

ChargePoint Home security research

Dmitry Sklyar, @d_skljar

Kaspersky Lab Security Services, @kl_secservices

2018

2

Contents
1. Introduction .. 3

2. Research target ... 4

3. Mobile application analysis .. 5

4. Hardware revision .. 8

5. NAND image downloading ... 11

5.1. NAND image structure ... 12

6. Root access ... 14

7. Software analysis ... 15

7.1. HTTPS server .. 16

7.1.1. The uploadsm CGI binary .. 19

7.1.1.1. OS command injection in uploadsm ... 19

7.1.1.2. Arbitrary file write in uploadsm .. 19

7.1.2. The getsrvr CGI binary .. 20

7.1.2.1. Stack buffer overflow in getsrvr... 21

7.1.3. The dwnldlogsm CGI binary .. 21

7.2. cpsrelay analysis .. 21

7.3. sshrevtunnel.sh analysis .. 22

7.4. Bluetooth communications ... 25

7.4.1. Stack buffer overflow in btclassic ... 25

8. Communications with ChargePoint Inc. ... 27

9. Conclusion ... 29

10. References ... 30

3

1. Introduction
Home electric vehicle (EV) charging stations are a relatively new class of electronic
device designed for installation at private locations, such as homes, private parking lots,
etc.

Typically, the hardware and software design of these devices is based on a simplified
version of public charging stations, as they don’t have to deal with charge payments and
advanced power grid management.

As the industry develops, manufacturers are adding new features to home EV charging
stations, such as remote control of the charging process – something that can make
these devices vulnerable to different types of attack.

Due to the comparative novelty of the industry, not much research has been conducted
in this area. We found the paper ‘OCPP Protocol: Security Threats and Challenges’ by
Christina Alcaraz, Javier Lopez and Stephen Wolthusen, and the ‘Ladeinfrastruktur für
Elektroautos: Ausbau statt Sicherheit’ talk by Mathias Dalheimer at the Chaos
Communication Congress 2017.

The OCPP Protocol: Security Threats and Challenges paper is devoted to the basic
properties of one of the industry protocols, but does not include any specific device
research. Mathias Dalheimer’s talk is mostly devoted to security aspects of public
stations, such as security of billing transactions and weaknesses in the RFID card data
storage format.

4

2. Research target
This paper is devoted to research on the ChargePoint Home charging station
(see Figure 1).

Figure 1.ChargePoint Home

The main technical characteristics of this charging station are:

• Supports Wi-Fi and Bluetooth protocols
• J1772 EV socket type
• Two output power levels – 16 Amp and 32 Amp
• Offers remote start, scheduling, reminder, energy tracking and other remote

features through the ChargePoint mobile app

5

3. Mobile application analysis
There is a mobile application available for both iOS and Android platforms, which was
developed for managing the charging process in the ChargePoint ecosystem. This
application is described as having two main functions:

1. Account management for public charging stations.
2. Registration and control of home charging stations.

In the case of station registration, the smartphone with the installed application connects
to the station via Bluetooth, sets the station’s maximum consumable current and binds
the station’s serial number to the application’s user account. After successful
registration the station connects to the remote backend server, which translates the
mobile application’s commands to station proprietary protocol commands and sends
them to the station.

To explore registration data flows in more detail, we used a rooted smartphone with the
hcidump application installed. With this application, we were able to make a traffic dump
of the whole registration process, which can later be analyzed using Wireshark.

The Wireshark view of the dumped commands and responses is shown in Figure 2.

Figure 2. Wireshark view of the HCI dump

6

private void a() {

this.a = new FlashSequence();

if (PermissionUtil.requestCameraPermission(this, true)) {

return;

}

try {

var1_1 = this.a.a();

com.coulombtech/com.cp.ui.activity.homecharger.settings.reset.ResetToF
actoryDefaultsActivity

-n start am

adb -d shell

$ su

$

It turns out that the device supports the following Bluetooth commands:

• Get_version – returns the software version
• Configure – sets maximum charging current and device power supply type

(plug-in or hardwired)
• Get_wifi_networks – returns a list of visible Wi-Fi networks with their signal

strength and security type
• Connect_to_wifi – connects to the selected Wi-Fi network
• Register_with_nos – commands the device to send information about the

smartphone’s coordinates and the mobile application account ID to the remote
backend server

• Shutdown_Bluetooth – disables the Bluetooth service

Further Bluetooth app analysis showed that this is the full list of supported commands.
All commands are send to the device in a JSON packed format.
The application is written in Java, and can be easily decompiled.

