view, the RIP enables the compressive sensing to

recover remarkably less sparse signals, compared to the mutual coherence property [122].

Convex optimization-based methods like basis pursuit (BP), Dantzig selector, and sub-

gradient-based algorithms generally require significantly more computational resources but

they can outperform greedy algorithms and hybrid approaches (e.g., compressive sampling

matching pursuit and stage-wise OMP) in terms of recovery accuracy [74, 127].

Although the choice of p = 1 seems the most interesting as `1 is the closest convex

norm to `0 [152] and convex optimization is extremely well-nourished, the shape of a

unit ball associated with `p-norm for 0 < p < 1 motivates to explore this case as well.

For certain values of such p, we can obtain not only more robust and stable theoretical

guarantees but also much less restrictive conditions than `1-norm recovery [159, 41]. For

instance, a sufficient condition for recovering an s-sparse vector in the noiseless case via
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`0.5 minimization is

δ3s + 27δ4s < 26,

which is notably less restrictive than the analogous result for `1-norm recovery [159] that

requires

δ2s + 2δ3s < 1.

Compressive sensing relies on the sparsity of signals and linearly samples them at a

rate much below the Nyquist sampling rate; however, the majority of signals in real-world

applications are not precisely sparse in their original domain. Since the majority of signals

have an approximately sparse representation in some transformed domain (e.g., wavelet

domain for natural images, Fourier domain for speech signals, Radon domain for medical

images, etc.), we extend `p-norm recovery analysis to the case of compressible vectors that

are practically more valuable [153]. Roughly speaking, a vector x is compressible or nearly

s-sparse in `p-norm if ‖x− xS‖p is small enough, where S is an index set containing its s

largest absolute components. Besides, for handling noisy measurements, it is advantageous

to apply the idea of penalty methods and address this LASSO-type unconstrained problem:

min
x
‖y −Ax‖22 + λ‖x‖0. (6.5)

There is a trade-off situation between feasibility and sparsity in the nature of this problem

that we control it by the penalty parameter λ [71]. Majority of results for recovering s-

sparse signals in compressive sensing literature are based on the RIP constants; specifically

in the form of δs or δks ≤ δ for natural number k > 0 and δ ∈ (0, 1).
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The probabilistic nature in such results for the standard problem of compressive

sensing, as an important special case of compressive sensing with matrix uncertainty

problem, is not favorable because such conditions are not indeed verifiable, due to its

computational complexity [176]. Hence, there is an interest in constructing deterministic

matrices with small RIP constants, but the number of measurements m scales quadrat-

ically in sparsity level s in the ongoing results. A breakthrough in this field took place

when random matrices demonstrated their capability to satisfy such appealing inequalities

with a high probability. As an illustration, for an m×N random matrix, where each entry

is independently drawn according to Gaussian or Bernoulli distributions, we have

δs ≤ δ∗

for

m ≥ Cδ−2s ln

(
eN

s

)

in which C > 0 does not depend on s,m and N [19]. It is worth noting that various

applications, however, impose a measurement matrix that is not necessarily random. As

a result, the recovery process is not guaranteed even with a high probability.

In standard compressive sensing, a major assumption is to have a perfect mea-

surement matrix, although this is not appropriate for many vital practical circumstances

such as the erroneous measurement matrices that emerge in parameter discretization,

telecommunication, source separation, and model mismatch [86, 69]. In other words, a

realistic model not only accounts for the measurement error y but also handles numerical

errors in the measurement matrix A. A well-documented approach to model this issue

is considering an additive perturbation for the measurement matrix and minimizing the
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magnitude of this unknown uncertainty matrix along with the measurement error. There

is extensive literature to investigate the impact of uncertainty assumption on the exist-

ing efficient algorithms in compressive sensing including Basis Pursuit and Compressive

Sampling Matching Pursuit [190, 87, 43].

Compressive sensing with matrix uncertainty, associated to the Bayesian setting

with prior informative, is a more recent approach that aims to reconstruct a sparse or

compressible signal x ∈ RN and finding an uncertainty parameter vector d ∈ Rr from a

noisy measurement vector y ∈ Rm such that

y = A0x +

r∑
i=1

diAix + e, (6.6)

where Ai ∈ Rm×N ; ∀i, and the unknown noise vector e ∼ N (0, I/γ) [142, 119].

6.1.2 Applications

Compressive sensing outperforms traditional data acquisition approaches where: (a)

traditional sensing techniques are very time-consuming like magnetic resonance imaging

(MRI) and functional MRI (FMRI); (b) energy efficiency is vital, for example, wireless

sensor networks (WSN) and wireless body sensor nodes (WBSN); (c) sensing is too expen-

sive, namely high-speed analog-to-digital converters (ADCs); and (d) we have to utilize

few sensors such as non-visible wavelengths [153].

6.1.2.1 Compressive Imaging

Traditional digital imaging (or digital image acquisition) techniques try to increase

the quality of their visual representation of the objects through the increase in the number

of measurements. For example, digital cameras utilize millions of pixels to provide a
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high-quality representation of natural images. Compressive imaging is a novel trend in

technology that employs compressive sensing techniques to reconstruct high-quality images

from significantly fewer samples or measurements [153].

Among all proposed architectures, a single-pixel camera (a.k.a. one-pixel camera)

has gained remarkable attention regarding the use of compressive sensing for image ac-

quisition applications [153, 74]. In contrast to digital cameras that record millions of

pixels simultaneously, the single-pixel camera produces digital images through recording

only a few thousands of (single) pixels sequentially [63]. Current single-pixel camera pro-

totypes take notably more time for acquiring an image (e.g., approximately 15 minutes

for a one-shot ) and the resulting images have a lower resolution compared to available

mega-pixel digital cameras. However: (a) single-pixel cameras require much less informa-

tion to reconstruct an image; (b) the technology can make simpler, smaller, and cheaper

digital cameras; and (c) single-pixel cameras can operate across a broader spectral range,

compared to silicon-based digital cameras [63, 153].

Compressive sensing has also demonstrated outstanding performance in various

radar imaging applications—including, but not limited to, synthetic aperture radar (SAR),

inverse synthetic aperture radar (ISAR), through the wall imaging radar (TWR) and

ground-penetrating radar imaging (GPR). Compressive sensing results in significantly

higher-resolution radar images through much fewer measurements. It also offers advan-

tages like robustness in ISAR imaging, and resistance to countermeasures and interception

in SAR imaging [153]. Similarly, compressive sensing has advanced other imaging domains

ranging from parallel and underwater imaging to microwave and sub-wavelength Imaging

[153].
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6.1.2.2 Compressive Machine Learning

In many real-world machine learning applications, we generally perform size re-

duction techniques (e.g., feature selection and feature extraction methods) for not only

subsiding the complexity of the learning models but also ebbing the impacts of irrelevant

parameters. From a problem representation perspective, for a given machine learning task

(like classification or regression), the original feature space generally consists of limited

relevant factors and many irrelevant (or redundant) parameters [28, 132].

In compressive machine learning, we try to neglect the unnecessary parameters

(without performing additional preprocessing techniques) to take advantage of their spar-

sity structure. In other words, the synergy of simultaneous sampling and size reduction

paradigms in compressive sensing can result in better machine learning models [74]. As an

example, compressive sensing based face recognition techniques have shown to be invariant

to rotations, re-scaling, and translations of the data. In the same manner, compressive

sensing has demonstrated more robust results in speaker recognition applications [153].

In addition, hybridization of compressive sensing and support vector machines (SVM) has

shown to be as effective as (or even better than) the state of the art techniques in deep

learning (namely AlexNet and RESNET) in recognizing handwritten digit images [135].

6.1.2.3 NLP and Speech Processing

Compressive sensing has demonstrated remarkable advancements in speech process-

ing applications—including, but not limited to, speech coding (e.g., exploiting the sparsity

in phonological features), speech enhancement, pattern retrieval in the residual domain,

and capturing sparse feature vectors from voiced and nonvoiced speeches [153].
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In the same way, compressive sensing has started to benefit natural language process-

ing (NLP) applications. As an illustration, compressive sensing has performed remarkable

functionalities in information-preserving and low-dimensional embedding of n-grams for

supervised and unsupervised text mining applications [6, 127]. Similarly, compressive NLP

has shown outstanding functionalities in text classification applications like topic modeling

and document categorization [160].

6.1.2.4 Biomedical Applications

Compressive sensing has demonstrated significant enhancements in biomedical ap-

plications. As an example, traditional MRI techniques perform time-consuming processes

to construct high-enough-resolution images for diagnosis purposes (i.e., several minutes for

one patient). Compressive sensing has revealed that high-quality MRI is doable in much

less time, compared to traditional MRI techniques [111, 112]. Compressive sensing has also

demonstrated outstanding improvements in other biomedical applications—ranging from

processing biological signals like an electrocardiogram (ECG), electroencephalographic

(EEG) and neural signals to genomic sensing, DNA microarrays, the study of proteins

and bacterial composition reconstruction [153].

6.1.2.5 Remote Sensing

In remote sensing, unlike on-site sensing, we acquire the data from remote objects

without making any physical contact. Recently, satellite-based and aircraft-based sensor

technology has revolutionized the field of remote sensing which benefits a vast variety

of applications—including, but not limited to, earth science, geography, ecology, agricul-

ture, forestry, weather and hydrology. In many real-world remote sensing applications,
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we generally have to face the VVVV concerns (volume, variety, velocity, and veracity

of observables). Remote sensing applications are also limited to the bottlenecks in the

communication systems [48, 12].

Recent studies try to employ compressive sensing techniques for subsiding the chal-

lenges in remote sensing via a remarkable reduction of the sampling rate thresholds. As

an instance, compressive sensing based data fusion method has shown to enhance the res-

olution of the Advanced Microwave Sounding Unit (AMSU) images using the data from

a collocated infrared/visible sensor [187]. A recent spatial-temporal data fusion approach

based on Fixed Rank Kalman Filtering and Fixed Ranked Smoothing [48] has been used

for a very large global remote sensing data set, namely, GOSAT and AIRS tropospheric

CO2 [134].

6.1.2.6 Other Applications

Recent studies have revealed that compressive sensing can benefit a vast variety of

applications ranging from communication systems, video processing, manifold processing

to micro/nano-electronics and VLSI [74, 153].

6.2 Why Quantum Compressive Sensing?

All `p−norm sparse recovery methods, for p ∈ (0, 1], assume that both `0 and `p

problems—shown in Eq. (6.3) and (6.4), respectively—appoint an identical solution, and

RIP is the most commonly used tool to verify it. This is a crucial requirement; nev-

ertheless, we generally neglect it in many applications because randomly GENERATED

DESIGN matrices satisfy the RIP with a very high probability. There are several prob-

lems (like cluster-expansion) that find real-world applications in a vast range of disciplines
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(e.g., material science, quantum chemistry, statistical and quantum mechanics, biophysics,

nuclear physics, etc.), that impose non-random problem-specific coding matrices which do

not necessarily satisfy the RIP. In addition, many relevant physical properties(e.g., ther-

modynamic phase-diagrams) depend on highly accurate low-energy states; thus, we cannot

use greedy methods due to the recovery accuracy concerns [92]. In this section, we of-

fer to directly tackle the ell0-norm problem of sparse recovery in the realm of quantum

computing.

6.3 SAT-based Compressive Sensing

Solving satisfiability instances can require exponentially large computational re-

sources. Worst cases, nevertheless, are less likely to happen in practice and modern SAT

solvers can handle real-world applications with thousands of variables and millions of

clauses. We introduce a novel approach to reduce the original problem of compressive

sensing (i.e., `0-norm recovery), shown in (6.3), to Weighted-MAX-SAT instances. In this

reduction, we assume that sparse signals come from noiseless sources and one needs to

extend our approach for noisy measurements.

6.3.1 Reducing Compressive Sensing to Weighted-MAX-SAT

From a problem-solving perspective, the recovery module in compressive sensing

receives the measurement vector y ∈ Rm and the design matrix A ∈ Rm×N as input, and

recovers a sparse vector x ∈ RN that: (a) x satisfies y = Ax; and (b) x has maximum

number of zeros (i.e., the sparsest solution of y = Ax).

In SAT-based compressive sensing, we first relax the key aspects of the original

problem of compressive sensing—shown in Eq. (6.3)—and define two new problems as
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follows:

f1 := y −Ax = 0, (6.7)

and,

f2 := min
x
‖x‖0. (6.8)

Afterward, we represent f1 and f2 as two separate SAT instances in CNF as follows:

f1
SAT :=

M1∧
i=1

C1
i , (6.9)

and,

f2
SAT :=

M2∧
i=1

C2
i , (6.10)

where M1 and M2 are total number of clauses in f1
SAT and f2

SAT, respectively. Note that

f2
SAT are two different Boolean expressions (in CNF), but over the same variables x.

We then concatenate problems f1
SAT and f2

SAT via the “AND” operator as follows:

fSAT :=

M1∧
i=1

C1
i ∧

M2∧
i=1

C2
i . (6.11)

Since both problems f1
SAT and f2

SAT are in CNF, problem fSAT is also a Boolean formula

in CNF. Also,

∀x,x |= fSAT =⇒ x |= f1
SAT and x |= f2

SAT.

In other words, any x that satisfies problem fSAT will also satisfy problems f1
SAT and f2

SAT.