During analysis of the application’s activities, we noticed one with the rather intriguing
name ResetToFactoryDefaultsFlashSequenceActivity. This activity’s decompiled
pseudocode is shown on Listing 1.

Listing 1. ResetToFactoryDefaultsFlashSequenceActivity pseudocode

This code requests camera permissions for some reason. We were able to run the
activity independently on a rooted smartphone with the adb shell command
(see Listing 2).

Listing 2. Activity invocation

Running this activity leads to the control screen shown in Figure 3.

7

Figure 3. “Reset to factory defaults” screen

When the “START” button is pressed, the flash of the smartphone’s camera starts
playing a special blinking pattern. There is a small photodiode window located on the
bottom of the device. If the flash is pointed towards that window while playing the
pattern, the device will perform a factory reset after the next reboot. This results in the
Wi-Fi and user account settings being wiped. Our subsequent investigations show that
there is only one pattern that can be recognized by the device, so no additional
commands could be received using the photodiode.

8

4. Hardware revision
After unscrewing and removing the front panel, we found that the device consists of two
separate PCBs (see Figure 4).

Figure 4. ChargePoint Home with the front panel removed

The PCBs are connected to each other with a proprietary connector. For the sake of clarity,
we will refer to the PCB denoted by “1” in Figure 4 as the Power board, and to the PCB
denoted by “2” as the Panda board. The name Panda board is written in silkscreen on the
top side of the second board.

The Power board with its main components is shown in Figure 5.

9

Figure 5. The Power board and its components

The following components are denoted by numbers in Figure 5.

1. MCU TI 6BATG4MSP430 F67691
2. Connection socket
3. Mechanical relay TE T92S7D12-12
4. Debug socket
5. LED and photodiode
6. Power plug terminal strip
7. Vehicle outlet terminal strip

This board is mainly used for controlling current commutation between an electrical
network and a vehicle’s outlet. Photodiode pattern recognition is also performed by this
board. If the pattern is recognized, one dedicated GPIO pin in the connection socket will be
turned on. This is how a factory reset is triggered. We didn’t spend much time on this board
during the research, so it may be a subject for further investigations.

The Power board is based on an MCU developed by Texas Instruments, which has the
MSP430 architecture. This architecture is mainly used for electricity management and
control applications and has open documentation, i.e., all specifications are available on the
Texas Instruments website.

The Panda board with its main components is shown in Figure 6.

http://www.ti.com/microcontrollers/msp430-ultra-low-power-%20mcus/overview.html

10

Figure 6. The Panda board and its components

The following components are denoted by numbers in Figure 6.

1. MPU Atmel AT91SAM9N12
2. Wireless communication module ISM43341-L77
3. JTAG socket
4. External DDR RAM 1 GB Micron 6WM17 D9RZT
5. NAND FLASH 512 MB Micron 4XD12 NW196

This board is based on an MPU with ARM architecture,
which is designed for external firmware storage and RAM
connection. The firmware is stored on the Flash NAND
chip designed by Micron. All wireless communications are
provided by the ISM communications module. It is
designed on the basis of a Cypress chip that supports Wi-
Fi, Bluetooth and NFC protocols. The NFC protocol is used
for communications with payment cards. We didn’t find any
software components designed for that in the ChargePoint
Home station, so this protocol may be used in other
ChargePoint Inc. products that utilize the same hardware
design.

This Board has a debug socket. We found a JTAG
interface on this socket with the JTAGulator board. The
socket pinout is shown in Figure 7.