Finally, we assign weights to all clauses in problem fSAT and form a Weighted-MAX-

SAT problem as follows:

fCS :=

M1∧
i=1

w1C1
i ∧

M2∧
i=1

w2
iC

2
i , (6.12)
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where w1 and w2 denote the corresponding weights for clauses in problems f1
SAT and f2

SAT,

respectively.

Theorem 6.3.1. Assuming that, under appropriate conditions, the sparsest solution for

y = Ax is unique,

w1 >

M2∑
i=1

w2
i , (6.13)

is sufficient to guarantee that the optimum solution of the Weighted-MAX-SAT instance

(fCS)—shown in problem (6.12)—is identical to the sparsest solution of the given original

problem of compressive sensing—shown in problem (6.3).

Proof. Let X = {x1,x2, . . . } be the set of all solutions for y = Ax—regardless of the

sparsity rate of solutions—and x∗ ∈ X denotes the sparsest solution of the given problem of

compressive sensing. The case X = ∅ is not a feasible scenario because compressive sensing

(under some conditions) guarantees the existence and uniqueness of a sparse solution.

Let κ(fCS; x) specifies the total penalty of unsatisfied clauses when we use x as a

model for the Weighted-MAX-SAT instance fCS. We can represent the global optimum of

fCS as:

x̃∗ = arg min
x

κ(fCS; x),

which implies that x̃∗ |= f1
SAT–assuming that the given problem of compressive sensing

has a (sparse) solution—and x̃∗ can satisfy maximum possible clauses of f2
SAT. We aim to

show that x̃∗ = x∗.

The case x̃∗ /∈ X implies that x̃∗ is not a solution for y = Ax; therefore,

x̃∗ 6|= f1
SAT.
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In other words, x̃∗ cannot satisfy at least one of the clauses of f1
SAT. According to Eq.

(6.13), the penalty of not satisfying any of the clauses in problem f1
SAT is greater than the

summation of penalties in problem f2
SAT. Since X 6= {}:

∃x̂ ∈ X, x̂ |= f1
SAT,

which is a contradiction because it falsifies that x̃∗ is the global optimum of the Weighted-

MAX-SAT instance fCS because:

κ(fCS; x̂) < κ(fCS; x̃∗).

The case x̃∗ ∈ X and x̃∗ 6= x∗ implies that:

∃x̂, x̂ |= f1
SAT,

and,

κ(fCS; x̂) < κ(fCS; x̃∗).

Considering the fact that the sparsest solution of the given problem of compressive sensing

is unique, we will have:

x̂ 6= x̃∗,

which is again a contradiction to the initial assumption that x̃∗ is the global optimum of

the Weighted-MAX-SAT instance fCS.

It is crucial to highlight that we do not solve f1 and f2 independently. Indeed, we

solve (6.12) which is the SAT-based representation of the original problem of compressive
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sensing. In this formulation, f1 defines the feasible domain for f2, and f2 exploits the

feasible space to minimize the ‖x‖0.

6.3.2 Proof-of-Concept

Restricting the vector x in the problem (6.3) to take its values from {0, 1} leads

to an NP-hard discrete optimization problem –called binary compressive sensing (BCS)

[129, 106, 103]. From an application point of view, not only binary signal sources have

real-world applications (e.g., event detection in wireless sensor networks, group testing,

spectrum hole detection for cognitive radios, etc.), but we also can leverage it to other

types of signals [129]. In this section, as a proof of concept, we show: (a) how one can

use the proposed reduction method and map the original problem of binary compressive

sensing to Weighted-MAX-SAT; (b) how to address the resulting Weighted-MAX-SAT

instances—which are NP-hard, and (c) how to extend the demonstrated mapping to non-

binary signals.

While most of the studies in compressive sensing focus on random design matri-

ces with Gaussian distribution, solid theoretical and experimental results are available to

guarantee that we can also exactly recover sparse (or compressible) signals from random

binary matrices (i.e., with Bernoulli distribution) with a very high probability [189]. In

the realm of binary compressive sensing, nevertheless, binary coding matrices have demon-

strated remarkably lower performance compared to non-binary design matrices [129, 106].

As an example, sparse random design matrices with Bernoulli distribution can only re-

cover highly sparse binary signals—i.e., s/N < 0.1 [129]. Several studies, therefore, have

focused on generating non-binary design matrices to remediate the performance and qual-

ity of binary compressive sensing techniques [129]. Hence, without losing the generality
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of the proposed SAT-based compressive sensing (i.e., one can use it for non-binary coding

matrices), we focus on the most challenging arrangement where both x and A are binary.

For a given measurement vector y ∈ Nm and a coding matrix A ∈ {0, 1}m×N

(where m � N), the objective in SAT-based binary compressive sensing is to construct

a Weighted-MAX-SAT instance, shown in Eq. (6.12), over the binary vector x ∈ {0, 1}N

and guarantee that both problems (6.3) and (6.12) appoint an identical solution.

We start with defining f1, shown in Eq. (6.7) that tries to only solve y = Ax.

Because both A and x take their values from {0, 1}, calculating 〈Ai.,x〉—i.e., the inner

product of x and the ith row of A—is equivalent to finding the Hamming weight (or

population count) of {Ai1x1, Ai2x2, . . . , AiNxN}, as follows:

ui = 〈Ai.,x〉 =
N∑
j=1

Aijxj .

Hence, we can represent problem f1 as:

yi = ui, ∀i ∈ [1,m].

Since both y and u take their values from {0, 1, . . . , N}, we can represent them in

binary basis as ŷ ∈ {0, 1}m(blog2Nc+1), and û ∈ {0, 1}m(blog2Nc+1), respectively. Afterward,

we can use the “XNOR” Boolean logic operator for representing the f1, in binary basis,

as follows:

f1 :=

m(blog2Nc+1)∧
i=1

¬ (ŷi ⊕ ûi)

Finally, we represent f1 in CNF and form f1
SAT, shown in (6.9). For the given mea-

surement vector y, we can convert the basis and form the binary vector ŷ. To construct the
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Figure 6.1: Logic circuit of a Hamming weight module for an 8-bit binary input.

binary vector û, we can employ the gate model of “half-adder” and “full-adder” modules

in a tree-based structure and build a digital circuit for the problem of Hamming weight.

Figure 6.1 illustrates an eight-bit Hamming weight module that generates the result of

〈Ai.,x〉. In this tree-based structure, the Hamming weight module requires O (log2 pBN)

full-adders where pB denotes the Bernoulli distribution parameter—i.e., pB and 1 − pB

denote the probability of generating “1” and “0”, respectively. Hence, the encoding pro-

cess can also take advantage of sparse coding matrices which generally results in smaller

Boolean expressions. Figure 6.2 illustrates a prototype circuit for constructing the Boolean

expression for representing f1 when N = 8 and m = 4.

We know that the global minimum of ‖x‖0 appears at the zero vector x = 0.