Figure 7. Debug socket pinout

11

5. NAND image downloading
The NAND content can be read and written by OpenOCD scripts. A collection of such
scripts designed for different processor families is included in the OpenOCD distribution.
There are several scripts for Atmel processors, but none of them supports our device.

As the Panda board is based on an AT91 MPU, we assumed it uses the standard boot
sequence, which is proposed by Atmel. This sequence consists of four stages:

1. AT91 BootROM. This is a small bootloader that is burned into an on-chip mask ROM.
It can only work with an internal SRAM.

2. AT91Bootstrap. This is a second stage open-source bootloader that can initialize an
external RAM and thus load bigger images.

3. U-Boot. This is a well-known Linux bootloader.
4. Linux kernel.

We decided to use the AT91 BootROM code to read the NAND memory content, as this
method is simple and universal. It can later be applied to a large number of devices
based on the same MPU family. AT91 BootROM isn’t an open source bootloader, so we
read it via JTAG and analyzed it. As a result of our analysis, we found the address of
the NAND read procedure. The pseudocode of this procedure is shown in Figure 8.

Figure 8. NandRead procedure pseudocode

12

This procedure takes four arguments:

1. a1_nand_addr – address on the NAND chip.
2. a3_memAddr – address of the buffer for incoming data in the internal SRAM.
3. a4_size – amount of bytes to read.
4. a2 – dummy argument.

To read the whole content of the NAND chip, we need to set a breakpoint after the
NandRead procedure’s call in the AT91 BootROM code and wait until this breakpoint is
hit. After that, we need to cyclically pass the execution flow to the NandRead procedure
with the appropriate arguments’ values set, and dump the procedure’s output buffer to
the host.

5.1. NAND image structure
We analyzed the dumped image with the binwalk tool, and it showed that, among other
things, the image contains a UBI file system. In further analysis, we manually parsed the
UBI header’s data and discovered that the image contains five UBI volumes. Two of
these volumes seem to be Linux root file system volumes. We mounted them to a Linux
system as part of the emulated NAND chip to analyze their content, and found mounting
scripts containing information about the image partitioning (Table 1).

Table 1. NAND image partitioning

- Second stage bootloader
- Linux image 1
- Linux image 2
- Additional UBI volumes
- Additional partitions

0x00000000 – 0x00003940 AT91-bootstrap

0x00280000 – 0x002e9ee0 U-boot

0x00380000 - 0x003a0000 Kernel args section

0x00480000 – 0x007a0000 Kernel v.3.10.0

0x00c80000 – 0x08c80000 UBI rootfs volume

0x08c80000 – 0x08e80000 Parameter section

13

0x08e80000 – 0x0ae80000 UBI opt volume

0x0ae80000 – 0x0ee80000 UBI data volume

0x0ee80000 – 0x0ef80000 U-boot

0x0ef80000 – 0x0f080000 Kernel args section

0x0f080000 – 0x0f880000 Kernel v.3.10.0

0x0f880000 – 0x17880000 UBI rootfs volume

0x17880000 – 0x17a80000 Parameter section

0x17a80000 – 0x1fa80000 UBI otavdata volume

0x1fa80000 – 0x20000000 SSH key recovery partition

There are two full Linux images located at offsets 0x280000 and 0xee80000. Each of
them consists of five areas: U-Boot bootloader image, kernel, arguments section,
proprietary parameters section and root file system. The device can switch to the
alternate image at the next boot if it decides that something went wrong. There are also
three additional UBI partitions that are mounted to the root file system during boot and
initialization process. These volumes are not duplicated. In addition, there is an AT91-
Bootstrap image and an SSH key recovery partition, which will be discussed
in section 7.3.

Parameter sections included in the Linux images are in proprietary format. They contain
records with the following fields:

1. 4-byte parameter name
2. 2-byte parameter value length
3. Parameter value

All parameters contained in the current parameter section are parsed at boot time with
the cfg_decoder binary and saved as separate files in the /var/config folder.