Therefore, we can represent f2, in CNF, as follows:

f2 :=

N∧
i=1

¬xi,

and, form fCS, shoen in Eq. (6.12).
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Figure 6.2: Logic circuit of f1, y = Ax, for binary signal of size 8, x ∈ {0, 1}8, and 4× 8
binary design matrix, A ∈ {0, 1}4×8, where HWB represents the module of Hamming
weight in binary basis.

Satisfying (6.13) guarantees that the original problem of compressive sensing and

the resulting Weighted-MAX-SAT appoint an identical solution. Because x is a binary

vector, Eq. (6.13) reduces to:

w1 > Nw2.

Note that the proposed reduction is applicable for non-binary signals. As an exam-

ple, when x ∈ {0, 1, 2, 3}N , we need two binary digits for representing each component of

the signal x in binary basis. Correspondingly, Eq. (6.13) reduces to:

w1 > 2Nw2.

For real-valued signals (i.e., x ∈ RN ), we can adopt binary representation of floating-

points, which are generally available in logic synthesis tools like Z3 [51].
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6.3.3 Results

For implementing the proposed symbolic SAT-based compressive sensing, we used

Z3, a theorem prover by Microsoft Research [51]. Since f1 is an arbitrary Boolean

formula, we applied the Tseitin transformation [104] to represent f1 in CNF and form

f1
SAT. Note that applying the Tseitin transformation can increase the size of f1

SAT linearly,

due to defining auxiliary variables. We also applied pre-processing techniques—namely

propagate-values, ctx-solver-simplify, recover-01, reduce-args and pb-preprocess tactics

from Z3 [52]—to improve the performance of the symbolic computations.

To satisfy/optimize the ultimate Weighted-MAX-SAT instances, we used the core-

guided solver with compressed MAX-SAT resolution [131], implemented in Z3—which

is not guaranteed to find the global optimum. It is important to emphasize that our

objective in this study is not to demonstrate the supremacy of SAT-based compressive

sensing over the convex optimization techniques in sparse recovery. Indeed, we aim to

show the possibility and impact of addressing the original problem of compressive sensing

(i.e., `0-norm sparse recovery)—rather than solving ill-posed cases. In these experiments,

we used the bounded `1-norm recovery method [103] for our comparisons because having

any prior knowledge about the original signal can enhance the recovery.

In our first experiment, we measured the oversampling factor, m
s logN/s , for different

sparsity rates, s
N ∈ [0.05, 0.5]. To this end, for a fixed signal size (here, N = 30) and a

specific sparsity rate, we generated 10 independent random examples. Since the sparsity

rate of all instances is fixed, for every instance, we randomly selected the position of

non-zero entries. For each test instance, we generated the coding matrix randomly with

Bernoulli distribution—pB = 0.5—where pB denotes the probability of generating “1”
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and 1−pB represents the probability of generating “0”, respectively. After generating the

signal randomly (with the specified sparsity rate), we constructed the measurement vector

through y = Ax. For each method, i.e., SAT-based compressive sensing and bounded

`1-norm sparse recovery, the objective in this experiment was to find an appropriate m

such that we can exactly recover all 10 randomly generated test instances. In other

words, instead of measuring the average recovery error, we adjust the number of required

measurements to recover all elements of x correctly.

Figure 6.3 illustrates the results of this experiment, which reveals the supremacy

of the proposed SAT-based compressive sensing over the bounded-`1-norm recovery. For

highly sparse signals (s/N ≈ 0.1), the bounded-`1-norm recovery needs on average 8.3%

more measurements than the SAT-based compressive sensing. Figure 6.3 also shows

that the SAT-based compressive sensing is less sensitive to the sparsity rate. More pre-

cisely, when the sparsity rate increases, the distance between the oversampling factors of

bounded-`1-norm recovery and SAT-based compressive sensing increases. As an example,

for s/N = 0.5, the SAT-based compressive sensing can exactly recover the signals with

22.2% fewer measurements, compared to the bounded `0-norm method.

In the second experiment, we keep the sparsity rate fixed and measure the average

recovery error for different compression rates, m
N ∈ [0.1, 1]. For each specific compression

rate, we generated 10 random test instances, for different signal sizes N ∈ [20, 30], and

measured the average recovery error over all test instances. Since x ∈ {0, 1}, we divided

the Hamming distance between the recovered and original signals by N for representing

the error for each recovery. Figure 6.4 illustrates the experiment results for pB = 0.5,

where pB denotes the probability of generating “1” in Bernoulli distribution, and s
N = 0.5.

Similarly, Figure 6.5 shows the experiment results for pB = 0.3 and s
N = 0.3. Not only
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Figure 6.3: Performance comparison between SAT-based and bounded-`1-minimization
recovery based on optimum oversampling factor (m/s logN/s) for different sparsity rate
(s/N ∈ (0, 0.5]).

the SAT-based compressive sensing provides higher performance, but it also demonstrates

more robust functionality.

6.4 Quantum Annealing based Binary Compressive Sensing

We introduce quantum annealing based binary compressive sensing (QABCS) that

directly addresses the `0-norm problem of binary compressive sensing to reconstruct a

binary sparse or compressible signal (x ∈ {0, 1}N ) from a small number of linear measure-

ments. To this end, we reformulate Eq. (6.5) for sparse binary signals as follows:

min
x∈{0,1}N

‖y −Ax‖22 + λ‖x‖0, (6.14)

From an adiabatic quantum computing viewpoint, for a given measurement vector y ∈ Rm

and a coding matrix A ∈ Rm×N , we aim to define a QUBO form of an executable QMI,

shown in (2.5), whoes ground state represents the sparsest solution of (6.14).
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Figure 6.5: Recovery performance comparison for pB = 0.3 and s/N = 0.3.
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Hence, we need to rewrite

f(x) := −2yTAx + xTATAx + λ‖x‖0

in the QUBO form, that is,

f(x) =
∑
i

Qiixi +
∑
i<j

Qijxixj .

We start with the simple quadratic function of xTBx for a square symmetric matrix B.

First, note that

xTBx =
∑
i

xi(Bx)i =
∑
i

xi

∑
j

Bijxj


=
∑
i,j

Bijxixj

=
∑
i

Biix
2
i +

∑
i<j

Bijxixj +
∑
i>j

Bjixixj

=
∑
i

Biix
2
i +

∑
i<j

2Bijxixj .

When xi ∈ {0, 1}, we have

xTBx =
∑
i

Biixi +
∑
i<j

2Bijxixj .