14

6. Root access
For further investigation, we connected the device to our Wi-Fi network. It had an open
telnet port with password authentication. To bypass authentication, we used JTAG to
inject our code into the password verification procedure. Our Linux image is based on the
busybox binary, so this procedure is located in the login module of this binary. Figure 9
shows the procedure in the disassembled form with the highlighted BEQ instruction. If
we change this instruction to the BNE instruction, we will bypass authentication with an
incorrect password.

Figure 9. correct_password function

To patch the code in the RAM, we need to set a breakpoint somewhere before the
target instruction execution and wait until this breakpoint is hit. As the target MPU works
in protected mode with virtual addressing, a breakpoint is set on a virtual address and
there might be several ‘false positive’ breakpoint hits caused by other processes. We
need to recognize and skip these hits by checking the constant memory content, for
example, a signature that is located somewhere in the .text section.

After bypassing authentication, we added a permanent user to the device.

15

7. Software analysis
Table 2 contains information about processes that are responsible for wireless
communications.

Table 2. Processes that are responsible for wireless communications

Process name Description
stunnel Listens for incoming connections on

TCP ports 443 and 55557; port 443
is used for HTTPS, port 55557 – for
an encrypted telnet service

busybox Listens for incoming connections on
TCP port 23; provides a telnet
service

cpsrelay Connects to the remote server,
implements main communication
channel with the backend
infrastructure that is used for
remote controlling and monitoring

sshrevtunnel.sh Connects to the remote server,
implements additional
communication channel with the
backend infrastructure

btclassic Implements main communication
channel via Bluetooth that is used by
the smartphone application

onboardee Implements additional
communication channel via
Bluetooth

16

7.1. HTTPS server
There is an HTTPS server implemented with the thttpd daemon combined with the
stunnel daemon for TLS support. Stunnel configuration is shown in Listing 3.

Listing 3. Stunnel configuration file

Stunnel configuration file for handling incoming SSL/TLS

connections to proxied services running locally on a Smartlet.

CAfile = /var/config/.keys/ca.crt

CApath = /etc/pki/certs

CRLFile = /etc/pki/crls/ca.crl

cert = /etc/pki/certs/system.crt

key = /etc/pki/keys/system.key

key_passphrase_type = 2

verify = 2

ciphers =
ALL:!aNULL:!ADH:!eNULL:!LOW:!EXPORT:!SSLv2:RC4+RSA:+HIGH:+MEDIUM

#compression = zlib

TODO: need to find out why background does not work.

May be due to differing OpenSSL versions on server and Smartlet.

#foreground = no

foreground = yes

debug = 0

Uncomment to enable debug.

#debug = daemon.info

client = no

pid = /var/tmp/stunnel-in.pid

session = 20

max_clients = 8

[thttpd]

17

The stunnel service is configured for mutual authentication, so we can’t access the
HTTPS server without an appropriate certificate, and it uses certificates from the
parameters section: the system.crt certificate as a server certificate and the ca.crt
certificate as a certificate authority for client certificate validation.

Initially, the stunnel binary supports only unencrypted certificates, and doesn’t support
the key_passphrase_type configuration option, but the system.crt certificate’s private
key is stored in encrypted form. We assumed that the stunnel binary was built from
modified sources. After analyzing the stunnel binary file, we discovered that it was
compiled with a static library that supports certificate decryption. Furthermore, every
binary that supports incoming or outgoing TLS connection is statically linked with this
library.

Among others, this library includes a function for generating the certificate decryption
key. This function takes paths to master_key, system_mac and system.phr files as
parameters. These files are derived from the parameter sections in the NAND chip. The
system.phr file contains only one byte, which sets the certificate’s encryption mode. In our
case, this byte is set to 2. In this research we didn’t analyze the key generation
algorithm, and downloaded the key for the RAM via JTAG after that function has been
executed. This is a 64-character string that consists of digits and small Latin characters.

Also, we discovered that the system.crt certificate is signed with the ca.crt certificate.
When an SSL connection is established, the stunnel binary only verifies the certificate’s
signature. Therefore, we are able to connect to the https server using the system.crt
certificate. This issue could have been avoided if another unknown certificate was used
for system.crt certificate signing.

Listing 4 shows the thttpd configuration file.

accept = https

connect = 127.0.0.1:55555

TIMEOUTidle = 60

[telnet]

accept = 55557

connect = 127.0.0.1:telnet

TIMEOUTidle = 300

18

novhost

nocgipat

nothrottles

host=0.0.0.0

charset=iso-8859-1

default = !chroot # nosymlink

BEWARE : No empty lines are allowed!

This section overrides defaults

dir=/

chroot

user=nobody

logfile=/dev/null

pidfile=/var/run/thttpd.pid

#charset=UTF-8

cgipat=/usr/bin/getsrvr|/usr/bin/uploadsm|/usr/bin/dwnldlogsm

port=55555

#Only localloopback addres

host=127.0.0.1

This section _documents_ defaults in effect

port=80

Listing 4. thttpd configuration file

The thttpd daemon is used only for the CGI (Common Gateway Interface)
implementation and supports invocation of three ELF files: uploadsm, dwnldlogsm and
getsrvr. This CGI interface seems to be redundant, and was left on the device as a part of
the software subsystem that is utilized in more complex devices, such as charging
stations that are intended for public use. In the latest firmware version, https is enabled
only on the localhost interface and unreachable from a Wi-Fi network.

The thttpd daemon is launched with “nobody” user rights, but all CGI binaries have the
SUID bit set. This results in these binaries being executed with the highest system
privileges, but all their child processes will again have “nobody” user rights.

19

sprintf((char *)queryString, "bunzip2 -f %s ", newFilePath);

res= system((const char *)queryString);

strcpy(newFilePath, "/otavdata/");

…

while (1)

{

pointer2 = strchr(pointer1, '/');

if (!pointer2)

break;

v7 = strlen(pointer1);

v8 = strlen(pointer2);

7.1.1. The uploadsm CGI binary
The uploadsm binary is used to upload files to different folders of the device depending
on query string parameters. We found two vulnerabilities in this binary: OS command
injection and arbitrary file write.

7.1.1.1. OS command injection in uploadsm
The uploadsm binary supports three parameters. One of these parameters is the
"filename" parameter. When this parameter is passed to the "system" call, no
verification of the command line delimiters is made, which leads to OS command
execution.

For instance, if a "filename" parameter contains the ".bz2" substring, the process passes
the parameter to the "system" function without proper validation, which is shown in Listing
5.

Listing 5. uploadsm OS command injection vulnerable code

Thus, a lack of parameter validation leads to OS command execution on the device.

Due to the default thttpd configuration, the OS command is invoked with "nobody" user
rights.

7.1.1.2. Arbitrary file write in uploadsm
While processing the “filename” parameter, the process passes it to the “fopen” function
without proper validation against the "../" characters sequence, which is shown
in Listing 6.

Listing 6. uploadsm OS path traversal vulnerable code

20

That can give a remote attacker an opportunity to create/overwrite any file of the device’s
file system with the highest privileges.

7.1.2. The getsrvr CGI binary
The getsrvr binary is used to send different commands to the charger in the vendor-
specific format, via the HTTP POST method. Each command is encoded with a string of
tokens, separated with the ‘|’ symbol. There are some common tokens that are included
in all commands, and some command-specific tokens. An example of a command with
this format is shown in Figure 10.

Figure 10. getsrvr command format

strncat(newFilePath, pointer1, v7 - v8);

if (strchr(pointer2, '/'))

{

mkdir(newFilePath, 0x1FDu);

strcat(newFilePath, "/");

}

pointer1 = pointer2;

if (*pointer2 == '/')

++pointer1;

}

strcat(newFilePath, pointer1);

stream = fopen(newFilePath, "w");

21

sscanf(fS,"%[^|]|%d|%d|%16s|%ld|%d|%d|%d|%[^|]|%[^|]|%s",&t1,&p1,&p2,&
p3,&p4,&p5,&p6,&p7,&p8,&p9,&t2)

We found a series of stack buffer overflow vulnerabilities here.