Thus, for binary x, we see that:

f(x) = −2yTAx + xTATAx + λ
∑
i

xi

=
∑
i

(∑
l

−2ylAli + λ

)
xi + xTATAx
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=
∑
i

(∑
l

−2ylAli + λ

)
xi +

∑
i

Biixi +
∑
i<j

2Bijxixj (whereB = ATA)

=
∑
i

(∑
l

−2ylAli + λ

)
xi +

∑
i

(∑
l

AliAli

)
xi +

∑
i<j

(
2
∑
t

AtiAtj

)
xixj

=
∑
i

(∑
l

−2ylAli + λ+
∑
l

AliAli

)
xi +

∑
i<j

(
2
∑
t

AtiAtj

)
xixj

=
∑
i

(
λ+

∑
l

Ali (−2yl +Ali)

)
xi +

∑
i<j

(
2
∑
t

AtiAtj

)
xixj .

The above implies that

‖y −Ax‖22 + λ‖x‖0 − ‖y‖22 =
∑
i

Qiixi +
∑
i<j

Qijxixj ;

for the following coefficients:

Qii = λ+
∑
l

Ali (−2yl +Ali); (6.15)

Qij = 2
∑
l

AliAlj . (6.16)

6.4.1 Results

In this section, we aim to evaluate the performance and applicability of the proposed

quantum annealing based binary compressive sensing (QABCS) method in the recovery

of sparse binary signals on a D-Wave quantum processor.

6.4.1.1 Generating Benchmark Problems

The current generation of the D-Wave quantum annealers (namely the D-Wave

2000Q QPUs) includes more than 2,000 qubits. Due to the sparse connectivity of qubits,

however, they are limited to cliques of size at most 63. Hence, in this study, for all
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randomly generated sparse binary signals (a.k.a. benchmark problems) N = 60. It is

worth noting that for all benchmark problems in this experiment, we generated random

coding matrices whose entries follow the standard normal distribution—i.e., average and

standard deviation are 0 and 1, respectively. To avoid the impact of embedding (i.e.,

chaining multiple physical qubits for representing virtual qubits with higher connectivity)

in our evaluations, for all test instances, we used a fixed embedding of a clique of size

60 on the current working graph of the D-Wave QPU. In the same manner, we set the

chaining-strength of all problem embeddings to 1.5.

To guarantee the uniqueness of the sparse solution (with a high probability)—considering

that N = 60—we also fixed the sparsity of randomly generated problems to s = 5. Ac-

cordingly, we generated three sets of benchmark problems with m = 30, 40 and 50. Several

studies have demonstrated that the performance of sparse recovery is highly sensitive to

the penalty parameter λ. Calibrating this penalty parameter is nontrivial and can become

even intractable [192, 38, 25]. In addition, the optimum value of λ can be different for

every randomly generated coding matrix A.

We first generated a few random (normal) coding matrices with N = 60 columns and

m = 30, 40 and 50 rows. For every randomly generated matrix, we generated a 5-sparse

random binary signal, denoted by x, and calculated the measurement vector as

y = Ax.

Afterward, we applied Eq. (6.15) and (6.16) to represent the resulting problem of binary

compressive sensing in a QUBO form. We used a D-Wave 2000Q quantum annealer to

recover x from y and empirically found λ = 16.5 to be optimum.
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After fixing the penalty parameter, λ = 16.5, for m = 30, 40 and 50 we repeatedly

generated random problems (i.e., random coding matrix with normal distribution and a

corresponding 5-sparse binary signal) until we find 10 problems whose recovery error is

zero. Finally, for every coding matrix, we generated 10 random 5-sparse binary signals

and calculated their corresponding measurement vectors. Hence, our benchmark problems

include 100 random problems for m = 30, 40 and 50, 300 benchmark problems in total.

6.4.1.2 Performance Analysis of QABCS

In this section, we apply the proposed quantum annealing based binary compressive

sensing method (QABCS) on benchmark problems, described in 6.4.1.1. In this experi-

ment, we requested for 1,000 samples/reads for all QMIs. After retrieving raw samples

from a D-Wave QPU, we performed the majority voting scheme for remediating broken

chains. We also applied SQC, shown in algorithm 3.1.1, on all samples and used the best

sample (sample with lowest energy value) as the recovered binary signal, denoted by x̃.

For every recovery, we used

e =
‖x− x̃‖22

N
(6.17)

to measure the recovery error. Figure 6.6 illustrates the minimum, maximum, average

and variance of recovery errors of applying QABCS on benchmark problems with different

penalty parameters. In the same manner, Fig. 6.7 displays the minimum, maximum,

average and variance of the sparsity of the recovered signals through employing QABCS

on a D-Wave 2000Q quantum annealer. Figure 6.8 shows the number of perfect recoveries

(in percent) for m = 30, 40 and 50. Similarly, Fig. 6.9 demonstrates the number of times

(in percent) than QABCS was able to exactly recover 5-sparse signals, regardless of the

recovery error.
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Figure 6.6: Recovery error of QABCS for 5-sparse binary signals of size 60 with a D-Wave
2000Q quantum processor.
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Figure 6.7: Sparsity rate of QABCS in recovery of 5-sparse binary signals of size 60 on a
D-Wave 2000Q quantum processor.

6.5 Ensemble QA-based Binary Compressive Sensing

Although quantum annealers can draw samples from the ground state(s) of the

given Ising Hamiltonians in near-constant time, the current generation of the quantum

annealers have limitations that not only restrict the process of mapping problems into an

executable quantum machine instruction but also lower the quality of results—including,

106



0

20

40

60

80

100

12 14 16 18 20
Ex

ac
t R

ec
ov

er
ie

s (
%

)
λ

m=50

m=40

m=30

Figure 6.8: Exact recovery of 5-sparse binary signals of size N = 60 using QABCS on a
D-Wave 2000Q quantum annealer.

0

20

40

60

80

100

12 14 16 18 20

5 
Sp

ar
s R

ec
ov

er
ie

s (
%

)

λ

m=50

m=40

m=30

Figure 6.9: Exact 5-sparse recoveries using QABCS with a D-Wave 2000Q quantum an-
nealer for N = 60.

but not limited to, sparse connectivity of the qubits, noise, decoherence and coefficients’

range/precision limitations [10, 16].

In addition, one needs to find a proper value of the penalty parameter λ prior to

applying Eq. (6.15) and (6.16) for mapping the given BCS problem to a corresponding

quantum machine instruction, executable by the quantum annealers. In practice, calibrat-

ing this penalty parameter is challenging, and can become even intractable [192, 38, 25].

In fact, λ specifies the amount of shrinkage in Eq. (6.14). When λ → 0 the number

of eliminated parameters approaches zero (here, ‖x‖0 → N). On the other side, when

λ→ +∞, more parameters are eliminated (here, ‖x‖0 → 0).
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In this study, instead of emphasizing on finding the optimum value for λ, which

can be impractical in many real-world applications, we relax the mapping process to take

multiple penalty parameters that are not necessarily optimum. Let

Λ = {λ1, λ2, . . . , }

be the set of different penalty parameters that we use for a given problem, and let

H = {Hi, H2, . . . }

denotes the corresponding Ising Hamiltonians that we obtain from applying Eq. (6.15)

and (6.16).