7.1.2.1. Stack buffer overflow in getsrvr
Command parameters are parsed with the "sscanf" function that is generally unsafe
against a buffer overflow.

For instance, when a packet is received where the “cmd tag” token is equal to the
“touconf” string, the process parses its parameters with the “sscanf” function that is
shown in Listing 7.

Listing 7. getsrvr vulnerable sscanf call

p8 and p9 are buffers located on the stack, and they are initialized using the scanf “[^|]”
specifier, which doesn’t specify a maximum buffer length. That can lead to a stack
buffer overflow and remote code execution with the highest privileges.

Due to the fact that ASLR is turned on by default, a remote attacker may have to retry
exploitation numerous times or obtain the correct memory addresses to achieve reliable
remote code execution.

7.1.3. The dwnldlogsm CGI binary
The dwnldlogsm binary is used for downloading different logs from the device. The type
of downloaded log is selected with commands whose format is the same as in the
getsrvr binary.

We found a series of stack buffer overflow vulnerabilities in this module that are quite
similar to those in the getsrvr binary. They are caused by similar usage of the “sscanf”
function and have the same exploitation characteristics, so we won’t discuss them in
detail here.

7.2. cpsrelay analysis
The cpsrelay process is used for remote backend communications. All remote
controlling functions that are available to the smartphone application user are available
via commands that are transmitted from this backend. The process has a configuration
file, cps.conf, located at the /etc/coul path.

Besides the control server’s URL, which is set with the “WsUrl” option, there are three
other URLs listed in this configuration file, which are set by the options Url, AuthUrl and
KioskUrl. Further binary analysis shows that these three URLs are actually bogus: a
function that is used for communications with them is stubbed with the “return 0”
statement.

22

Like the modified stunnel binary, the cpsrelay binary uses the same compiled library for
certificate decryption, and it also uses the same system.crt certificate. This certificate is
used to establish a connection with the remote backend server, so it may present an attacker
with the possibility of communicating with the server. Analysis of server-side security
problems was beyond the scope of this research.

To communicate with the remote backend server, the binary uses the libocpp.so
dynamic library. OCPP is an industry protocol that is based on the WebSocket protocol. It
supports several types of messages, including connection establishment messages,
heartbeat messages, data transfer messages, and so on. More detailed analysis of this
library showed that it uses only one type of OCPP-defined message – “DataTransfer”
messages. All commands and responses are passed between the device and the server
in the same format as in the getsrvr and downldlogsm CGI binaries, but the command
set is different.

Also, we found a series of stack buffer overflows in the server’s response processing.
They are caused by the same “sscanf” function that is used in the getsrvr and
dwnldlogsm CGI binaries, and have the same exploitation characteristics, so we will not
discuss them in detail. The only difference here is that due to the fact that the device
establishes communication with the server using its DNS name, to successfully exploit
this vulnerability an attacker must have the means to reroute traffic or impersonate the
hostname of the server.

7.3. sshrevtunnel.sh analysis
The sshrevtunnel.sh executable is a bash script that cyclically tries to establish an SSH
connection to the remote server. Partial sources of that script are shown in Listing 8.

Listing 8. sshrevtunnel.sh sources

#!/bin/sh

Bring up pinned up reverse tunnel to mothership. Try forever, but back
off

connection attempts to keep from wasting resources. Peg the retry
time at

some max and keep trying.

LOG="logger -p DEBUG $0 - "

23

KEY_RECOVERY_PARITION=/dev/mtd14

KEY_RECOVERY_OFFSET=1000 # allow for bad block table

#JB MINCONNECT=300

MINCONNECT=30

SERIAL_NUM=`cat /var/config/cs_sn`

SN_YEAR=`echo $SERIAL_NUM | head -c 2`

BASE_SERVER_PORT=20000

BASE_SERIAL=0

SERIAL_MODULO=10000

SERIAL_MINOR=`expr $SERIAL_NUM % $SERIAL_MODULO`

REVPORT=`expr $SERIAL_MINOR - $BASE_SERIAL`

REVPORT=`expr $REVPORT + $BASE_SERVER_PORT`

#FOR QA server please uncomment this line

#REVSYSTEM="pandagateway.ev-chargepoint.com"