Since we assume that the sparsest solution of the given BCS problem is unique,

when |H| → +∞, we can expect that the majority of the ground states be identical

to the sparsest solution of the original problem of interest. Hence, after executing all

(different) corresponding quantum machine instructions for a given problem, we aggregate

the resulting samples and look at each element of samples as a binary random variable

that follows the Bernoulli distribution. In this study, we perform a majority voting scheme

for estimating the parameters of the corresponding Bernoulli distributions, while more

advanced parameter estimation techniques can lead to better recovery approaches.

6.5.1 Results

In this section, we aim to evaluate the performance of the proposed ensemble quan-

tum annealing based binary compressive sensing (EQABCS) in the recovery of benchmark

5-sparse binary signals, described in 6.4.1.1. For Λ = {12, 16, 20}, Fig. 6.10 illustrates
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the recovery errors of EQABCS and compares it with the performance of QABCS for

different penalty parameters. In the same manner, Fig. 6.11 presents the sparsity of re-

covered signals via EQABCS and compares them to the sparsity of the recovered signals,

attained by QABCS. It is worth noting that all settings in this experiment (e.g., number

of samples/reads, embeddings and chaining-strength) were identical to the arrangements

in 6.4.1.

0

0.02

0.04

0.06

0.08

0.1

0.12

m=30 m=40 m=50

R
ec

ov
er

y 
Er

rr
o

max min

λ
=

12

λ
=

14

λ
=

16

λ
=

18

λ
=

20

Λ
=

{1
2,

16
,2

0}

λ
=

12

λ
=

14

λ
=

16

λ
=

18

λ
=

20

Λ
=

{1
2,

16
,2

0}

λ
=

12

λ
=

14

λ
=

16

λ
=

18

λ
=

20

Λ
=

{1
2,

16
,2

0}

Figure 6.10: Recovery error of ensemble QABCS for 5-sparse binary signals of size 60 with
a D-Wave 2000Q quantum processor.

6.6 QA-based Binary Compressive Sensing with Matrix Uncertainty

The objective in binary compressive sensing with matrix uncertainty is reconstruct-

ing a sparse binary signal x ∈ {0, 1}N and finding an uncertainty parameter vector d ∈ Rr

from a noisy measurement vector y ∈ Rm such that

y = A(d)x + e
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Figure 6.11: Sparsity rate of ensemble QABCS in recovery of 5-sparse binary signals of
size 60 on a D-Wave 2000Q quantum processor.

where

A(d) = A0 +
r∑
i=1

diAi

and Ai ∈ Rm×N ;∀i, and the unknown noise vectore ∼ N (0, I/γ). To address the `0-norm

problem of binary compressive sensing with matrix uncertainty using quantum annealers,

we extend Eq. (6.14) to

min
x∈{0,1}N ,d

∥∥∥∥∥
(
A0 +

r∑
i=1

diAi

)
x− y

∥∥∥∥∥
2

2

+
‖d‖22
γ

+ λ‖x‖0, (6.18)

where λ and γ are positive constants.

This problem entirely inherits favorable properties desired in the compressive sensing

with matrix uncertainty by penalizing large sparsity and handling noise in the measure-

ment matrix and vector. In other words, for a given noisy measurement vector y, we can

adjust the penalty parameter λ to control the sparsity level of the resulting solution. The

larger is this parameter; the smaller the sparsity level is desired so that we can adapt it

110



for specific applications. However, this problem is NP-hard and thus it is not tractable in

the realm of classical computing. Here, we leverage the results from the previous section

through an alternating minimization scheme to propose a well-posed approach for solving

the problem of binary compressive sensing with matrix uncertainty that is tractable by

quantum annealers.

Similar to the `0-norm problem of compressive sensing, we start with the QUBO rep-

resentation of the problem and compile it to an executable quantum machine instruction.

To see this, let d be fixed and define

A := A0 +

r∑
i=1

diAi,

then the first task is finding the QUBO form of:

fd(x) : =

∥∥∥∥∥
(
A0 +

r∑
i=1

diAi

)
x− y

∥∥∥∥∥
2

2

+ λ‖x‖0

= ‖Ax− y‖22 + λ‖x‖0.

Since xi ∈ {0, 1}, for a fixed uncertainty parameter d, we can use (6.15) and (6.16)

to rewrite the problem (6.18) as

fd(x)− ‖y‖22 =
N∑
i=1

Qiixi +
∑
i<j

Qijxixj .

Next, we assume that x is fixed so that the objective function which needs to be minimized

is the following:

gx(d) := ‖(A0 +

r∑
i=1

diAi)x− y‖22 +
‖d‖22
γ

.
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By letting

G := [A1xA2x . . . Arx]

and

c := y −A0x,

we have

gx(d) = ‖Gd− c‖22 + ‖d‖22/γ

so that the closed form solution of

min
d
gx(d)

can be written as

d∗ =
(
GTG+ I/γ

)−1
Gc. (6.19)

Algorithm 6.6.1 incorporates the above information and illustrates our proposed

well-posed solution for tackling the problem of binary compressive sensing with matrix

uncertainty. First, we start our algorithm with initializing the elements of the uncertainty

parameter d as zero vector and then use an iterative process in which we alternatively

update the vectors x and d. Once the vector d is fixed, we use the (6.15) and (6.16) to

rewrite the resulting problem as a QUBO form and then employ the D-Wave quantum

annealer to find the ground state of the resulting QUBO. After updating the vectorx, we

assume that it is fixed and use the (6.19) to find the new uncertainty parameter d. We

repeat the iterations until a termination criterion is met.
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Algorithm 6.6.1: Alternating minimization scheme for quantum annealing
based binary compressive sensing with matrix uncertainty.

Input: A0, A1, . . . , Ar,y, λ > 0, γ > 0 and ε > 0
Output: sparse vector x and uncertainty parameter d

1 d← 0
2 while ‖(A0 +

∑r
i=1 diAi)x− y‖2 > ε do

3 x← arg minx∈{0,1}N fd(x)

4 d← d∗ as given in (6.19);

5 end
6 return x,d

6.7 Discussion

Sparse recovery tries to infer high-dimensional sparse or compressible objects in-

cluding vectors, matrices and high-order tensors from very limited observations. From a

problem-solving point of view, sparse recovery has to deal with not only `0-norm problem

but also large-scale matrices that generally have remarkably more columns. In other words,

we must deal with combinatorial problems that have large dimensions. The standard tech-

nique to address the `0 problem is to replace it by `1 and solve the new (possibly) convex

problem. In compressive sensing, we are interested in matrices for which these problems

attain an identical solution. These conditions are mostly NP-hard to verify, and also may

not hold in some applications. Further, the size of the new approximation problem is

prohibitive even if efficient interior-point methods are applied.

In this chapter, we showed how to reduce the original problem of compressive sensing

(i.e., ell0-norm sparse recovery) to the Weighted-MAX-SAT. The only required assump-

tion here is to have a unique solution for the original problem of compressive sensing,

which is much looser than those of relaxations or greedy methods. As a proof of concept,

we demonstrated the applicability of our method in tackling the original problem of binary

compressive sensing with binary design matrices. Experimental results revealed that the
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proposed SAT-based compressive sensing outperforms the bounded-`1-norm-based recov-

ery in terms of not only the oversampling factor but also average recovery error. Also,

experimental results demonstrated that the proposed SAT-based compressive sensing is

less sensitive to the sparsity rate. More precisely, when the sparsity rate increases, the

distance between the oversampling factors also increases.

To implement the symbolic computations, we used the Z3 framework, which is a

theorem prover by Microsoft Research. Symbolic computing generally requires more com-

putational resources, so we need to utilize high-performance computing for large-scale

SAT-based problem-solving. The current release of Z3, however, does not support dis-

tributed computing for MAX-SAT. Thus, we performed experiments with remarkably

small signals. Although the proposed SAT-based compressive sensing was able to outper-

form the bounded-`1-norm recovery technique, it requires more computational resources.

Hence, in practice, SAT-based compressive sensing is a proper choice where the lower

compression rate (m/N.) is crucial.

It is worth highlighting that the employed heuristic for solving Weighted-MAX-

SAT instances in this study is not guaranteed to find the global optimum. Hence, we can

expect that SAT-based compressive sensing to demonstrate better performance when we

apply more advanced optimization techniques. Furthermore, different quantum computing

models—namely the gate (or circuit) model, adiabatic quantum computing and quantum

annealers—have demonstrated a notable potential to address SAT and its extensions.

Thus, this study can also bridge the gap between compressive sensing and quantum com-

puting. Our method bridges the gap between the trends in advancing the SAT solvers and

a broad range of compressive sensing based real-world applications. In standard compres-

sive sensing, we assume that the measurements come from noiseless sources, and we also
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have perfect knowledge about the coding matrix. In practice, however, such assumptions

are not valid. As future work, we are extending the proposed SAT-based compressive

sensing to handle the noisy measurements. Besides, we are leveraging the proposed model

for tackling the problem of compressive sensing with matrix uncertainty, which is a more

general problem that handles the case where we only can approximate the design matrices.

This chapter also introduces quantum annealing based binary compressive sensing

(QABCS) that reduces the LASSO representation of the `0-norm problem of binary com-

pressive sensing to a QUBO form. Unlike SAT-based compressive sensing that assumes

measurements come from noiseless sources, QABCS can handle the noise in linear mea-

surements. On the other side, QABCS is limited to only binary signals.

In QABCS, the performance of the sparse recovery is highly sensitive to the penalty

parameter. Calibrating the penalty parameter is nontrivial—in several cases, it can be-

come intractable. Hence, we introduced the idea of ensemble QABCS (EQABCS) that

leverages the idea of the statistical ensemble to improve the quality of quantum annealing

based binary compressive sensing. Since executing quantum machine instructions on the

quantum annealers can result in an excited state, rather than the ground state of the given

Ising Hamiltonian, we use different penalty parameters to generate multiple distinct Ising

Hamiltonians whose ground state(s) represent a potential solution of the original prob-

lem. We then employ the attained samples from minimizing all corresponding (different)

Ising Hamiltonians to estimate the solution of the original problem of binary compressive

sensing. Our experiments, on a D-Wave 2000Q quantum processor, demonstrated that

the proposed ensemble quantum annealing approach is significantly less sensitive to the

calibration of the penalty parameter λ.
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Finally, we proposed to address the `0-norm problem of binary compressive sensing

with matrix uncertainty where we only have an approximation of the coding matrix.

The proposed method extends the idea of alternating minimization to iteratively find

the optimum values of the sparse binary signal and the uncertainty parameter of the

measurement matrices, albeit executing multiple QMIs for a given problem.
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CHAPTER VII

Conclusions

The era of Moore’s law draws to a close and, therefore, the supercomputing com-

munity is exploring non-Von-Neumann computing architectures for emerging the next

generation of accelerators in post-Moore era. Among the near-term accelerators—namely

neural, quantum and Ising processing units—quantum annealers are potentially capable

of providing the next disruption in post-Moore era, based on favorable aspects from both

IPUs and QPUs. From a problem-solving perspective, not only is the programming quan-

tum annealers nontrivial but are there several technological barriers that lower the quality

of results—i.e., quantum annealing results in excited states rather than the ground state

and results of the physical quantum annealers are not reproducible. In this thesis, we

showed how to leverage different aspects of AI to compile classical algorithms for Ising

processors, and improve the quality and reproducibility of results, attained by the quan-

tum annealers.
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7.1 Post-quantum Error Corrections

Quantum annealers can find very high-quality solutions in near-constant time. How-

ever, owing to some technological barriers of physical quantum annealers (e.g., sparse

connectivity of qubits, coefficients’ range and precision limitations, confined annealing,

noise, decoherence, etc.), they generally fail to find the global optimum. Error correc-

tion methods in quantum computing generally require additional (auxiliary) qubits that

significantly reduces the capacity of quantum computers in solving real-world problems.

Chapter III offers to improve the probability of finding the global optimum without us-

ing extra qubits. We experimentally demonstrated that applying classical postprocessing

techniques, namely SQC and MQC, can outperform recent software and hardware ad-

vances of quantum annealers. We also introduced a post-quantum error correction scheme

for quantum annealers that outperforms the state-of-the-art techniques in the realm of

quantum annealing. Our experimental results revealed that our post-quantum error cor-

rection scheme not only finds samples with lower energy but also requires fewer samples,

compared to the best-known postprocessing techniques of quantum annealers. We also

demonstrated that our proposed techniques can make results of the quantum annealers

reproduceable.

7.1.1 Future Work

In section 3.3 we showed that the performance of MQC depends on not only the

number of input samples but also their order. On this basis, we introduced randomized

MQC (RMQC) that is guaranteed to outperform MQC, under some conditions, albeit

more (classical) computation time. Our experimental results offered that we can reduce the

number of required samples by RMQC, compared to MQC, without losing the performance
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of the post-quantum error correction method. We plan to extend MQC via adopting

selection methods in evolutionary computing—namely the roulette wheel and tournament

selection—to enhance the performance of the post-quantum error correction in terms of

the number of required samples and classical computations.

7.2 First Generation of Compilers for Ising Processing Units

Conventional computing machines (namely classical and gate model quantum com-

puters) have a rich set of machine instructions for emulating (classical or quantum) algo-

rithms. On the other side, quantum annealers are single-instruction computing machines

that can only sample from the ground state of a given Ising Hamiltonian. To solve a

problem on a quantum annealer, therefore, one needs to define coefficients of a quadratic

objective function whose ground state represents a solution of the original problem of

interest.