REVSYSTEM="ba79k2rx5jru.chargepoint.com"

REVSYSTEMPORT="-p 343"

REVHOST="pandart@$REVSYSTEM"

REVHOST_2016="pandart@xiuq0o4yl57c.chargepoint.com"

#For 2017

REVHOST_2017=pandart@xiuq0o4yl57c2017.chargepoint.com

…

while true; do

…

if ["$SN_YEAR" = "17"]; then

…

ssh -o "StrictHostKeyChecking no" -o "ExitOnForwardFailure
yes" $REVSYSTEMPORT -N -T -R $REVPORT:localhost:23 $REVHOST_2017 &

elif ["$SN_YEAR" = "16"]; then

…

mailto:pandart@xiuq0o4yl57c.chargepoint.com
mailto:REVHOST_2017%3Dpandart@xiuq0o4yl57c2017.chargepoint.com
mailto:REVHOST_2017%3Dpandart@xiuq0o4yl57c2017.chargepoint.com

24

ssh -o "StrictHostKeyChecking no" -o "ExitOnForwardFailure
yes" $REVSYSTEMPORT -N -T -R $REVPORT:localhost:23 $REVHOST_2016 &

else

…

ssh -o "StrictHostKeyChecking no" -o "ExitOnForwardFailure
yes" $REVSYSTEMPORT -N -T -R $REVPORT:localhost:23 $REVHOST &

fi

SSHPID=$!

wait $SSHPID

ssh_rc=$?

done

All attempts failed. Force delays to max until we see a connection.

if [$connectsuccess -eq 0]; then

delays="900"

done

else

fi

…

resetdelays

connectsuccess=0

As a rule, the only thing this script does is try to forward the local telnet port through an
SSH tunnel to a port on the remote server (this server is called “mothership” in one of
the script’s comments). The SSH key from the SSH key recovery partition is used for
device authentication on the server, so, with this key, an intruder could possibly perform
malicious actions on the server. Analysis of server-side security problems was beyond
the scope of this research.

25

7.4. Bluetooth communications
The Bluetooth communications scheme is shown in Figure 11.

Figure 11. Bluetooth stack scheme

All the communications are based on the Broadcom/Cypress UART HCI stack. This
stack is developed for working with a single UART line that is used for a Bluetooth
modem connection, so it doesn’t need any additional kernel components. Almost all its
functionality is encapsulated in the user space process Bsa_server_921600. The
libbsa.so dynamic library is used for calling this interface.

There are two processes that use the libbsa.so library’s API: btclassic and onboardee.

The btclassic executable processes communications with the smartphone application
that are carried over an RFCOMM protocol. We found a buffer overflow vulnerability in
this process.

The Onboardee process implements an additional communication protocol that
supports the same command set, but is carried over the dedicated L2CAP channel.
Only basic analysis of this binary was conducted and it may be a subject for further
analysis.

7.4.1. Stack buffer overflow in btclassic
When parsing the “password” parameter of the “connect_to_wifi” request, the service
copies it to the stack buffer without proper length verification (see Listing 9).

26

pswd = (void *)json_dumps(joPassword, 512);

…

strcpy(.pswdHash, (const char *)pswd);

Listing 9. Btclassic vulnerable code

“pswdHash” here is a 0xD0-byte stack buffer. This can lead to a stack buffer overflow and a
denial of service attack.

For successful vulnerability exploitation, the charging station needs to be in the
unregistered state. To place the station into that state, an attacker may need to make a
power-cycle prepended by the reset-to-factory-defaults procedure, which requires
physical access to the charger.

27

8. Communications with ChargePoint Inc.
Table 3 contains the main stages of communication with the vendor.

Table 3. Vendor response timeline

08/07/18 Information about all the identified
vulnerabilities sent to ChargePoint, Inc.

08/21/18 Vendor representatives provided a plan for a vulnerability mitigation
process with detailed descriptions of measures to be undertaken.

09/14/18 We received the new firmware with all necessary patches.

The mitigation measures implemented by the vendor for all the discovered
vulnerabilities are listed in Table 4.

Table 4. Mitigation measures

Vulnerability Mitigation measures
Uploadsm vulnerability 1.
OS command injection

additional input string validation

uploadsm vulnerability 2.
Arbitrary file write

additional system() call parameters
validation

getsrvr vulnerability 1.
Stack buffer overflow

maximum-length sscanf specifier

dwnldlogsm vulnerability 1.
Stack buffer overflow

maximum-length sscanf specifier

cpsrelay vulnerability 1.
Stack buffer overflow

maximum-length sscanf specifier

btclassic vulnerability 1.
Stack buffer overflow

safe string functions like strncpy()

28

We received the following official response from ChargePoint Inc.

“ChargePoint takes the security of our products and services seriously. We dedicate
significant resources to this area including:

• Following best practices for secure design and testing of our products
• Regular 3rd party penetration testing against our products and systems that store

sensitive data

Thank you, Kaspersky, for helping us enhance the security of our products!

• Your patience and persistence were helpful as these were the first externally-
detected vulnerabilities reported to us

• All the vulnerabilities identified have been patched

If you feel you have discovered a possible privacy or security vulnerability, please
contact us at security@chargepoint.com with a description of the issue.”

mailto:security@chargepoint.com

29

9. Conclusion
During our research of the ChargePoint Home charging station we analyzed the system
software and hardware components focusing on those responsible for wireless
communications, especially Wi-Fi and Bluetooth. As a result, several security problems
were identified in the device’s firmware that could lead to full control being gained over
the device. These security issues were generally caused by unsafe string functions and
a lack of input length validation.

It’s worth noting that the device vendor, ChargePoint Inc., was very concerned about
the product’s security. They use modern stack of technologies, including an enhanced
backend communication protocol as well as a reliable firmware updating system. This
makes it possible to address vulnerabilities quickly and to introduce additional security
mechanisms without significant architectural modifications or end-user interaction.

We appreciate ChargePoint Inc.’s commitment to securing their devices and
coordinating their efforts with the information security community. All our findings were
quickly addressed, and by the time this research was published all identified
vulnerabilities had been patched.
The EV industry in general, and charging stations in particular, offers a wide field for
further information security research projects. As of now, we can point to such research
topics as EV communication protocols, the potential for payment system fraud, and the
security of backend communications.

30

10. References
Alcaraz, C., Lopez, J., and Wolthusen, S. OCPP Protocol: Security Threats and
Challenges. 2017.

(https://www.researchgate.net/publication/313781416_OCPP_Protocol_Sec
urity_Threats_and_Challenges)

Dalheimer, M. Ladeinfrastruktur für Elektroautos: Ausbau statt Sicherheit. In CCC
Congress (2017).

(https://media.ccc.de/v/34c3-9092-
ladeinfrastruktur_fur_elektroautos_ausbau_statt_sicherheit#t=2902)

Microchip SAM9N12/SAM9CN11/SAM9CN12 Microprocessors Specification. 2017.

Open Charge Aliance. OCPP2.0 specification. 2018.

http://www.researchgate.net/publication/313781416_OCPP_Protocol_Sec

	1. Introduction
	2. Research target
	3. Mobile application analysis
	4. Hardware revision
	5. NAND image downloading
	5.1. NAND image structure

	6. Root access
	7. Software analysis
	7.1. HTTPS server
	7.1.1. The uploadsm CGI binary
	7.1.1.1. OS command injection in uploadsm
	7.1.1.2. Arbitrary file write in uploadsm

	7.1.2. The getsrvr CGI binary
	7.1.2.1. Stack buffer overflow in getsrvr

	7.1.3. The dwnldlogsm CGI binary

	7.2. cpsrelay analysis
	7.3. sshrevtunnel.sh analysis
	7.4. Bluetooth communications
	7.4.1. Stack buffer overflow in btclassic

	8. Communications with ChargePoint Inc.
	9. Conclusion
	10. References