In chapter IV we introduced a novel (quantum) programming paradigm, called

SAT++, that compiles classical algorithms (implemented in classical programming lan-

guages) to executable quantum machine instructions on D-Wave quantum annealers. Our

model casts classical programs to SAT instances, as an intermediate representation of

problems in SAT++, and represent the resulting SAT instances as minimizing Ising Hamil-

tonians to be compiled to executable QMIs. As a proof-of-concept, we demonstrated the

applicability of SAT++ to address decision problems through quantum annealing.

7.2.1 Future Work

In this study, as a proof-of-concept, we APPLIED SAT++ to address decision prob-

lems on a D-Wave quantum annealer. It is worth emphasizing that SAT++ is not limited
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to decision problems and one can use extensions of SAT to address further problem types.

As an example, MAX-SAT and Weighted-MAX-SAT problems can serve the intermediate

problem representation functionality of optimization problems in SAT++. In the same

manner, #SAT can be used for model counting applications. To this end, we need to

extend the proposed quantum annealing based SAT solver, described in section 4.3.2, to

address extensions of SAT.

Representing SAT instances in CNF, in the worst-case scenario, can be exponen-

tially time-consuming. Thus, we used the Tseitin transformation [104] to represent the

resulting problems in CNF which runs in polynomial-time—albeit defining ancillary vari-

ables. Although applying the Tseitin transformation increases the size of the SAT linearly,

resulting in problems that can quickly exceed the capacity of current quantum annealers.

In the same manner to compilers that apply various code optimization techniques for en-

hancing the performance of the machine code on a specific CPU, employing preprocessing

and postprocessing techniques can reduce the size of SAT instances (intermediate repre-

sentation of problems in SAT++) which will increase the size of problems that SAT++

can address.

It is worth noting that one can adopt SAT++ for other Ising processing units, like

optical parametric oscillators and CMOS annealers. In the realm of gate model quantum

computing, several studies have adopted Grover’s algorithm to propose quantum solutions

for solving SAT (and its extensions). In this sense, we plan to extend SAT++ to gate

model quantum computers. Specifically, we aim to apply SAT++ to compile classical

algorithms for quantum programs, executable on ColdQuanta quantum processors.
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7.3 Factoring Pseudo-Prime Numbers

As a proof-of-concept, in this study, we applied the proposed SAT++ framework

for factoring pseudo-prime numbers that can jeopardize the security of modern public-key

cryptography systems. We were able to successfully factor 12,317 to its prime factors (109

and 113) via applying a multiplication based factoring approach. It is worth noting that

our research objective in this study was not to set a new record for quantum factorized

integers, which for the current generation of the D-Wave quantum annealers is 1,005,973

[146].

7.3.1 Future Work

We aim to extend SAT++ via adding high-performance preprocessing tools that are

available in SAT domain. These techniques have demonstrated to significantly reduce the

size of CNF problems and we plan to set a new record for quantum factorized integers.

7.4 AI Hybrid Architectures for Quantum Annealing

Problem-solving with quantum annealers is a one-way process that starts from defin-

ing an Ising Hamiltonian, whose ground state represents a solution of the problem of inter-

est, and ends with executing the corresponding QMI on a quantum processor, and possibly

some postprocessing. In chapter V, we introduced two AI hybrid quantum annealing ap-

proaches and demonstrated that they can find samples with notably lower energy values.

Reinforcement quantum annealing (RQA) has an iterative scheme in which an agent inter-

acts with a quantum annealer that plays the role of stochastic environment in a learning

automaton. On each iteration of RQA, we take all steps of a traditional quantum anneal-

ing based problem-solving, and we learn from previous iterations to define more efficient
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Ising Hamiltonians. Greedy quantum annealing (GQA) also has an iterative scheme in

which, we define values for some variables and contract them to form a new (smaller)

Ising Hamiltonian. Unlike RQA that the agent solves a fixed problem in all iterations,

GQA shrinks the problem via contracting those variables that the agent is confident about

their values. Our experiment results demonstrated that both RQA and GQA outperforms

best-known techniques in quantum annealing, specifically when problems are clique-like

(i.e., we use longer chains in the embeddings).

7.4.1 Future Work

In this thesis, we proposed AI hybrid quantum annealing schemes and demonstrated

that our models can find samples with notably lower energy values. However, the notion of

the intelligent quantum annealing (or AI/ML-assisted quantum annealing) is not limited

to RQA and GQA. We plan to explore more advanced models in artificial intelligence

and machine learning to not only devise more advanced models but also address larger

problems that are currently out of reach for quantum processors. As an example, we plan

to adopt the idea of adversarial models in machine learning to devise more robust models.

In addition, we aim to involve generative models for extending the idea of conjugating

both sampling and optimization aspects of quantum annealers.

7.5 `0-Norm Sparse recovery

In chapter VI, we offered to directly address the `0-norm problem of compressive

sensing. For noiseless signals, we introduced a novel method for reducing the original prob-

lem of compressive sensing to Weighted-MAX-SAT instances. For noisy measurements,

we showed how to define the QUBO form of the problem of binary compressive sensing.
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We also leveraged the idea of alternating minimization and introduced a novel method

for addressing the problem of binary compressive sensing with matrix uncertainty using

quantum annealers. The only requirement in our methods is the uniqueness of the sparse

(or sparsest) solution that is much loser than conditions for convexifying the problem.

7.5.1 Future Work

For future work, we plan to extend SAT-based compressive sensing method to be

solved on gate model quantum computers. Specifically, we will focus on ColdQuanta

quantum processors for devising our quantum compressive sensing algorithm. Also, we aim

to adopt our RQA model and propose a novel method for recovery of s-sparse signals—i.e.,

we can specify the sparsity level of the original signal.

7.6 Ensemble Quantum Annealing

For a given problem, there exist several distinct Ising Hamiltonians that share the

same ground state, which is identical to a solution of the original problem of interest.

These theoretically equivalent Hamiltonians, nevertheless, have different probabilities of

finding the ground state when we execute their corresponding QMIs on a physical quantum

annealer. This thesis introduced the idea of ensemble quantum annealing in which, we

form and minimize multiple Ising Hamiltonians for a problem and aggregate the resulting

samples to estimate the optimal solution. We experimentally demonstrated that ensemble

quantum annealing can implicitly address the drawbacks of the quantum annealers and

yields better solutions, specifically when the problem formulation is not robust.
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7.6.1 Future Work

For future work, we aim to explore the applicability of learning models (namely

semi-supervised learning techniques) to aggregate the resulting samples from minimizing

different Ising Hamiltonians. We hypothesize that we can boost the performance of en-

semble quantum annealing while we are reducing the number of Ising Hamiltonians of a

problem.
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